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Existence of commutative conservation laws
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Abstract

We give a natural geometric condition called geodesic compatibility
that implies the existence of integrals in involution of the geodesic
flow of a (pseudo)Riemannian metric. We prove that if two metrics
satisfy the condition of geodesic compatibility then we can produce a
hierarchy of metrics that also satisfy this condition. A {ot of metrics
studed in Riemannian and Kahlerian geometry satisfy such condi-
tions. We apply our results for obtaining an infinite family (hierar-
chy) of completely integrable flows on the complex projective plane
(6) 2
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1 Introduction

The main purpose of the present paper is to prove that if a pair of (pseudo)
Riemannian metrics g and g satisfies a natural geometric condition called
geodesic compatibility (or PQ¢-projectivity) then the geodesic flows of the
metrics g and g admit integrals in involution of a special form. The integrals
we find usually have singularities that can be localized out of every arbitrary
taken open set D with compact closure (Theorem 1). If the manifold is
compact then the integrals can be taken smooth. We prove a Kihlerian
analog of the results proved in [11].

In what follows we call (pseudo)Riemannian metrics simply metrics.
Positively definite metrics are called Riemannian metrics. All tensor object
and manifolds we consider are smooth (C*). If E — M is a vector bundle
over a manifold M then I'(E) denotes the space of the smooth sections of
E—- M.

Let us consider some examples of metrics that satisfy the condition of
the geodesic compatibility.

(a) Geodesic equivalence

A classical example of geodesic compatibility is the so-called geodesic
equivalence. Recall the main definitions.

Let g and g be (pseudo)Riemannian metrics given on the manifold M™,
n = dim M™.

Definition 1. The metrics g and g are called geodesically equivalent iff
they have the same geodesics (considered as unparametrized curves on M™).

We say that the metric g admits non-trivial geodesic equivalence iff there
exists a metric § # const g such that g and g are geodesically equivalent.
The first theorems concerning the existence of integrals of the geodesic flows
of the metrics admitting non-trivial geodesic equivalence were proved by U.
Dini, P. Painlevé, T. Levi-Civita and R. Liouville (see [1]). The Liouville
integrability of the corresponding geodesic flows in the case when one of the
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metrics g and § is Riemannian is proved in [4] (see also 3, 5, 6, 8, 9, 6, 10]).
The (pseudo)Riemannian analogs of these theorems are proved in [11].
(b) h-projectivity

Another example of geodesic compatibility appears about a century later
in the papers of Otsuki and Tashiro ([15, 16]).

Let M*" be a 2n-dimensional real manifold endowed with a complex
structure J, J> = —1, where 1 denotes the identity operator of the tangent
bundle TM*". Recall that, a metric g on M?" is called Kahlerian iff the
next two conditions are satisfied: 1) g is hermitian metric, i.e., g(J¢€, Jn) =
9l€n), &n € TeM™, and 2) the Kahler form Q(€,n) < g(J€n) is a
symplectic form (i.e., © is non-degenerate and closed, d2 = 0).

Denote by V the Levi-Civita connection corresponding to the Kéhlerian
metric g. Following [15] we give:

Definition 2. A smooth curve (t1,t2) 3t — y(t) € M?", t; < ts, is called
holomorphically planar (with respect to the Kihlerian metric g) iff

&

L8) = alO(®) + 50 IA(0), 1)

where a and b are smooth functions of the parameter t.

Holomorphically planar curves always exist. For example, the geodesic lines

of the metric g are holomorphically planar curves. More generally, fixing

any smooth functions a,b € C®(t1,t), a point zop € M*® and a tangent

vector 79 € Ty M*", we can find a small ¢, > 0 and a unique solution

7 (—€g,€0) = M of equation (1) with initial data (0) = zo, 4(0) = 7o.
Let g and § be Kéhlerian metrics on M?".

Definition 3 (see [16]). The Kdhlerian metrics g and g are called holo-
morphically projective (or h-projective) iff every holomorphically planar
with respect to the metric g curve y(t) is holomorphically planar with respect
to the metric § as well, and vice versa.

It is not hard to prove (see for example (16, 17]) that the condition that
the Kahlerian metrics g and g are h-projective is equivalent to a non-linear
partial differential equation on the “deformation” tensor of the Levi-Civita
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connections of the metrics g and g. In coordinates {(z', ..., z*")}, the equa-
tion is

5k = Ui = 050k + 6,05 — ¢aJi Jx — badic Jj, (2)
where ¢; (I=1,...,2n) are the components of a globally defined on M?" 1-
form, I and T, are the Christoffel symbols of the metrics g and g respec-
tively, 6} is the Kronecker delta and J; are the components of the complex
structure J. As usual, we use the standard tensor conventions and omit the
summation symbols in the formulas. It can be easily seen that ¢ = Ok,
where 0, stands for the partial derivative ﬁ; and ¢ is a globally defined on
M?" function (see Sect.2.1). Remark that equation (2) cannot be obtained
without using the condition that the metrics g and g are Kéhlerian.

(¢) PQ*-projectivity

Here we give the definition of the geodesic compatibility that generalize
the both previous notions.

Consider two metrics g and g given on the manifold M™, m = dim M™.
Let P,Q € I'(End(T’M™)) satisfy the next properties:

(i) P and (Q are antisymmetric with respect to the both metrics g and g;

(ii) PQ = €l, where € is a fixed real constant such that e # m + 1 and

e# 1.
Denote by x the number y 4 1 41 — €. Tt follows from (47) that x # 0.

Definition 4. The metrics g and g are called PQ*-projective (or geodesi-
cally compatible) iff their Christoffel symbols satisfy the equation

F;k Ty = ¢(;5;;) — $a Q%) (3)
where ¢y, are the components of a globally defined on M™ 1-form and the

operators P and Q satisfy relations (i) and (i1).

As usual, equation (3) is written in a fixed coordinate chart {(z!,...,2™)}

and P} and @ are the components of the operators P and Q. The brackets
(2...7) in formula (3) denote symmetrization with respect to the pointed |
indices. For example, the tensor field T, ;)5 stands for Tuijp + Tujip. It is |
not hard to give an invariant definition of PQ*-projectivity.
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Remark 1. If € # 0 then the operators P and @ are non-degenerate on
M™, Q = eP~! and the dimension m of the manifold is even.

Remark 2. Suppose that g and g are Kahlerian metrics given on the com-
plex manifold M*" with complex structure J. Taking P = @ = J ande = —1
we see that h-projectivity is a particular case of PQ¢-projectivity. Taking
P=Q =0 and € = 0 we obtain the notion of the geodesic equivalence.

Let us give a brief description of the results proved in the paper. Suppose
that the metrics g and g given on the manifold M™ are PQ¢-projective.
Define the endomorphism A € I'(End(TM™)) of the tangent bundle 7M™
by the formula
det g %
det g

Consider the locally defined one-parameter family of quadratic forms

4(9,9) < 700 @

Jaj

Ke(9.9)(€) & | det(A + c1)[Y0-9g((A + c1) 7€, ), ()

where £ € TM™ and c is an appropriately chosen real patameter.
Following (11] define the rank of the pair g and g. Denote by (g, g)(z)
the degree of the minimal polynomial of the operator A(g, §)|z-

Definition 5. The number 7(g,g)(z) is called rank of the pair g and g

of PQ“projective metrics at the point = € M™. The number r(g,3) et
max r(9,9)(x) is called rank of the pair of PQ*-projective metrics.

Recall that the smooth functions F, ..., Fi given on a smooth manifold V/
are called functionally independent in V iff the set of the points z € V
where the differentials d, F, ..., d, Fx are linearly independent is dense in V.

Theorem 1. Suppose that the manifold M™ is connected and let the rank of

the pair of PQ“-projective metrics g and g be r. Denote by w, the symplectic

structure on TM™ given by the pull-back FLjw where w is the canonical

symplectic structure on T*M™ (the form ‘dp A dq”) and FL, : TM™ —

T*M™ denotes the Legendre transformation corresponding to the metric g.

Then for every open set D ¢ M™ with compact closure in M™ there exist
i T quadratic in velocities functions BP(€), ..., BP(€), € € TD, such that:

—\
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(a) BP(€),...,BP(¢) are smooth functionally independent pairwise com-
muting integrals of the geodesic flow of the metric g on D;

(b) if the integral Kc(g,3)(€), ¢ = const, is correctly defined on some
open set U C D then there exist constants v, ..., o, such that K (€) =

ko1 kB (€) on D.

The integrals BP(£), ..., B?(€) can be taken in the form BP(€) < K., (¢),
where the constants cy, ..., ¢, are appropriately chosen.

Remark 3. Actually, the constants cy, ...,c, in Theorem 1 are taken “suf-
¢ i def
tly big”, i.e. , mp = su max |A].
fictently bg”, ve. [esl > mp, mp X sup _ max, |3
As a simple corollary of this theorem we obtain the next statement.

Corollary 1. The set of the points ¢ € M™ where 7(g,g)(x) = r is open
and dense in M™.

‘We prove Theorem 1 in Sect.4.

A hermitian version of Theorem 1 is given in Sect.5 (see Theorem 4).
An important corollary is the next Kéhlerian analog of the proved in [11]
Theorem 2 . Suppose that the Kéhlerian metrics s and § are h-projective.
Denote by r the hermitian rank of the pair s and § (see Definition 9).

Theorem 2. If two Kdhlerian metrics s and § are h-projective then their
geodesic flows admit r functionally independent integrals in involution.

The paper is organized as follows.

In Sect.2 we prove that the quadratic forms given by formula (5) are
integrals of the geodesic flow of the metric g (Proposition 3, Sect.2.3). In
Sect.2.4 we prove Proposition 4. As in [11] the existence of hierarchies is a
crucial point proving the commutativity of the integrals given by formula
(5). We prove the commutativity of these integrals in Sect.3, Theorem 3.
Sect.4 is devoted to the proof of Theorem 1. The hermitian analog of this
theorem is proved in Sect.5. The last section is devoted to the applications
of the results. A simple geometrical construction allows us to find an infinite
family (“CP"-hierarchy”) of completely integrable Hamiltonian systems on
the complex projective plane CP" (see Theorem 6). Our integrals don’t
coincide with the integrals obtained by Thimm in [12].
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In what follows, if a coordinate chart is fixed, we usually identify the
tensor fields we consider with their coordinate (“index”) representations
and denote the corresponding objects by the same letters. We use also the
common tensor notations and conventions and omit the summation symbols
in the formulas. An endomorphism L € I'(End(T'M™)) is called invertible
or non-degenerate on M™ iff det L # 0 on M™.

Acknowledgments. The author is partially supported by MESC Grant No.
MM-810/98.

2 Properties of PQ-projectivity

The present section establishes the main properties of the PQ‘-projective
metrics.

2.1 Existence of an integral

Suppose that the metrics g and g are PQ*-projective. Here we prove that
the geodesic flow of the metric g admits an integral (Proposition 1).
Contracting the indices ¢ and j in formula (3) and using that trace @ = 0

we get [, — I, = yéx where x % m+1—e. Using that I, = Ok In /| det g|

we obtain
det g D ©)

0
NP daF (ln det g

Therefore, ¢ = Oy, where ¢ is a smooth function on M™.
The next technical lemma is needed for the sequel.

Lemma 1. The metrics g and g are PQ¢-projective if and only if their
components satisfy the next equation in covariant derivatives

Vidij = 20k35 + GGk — $aPETRL, ()

where ¥ denotes the Levi-Civita connection of the metric g and the operators
P and Q satisfy conditions (i) and (ii).
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Proof of Lemma 1. Suppose that the metrics g and § are PQ‘-projective.
In coordinates, we obtain
Vigi; = Okgij — TixGaj — TikGia
= Vigij + (9660 — BPLRR)Tas + (65658 — HPGQR)ia
= 20Gi + PGk — BP(3)aQf — APQLT e
= 20k3ij + Padik — OP(GaQR-
The inverse statement immediately follows from the classical fact that the
Levi-Civita connection of some metric is the unique torsion free connection
that preserves the considered metric. Lemma 1 is proved.
Equations (7) are equivalent to

2#§fa',k = —2mgi; — pGin — P (8)
where pu = £ gz—:é m et —L‘; (R=T15 20 Wand) Q,?J are the components of

the 2-form Q2 (&, ) wf g(Q&,m), &,n € T,M™. The equivalence of equations
(7) and (8) easily follows from the relation 2¢; = —1‘;"

Proposition 1. Suppose that the metrics g and g are PQ*-projective. Then
the quadratic form

def det g .
K(&)i= [1(329) (9)
is an integral of the geodesic flow of the metric g.
Proof of Proposition 1. In coordinates, we have K; ,u %g,;. Following

Levi-Civita, a quadratic form Q(¢,§) = Qy;6'¢, Q.] = Q_,,, is an integral
of the geodesic flow of the mem(‘ g if and only if Q(.]k) (Q.]k + Qjri +
Qki;)/3 = 0, where Q,J,k = VkQ,, and V is the Levi-Civita connection of
the metric g. Indeed, let y(s) (7(0) = zo, ¥(0) = &) be a geodesic line of the
metric g. We have 0 = £|,-0(Qi'¥?) = Qi k(20)E*E'E7 = Qijny (z0)E¥EE
and therefore Qyjx + Qjk,i + Qriy = 0. Conversely, if Qi;x + Qjk;i + Qri; =0
then @ is an integral of the geodesic flow of the metric g.
We have

2Kk = i + 26 G ks

2Kiki = Appgs + 28G5k,

2Kiij = Appign + 20° Gk 5.
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Summing these equations and using (8) we obtain that

2A(Kijk + Kiki + Krig) = —p (ﬂaPianQk + paPPOG+
+ 1aPPOY + paPEOS +
+ PRS2+ uc.Pi“ﬁ,?j) — (1)

This completes the proof of Proposition 1.

Remark 4. In the case of geodesically equivalent metrics the integral given
by formula (9) coincides with the classical Painlevé integral (see [1, 11]).
The enistence of the integral (9) in the case of h-projective Kdhlerian metrics
i a new fact.

2.2 Existence of a family of PQ-projective metrics

Suppose that the metrics g and g are PQ‘-projective. Consider the endo-
morphism A of the tangent bundle 7M™ defined by formula (4). It is clear
that A is self-adjoint with respect to the both metrics g‘and g. Condition
(1) imposed on the operators P and @ (see Sect. 1) yields that A com-
mutes with P and (). The next important technical lemma is needed for

the sequel.
Lemma 2. f the metrics g and § are PQ¢-projective then the metric a;; &
GiaA] satisfies the equation

@ik = Aigi)k — /\IP(ligj)qQZv (10)

where ), % ~d AL, The operators P and Q are antisymmetric with respect

to the metric a. Inversely, consider a metric g and two antisymmetric with

respect to g operators P and @ such that PQ = €el. Suppose that P and

Q are antisymmetric with respect to a non-degenerate symmetric form a;;

and let a,; satisfies equation (10) for some globally defined on M*" I-form
)

M. Then the metrics g and § % |dea|™

e g, are PQ‘-projective, where

L def i
95 = 9ia0Pgp;, Giaa® = 6].

[ i



380 Geodesically compatible metrics. Existence of...

Proof of Lemvma 2. Suppose that g and g are PQ‘projective. Denote
955 % exp(—24)gi;. Using formula (7) we obtain
Gije = —20Gi; + exp(—20)7ijx
= udik — 9P3aQR
For the inverse tensor §” (Jiag® = 67) we have
9 = —g°Gaprd”
~0u5 8 + P QP

Finally, taking aqs o 9aid g5 obtain

Gopr = —$i5"0iIp)k + OPrAL9), Q%
= Nagpyk — MP(a95)QL

where Ay =l — AL

Let us prove the inverse part of the proposition. Suppose that the non-
degenerate symmetric tensor a;; satisfies equation (10) where P and @ are
antisymmetric with respect to g and a, PQ = €1, and A, are the components
of a globally defined on M™ 1-form. Consider the tensor g e g%aap9”.
For the inverse tensor Jpy (Jpag®? = 6;3) we have

Jpak = _grig,ii.‘?jq
= =Xag™ ik + MPLI* Gi(p00)i Qi

Denoting ¢, & —Xag® Gip We obtain

Grak = Dok — GLP,T0; Q- (11)

=%
detg[1=¢
detg

Lemma 3. 2¢y = G In

Proof of Lemma 3. Denote by I";'-A, the Christoffel symbols of the metric g.
Using formula (11) we obtain

2 0 gaﬁagaﬁ
ok DT
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ldgh -
= Eg“ﬂ(gn,g'k + Gial’ ;7)1:)

i g npmel
= 59" ((Pdar — HPads)i Q) + G )
= (1-€)¢x +Tg.

det g
det g

. Lemma 3 is proved.

Therefore, (1 — €)¢x = —I'Y = OkIn [

Finally, taking gi; & exp(2¢)g,j we obtain that g;;x = 20xGi; + b5k —
o,l’('lg,\,,Qg. Using Lemma 1 we complete the proof of Lemma 2.

Proposition 2. Suppose that the metrics g and g are PQS-projective and
let ¢ be a real constant such that the operator A+ cl is invertible. Then the
metrics g and

3c(9,9) & | det(A+ e)| /0 g(A + c1) ! (12)
where A = A(g,g) 18 given by formula (4), are PQ¢-projective.
Proof of Proposition 2. Suppose that the metrics g and g are PQ-projective

and let ¢ be the constant given in the statement of the corollary. It follows

from Lemma 2 that the metric a % gA satisfies equation (10). Hence, the
metric a + cg = g(A + ¢) also satisfies equation (10). Using the inverse

part of Lemma 2 we obtain that the metrics g and g, £ ’%‘% ™= Jey G o

gla+cg)'g = g(A+ cl)~!. This completes the proof of Proposition 2.

2.3 Existence of a family of integrals

Here we prove that the geodesic flows of a pair of PQS-projective metric
locally admit a family of integrals.

Proposition 3. Suppose that the metrics g and g are PQ*-projective and
let ¢ be a real constant such that the operator A + cl is non-degenerate on
M™. Then the quadratic form

Ke(9,8) 2 | det(A + c1)]/1=9g(A + c1)~! (13)

15 an integral of the geodesic flow of the metric g.
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Remark 5. Let D C M"‘ be an open set with compact closure in M™.
Taking |c| > mp, mp % sup max |\, we obtain a one-parameter family
D AESpect Alx

of integrals of the geodesw ﬂaw of the metric g.

Proof of Proposition 3. Suppose that the metrics g and g are PQ“-projective.
It follows from Proposition 2 that g and g. (given by formula (12)) are
PQ*-projective. Applying Proposition 1 to these metrics we obtain that
the quadratic form

2
detg |x _
det g
| det(A + c1)[V1=g(A 4 c1)~

is an integral of the geodesic flow of the metric g. Proposition 3 is proved.

def

g

Ke

e

2.4 Existence of hierarchies

In the present section we prove the next proposition.

Proposition 4 If the metrics g and g are PQ‘-pmjectwe then the metrics

a% 94 anda % GA are PiQS-projective, where P, % PA, Q, 41,

and A = A(g, ) is given by formula (4).

Proof of Proposition 4. It follows from Lemma 2 that ausx = Aags)m —
1P{,95),Q4, where Ao & —p AL, We have

Oag,

R +Fk(uaﬂ)l = —Xaga)k + MP98),Qf
Oank
L Thatk = MaGs — MPLgr@,
da Gk

D= —Toeuy = Apga — MPlaginQL-

Summing these equations, and using the relations \; dof —¢a A, PA =
AP, g(Q&,n) = —g(€,@Qn), we obtain the next formula for the Christoffel
symbols A} of the metric ay;

Ay

L5 + Ma%gas + AP, 95),Q%™
— 619" gas + 6, P A, Q) A, (14)
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where /if,‘ are the components of the inverse operator A~!.

By definition, a;; & pj,-kA;? = exp(2¢)gi;. Using this relation we immedia-
tely obtain the next relation between the Christoffel symbols of the metrics
aand g

Afj = Ff, + ¢(i6_»’;) — g™ gi;. (15)
Finally, (14) and (15) yield
Tk Ak & s i
Al = Al = 6605 — 6. PP ALQY AL (16)
This completes the proof of Proposition 4.

Suppose that a pair of PQ‘-projective metrics g and § is given. It
follows from Proposition 4 that for every integer k the metrics g o gA*
and 3% Y g A% are PuQy-projective, where Py & PA* and Qi & A~*Q.
Indeed, suppose that g and g are P,Q-projective. It follows from formula
(1) that A(g®,g) = A and A(g"¥, g¥) = A1, Applying Proposition 4 to
the pair g and g we obtain that g**V and g1 are Py Qi41-projective.
Similarly, applying Proposition 4 to the pair g®) and g we obtain that g¢~1)
and gV are P_,Q;_1-projective.

Definition 6. The sequence of pairs g*) and g*) (k = 0,1, ...) are called
PQ“-hierarchy corresponding to the pair g and § of PQ¢-projective metrics.

The PQ‘-hierarchy is an analog of the geodesic hierarchy considered in [11].
Proposition 4 is an analog of the Sinyukov transformation in the theory of
geodesically equivalent metrics (see [19, 20]). We will describe the PQ*-
hierarchy by the next formal scheme

1
g Fen
! Y
S
0 !
g — g
I 1

where the horizontal arrows mean that the metrics g(*) and §*) are P,Qy-
projective.

b cm
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3 Involutivity of the family of the integrals

In the present section we prove that the integrals given by Proposition 3
are in involution.

Theorem 3. Suppose that the metrics g and g are PQ*-projective. Suppose
in addition that the operators A+ ;1 and A + c;1 are non-degenerate on
M™ where ¢, and ¢y are some fized real numbers. Then the quadratic forms
K., (9,3) and K,(9,3), given by formula (5), are in .involution with res-
pect to the symplectic structure wy & FLjw, where w denotes the canonical
symplectic structure on the cotangent bundle T*M™ and FL, : TM™ —
T*M™ is the Legendre transformation corresponding to the metric g.

Proof of Theorem 8. Suppose that the metrics g and g are PQ*-projective.

Proposition 2 shows that the metrics g and g, 2 | det(A+cy1)|~/(1=9g(A+
¢;1)7! are PQ“-projective as well. Consider the corresponding PQ*-hierarchy

0 1
R A Y
It 1
PO
! 1
i gl
! Il

A simple calculation shows that A(g,g.,) = A+ ¢;1, and A(ge,,9) = (A +
1), Hence, &2 % 5, A(g,5e,)? = | det(A + ¢;1)|Y(=9g(A + ¢;1). It
is clear that A3, g%) = (A + ¢;1)~. Suppose that the non-zero real
number (—a) is not an eigenvalue of the operator (A + ¢;1)~'. It follows
from Proposition 3 that the quadratic form l(,,(gf,“,gﬁ,z)) is an integral of
the geodesic flow of the metric gﬁf’. Applyin§ the inverse to the Legendre
transformation corresponding to the metric g,?’, we obtain that the forms

F)7" = | det(A + ¢ 1)Y=V (A + ;1) 'g ! (17)

and
(FLZL) (Ka) & [det(A+c)™ + @) -0((A+ )™ + )7 (g2)

c(a)| det(A + (e + 1/a)) [/ UA + (c; + 1/a)) " 'g7,

(T
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i considered as functions on the cotangent bundle T*M™, are in involution
with respect to the canonical symplectic structure w on 7*M™. Finally,
applying the Legendre transformation corresponding to the metric g, we
obtain that the forms K¢, (g,7) and K, , 1(g,g) are in involution with res-
pect to w,. Theorem 3 is proved. ty

4 Functional independence of the integrals

Here we prove Theorem 1 formulated in the Introduction.

Proof of Theorem 1. We follow the idea of the proof of Theorem 2 in
(1]

In what follows we use the next convention. If V is a complex vector
space we assume that all linear maps and subspaces are complex linear, all
tensor products are over C, and the word “dimension” means the complex
dimension.

Let V' be a real (or complex) vector space of dimension m. Consider a
non-degenerate symmetric bilinear form s € Symm(V* ® V*) and a linear
self-adjoint with respect to s operator L € End(V). Denote by r(L) the
degree of the minimal polynomial of the operator L. Let § be a fixed real
number. Consider the curves

v:t— |det(L — t1)[°s(L — t1)! € Symm(V* @ V*)

I and
Ye it — | det(L — t1)|°s((L — t1)7Y¢,.) € V7,
where £ € V is a fixed vector in V, 1 is the identity operator, and the
parameter ¢ is defined in an open set U in R (or C), U N Spect(L) = 0.
Remark that we admit three possibilities: V is real and ¢ is real, V is
complex and ¢ is complex or real. Given a curve | : D — W, where W
1 & vector space and D is an open domain in R or C, denote by dimp !
the dimension of the linear subspace spanned on the vectors {I(t)|t € D}.
Following our convention, if W is a complex vector space, dimp  denotes the
complex dimension of the complex linear subspace spanned on {I(t)|t € D}.

Lemma 4.

(a) dimy y = r(L);

R\
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(b) dimy v € (L) and there ezists an open and dense subset & C V' such
that for every £ € ¥, dimy ¢ = r(L);

(c) if tiyntery € U, ti # t; (i # j), then y(ty), ..., v(tr(z)) are linearly
independent.

Proof of Lemma 4. Consider the case when V' is a real vector space and the
parameter ¢t is real, t € U C R, U N Spect(L) # 0. The case of complex
vector space is considered similarly. It follows from the non-degeneracy
of the metrio $ that dimyy = dimy ¥ and dimy vy = dimy '75, where
3(t) % det(L — t1)(L — t1)~! and F¢(t) % det(L — t1)(L — t1)7'¢.
is clear that 4(t) = Ly—1t™ ! + ... + Lo, Lx € End(V), L,,H = (=1)"~ 11
Using the non-degeneracy of the Vandermonde determinant we obtain that
dimy 7 = rk{Lm-1, ..., Lo} and dimy 5 = rk{Ln_1&, ..., Lo€}. Denote by
VE the complexification of V. Let LE LE € End(V) be the complexifi-
cations of the real operators L and Ly (k =0,...,m — 1). Denote by ry the

number 7 i l}]eﬂv)'( tk{Lm-1&, ..., Lo€}.

Lemma 5.
(i) tk{Lm_1, .-, Lo} = tke{LS_,, ..., L§};
(11) ro = maxgeve ka{LC—lfy beey L(‘]:E}"

(i11) there exists an open dense subset ¥ C V such that for every £ € X,
ro = rk{Lm-1€, ..., Lo€}.

Proof of Lemma 5. Ttem (i) of the lemma is obvious. Let us prove (iii).
Taking a basis in V, denote by (&,...,&,) the coordinates of the vectors
of V. Consider the m x m matrix 7' formed of the coordinates of the
vectors Ly, &, ..., Lo€. The elements of this matrix are linear polynomials
of the variables &;,...,&y,. It is clear that there exists a non-zero minor
T,, € R™[€,, ..., &) of the matrix T. The set £ % {¢ € V|T},(€) # 0}
satisfies the statement of item (i71). The assumption that the variables

,&n take complex values doesn’t change the rank of the matrix 7.
This proves item (ii). Lemma 5 is proved.

Consider the curves 7°(A) % (L€-A1)~" and 3E(A) &' det(LC-A1)~'¢,
where A € C\ Spect(L), £ € Vc and 1 denotes the identity operator in

. A

b
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Vaj VC. As above, using the non-degeneracy of the Vandermonde determinant,
we obtain that dimeygpee(zy 7€ = tke{LS_,, ..., LS} and dimeyspeet(z) 1 =
tke{LE_ (¢, ..., LE€}. Lemma 5 shows that dimy v = dime\spect(z) 7€ and
ry = maxgeye dime\gpee(z) - Without loss of generality we can suppose
that the operator LC is given in a Jordan’s basis. Using the explicit form

) of L€, it is not hard to see that

e

dim 4~ =n(L

S
and

max dim € = r(L).

£eV/C C\Spect(L) R (L)
['he first equality proves item (a). The second one shows that rg = r(L).
Applying Lemma 5(iii) we prove (b). To prove item (c) remark that instead
of the curves y(ty), ..., ¥(tn(z)) it is sufficient to prove the linear independence
over C of the curves 7(t1), ..., ¥€(tr(z)), where the operator L is given in
rdan’s basis. Using the simple form of these curves we prove item (c).

Let us return to the proof of Theorem 1. Suppose:that g and g are
PQ-projective metrics given on the connected manifold M™. Denote by r
the rank of the pair g and g, and let D' C M™ be an open set with compact
cle in M™. Without loss of generality we can suppose that D is con-

nected. Taking 7 different real numbers ¢y, ..., ¢, such that |c| > mp, mp &
e SUP, . p MaXyespect(Al,) [Al, consider the quadratic forms B g K.(9,9)
(= 1,..,7). The forms BP are well-defined on D. Considered as func-
tions of the tangent bundle TD, BP (i = 1,...,7) are pairwise commuting
integrals of the geodesic flow of the metric g (Theorem 3).

Definition 7. A point z9 € M™ is called stable ff the rank r(g,§)(z) of
the pair of PQ*-projective metrics g and § 1s equal to some constant q in
an open neighborhood of the point zo. We say that o is a stable point of
rank g

Definition 8. A point g € M™ 1s called singular iff it is not stable.

1 Denote the set of stable points by M(g, ) and the set of singular points by
S(g.9)-
pin 9.9
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Lemma 6. The set of stable points M(g, 3) s open and dense in M™.

Proof of Lemma 6. The set M(g,3) is open by its definition. It follows
from Lemma 4 that for every x € M™ there exists an open neighborhood
U(x) such that if y € U(x) then r(g,3)(y) = r(g,9)(z). Indeed, taking p =
r(g,3)(z) different real numbers ty, ..., t,, (—t;) & Spect(A[;), we see (item
(¢), Lemma 4) that the forms K, |, ..., Ky, |- € Symm(T; M™ @ Ty M™) are
linearly independent. There exists an open neighborhood U(z) such that
if y € U(z) then Ky, |y, ..., Ky, |, are linearly independent. Finally, applying
item (a) of Lemma 4 we obtain that r(g,3)(y) > r(g,7)(z).

Therefore, if g is a singular point, then every open neighborhood of zy
contains a point y such that r(g,3)(y) > r(g,3)(xo).

Let us prove that the set of stable points M(g, g) is dense in M™. Sup-
pose that there exists an open set Y C M™ that consists of singular points.
Take a point y; € Y, 7(g,9)(y1) = r1. The point y, is singular, and there-
fore there exists a point y, € Y such that r(g,3)(y2) = r2 > 1. Applying
this argument several times we find a (singular!) point y € Y of maximal
rank m. From another side, the points of maximal rank m are stable. This
contradiction proves Lemma 6.

Lemma 7. Let g be a stable point of rank q < r, g € D. Then there
exists an open neighborhood U(zg) C D such that:

(a) the quadratic in velocities functions BP(€), ..., BqD(E) are functionally
independent on TU(xg). For every fired z € U(xg) the set of the
points § € T,M™ where the differentials d¢BP, ...,d¢BP are linearly
independent is open and dense in T, M™;

(b) if ¢ is a real constant such that (A + c1) is non-degenerate on U(y),

then there exist constants o, ..., o such that

q
K(9,9)(€) = Y _ axBP(€), € € TU(xo).

k=1
Proof of Lemma 7. Lemma 4 (c) shows that the forms BP|,,,...BP|,,,

considered as elements of Symm(7;, M™®T; M™), are linearly independent.
There exists an open neighborhood U () of the point g such that for every



Peter Topalov 389

y € U(xo) the forms BP|,, ...BP|, are linearly independent and 7(g,3)(y) =

b 4. Hence, there exist smooth functions a, ...,y € C®(U (o)) such that

I q
K.(9,9)(6) = Y a(y) BL(€)
il k=1

where £ € U(z), y = m(§), and 7 : TM™ — M™ is the projection on the
base M™. Denote by F, the “energy” integral E,(€) &« 19(£,€) and let
(..}, be the Poisson bracket corresponding to the symplectic structure wy.
Using that BP(€),..., BP(€) and K,(€) are integrals of the geodesic flow of
the metric g, we obtain 0 = {Ey, K.}, = S8 {Ey, ar}eBPL(€) for every
£ ¢ TU(g). The linear independence of the forms BP|,, .., Bﬂy for every
fixed y € U(zo) shows that {E,, ax} = 0 on TU(x), and therefore oy are
constants. Item (b) of Lemma 7 is proved.

Denote by BP |z, pm the restriction of the function BP(€) on the fiber
I,M™ < TM™. Taking a point ¢ € T, M™, we obtain d¢(BP |z, apm) (1) =
281.E, ), where n € T,M™ = Te(T,M™). Tt follows from Lemma 4 (b)
3| that for every point © € U(xg) there exists an open and dense in T, M™
subset £, C T, M™ such that if £ € X, then BP[(¢,.), - BY|: (f, )
M are linearly independent. Therefore, the functions BY(€ ( ) B2(¢)
are functionally independent in TU (). Lemma 7 is proved.

Let us prove that the functions BP(€), ..., BP(€) are functionally inde-
pendent in 7D, According to Lemma 6 and Lemma 7, it is sufficient to
prove that the stable points in D have rank r. Assume that there exists
astable point yo € D having rank 7y < r. Without loss of generality we
can suppose that the open set D contains a stable point 2o € D of rank
r. Assume for simplicity that the points zo and y, can be connected by
a geodesic line t — y(t) € D, 4(0) = zo, ¥(1) = yo. Let us take neigh-
borhoods U(z;) and V(yo) of the points z and yo respectively, such that
the conditions of Lemma 7 are satisfied. We can suppose that the diffe-
rentials d, BP, ... d,,BP are linearly independent at the point w 500 (1f
not, we take w' € Ty, M™ such that dyBP, ..., dsBP are linearly indepen-
dent and expw' € V(yo) (see Lemma 7 (a))). Denote by ¢;(€), € € TM™,
the one-parameter family of local diffeomorphisms of 7M™ corresponding
0, to the geodesic flow of the metric g. Using the fact that the functions
]m‘ BP(€), ., BP(€) are integrals of the geodesic flow of g, we obtain that the

of} differentials d,BP, ..., d,BP, v % ¢;(w), are linearly independent. ;From

b\
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another side, Lemma 7 (b) shows that B2, (€) = 371, axBP(€) where €
lies in TV (yo) and a are some constants. Hence, for every & € TV (yo),
deBP ., = 1%, axde BP. This contradiction proves that the stable points
z € D, that can be connected by a geodesic line (t) lying in D with another
stable point y € D of rank r, are also of rank r. By assumption D is con-
nected. Therefore, the stable points in D have rank r. Item (a) of Theorem
1 is proved. Item (b) easily follows from Lemma 7 (b). Theorem 1 is proved.

5 PQ"V-projective hermitian metric

Let M™ be a complex manifold of complex dimension n. Denote by J the
complex structure of M™, (M*",J) = M". Consider a pair of PQ"V-
projective hermitian metrics s and § (e = —1 and PQ = —1). Denote hy
K.(s,5) the local family of pairwise commuting integrals of the geodesic
flow of the metric s (Theorem 3). In our case € = —1 and we obtain that
Ke(s,3) & |det(A + c1)|/2s(A + c1)~*, where A = A(s, §).

Fixing a complex chart {(z',...,2")} consider the hermitian matrices
s« (543) and S P (845) related to the metrics ds? = 25,3dz*dz? and
ds* = 25,3d2"d2P respectively. As usual, we omit the summation symbols

in the formulas. Define the operator A e .Ago% ® d2”, where
.kd
ntl

=1 (18)

det S

o def

B

and §°“355 = 63. By definition A is a smooth section of the vector bundle
Endc(T"9M™), where T M™ denotes the bundle of the holomorphic
tangent vectors to M™. Fixing a point z € M™, denote by p(s, §)(x) the
minimal polynomial of the operator A|,.

Definition 9. The number p(s, ) e max p(s,3)(z) is called hermitian

rank of the pair of PQ(~Y-projective hermitian metrics.
Theorem 4. Suppose that the complex manifold M™ 1s connected and let

the hermitian rank of the pair of PQ'~")-projective hermitian metrics s and
5 be r. Then there exist r hermitian forms B, ..., B, such that:

A
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(a) considered as functions of the tangent bundle TM™, the quadratic
forms By(€), ..., Br(€) are functionally independent pairwise
ting integrals of the geodesic flow of the metric s;

(b) for every fized real constant c, the integral K.(s,3)(€) 4s well-defined

and
6= ewBi(¢)
k=1l

where ay are some constants.

The functions By(€),..., Bx(€) can be taken in the form By = K(s,$),
where ¢ are appropriately chosen constants.

['m?" nr' Theorem 4. Fixing a complex chart {(2,...2")} we have s =
8,(d2" ® dzP + <1:ﬂ ® dz*) and § = §o5(d2* ® d2° + dz° ® dz®), where

s ‘!5. 5,3) and § & (sul;) are hermitian matrices. Denote by [s] and (5] the
Gramians of the metrics s and § respectively, i.e.

(2]

= [gﬁ}

It follows from the definition of the operator A(s,3) (formula (4)) that in
the fixed complex chart we have

and

n+x

B = detS

et S

| det[s] |

A(s,s) ot [ 37 s):

Hence, A(s, ) = 4 Hz,, ®d2P + A;m ®dzP, where A" is given by formula
(18) and Af; coincides with the complex conjugation of AS (ie. A%‘ = /ff‘,)

As usual, we identify the operator A with the square matrix (Af,‘)

Lemma 8. The degree of the minimal polynomial of the operator A(s, §)
comerdes with the degree of the minimal polynomial of the operator A(s, §).
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Proof of Lemma 8. A simple calculation shows that
A-A1=35"1A-))8,

where (.)* denotes the hermitian conjugauon of a matrix. Hence, for every
integer k& we have (A — A1)* = S7'[(A — A\)¥]*S. Consider the Jordan’s
normal form of the operator A. The last equalities show that the Jordan’s
decompositions corresponding to the eigenvalues A and A coincide. F m&lly,
we conclude the statement of the lemma from the formula A(s, §) = ﬂaw ®
d2f + A5:% ® dzP. Lemma 8 is proved.

It follows from Lemma 8 that the rank 7(s, §) of the pair s and § coincides
with their hermitian rank, i.e. r = r(s, §) = p(s, 3).

Let us fix an arbitrary real constant ¢. Denote by K. (s, §) the hermitian
matrix of the form K.(s,3). A simple calculation shows that

Ke(s,5) = det(A+c1)S(A+c1)™!
Loy (s,8)c™ " + ... + To(s, 5).

The last formula is valid in every fixed complex chart. Therefore, there
exist well-defined on the whole M™ hermitian forms /,,_,, ..., I such that
K. = I, ' + ... + Ip. Denote by I,_1(€), ..., Io(€) the corresponding
smooth functions of the tangent bundle TM™. We obviously have

Ke(€) = In-1(§)c"™" + ... + Io(€), (19)

where I; € C®°(T'M™). Denote by Z(s,3) the vector space spanned on the
functions I; € C®°(TM™) (j = 0,..,n — 1). Take a basis B;(£), ..., Bu(€)
of the linear space Z(s, 3). Let us fix an open set D C M"™ with compact
closure in M™ and consider the quadratic forms B (€), ..., BP(¢) given by
Theorem 1. Item (b) of Theorem 1 and formula (19) show that By|rp €
Span(BP|rp, ..., BP|rp) (k = 1,...,r') where Span(BP|rp,..., BP|rp) de-
notes the vector space spanned on the restrictions of the functions BP(€)
on TD. ;From another side, BP(¢) ' K., (s.3)(€). Using formula (19)
again we obtain that BP|rp € Span(Bi|rp. ..., Be|lrp) (k = 1,...,7). There-
fore, r = 1’. The functions Bf(€),..., BY(€) are functionally independent.
on TD. Hence, the functions By(£), ..., B.(£) are functionally independent.
as well. Finally, recall that the set D was taken arbitrary. Theorem 4 is
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Remark 6. In the present section we don’t use essentially the integrability
of the complex structure J. Therefore, Theorem 4 still holds if (M?", J) be
an almost complex manifold of real dimension 2n.

6 Examples. Integrable systems on CP"

['he aim of the present section is to find a family of completely integrable
systems on the complex projective space CP". Denote by {(zo : ... : za)}
the homogeneous coordinates of CP™ and consider the affine chart c" >

i) = (1: 21 ..t 2,) € CP™. In coordinates {(z1,...,2,)}, the
Fubini metrics are given by the formula

; Elu,\d:.vlz i %((Zl €alzal*) (1 €aldzal?) = | Zlfa:?adza[z)
VI"]: '17 211 a=. =

a=

= )
1+% Elealzalz)z

(20)
where K # 0 and the “signs” €, = 1 (a = 1,...,n) ape fixed. Consider
the hermitian form Q(€,7) der oo + EZZ, €otollay £, € C*HL. The
hypersurface Abs < CP™ given in homogeneous coordinates by Abs &of
Q)% Q(z,2) = 0} is called absolute of the corresponding Fubini metric.
['he Fubini metrics are smoothly defined on CP™\ Abs. If K > 0 and €, = 1
then Abs = 0, and the corresponding Fubini metric is a smooth Riemannian
metnic on CP". The Fubini metrics are usually considered only on the
subset F %' {Q(z) > 0} ¢ CP". Nevertheless, it will be more convenient
for us 1o think of the Fubini metrics as metrics defined on the whole CP™
wd having “singularities” in Abs. The Fubini metrics are hermitian and
the corresponding hermitian matrices are g,5 = ‘;;"" - —i"gfz—" It is
well-known that the Fubini metrics are Kahlerian metrics.

Denote by V the Levi-Civita connection corresponding to the Fubini
metne g0 The connection V can be extended in a natural way to a con-
fection on the complexification of the tangent bundle. It can be easily
seen that the corresponding Christoffel symbols are given by the formula
M=~ %(b;}(qiq + 65’(,,2,,), I‘gq = I_‘;q, and the other components of the
Chnstoffel symbols vanish (see [15],§5, for the case €, = 1).

[ e—Y
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Let py, : CP™ — CP" be a projective transformation induced by some
(complex)linear transformation L : C™*! — C™*! given in matrix form
by the non-degenerate complex matrix L € GL,4,(C). Denote by g the
pull-back pujg.

Proposition 5. The metrics g and § are h-projective Kahlerian metrics.

Proof of Proposition 5. Let Ly be a complex 2-plane in C**!. The set of
complex lines lying in L, gives a natural embedding of the complex projec-
tive line CP' in CP". We call such embeddings projective lines. Proposition
5 easily follows from the next simple lemma.

Lemma 9. A smooth curve ¥(t) € CP™ \ Abs is holomorphically planar
with respect to a fized Fubini metric iff v(t) hes in a projective line.

Proof of Lemma 9. Consider the affine chart {(z, ..., z,)} and suppose that
7(t) = (v'(t),...,7"(t)). The condition that v(t) is holomorphically planar
with respect to a fixed Fubini metric g is equivalent to the equation

L) = o0, a=1,..m,

where p(t) is a smooth complex-valued function of the real parameter ¢ and
~+— are the components of the “holomorphic” part of the real vector %}.

Using the explicit form of the Christoffel symbols of the Fubini metric g we
obtain

Viilrrm sadr e dsios
Y L
d*y®

K
B o 6(‘»%’)’)’7"»

Therefore, the curve ~(t) is holomorphically planar if and only if ﬂm - =
pl(t)‘*—;":, where p(t) is a smooth complex-valued function of ¢. This com-
pletes the proof of Lemma 9.
Finally, Proposition 5 follows from the fact that pu; : CP" — CP" maps
projective lines to projective lines. Proposition 5 is proved.

An analog of Lemma 9 in the case of positive definite Fubini metrics is
proved in [15], §6.
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Ly s
“n‘\}; Let us take L = diag(1, A, ..., \n) Where A, are fixed constants: In the
M““‘-‘,l chart {(21, ., za)}, the induced projective transformation py, : CP* — CP”

; is given by the formula (21, ..., z3) = (M21, -, Anzn). We have
el Q(Z)(Z Eap&|dza| | Z Eapazadlal
dg* =2 = 21
Thet 4 Q(2)? 1 -
e
Pope where po 2 o2 and G(z) € 1+ X Z €apal?al>. The components of
the corresponding hermitian matrix are g5 = Ci%‘-’ - ’;%’W
";:{‘:’ Lot us remark that the metric § is smoothly defined on CP™ \ Abs, where
4 £ =
- {Q(z) =0}.
o 1
uu:l]h‘ i Lemma 10. Let B be a non-degenerate symmetric n X n-matriz and a,b €
mm‘: C" are complex vectors ronstdered as n x 1-matrices. Denote by (.) the
transposition of a matriz and (z y Z ToYa- Then
(B+al)'=B"- m(B_la)(B"‘b)';

ameter [
i i) det(B + abf) = (1 + (B~'a, b)) det B.
el The pm(»( of Lemma 10 is straightforward.

Using Lemma 10 we obtain g“‘" = Q(eqpﬂ bap + —z(,zﬂ) Hence, the
aperator A(g, §) is given by the formula A(g, §) = A687®dzﬂ+Agaz ®dzg,
dryils
where A% = A3 and A§ = |d8)™ gerg,, G < < (Gup) G E (94p) (see

Sect.3). Applying Lemma 10 we obtain

2= sz )

Denote by A the matrix with elements A5, Consider the sequences of
P it hermitian matrices {GU}cz and {G®}iez defined by the formulas G@) 4!
GA'and GO %' GAL Denote by g and GO the hermitian metrics

Aj =565 -

mefries !

2 o
dg ()2 d l‘zg dzadzﬂ (23)
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and 3
dg®* & 25 dz,dz5, (24)

where g B and '('[)3 are the elements of the hermitian matrices GY and G
respectively.

Consider the operators P, @ € I'(Endg(T™%(CP" \ Abs))) given in
coordinates by the matrices 7.4" and 1A~ respectively and define the “real”
operators P P+ P, and @ ' Q + Q. The next theorem follows from
the results proved in Sect.2.4.

Theorem 5. For cvery fived integer | € Z the hermitian metrics g and
3" given by formulas (23) and (24) are PQ( Y_projective hermitian me-
tncs.
The sequence of metrics g) and g (I € Z) given by Theorem 5 is called
CP"-hierarchy.
Let us consider the one-parameter groups of transformations of CP"
given in coordinates by the formulas

The( @) (2 y Zry ooy 2n) 12 (21 ony EXD(ED) 2Ky 11 20).

It follows from (20) and (21) that Ti(¢) preserve the metrics g and j, and
therefore they preserve the whole CP™-hierarchy. Denote by 7} the corres-
ponding Killing symmetries,

def . gy
= (Zka—zk - zkgz_:) ¢ (25)

Consider the “complex” impulses pk = (p,,' ipy,) and py g %(p,k +
ipy,) (k = 1,...,n), where p;, and p,, are the impulses corresponding to the

chart {(z1,¥1, ..., Zn, Yn)}» 2k def Ty + iye. The chart {(py, ..., Pn; 21, ..., 2a)}
is a complex chart of T*CP". The canonical symplectic structure w on
T*CP" is given by the formula w = "¢, dpe Adzi + Y1 _, dpy A d3y.

Theorem 6. For every fired integer | € Z the functions Zf,l_),(p), .A,,Iél)(p)
gquen by the erpansion

KO(p) “ det(A+e1)((A+c1) 4G p,p)
I @) + o+ I (p), (26)

(T
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where p ! (1) s Pn), ﬁd=°r (P1, ..., Pn) and (X,Y) el Yo XY, are in in-
volution unth respect to the canonical symplectic structure w on the cotangent
bundle T*CP". If po # pp (a # ) then the functions I(‘ll(p),.‘.,l'é (p)
are functionally independent on T*(CP™ \ Abs). Adding to the functions
(). ... I3 (p) the Noether integrals Tx(p) & i (erpe—24Bk) (k =1, ...,m)
sponding to the Killing symmetries (25), we obtain a complete system
of functionally independent functions in involutions on T*(CP™ \ Abs).

Proof of Theorem 6. 1t follows from formula (22) that A%(0) = pj'65.
Hence, if po # ps (@ # () then the hermitian rank of the pair g® and g

i Finally, the statement of the theorem follows from Theorem 4, Sect.5,
applied to the pair g9 and §9 from the CP-hierarchy. Theorem 6 is

proved

Corollary 2. Provided po # ps (o # B), the geodesic flows of the metrics
)" and 3" from the CP"-hierarchy are completely integrable.

Remark 7 Taking | = 0 and €, = 1, we obtain a complete family of pair-
wse commuting integrals of the geodesic flow of the standard Fubini metric
on CP" (see [12, 1]). Our theorem gives an infinite family of metrics on
CP" wnth completely integrable geodesic flows.
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