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ABSTRACT - We characterize integral bordisms of (nonlinear) PDEs by means
of geometric Green kernels and prove that these are invariant for the classic limit
of statistical sets of formally integrable PDEs. Such geometric characterization
of Green kernels is related to the geometric approach of canonical quantization of
(nonlinear) PDEs, previously introduced by us [3,4,5,6]. Some applications are
given where particle fields on curved space-times having physical or unphysical
masses, (i.e., bradions, luxons and massive neutrinos) are canonically quantized

respecting microscopic causality.

1- GREEN KERNELS AND CLASSIC-LIMIT STATISTICAL
SETS OF NONLINEAR PDEs

In this section we shall relate integral and quantum bordisms to Green
kernels of nonlinear PDEs. In particular we will prove that to any classic-
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limit-statistical set of PDEs ! we can associate a Green kernel.

Set, for any vector fiber bundle 7 : F — M, over a n-dimensional mani-
fold M, F' = F* ® AYM, where F* is the dual of the fiber bundle F'
and AQM is the fiber bundle of n-forms on M. We call F’ the formal
adjoint of F. If # : E — N is another vector fiber bundle over N we set
E[X]F = U(M)GNxM E, ® F,. This is a vector fiber bundle over N x M
of dimension n+m+7.s, if dim E, = r,Vp € N, and dim F, = s, Vg € M.
For any vector fiber bundle E — N we denote by C§°(E) the space of
smooth sections with compact support over V.

THEOREM 1.1- GREEN KERNELS AND DISTRIBUTION SOLU-
TIONS OF AFFINE PDEs. Let x : JD"(E) — F be a morphism of
vector fiber bundles on a manifold M of dimension n such that it de-
fines a linear differential operator of order v, k. : C®(E) — C>(F).
Let E, = kerss C JD"(E) be an affine equation, where f € C>(F).
Assume that R C JD"(E) C J}(E) is an integral manifold of dimen-
sion n, such that in some neighborhood of all its points q € R, (except
for a nowhere dense subset ¥(R) C R), it can be represented as the r-
holonomic prolongation N(™) of some n-dimensional submanifold N C E.
Furthermore, we assume that m.o|r : R — E is a proper application, and
w1(R) = 0, where wy (™ (R) = i;lwgr), with i : R — J,(W) the natural
inclusion mapping and w{’) is the first generator of the cohomology alge-
bra H*(I.(W); Z,) = Zg[wgr), ..., )], where I(W) is the Grassmannian
bundle over J%(W) of oriented integral planes of J5(W) 2 . Then, we can
associate to R a distribution F[R] € (C§°(E'))'. Therefore, F[R] is a

1 Recall that for any two admissible (n—1)-di ional closed integral mani-
folds Ny, N2 contained into a k-order PDE ExCJX(W) of n-dimensional submanifolds

of the (n+m)-di ional ifold W, the classic-limit statistical set Q.(N1,Nz) is the
set of all solutions V of Ejy such that aV=nN, UN,A The admissibility is in the sense of

Theorem 4.5 in ref.[12].
2 If » is orientable then ui”(R):O, as it coincides with the first Stiefel-Whitney

characteristic class of R. This is a direct consequence of the following short exact se-

quence: 0—~<u1>—~H'(BO(n);Zz)'—'~H'(BSO(n);Zq)—.v, where <w;> is generated as

(T )
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distributive solution of E,., i.e., a solution of the distributional extension
E, of E,, iff R is a multivalued solution of E, C JD"(E). Furthermore,
if R is such that OR = Ry \J Ry with Ry € [Ra]m, € QFr, 3, then we say
that F[R] satisfies the boundary condition 8R = Ry |JR, and it can be
represented in the following form: F[R] = ;G + wo, with wy € Sol(ET)

where Sal(E‘r) is the space of solutions of the linear equation E, asso-
ciated to Er, and G is the Green kernel of . Then, ;G can be considered
an invariant of the classic-limit-statistical set Q.(R1, R2).

PROOF. We shall introduce some definitions and lemmas. Let -5 M & F
be two vector fiber bundles over a n-dimensional manifold /. We call for-
mal adjoint of a 7-order linear differential operator x : C>(FE) — C*°(F)
the linear operator £* : C°(F') — C*°(E’) defined by < k*(a),e >=<
a,k(e) >, Ve € C®(E), a € C°(F’). The restriction s* : C§g°(F') —
Cg°(E') satisfies the following formula: [,, < e, x*(@) >= [, < x(e),a >,
Ve € C*(E), a € C§°(F’). The Dirac kernel I of the vector fiber bun-
dle F' on a n-dimensional manifold M, dim F = n + m, is the distributive
kernel of local character D € (C§°(F[x]F"))" = (C§°(F'[X]F))" defined
by D(f®a) = [}, < fia >, Vf € C§°(F), a € C§°(F'). The Dirac kernel
admits the following local representation: D7, i(2,2') = 6/6(x,a'), where
8(z,z') is the Dirac function. In fact we can write:

D(f®a) =Zufu9u<fu,au_ »
>= Yy Juxv Juxufi(@)av,;(@)8]6(z, ')du(z’)

where gy is a partition of unity on M, subordined to the open cove-
ring {U} of M. Furthermore, the Green kernel of « is a kernel G €
C(E'[XIF)) = (Co(F[X]E")), such that it satisfies the following

ideal by the first Stiefel-Whitney class wy€H*(BSO(n);Z2) and j* is induced by the
natural surjection j:BSO(n)—BO(n) which forgets the orientation on the oriented n-
1i ional planes repr ing the points Goc,n=BSO(n).

. ﬂf:, denotes the integral bordism group for (n—1)-di ional closed

riteatbl

manifolds of E,cJ7(B). (See refs.[8-12] for more informations about.)

[\
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equation: (R®1)(G) = (1®&)(G) = D, where & : (C5°(E"))" — (C§2(F"))"
is the linear mapping such that the following diagram is commutative:

OheiShal G (R) e (cge (k)

k1 T%

(B a2 o et 02) 7 (5 (E)
where with the same symbol j we denote the canonical inclusions. We
call % the distributional extension of k. More precisely % is given by
Fw)(a) =< w,k*(a) >, Yw € (C§°(E")), a € C°(F') where x* is the
formal adjoint of x. Furthermore, one has:
L&k : (C5(F[X]E")) = (C(FIXIF)), A ® &) (E)(f ® @) =; E(x* ()
Rel: (CE(ERFP) - Co (FRIF)Y, & 1)(E)(0® f) = Z(x* (a).
LEMMA 1.1- SOLUTIONS OF AFFINE PDEs AND GREEN KER-
NELS. 1) Let E, = keryx C JD"(E), be an affine PDE identified by a
linear differential operator k : C*(E) — C*(F), of order r, and a sec-
tion f € C"(F) Let us denote by Sol(E,.) the set of solutions of E,. Let
(E,): R(w) = f be the distributional equation corresponding to E,. Then,
Sol(E'r) is related to Sol(E,) by means of the following exact sequence:
0 — Sol(E,) - Sol(E,), where j : C®(B) — (C§(E")) is the canonical
inclusion. ¥
2) Let us denote by Sol(E,) and Sol(E‘r) respectively the set of solutions
of the following linear equations: k(e) = 0, e € C*(E), and Kw) =0,
w € (C§°(E'))'. Then one has: j(Sol(E,)) C Sol(E,).*
3) Any solution w € Sol(E'r) can be represented by a distribution w €
(Cg°(E'"))" written in the following form: (9): w = ;G + wo, where wy €
ker(k), and G is the Green kernel of k.
4) Let us assume that ;G can be identified with a section G € C*>(E) by
means of the canonical embedding j : C*(E) — (Cg<(E’))". Then, any
solution e € Sol(E,) can be written in the form: e = yG mod Sol(E).

4 n general j(Sol(E,)) is properly contained into Sol(E,). However, there are some

equations, (e.g., elliptic equations), for which j(SDl(Er)):Sol(Er)-
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PROOF OF LEMMA 1.1 - 1) If k(e) = f, one has also

R(i(e)) (@) =< j(e), k*(a) >= /M Rt () e /M (e o
:/ < fia>=7j(a)
M

Va € Cg°(F’). Therefore, we conclude that %(j(e)) = 7.
2) One has:

w e Sol(B,) & F(w)(@) = 0,Va € G (F') & w(x*(a)) = 0,Ya € Cg°(F).

Then, if e € Sol(E,), and w = j(e), one has also, Yo € C§°(F"):

s(@) = [ <en@)>= [ <nleha>=0 (Sl c Sol(E),
M M

Vice versa, if w = j(e) € j(C>(E)) and w(x*(a)) = 0, Va € C§°(F’), one

has also
0= / < k(e),a>=>k(e)=0=>ec SOI(ET).
M

Therefore, Sol(Er) (1j(C*(E)) = Sol(E,).

3) We must prove that 7(;G) = f, where f= J(f) € (C§°(F"))'. In fact,
for any a € Cg°(F') we have: k(;G)(a) = ;G(x* (@) = (¢ ® 1)(G)(f ®
a)=D(f®a) = [, < fra >= f(a). Vice versa, let w € Sol(E,).
Then, one has: K(w)(a) = f(@) = [, < fra >= D(f ® @) = &(;G)(a) =
1G(k*(a)), Va € C5°(F'). On the other hand k(w)(a) = w(k*(a)), Va €
C§°(F'). Then, as E, is an affine equation, we have w = fG + wp, where
wo € ker(K), i.e., any distribution wy € (C5°(E"))" such that wolim (x-) = 0.
In other words wo € Sol(E‘r)A n

4) In fact as j(e) € Sol(E,), we can write j(e) = G +wo, Ywo € Sol(E,)
On the other hand, if ;G = j(;G) and wo = j(eo), where eo € Sol(E,),
(from point (2)), it follows that e = sG + € is a solution of E,. In fact,
one has (e) = &(;G) + K(eo) = k(;G) = f- 0
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LEMMA 1.2 - DETERMINATION OF GREEN KERNELS OF LINEAR
DIFFERENTIAL OPERATORS. 1) Let G € (C§°(E'[X]F))" be a Green
kernel of a linear differential operator r : C*(E) — C*(F) of order r.
Then also G = G + wo ® B, VB € (C§°(F))', Ywo € Sol(E,) is a Green
kernel of k.

2) A kernel G € (C§°(E'[X]F))" = (C§C(E")) Q(C§°(F))" can be iden-
tified with a section G : M x M — JD®(E')* @ A%(M)[X]JD=(F)* ®
AQ(M) such that G(a ® f) = [y < G, D*a® D*f >. One has the
following local representation:

Gla®f) = |

Yu Do iai<oe Juxu 0xu G (@,2')(8y-05)(@)(0p-f7) (') dpa()dp(a’)
where G:’” are the local components of G, and gy «y is a partition of
unity subordined to the covering {U x U} of M x M. Furthermore, if G
is identified with a section of (E'[X]F)" — M x M then G is identified
with local functions G'{ on M x M that are called Green functions.
Furthermore, if G are Green functions of the linear differential operator
of order r, k. : C*(E) — C*(F), they must satisfy the following local

equations:

(11) Y KV (@)(0sr-Ci) (@, 2') = 66(x, ')

lvlsr

where Zhlsr n;’j ()0z,y Is the local representation of k. Taking into ac-
count point (1) we get also that the general solution of (1.1) can be written

(12) Gl(z,2') = Gl(x,2') + (2)gi(")
where G (x, 2) is any particular solution of (1.1), (u”) are the local compo-

nents of any solution of the linear equation 3. ., #; ™ (2)(0z,5.u7)(z) = 0
and g; are local arbitrary functions on M .5

5 In particular, if x is an hyperbolic differential operator over a global hyperbolic

TR .
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PROOF OF LEMMA 1.2 - 1) First let us note that wo ® 3 belongs to the
same space to which belongs G. In fact, one has the following commutative

diagram:
EeeE Xy = (©opE) QEEE)
if

T i®1
Cc=(B) Q(CE(F) = c=(E) Q(C& (F))'
i T
0 0

Furthermore, f(wo ® B)(k*(a)) = 0, wo € Sol(Er), Va € C§°(F"), Vf €
Cg°(F). In fact, one has: f(wo ® B)(k*(@)) =< wo ® B, f ® k*(a) >=
B(f)wo(x*(a)) = B(f).K(wo)(a) = 0. Then, we also have: (1 ® &)(G +
w®pP) =(1®E)(G) + (1 ®FK)(wo ®B) = D. Thus we have proved the
theorem.

2) In local coordinates we must have:

{1}—

Yoo Joww 030 2101 112 G (@12 (Be° (0)0) (@) (D £) (=) —axi(2) £ (2 dp() dp(a).

Now, if G{ are Green functions, the above expression can be written:
0 =ZU fou uxu[Gy(z,a' ) k" (a)i(2) f* (&) —a;(z) f* ()83 8(x,a' ) dp(z)dp(z)

As this expression must hold for any f we can write:

Gi(z, ")k (a)i(x) = a;(z)636(z, ') .

space-time, there exists a unique Green function G*(z,z’), (resp. G~ (z,a’)), supported
in £*(z'), i.e. the future of z’, (resp. £7(z'), i.e. the past of z'), Va’eM. Then,
5(:,:’)50* (z,2')~G~ (z,2’) is called the propagator of x and satisfies the following
Cauchy problem: o

Zm &Y (z)(824.G (z,2')=0

5;(z.z’)l,«o=,o:0

(835.G%, (2,2") 10 _ o =—8(x,2")] 100
where (z%)=(z°,z* 2 z°) is any adapted coordinate system on M, i.e., dzo is a time-like

vector field.

[\
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Taking into account that £* ()i = ¥, <, 57 (z,-0t5) , we can also write

> Gz, 2")5;" (@) (0ry-04)(2) = (@) 88w, ) -

Iyl<r
From the definition of adjoint of x and taking into account that the above
equation holds for any o we get equations (1.1). O
LEMMA 1.3 - Let ; be a differential operator on M between the vector
fiber bundles E — M « F, of order < r and class C",7 < h < s — 7.
Let x» be another differential operator between F' and E'. Define Green
operator of (k1, k) any differential operator G of order < r—1 (and class
C" h > 1) between E@ F' and AS_, (M), such that < ry(u),v > — <
u, ka(v) >= dG(u®v). If ky = k1*, we say that G is a Green operator
for k,.5
1) Let x be a linear differential operator as given in above lemma. Let
A C M be a compact oriented domain in M. Then, one has
(13)

< k(e),v > —/ < e k*(v) >=/ G(e®v), Ye € C*(E),v € C®(F').
A A 9A

In particular , if A = (), one has: [, < k(e),v >= [, < e,&*(v) >.
Furthermore, if M is a compact manifold formula (1.3) can be written in

6 For example the Green operator of a second order differential operator x, locally
written as follows x(a):{a;"’(sanIBJJ)+b;°(Bza.sj)+c; s7)es, Vs€C™(E), where {e;}
is a local basis for C*(E), can be locally written in the following way: G(s®v)=
3. (1) {ad* [y; (9. 8*) =5 (Ozp )45} “v;}dzi A AdzoA...Adz", with 5@ =6~
(925.01°7), ¥¥EC™(F'), y=7;¢/ @dz'A...Adz", where {€7 } is a local basis for 0 (F*).
In fact, x*(7)=[(8zadzp.(a]*"7;) = (9za.(b]"7;))+¢]7;]€' ®dz? A... Adz". Furthermore:

<K(8)y>—<8,x5%(7)>=[a] " (020 dzp.5" )7, ~ (820024 (a] P ;))s*
+b]%(02q .5')y; — (8za (b)%v;))s' [dz? A...Adz™

=(9za. 3 {al%[1;(9zp.5")=5" (025 ;)| +b7° 573} da A... Adz™.

(T
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the following way:

(1.4) /M < n(e);v =5 -/M = /am Gle®w).

The Green operator of a linear differential operator of order r identifies
a section G € C* (JD""Y(E® F')* @ AS_,M). In particular, if r = 1,
one has G € C= (B* @ AS_; M @(F')*)).

2) Let k. : C®(E) — C°(F) be a linear differential operator of first
order between vector fiber bundles 7 : E — M, and 7' : F — M on
a differential manifold M of dimension n. Then, one has the following
relation between the symbol o(x) of & and Green operator G: < o(k)(A®
e),v >=AAG(e®), YA € QY (M) = C®(AIM).

3) Let k. : C*(B) — C*°(F) be a linear differential operator of order
r over a compact manifold M of dimension n. Then the distributional
extension & : (C3°(F"))" — (Cg°(E"))" of k is related to its formal adjoint

K" by the following formula:
(1.5) R(w)(@) = w(x*(@)) + Gloa ()(),

where G|anr(w) € (C§°(F")) is the distribution supported on M identi-
fied by the w and the Green operator of k. Furthermore, if r = 1 above
equation can be written as follows: K(w)(a) = w(k*(a))+01(k)|om (w)(a),
where 1 (k)|anm (w) is the distribution supported on OM identified by the
symbol a1(k) of k.

4) As particular cases we have:

(a) For the Green kernel G of k we have, G € (Cg°(E')), Vf € C®(F).
Thus we get

(1.6) K(sG)(a) = ;G(k*(a)) + Glom (;G)(a), € CE(F).
Ifr = 1 one can also write:

(1.7) K(sG)(a) = fG(x*(@)) + F1lom (sG)(a), a € C3°(F").
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(b) If the Green kernel G is such that it can be identified with a section
G € C=(E[X]F), then we can write:

(1.8) /M<K(IG),a >=/M<;G,n‘(a)>+AMG(fG®a).

Ifr =1 we can also write:

(1.9) / < k(sG),a >=/ < ;G,K(a) > +/ < 01(k)(G),a > .
M M oM
Furthermore the Green kernel satisfies the following equivalent equations:
(a) R(;G)=sD,Vf € C=(F)
(b) fG(x () + Glonm(sG)(e) = /M < f,a>, Vf € C*(F),a € Cg°(F')

(¢) If Gis identified by a section G € C>(E[x]F) the above equations
become: k(;G) = ;D,Vf € C*(F)

/ <]G’,K'(a)>+/ < Glom(sG),a >=/ < fia>.
M oM M

If r = 1 we can also write
(a) R(sG) = sD,Vf € C*(F);

(b) sG(x*(a)) +51(n)laM(fG)(a)=/M< f,a >,Vf eC®(F),a€ C3°(F');

(¢c) IfG is identified by a section G € C*°(E[x]F) the above equations
become: k(;G) = ;D,Vf € C*(F);

/M<fG,rc'(a)>+/BM<01(N)(!G),Q>=/M<f,a>A

PROOF OF LEMMA 1.3 - 1) In fact, one has the canonical isomorphism:

Hom (JD"’(E® F'); A?HM) = JDHEQF) QA M.

So, for 7 = 1 we get

T
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Hom (BE@F;AS_ M) = E* Q(F)* QAS_ M = E* @AS_ M Q(F')*.
2) If Ky. : C°(B) — C®(F), k. : C°(F'") — C>=(E') are two differential
operators of the first order, such that the symbols oy (k1) and oy (s2),
for any differential 1-form X\ € Q(M) are skew-symmetric: oy*(x1) +
ox(k2) = 0, then the operator v(k1, ko) : C(EQ F') — Q™(M), given
by (K1, k2)(u®v) =< K1(u),v > — < u, ka(v) > is a differential operator
of the first order. The symbol of this operator determines the morphism
w:C®(EQF') — Q¥=1(M) such that o (v(k1, k2))(u®v) = A Aw(u®
v). Thus, the operators y(ki1,#2) and w have the same symbol, and,
hence, differ by an operator of zero order. By substituting, if necessary,
the operator ks with sy + K2/, where ro' € Hom(C>(F'), C*(E')), we
get for each operator sy € Dif fi(C>°(E),C>=(F)), the operator x,* €
Dif fi(C><(F"),C>(E")), that is the adjoint of the operator ; for which
(K1, 41°%) = dw . Thus w = G.

3) One has the following Green formula: < k(e),a > — < e,x*(a) >=
dG(e ® a), Ve € C°(E), a € Cg°(F'). Then, taking into account the
canonical immersion j : C*®(E) — (C§°(E"))’, we get:

Hi@a) = [ <seha>= [ <ent@>+ [ doesa
=i @) + [ Gle®a) = s(e)(w (@) + Cloww)(a)
oM
where Glaar(e) (Ce (F"))" is the distribution with support on M, iden-

tified by G,ie., GlaM(e (a) faM G(e® ). Then, we get: K(j(e))(a) =
jle)(x (@) + G|BM(B) ). On the other hand, as C*°(E) is dense in

(Cg°(E’))’, for any w € (C§°(E"))" we can write

o) = &Y ile)) @) = Z/M < 5le) >
:Xs:/v[ < eg, k() > +Z§:/MdG(e,®a)
= Dt te) + 3 [ clecaa)

Fr o)
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Thus, we have w(x* (a))+Glam (w)(2) = (X, ) (5" (2))+ X, Glorr(es)(@)-
4) The proof follows from above results. (m]
Now, from our assumptions on R and using results given in ref.[5], we
get that we can associate to R a distribution F[R] € (Cg°(E')), that
is a distributive solution of E, iff R is a multivalued solution of E, C
JD"(E) C JL(E). Moreover, from above lemmas, we get that the relation
between the Green kernel of & and F[R] is the following: (&): F[R] = ;G+
wo, where wy € Sol( ), with E the linear equation associated to E, 7 .
Furthermore, if 9R = Ry U Ry, with Ry € (R3], € Q,, 1, then we say that
F[R) satisfies the boundary conditions Ry UR; C E,. If R’ € Q.(Ry, Ro)
is another solution of E, that satisfies the same boundary conditions than
R, then F[R'] = G + w}, where w} € Sol(E,). Let us denote by [F[R]]
the element belonging to the space [Sol(E,)] corresponding to F[R] by
means of the following commutative diagram:

0 — So(E) — (CE=(E")
il L

0 — [Sol(B)] — (CE(E)/Sol(Br)
0 0

Then, the equivalence class [F[R]] of F[R] in the space [So[(Er)] is iden-
tified by a unique distribution: ;G. This proves that ;G is an invariant
of the classic-limit statistical set (R, Rz). (m]

COROLLARY 1.1 - GENERALIZED GREEN KERNELS AND SOLU-
TIONS OF AFFINE PDEs. Any solution R of an affine PDE E, =
kergx C JD'(E) C J5(E) that satisfies the boundary conditions OR =
RyUR», where R, and R, are such that: (i) molr : R — E is a
proper application; (ii) w; ") (R) = 0; identifies a distributive kernel: (#):
F[R| = FIR|® ] € (C*(B'[JF"))', given by F[R](a®¢) = F[R](a) [,, <

7 E, is the distributional equation associated to E,.

.. A
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&, f >. Define F[R] the generalized Green kernel of the singular solu-
tion R C E, that satisfies the boundary conditions R = Ry U Ry. The
relation between F[R] and the Green kernel G of x is given by the following
formula: F[R) = ;G[R] ® f mod Sol(E,) ® f.

PROOF. It is a direct consequence of Theorem 1.1. ]

THEOREM 1.2 - GREEN KERNELS AND PROPAGATORS FOR NON-
LINEAR PDEs. 1) Let E, = ker, x C JD"(W) be a PDE given as a kernel
of a differential operator of order r: r : JD"(W) — K, with respect to a
section C>=: x : M — K of the fiber bundle = : K — M. Then, for any
section s € C>(W), solution of E,, and j[x] = X, where X is a deforma-
tion of x, we can associate to E, an affine equation E,[s] = ker;j,) J[s] C
JD"(s*vTW), where J[s] : C°(s*vTW) — C>(x*vTK) is the linearized
of & at the section s. Define E,[s] Jacobi equation of E,. at the solution
s. Furthermore, define Green kernels, (resp. propagator), G[s] of E,,
at the section s, the Green kernels, (resp. propagator) of E,[s].

2) Assume that E, = keryx C JD"(W) is a PDE as given in the above
point (1). Then, the Green kernels (resp. propagator),'G[s] identifies an
integral manifold (integral bordism) R € Q.(R, R2)[s], i.e., belonging
to the classic limit of a statistical set of E.[s], if G[s] satisfies to the
boundary condition OR = Ry |J Ry C E,[s].

3) Let R, and R, be two admissible integral compact closed manifolds of
dimension (n— 1) contained into E, such that the following conditions are
satisfied:® (i) Ry € [Ryp, € QP ,; (ii) There exists a vector fiber bundle
neighborhood E,[s] C E, such that Ry, Ry C E,[s|. Then the equivalence
class |G[s]], identified by the Green kernels, (resp. propagator), G|s], is
invariant for Q.(Ry, R2)[s], i.e., the set of solutions V of E, with 8V =
Ry Rz and such that V C E,[s].

4) Furthermore, if E, is a formally integrable PDE and Q.(Ry, R2) is
restricted to the regular solutions of E, C JJ(W), then G[s] is an invariant
of Q(Ry, Ry).

8 The admissibility is in the sense of definition given in ref.[12].

v
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PROOF. For the full proof of 1) and 2) see ref.[1]. Here, let us emphasize
only that E,[s] is an affine equation, that is an affine bundle over M, with
associated vector bundle the linearized equation of E, at s: (D"s)*vTE, C
(D"s)*vTJD" (W) = JD" (s*vTW). Therefore, with respect to a solution
of E,[s], one has the identification of E.[s] with (D"s)*vTE, = E.[s],
hence one has the identification of E,.[s] with a submanifold of E,.

3) It is a direct consequence of above two points and taking into account
Lemma 1.3.

4) In fact, one has the following short exact sequence: 0 — Q.(Ry, R2)[s] —
Q.(Ry, R2). Moreover, if E, is formally integrable, taking into account of
Theorem 4.5 in ref.[12] that relates bordism to formal integrability, we get
also the following short exact sequence: Q.(Ry, Rz) — Qc(Ry, R2)[s] — 0.
Hence, from the above point, it follows that we can characterize Q.(Ry, R2)
also by means of the Green kernel, (resp. propagator), G[s]. [m]

2 - GENERALIZED KLEIN-GORDON EQUATION

In this and in the following sections we shall apply the results of section
1 to obtain the canonical quantizations of field equations that describe
particle physics. In particular, in this section we shall consider scalar
fields. In order to include in our formulation also scalar massive neutrinos
we will introduce a generalized Klein-Gordon equation on an hyperbolic
space-time and, after studied its geometrical structure, we will obtain the
canonical quantization of the equation following the general geometric
method of quantization of PDEs introduced by us in [5-7]. Finally we
prove that our geometric approach to the canonical quantization of such
a generalized Klein-Gordon equation preserves the microscopic causality
even if particles are massive neutrinos.

Let M be a space-time as considered in the Appendix Al. The genera-
lized Klein-Gordon equation is the submanifold (GKG), C JD?(E°),
7: B¢ = M x C — M, obtained as the kernel of the following fiber bundle
morphism: K, = (O+ x) : JD?*(E®) — E°, where O is the d’Alembertian
for scalar fields with respect to the metric g on M, y = £R + y, with

(T
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€€ R, R is the Ricci scalar curvature and ¥ € R, (square of mass).? In
adapted coordinates (GKG), can be locally written as follows:

(2.1) {F = g*%2ap — [$,9"P 20 + xz = 0}

where (2%, 2, 2, 2ap) are coordinates on JD?(E¢) induced by fibered co-
ordinates (z%,2) on 7 : E° — M. Furthermore, [§: U C M — R
denote the connection coefficients induced by the metric g. Note that
equation (2.1) is equivalent to the product two times of a same equation:
(GKG), = (GKG)Y x (GKG)} c JD*(E) x JD*(E) = JD?*(E*), where
E=MxR — M, (E°is just the complexification of E: £ = C ®g E),
and (GKG)R = ker(KE) € JD*(E), with K& = (O+ x) : JD*(E) — E.
Thus in order to discuss the equation (GKG), it is enough to consider
(GI\'G)? C JD?(E), that, in real coordinates (2%, y, Ya, yap) on JD*(E),
looks like F® = g°yo5 — [§ 9P ya + xy = 0.

REMARK 2.1- As IC;‘ is an epimorhism of constant rank 5, it follows
that (GKG))‘R is a vector subbundle of JD?(E) of dimension 19 — 1 = 18.
THEOREM 2.1 - The Cartan distribution IE, of JD*(E) 2 M x Rx R* x
R = M x R, is a distribution of dimension 14: IE; C TJD?(E). The
Cartan distribution of(GKG)XR is a sub-distribution EZ(GKG)XR of IE; of
dimension 13 generated by the vector fields { = X* (0« + ya0y + Yapdy”)
+Yaady® on JD(E) such that: X* [g%0yap — ([3,,9" + [3,92)va) +
X(aX®) = 5,97 (yas X°®) + g*#Yap = 0. Then the solutions of (GKG)®
are 4-dimensional integral manifolds of By (GK G))}(1 that, except for a sub-
set of dimension lower than 4, are diffeomorphic projected on 4-dimensional

9 The numerical factor £ has two values of particular interest: the so-called minimally
complet case, =0, and the conformally complete case, £=§. In this latter case, if
m=0 the field equation [+ £]¢n, =0 for free pion =g is conformal invariant. Note that
the parameter x can be, in general, considered a costant-coupling of self-interaction. In
the particular case of bradions and luxons, is x>0. In the case of massive neutrinos,

instead, one has y<0. We call the numerical factor x the geometric mass of the field.

We can have x Z0.
<
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submanifolds of E. As each (GKG)? is an involutive formally inte-
grable, completely integrable PDE, it follows that in the neighbourhood
of each point of (G’KG’)? we can build a regular solution, i.e., a local 4-
dimensional integral submanifold, diffeomorphic to an open set of M, by
means of the projection o : JD(E) — M.

PROOF. The proof is directly obtained by appling general methods of the
geometric theory of PDEs [5,8,12]. (m]
THEOREM 2.2 - (CAUCHY PROBLEM FOR (GKG)} WITH THE
METHOD OF CHARACTERISTICS). 1) For the equation (GKG)? we
can solve the Cauchy problem by means of characteristics.

2) Let ¢ be a vector field on (GKG)XR that represents an infinitesimal
symmetry of this equation. If N C (GK G))(R is a Cauchy hypersurface
trasnversal to ¢, then Y = U, ; ¢(N), 0¢ = , is a solution of(GKG)?,
for a suitable neighborhood J of 0 € R.

PROOF. 1) Let us rewrite the equation (GKG){,‘ in orthogonal coordi-
nates: F = ugo — Uz — Uyy — Uzzxu = 0. Therefore, dim(GKG)xR =
dim JD?(E) — 1 = 19 — 1 = 18. A characteristic vector field of (GKG’)‘;
is a vector field

¢ =X (07 + UaOU + Uapdt® + uapyOulT)
where X are functions defined by the following equations:
Yoo-Y11—Ya2—Yaa=0
{ 0=(]6(0)=¢] } Yap(da® ®dz” +dz’ ®dz™) }
and the other coordinates functions in the expression of ¢ are constrained
to satisfy the first prolongation of (GK\ G)XR:

((GKG)?)_H ’ {u\ma—una—unu—ussa+xﬂu=0 } :
U0 — 11 — U2z —uzz+xu=0
Then we can see that a characteristic strip can be the following: X' =
X2 = X% =0, X° # 0. In other words:
(2:2)
C=.V°[i?zo+uoau+(uxx+uz:+u3-_\—xu)8u°+um6u'+(u1h+uzh+u:a,—xu,)&u""+

oy OUXT].

(T
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One can also directly see that ¢ is tangent to (GK G)XR and it belongs
to the Cartan distribution!! Furthermore, we can see also that ¢ can be
considered the characteristic distribution for the following subequation
(B € (GKG)R:

ugo —(u11+u2z+usz)+xu=0
(3111 (Erae)

Uap=0, a#B.

For any Cauchy data N of (E;), transversal to ¢, given by (2.2) we can
generate a 4-dimensional integral manifold of (E£;) that is contained into
(GKG)R, hence it is a solution of (GK G)X. In particular if N = D%s(No),
where Ng € M is a space-like submanifold of M, and s is a solution
of (GKG);‘, then Y = J,cg ¢¢(N) is a regular solution of (GKG')XR &
JD*(E), where ¢ is the flow generated by ¢ on (GKG)2.

2) This a direct application of a general property of PDEs. (See e.g.
refs.[5,8,12].) Furthermore, by using the same calculations given in ref.[4]
to obtain the infinitesimal symmetry algebra for the Klein-Gordon equa-
tion, we can see that also for the generalized Klein-Gordon equation the
infinitesimal symmetry algebra s((GKG)}Y) of (GK G))I} is generated by
the second order holonomic prolongation of the following vector fields
(i X0z, + fydy : Bly — T(B|y), where X® and f are local numerical
functions on M solutions of the following linear PDE:

D/—Glmtr (L¢9)=0
~(02adz5.X")g" (020 X*)h® —X* (8za.h)+2fh*+2(8z, . f)9“" + ﬁf})
tr (Lz9)=0
{=X"0za:UCM—TM, h“=[y ¢"?:UCM—R
(]

By using the geometric approach to quantize PDEs, formulated by A.Préstaro
in refs.[5-8], we can prove the following important theorem.
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THEOREM 2.3 - (CANONICAL QUANTIZATION OF (GKG)y). Let us
assume that the space-time is a globally hyperbolic 4-dimensional mani-
fold. 1) The PDE (GK G);‘ admits the following canonical quantization
for real scalar fields: (&#): [3(z),3(z")] = ithG(x;2'|x) 1, where 1 = idy,
for some suitable locally convex vector space H. The propagator G is the
Green kernel solution of the following Cauchy problem:*°

(O, +x) Gz’ [x)=0
(2.3) G(@i2'|X) 40 g0 =0

(6.G) (@510 2010 ==5 (i) | 1010

One has the following equal time commutator:

(2.4) [8(2),8(2")]| o = 0 =0 .
=20 =—ih8(z;7) | 0_p10 1

[8(2),8(a")1
2) The PDE (GKG)y admits the following canonical quantization of the
complex scalar fields s=s,+isa:

[84(2),85 (=) =3 G i’ |x) 1, 1,4=1,2; = [3:(2) 65 (/)| =—ihi6;8(ziz )0 _pr0 1, 1\5=1,2.

Furthermore, we get also for the full complex field s=s,+is» and its c.c.
§=s;—isy the following commutation relations:

{ts(z).s(:'>1=[?<z).?<z')1=o } - {lé(:).é<z')1=ﬁ(x>,?(z'>1=o
[8(z),3(z"))=2ihG (z;z' |x) 1 18(2)3(2")]] .0 m g0 =—2iR6(ziz" )| 0 o 0 1 3
3) The microscopic causality is conserved also for scalar massive neutrinos
(takions) having a geometric mass y =R+ Y < 0.

PROOF. 1) The set of physical observables defined on the classic limit
Q((GI\'G)’;‘)C of the quantum situs Q(CKG);‘ of (G’KG’)‘;L has a natural

10" Note that the second condition in (2.3) implies that we exlcude instantaneous

propagations, so to conserve the usual microscopic causality. (See also Appendix Al.)

e e
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structure of Lie algebra. More precisely a function f : E — R iden-
tifies a physical observable characterized by a function A : C*(E) —
C¥(M,R) — R, where the last composition is obtained by means of some
measure on M. To A we can associate a current jA : C™(FE) — C®(E),
jA(s) = vd o s, where vd is the vertical differential. If B : C*°(E) —» R
is another physical observable, we can consider the corresponding current
jB calculated in correpondence of a solution of (GKG)® for any vector
field v € T,C*>(E) belonging to the set of solutions of the Jacobi equation
of (GKG): J[s].v = —jA(s). Then we define the following bracket

(25)  (AB)(5)=G(jA(5)®)B(5)@n)=G* (jA(s)®3B(s)&n) -G~ (jA(s)®5B(s)®n)

where G* € C°(E[X]E)")" are the two Green kernels of J[s] such that
»G* has support in the future of supp(¢) and 4G~ has support in the
past of supp(¢). So (J[s] ® 1)G* = (1@ J[s])G* = D, where I is the
Dirac kernel of J[s]. ' One can see that above bracket (2.5) satisfies
the conditions for a Lie algebra, that we denote by P(GKG’))‘}. Then,
the canonical quantization is obtained by means of the following bracket:
[4, B](s) = ihG(jA(s)®jB(s)®n) 1 with 7 the canonical volume form on
M and 1 = idyyy), with H(s) a suitable locally convex topological vector
space associated to the section s. The corresponding expectation value for

"' The Green kernel G(x;a’|x) of the generalized Klein-Gordon equation is a solu-
tion of the following equation (D,r +x)G(z;z’|x)=6(x,z’). In a geodesically convex do-
main, there exist two fundamental solutions G* and G~ which vanish outside the fu-
ture cone £ and outside the past cone £ respectively. Then, the propagator is given
by G(ziz'lx)=G* (z'izlx) -G~ (z"izlx). G(ziz'|x), G*(ziz'|x), G~ (ziz’[x) are real and
G (212 |x) =G (z';z|x). It follows that G(z;z’|x)=—G(z;z|x). The solution of (2.3), in
the Minkowsky space-time, is the following for x#0, Gz’ Ix)= 13+ (0r.J0 (o (x) VNI (2 =r%)))
Hittr) = g (0r.Jo (o GOV =TT H(r—t) and for x=0, G(ziz'[x)=— zk=[8(r—t)=6(r+t)],
with r=|x"~x|, t=2"~2z°, Jo the regular Bessel function and H(¢) is the Heaviside func-
tion. (Here we use the notation (z®)=(z°x)=(z° 2" 2% z*).) Furthermore, o(x)=+1 if

x>0 and o(x)=-1 if x<0.

T\
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330 any ¢ € H(s), ¢' € H(s) is as follows: < ¢/|[A, B](s)|¢ >= ihG(jA(s) ®

JiB(s) @) < ¢'|¢ >.*? In particular, for observables identified by means
i of scalar fields, and the measure on M taken as the Dirac measure at
as some event p € M, where M is splited in time and space with respect to
fol some relativistic frame, we get a quantum algebra that interpretates the
foi canonical quantization of (GKG)?. The solution of (2.3) can be finded
fo similarly to wath made for the usual Klein-Gordon equation. Furthermore,
G the derivative with respect to 2'* of (M), taking 2'° = 2°, and considering

equations (2.3), gives us the following commutator [§(Z),§(I)]|In=zm =

ih (02.G(2;2'1X)) lao=aro 1 = —ih8(2; ") ao=yro 1.
2) It is a direct consequence of the fact that (GKG), = (GKG)? I
(GK G);‘.

3) Even if the geometric mass y is negative, the generalized Klein-Gordon
C operator [J 4 x remains of hyperbolic type, so it admits a propagator
é(.l'..x"l\) with support in £ (2') U £ (a’), Vo' € M. Therefore, the
quantum commutator [§(z), §(a’)] = ihG(z, 2’| ) respects the microscopic
causality. 0
THEOREM 24 - (PROPAGATOR AND TUNNEL EFFECTS IN
« (GKG)XR). 1) The integral bordism group QE‘GKG)? of the generalized
Klein-Gordon equation is trivial: QgGKG)*R = 0. Therefore are admmissi-
ble tunnel effects, i.e., solutions with change of sectional topology.
2) If the scalar field is in interaction with some other field such that it

produces a current f € C*(E), i.e., the PDE considered is the following
affine PDE

/(GKG)R C IDXE):  {g°Pyap — [§,9" e + Xy = f} .

12 The choice of the quantum commutator allows us also to recognize quantum spectral

measures E:(Q((GKG)Y)e,8)0—L(H) associated to a random function f:Q((GKG)Y)e—

o

R. More precisely, if a scalar measure p is recognized on Q((GKG)Y)., one has <
¢’tE(X)|¢>=fx fo.prdie, for any Xes=Borel c-algebra of Q(GKG)Y)., where
FOUGCKG) ) e—L(H) is the map iated to the ical ization of f. f is

determined by means of its spectral measure on R. (See also refs.[5,8].)

e AW



Integral Bordism and Green Kernels in PDEs 335

We can associate a generalized propagator to any singular solution V of
/(GKG)R, (that realizes a tunnel effect, if 9V = N, N, with m,(Ny) #
mn(N2), for some n > 0, n € N, where m,(—) are the Hurewitz homotopy
group-functors).

PROOF. 1) The proof can be directly obtained appling some general theo-
rems given by A.Préstaro in order to calculate integral bordism groups in
PDEs [8-12], and taking into account that ;(GKG)® is a conic equation
with trivial cohomoly: H*((GKG)®) =0, Vs # 0, H'((GKG®)y) = R.
2) It is a direct consequence of point (1) and Theorem 1.1. More pre-
cisely, if V is the integral manifold (quantum cobord) cobording two
J-dimensional admissible integral manifolds Ny and N; contained into
/(GI\'G):‘, such that the mapping ma|y : V' — M is a proper application
and u:(lz)(V) = 0, where uiz)(V) is the characteristic of Stiefel-Whitney of
V, then the propagator (generalized Green kernel) G[V] between Ny and
N, is identified with the following kernel G[V] € (C5¢(E'[X]E')!, given
by G[V](a ® ¢) = F[V](a) [, < &, f >, where E' = E* @ A{M, and
F[V] € Cg=(E') is the distribution associated to V. 13 - 0O
3- GENERALIZED DIRAC EQUATION

Here we want to formulate a generalized Dirac equation in order to in-
clude also fermionic massive neutrinos-takions. Let (M,g) be as before
a 4-dimensional space-time and let # : £ — M be a vector bundle
over M identified with the complexificated Clifford bundle over M: E =
Uperr Eps By = @B, 75 (C @ TyM)/ I, where I, is the subspace of
.50 75 (C ®g T, M) generated by elements of the type v@v — g°(v,v)1,
where 1 is the unity of R and ¢ the scalar product on C @g 7, M defined
by g°(21 ® vy, 22 ® v3) = 2122 ® g(v1, v2). Then, each fiber E, becomes a

'3 The physical intep ion for the lized propagator G[V], BV:NgUN;, is
that it represents the amplitude probability <No|N, > for the transition from an extendon

No to another N;. (Compare, e.g., with the exposition of extendons given in ref.[15].)
More precisely <No|Ny>=G[V](a®¢), where a and ¢ represent the physical states of No

and N, respectively.

Ve
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339 complexificated Clifford algebra, hence it is possible to define a product
(Clifford product) on E,.
TH THEOREM 3.1 - 1) The Levi-Civita connection on M lifts on E.
ass 2) The Clifford connection is flat iff the space-time manifold M is flat.
fol This is equivalent to say that C is completely integrable iff (M, g) is flat.
for PROOF. 1) Let us recall that the Clifford connection is a first order PDE
for on the fiber bundle 7 : E — M, Cy C JD(E), identified by a section
Gi 1 :E — JD(E) of m o : JD(E) — E, such that the following diagram is
gommutative:
Cy = E
(2 [ I
1
cif G lop(@) e g ey

0 D) 1 1 JD() Ty Il
(Ze)is G WUD@M)S e STME =5

1
LC
¢ [ I
(LC): = ™
2 where (LC); is the canonical connection on TM identified by means of
¢ the metric g. Furthermore, 7 is the canonical monomorphism of vector

bundles over M given by composition: TM — TM ® C — E. If {2}
[ is a coordinate system on M and dz, is the natural basis induced on
the tangent bundle, the monomorphism + induces a set of sections of E
denoted by Yo = ¥(0%a). Set Yay...ap = Yay - - - Yap,- We get the following
relation

Tay.ap=(=1)"Yay Yo qm1 Tap Tap_q = Yapo1 + 2y g (~ 1)+ 2apap_pYay
R e

The set {1,7a,...ap }0<a1<...<ap<3,1<p<4 18 & local basis for sections of 7 :
E — M. Hence, if 1) : M — E issuch a (local) section, we get the following
local representation in the natural basis induced by the coordinate system

{z®} on M:

Y=0l+ 9%+ + Tocar<..<a,<a ¥ P Taray + o+ Y01 P01
PR - f
=y B

(T
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where (vg) = (1, Ya, vy Yar.apy e ,70123), 0 < g <ap <... < ap < 3.
(¥®) = (6,9, ...,9%?3) are C-valued local functions on M. Therefore
dimg B, = 16, where Ej is the fiber of E over p € M. As a conse-
quence we get the following induced fibered system of coordinates on E:
(z°,2,28} = {2%,2,2%,...,2°0%, ..., 201} where 2 are R-valued
and the other ones are C-valued. If we denote by {z* 2} the induced
fibered coordinates system on 7'M, we get that the monomorphism v can
be locally written as follows:

i ) Ay =
zoy=0
Zeoloyi—

2519 oy =()

20123 oy =)

Then, denoting by {z%,&*,&§} the induced coordinates on JD(T'M) and

by {z°, 2, ZB,Zg,Zg} the induced coordinates on JD(E), we obtain the

following local expression of JD(y).

G D () =nc
z0 JD(y) =0

WD (ry) =25

251 %20 JD(v) =0

29123 6 JD(v) =0

Furthermore, the Levi-Civita connection can be written as follows:

(LO)1 € JD(@M): {25 +27[5,=0)
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332
where [3, = 9°[8v, 6] = 3°0((9z+.936) + (95.9+5) — (Os.945)] are local
TH numerical functions on M representing the usual Levi-Civita connection
ass symbols. Then, the induced Clifford connection C; ¢ JD(E), is locally
folc written as follows:
for B B _A
2 + [427 =0
iz C, C JD(E) : &
: 1 g 03 B, wBp=
o [Ra= R, = o020+ + 0, B0
where [B, = —(2§ 0])ova = —]%F 074 = — ] £, are the connection
(2 c c c

(o]
coefficients given as R-valued local functions on M. Then, the absolute
differential g Y= [oDy: M — JD(E) —» T*M®E of asection 9 : M —
(e}

0. E, locally written ¢ = ¢1+¢%ya+...+9* %y, o, +.. AP0 Bg103 =
¥B~5, has the following local expression:

(31) yy= (gw)%* ® 75 = [(8zr-¥B) + Lwa"]dz’\ ®7B-

2) By using results on the curvature of PDEs, (see ref.[12]), we can state that
g the curvature R of the Clifford connection can be identified with a section
I }C? : M — AIM ® E locally written as follows:

¥ R= ) Rep®ade®nds® @507

E] 0<a,f<3,A,B

Rap® 4 = (02a: [§a) = (025.[5a) + [20[Fa = [Fp[aa:
C (o (e} C ¢ o

Here IC%"B’A are R-valued local functions on M. Now the curvature of

a connection is zero iff the equation representing the connection is com-
pletely integrable. On the other hand we can easily compute ga,,B A and

Ll (3% easy to prove the following formula for any section v=v2vp: <RV>=Rap”.
c c
p¥Pdz*Adz? ®vp With Rap® p¥Py8=(VaVs-VaVa)(v?7p) that relates the curva-
c cc _cc

ture of the Clifford connection to the Clifford covariant derivative.

T 4
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we get the following formula:

P 1.6, 5 iope

gnaa'c = Bag™ "y = Rolpm 65305 + -+ Rag™ 8310073
Therefore, R,.gsc = 0 iff the Levi-Civita curvature Rnﬂﬁ_, — o) e
the theorem is proved. [m]
THEOREM 3.2 - 1) Let M be a space-time such that one has the following
isomorphism: E = S* ®c S, for a suitable vector bundle S — M.*> Then
the Clifford connection induces the following linear connection on S':
vit[ =0
Sa

3.2 Cy c JD(S):
(3.2) i (5) [\f = C-irbpe
S

Here [,\I are C-valued local functions on M and
s
(33)
7 = 4675 — Yarv™} € L(M(4;C))
Dy§ = [R962755 — (822 ¥a2)7"5 € M(4;C), VA=0,1,2,3.
2) One has the following consistency condition between Levi-Civita con-
nection and y,-matrices:

(3.4) 2[85 1 = (0z37a)7* +7°(022.7a) € M(4;C).
3) Moreover by using equation (3.4) we can also write:

1
(35) [r= 3/ € M(#C).

- e

' It is well known (3] that if M is endowed with an almost complex structure J such
that g is Hermitian, (this appens e.g. if M is an almost Hermitian manifold or an almost
Kihlerian manifold), and such that it admits a Spin“-structure (i.e., the second Stiefel-
Whitney class wae H?(M;2,) is zero), then the bundle E is canonically isomorphic to
Home(5,8)=8"®cS, where S=AE,, with Ey=ker(w—idg), where w is the involution
Canonically induced by J. One has dime S=2°=4. S—M is called the spinors bundle.
The sections of S over M represent spinor fields with spin s=} .
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PROOF. Under our hypotheses there is a unique first order linear connec-
tion on S, Cf © JD(S), such that the following diagram is commutative:

i
B = 598 = Gy ®Cs o ey
| n n
e
s S
S$T®S —— JD(S"®S) = JD(E)
K T D)
S"xS —— JD(S")xJID(S)
[x[
S S
Il U
S"xS =] GGy

In order to give a local representation of the isomorphism C; = Of *@CS )
let us first locally characterize the isomorphism j : C' = L(S) % S* ® S.
We get j(1 = ¢1 + ¢%y8) = ¢5(1) + ¢7j(yp), where j(1) = ids € L(S),
J(8) = 1(Yarray) = §Vas) - - 3y ), With j(va) € L(S). Hence if {y, @
¥*}1<ab<a 15 & coordinate system on S* @ S, we obtain a representation
of j(va), (and as a consequence of any operator j(yg)), as a 4 x 4 matrix-
function (y» ® y® 0 j(¥a)) = (Vaf) such that j(ya)(p) € M(4;C) for any
p € M.'® (For abuse of notation we shall simply write v5 = j(v5).)
The matrices (ypf), B = ay...ap, 0 < a; < 3,1 < a,b < 4, are called
Dirac matrices. For example, if M is the Minkowsky space-time and
% is a system of cartesian coordinates, we can identify an isomorphism
J: B = L(S) such that if j(7a) = 76" ® €, where {#°} and {c,} are the
corresponding local bases on S* and S respectively, one has the following
constant matrices for (yaf):

180 @ O ) W=

()il 0 1 0 (OEORT) 0
Yo= pl= M= )

0 0 -1 0 0 =ibfo) Y 0 Jo

0 0 0 il —il 0 0 o — e )Y

16 We use small greek indexes for space-time indexes, (they run from 0 to 3), and small

italic indexes for spinor indexes, (they run from 1 to 4).
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0 01 0
BlEo0r0, 21
e D
0 00

One usually puts vs = y0123. If one takes anoter coordinate system z* the
corresponding matrices (7a4) are related to v,§ by the following transfor-
mations:

Faft = ABATAT 58,  (AB) = (0Za.2°) € SO(1,3), (A3) = (87py°) €

Spin(1,3).

Of course (74§ ), are not more, in general, constant matrices. Now, recall

that a linear connection on S — M, CY C JD(S): {y2 + [afy® = 0},
5

identifies a unique linear connection on the dual bundle S* — M, such
that the following diagram is commutative:

oFxof" [ JD(SxS")
Il [l
1x1°
s s
Sx8* —  JD(S)xJD(S")
(N Lip<,>)
JD(MxC) = JD(MxC)

More precisely: Cf* C JD(S*): {Uka — [aLy; = 0}. Then we have:
S

Vata =[ha7s = Rar630’ ® -
= 7 A Oal?” ®er) = (Do 10D S + (o) @ vt
Yasf® ® (V Aer)

=(6zmc..)9 ®er — 7a§£i,,0" ®er + Yasb* ® f €q

- [(81,\%:) = Top [ + o] g;q] Fee,.
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Therefore, we must have
Ra65 = (G2r70%) = tap [Re + %03 [f
This relation can be also rewritten in matrix form in the following way:

(3.6) [8:78 = (Bzx7a) + [37a =[x

where 73(p), (0zx7a)(), [A(p) € M(4C), Vp € M. Set v* = g*Fy5.
)

Then one has v*y, = 4 1. (This follows directly by contracting both side

of the relation Y,7s + V57 = 29ap 1, by g*P and taking into account that

9°Pgas = 4.) From (3.6) we get also the following equations:

[Ra87™ = (0m27a)7™ + [37a7™ = Ya [x7*
S S

15778 = 7%(0737a) + 7% [3Ya — 7*Ya [
S

Therefore, we get also:

[8298% = (0x-%a)¥™ + 41 — Ya[A7"
(37) 55 a dhioc: 35
N Y678 = Y (0TaYa) + ¥ g,\'ya = 45[,\

Of course the second of above equations is equivalent to the first one.!” By
addition of both equations (3.7) we get equation (3.4).*® In order to obtain

17 Note also that the first term on the left in above equation can be written as follows:
1889876 =15514 [ )vs7s. In fact we have: [R°vgys=[54(vavs+7578)+[5° % (vavs—

v578)=0556 1221+ y575

=R 1417575
a8 Taking into account that 7v*ya=7a7%=4 1, we get that the consistency condition

(3.4) can be also written in the following way: 2[§,1=(82x.7a)7"~(92.7%)ya=

7%(02x7a) =~V (82 7).
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the explicit expression for [ in the general case, let us rewrite equation
(3.6) as an equation in M (4;C) in the following way: C& [,\g = D»§,

YA = 0,1,2,3, with Dag = [2075%755 — (92x.7a2)7°F and c =41®1—
7a®7. So, assuming that the matrix (C3f) € L(M(4; C)), that represents
a linear application of the 16-dimensional vector space M (4; C), over C,
is invertible, we get for [ the following solution:

S

(3.8) Lx? =0 ' uDsg.
Therefore, the general expression of the connection Cf C JD(S), induced

from the Clifford connection on E, has the local expression given in (3.1).
Now let us prove that we can write [ in the Lychnerowicz’s form (3.5).

s

In fact, let us substitute (3.5) in the first equation (3.7). We get:
(3.9) [R09675 = (0mx7a)7™ + [§° 7875 — _'Ya I vavs®.
On the other hand we can see that
(3.10) YaVpV6Y* = ggs-
Therefore, from (3.9) we get

L e a
(3.11) Z[’\Bl_( i

Now, let us substitute (3.5) in the second equation of (3.7). We similarly
get:

{
(312) 1% 1 =71°(02270).

Therefore, we see that (3.5) is a solution of both (3.7) iff (3.11) and (3.12)
are both respected. On the other hand by adding these equations we get

i\
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(3.4). This proves that conditions (3.11) and (3.12) are not new require-
ments but are automatically satisfied thanks to the consitency condition

(3.4). O

COROLLARY 3.1 - 1) The absolute differential of a controvariant spinor

field Y%eq, : M — S, is ¥¢ = || eI = (gw)rdz* ® e, where the spinor-
s

covariant derivative (gu/;)’ Is given by
(313)  (Ya¥)" = (Bmay") + A9 = (9mad) + O 0iDaf".

2) The absolute differential for the covariant spinor field ¢ = 0% : M —

S* Is given by: SV ¢ = [oDp = (Svpap)sdac"ébgs, where the spinor-covariant
/ 1 {

derivative (SV,,Ap)s is given by:

(3.14) (Sv‘p‘P)s = (0p-p5) — Lp;‘Pr = (0zp-5) — C>1:ZpraS"r-

3) The curvature of the spinor connection CY C JD(S) on 7 : 8 — M, is
given by a morphism of vector fiber bundles over M, g :CF > AIM RS

locally written, as a section over M, as follows:

= > Rap®pdz® AdzP ® e, ® 6°

(3.15) 0<a,6<31<ap<a

ap®b = (0%a-[g5) — (0zp-[at) + [ac[p6 = [65[ah
S ) LSRRGt ISENGH

l=s)

Cl=s]

where R 3% are C-valued local functions on M. If we use the Lich-
nerowicz’s formula we get that (3.15) gives the following expression for
the spinor curvature:

i
(3.16) Rog®s = 7Rag" (07

where Rag* x Is the Levi-Civita curvature.
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4) Similarly to the case of the Clifford connection, we have the following
formula:
<Ry >= é{aﬁb.cwdx“‘ AdzP @ ey
(3.17)

b c befe, X b
Rap’.cer = (gagg gﬁga) (¥’es)

that relates the spinor-curvature to the spinor-covariant derivative.
DEFINITION 3.1 - 1) The Dirac operator on the Clifford bundle  :
E — M is a first order linear differential operator g : C®(E) — C2(E),

given by P = iPg, where ¢ is the imaginary unity and Pg is defined by
! @) @
means of the following homomorphism of vector bundles over M:?

I
@

/
g'®1
JD(E) —— T*M®E = TMQE
Po | L e1
c
E —— EQE

a
where a is the morphism induced by the Clifford multiplication. Therefore,

if1 = ¢yByp : M — E is a section of m : E — M, we get the following
local expression of g e

£ =ig® [(029%) + [ 22| 1015 = i1 [ 10097 + [ 250°] 10
=iv*(Yat) "5
C
2) If there is an isomorphism j : E = S* ® S, where S — M is a
vector bundle over M, then we can define also a Dirac operator on S,

(spinor Dirac operator), as the first order linear differential operator
P : C>(S) — C>(S), given by P = iPg, where i is the imaginary unity
5 s s

19 The imaginary unity is really pleonastic. Here it is used in order to solder our

formulas with usually ones used in theoretical physics.

o
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and Pg is defined by means of the following homomorphism of vector

bundles over M:

[
s g'®1
JD(S) — T'M®S = TM®S
Pol 1 ye1
s
S = $°@Ses = E®S

Of course there is also a Dirac operator for covariant spinors, i.e., defined

on S*, P : C®(5*) — C°(S*), with P = isPo, where 5}?0 is defined by
5- §- ® «

means of the following homomorphism of vector bundles over M:

) /

s* 9'®1
DpYE) e = TM®S*
Po | 1 &1
S
s* S S'@sesT = E®S*

The covariant local expression for controvariant spinor field %e, : M — S
and covariant spinor field ¢ = p,0® : M — S* are respectively:

p =i (00w + [fv] rden B
S S S*
= iy~ [(z%u-sos) = SHS%} Ve3P
In matrix form we can write:
i iy % ko).
PY=i(Ya¥) Po=0(Fre)

3) The Clifford Laplace operator is the second order linear differential

operator on the Clifford bundle % : C®(E) — C*°(E) defined as the
square of the Dirac operator: % = p2% So if = Pyp is the local
expression of a section of the fiber bundle m : E — M, then the local

expression of A .1 is as follows:
c

(3.18)
AY = Pil(Za¥)®r*78) = ~(Y6(Y ) PrP778 = g1
(ga~¢))E7B

. ™
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THEOREM 3.3 - 1) The Clifford Laplace operator is related to the curva-
ture R of the Clifford connection, (hence also to the Levi-Civita curvature).

In fact one has
1 1
— e . B B L e e
A= =5 (1 L) (Y e o« ¥) 15 = 5 (0P = 7%77)(Y 8
ga-¢)575

On the other hand we have

<4 - R iz ol
[(%B%a %a%ﬁ) p) ]’YB Rpa ¥ B

Therefore we can also write:

il B 0B R N0 (A
(3.19) Ay [9 (Y6Yat) +RBpa”.0¥"7"" | 18

2) Similarly we can define the spinor Laplace operatc;r as follows: A =
2. C%®(S) — C*=(S). Then for any spinor field 1, locally written as
P = Ye,, we get:

Ay B0 a
(3.20) Av ==Y s(Y t)) Ca

Similarly we can find the expression of A .3 in terms of curvature of the

s
spinor connection on m : S — M. We have:

(3.21) Ay= {f’“(vﬂv Bt 5 Rpa b7 v"w”]e

Moreover if we use for the spinor connection the Lichnerowicz’s formula,
we can write (3.21) in the following form:

a 1 ka3 a
AY=- [g""(gagmw) + gReamr (V"7 W“WA)bwb] ea

—( =
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Then by using the relation Rgaux(7P7%y#9*)¢ = 26¢ R, 2° where R is the
scalar curvature of the Levi-Civita connection, we get:*!

(2)  pu=-[PUgagan+ 1RI] e
Furthermore, for covariant spinor field ¢ = p,0® we similarly get:
89 ==77(F 5(Y a:$))ab”
(3.23) = [Fogo ot + § Bantarroe|
= [g”“(A A, 4 112%] 6.
SERNISE 4

DEFINITION 3.2 - 1) (Generalized Dirac-Clifford equations). One
has two generalized Dirac-Clifford equations:
(3.24)

00y =tex(pzm) < 10(E): { [ro(g )P Fmv?] 5 =0}
where m € R|JiR". An equivalent expression of (3.24) is the following:
(3.25) ir® [(020.4%) +  Zov®] 7 mu® =
(¢!

2) (Generalized Dirac-spinor equations). Similarly one has two genera-
lized Dirac-spinor equations:??
(DS)y = ker(g:{:m) c JD(S)

(3.26)
(prmy =0 {is [(0aur) + [5,0°] Fmue =0}

20 gee Appendix A2 for a proof of this formula.
21 This expression coincides with the well known formula given by A.Lichnerowicz [1].

{ ) .

22 We set (GM)m=(DC)— or (GM)m=(DS)-.
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The corresponding dual Dirac adjoint equation results:
(DS*) = ker(;_’ Fm) € JD(S*)

(872 !

(B Fmes s {iw b {(62»%) = Lisvr} F mpy = 0}

3) (Generalized Klein-Gordon Clifford Equation). This is the follo-
wing equation:
(3.28)
{ (KGC) c JD*(E) }
2 2 2 ‘
b =0 (P~ o =0 (A— =0
(B2 =m?) =0 & (P=m)(p-+m)b =0 & (4 ~m?)

Tle local expression of (KGC) is the following:
(62)  FGogan)? + (Bao® 2" + 85 ) 0P =0

4) (Generalized Klein-Gordon Spinor Equation). Similarly we get
the following equation:

(KGS) c JD*(S)

B30 1 (B2 =2y = 06 (P-m)(B4my = 0 & (A -m?p =0
s s B 5

Tle local expression of (KGS) is the following:

CENI N B O (AR g )

In particular by using the Lichnerowicz’s formula for the spinor connection
we get the following local expression for (KGS):?®

B a 1 2> (Choiy
(3.32) g (gﬁguw) +<4R+m Yo =0.

23 Note that

PNV Vat)®=  gP{(02p0Ta $°)+(8za ¥®) [ §,+(0zs ¥®) [ &y +¥°((Bzp. [S)+[ 5,
S s s s s S

[ 5ol
s
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The corresponding expression for covariant spinor field is the following:
Ba 1 2
(3.33) g (SV_ﬂSV_aW)a+ ZR-!—m =10

REMARK 3.1 - The Dirac conjugated, (or h.c.), of a spinor field 3 =
Y%, : M — S is the covariant field 1) = py° : M — S*, where ¢ = p,0°
with ¢, = (%)*, (* = complex conjugated). Then the generalized Dirac
equation for ¥, (generalized Dirac h.c.), is the following (written in
matrix form): isv_u’/;’Y# +myp = 0. It is important to note that the
Dirac equation and its conjugated, must be considered together as they
together are the BEuler-Lagrange equation of a first order Lagrangian L :
JD(S* ® S) — C, defined on S* ® S, i.e., defined on the Clifford bundle.
More precisely the Lagrangian £, in matrix form, can be written in the

following way:

1.[- = &
(334) £= i [pr gu - (g Dr#y] - miw.
The variation of the action integral with respect to v, (resp. %), yields
the generalized Dirac equation for 1, (resp. %). So the Euler-Lagrange
equation, E[L] C JD*(S* ® S), of L is the following:
iyt g w —mip =0 (Generalized Dirac-equa
ticm)
E[L]) c JD*(S*®S): { . & S
1(SV. w)7* —mip =0 (Generalized Dirac-h.c.

equation)

Above remark shows that a theory for spinor fields could be written on
the Clifford bundle instead then on spinor bundle only. Furthermore, if
we consider also that the isomorphism E = S* ® S is conditioned to
some very particular categories of space-times, (e.g., almost Hermitian or
almost Kahlerian space-times), it follows that it should be more convenient

e \P™
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to implement any physical theory for “spinor fields” on Clifford bundles.
Therefore the local expression of (GD),, with respect to local coordinates
{2%,24, 22} on JD(E) is the following:*

(3.35) (GM)m CID(E): {FAEi'y“ [z£+z" [5,,} 711’165‘32‘4:0}
c

L]
THEOREM 3.4 - (STRUCTURE OF THE GENERALIZED DIRAC
EQUATION, TUNNEL EFFECTS AND CANONICAL QUANTIZA-
TION). 1) For the generalized Dirac equation (GD),, we have a struc-
ture similar to (GKG)y, even if it is of the first order. In fact, (GD),,
is an involutive formally integrable, as well completely integrable PDE,
hence it is equivalent to its first prolongation ((GD)m)+1 C JD*(E).
2) If there is the isomorphism E = S* ® S, then (GD),, is isomorphic
to the tensor product of two equations: (GD)m = (GD)n ® (GD)m,
where (GD)y, is the Dirac hermitiam conjugated of (GD),, such that the
following diagram is commutative:

((GD)m x(GD)m  C  JD(S*x8)=JD(S*)xJD(S)
U
[EDRN = N (GD),.e(GD)mn 'C JD(S*®S)

Then similarly to what made for the equation (GKG)y, we can prove that
Cauchy problem can be solved for the equation (GD)., by the method of
characteristics. Furthermore we can also prove that the integral bordism
group QgGD)'" of (GD)m, is trivial: QgGD)"‘ = 0. Therefore, tunnel effects
can be observed and propagators associated to these calculated.
3) In the following we shall specialize on the Dirac equation for spin 1/2,
on globally hyperbolic 4-dimensional space-time. Thus we shall consider
the following equations:

syl B ey
(3.36) { el 3 7 =0 }
i,y = mip =0

24 Note that in the particular case of fermionic bradions and luxons the parameter m

is a real number, instead for massive neutrinos it is an imaginary number.

T\
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The canonical quantization of the generalized Dirac equation (GD)m C
JD?(E) is given by the following anticommutation relations:
(3.37) {[si(=>,Q<z'>1+=[s?<z>,s?;(z')1+=o}

[5A ()35 (")) 4+ =ihG ap (ziz’|m)

where gAB(z;zﬂm) = (W, +m) 45 C(; T |m), (M,.)as = ((7"Vy)as,
where G(x; 2'|m) is the propagator of the generalized Klein-Gordon spinor
equation. Then, the microscopic causality is conserved also for fermionic
massive neutrinos having a geometric mass y = %R +m? <0.
PROOF. 1) This can be easily seen by rewriting equation (3.37) in the
following splited form:

72 [533 + rfAﬁA] - mégEt =0
(3.38) e
i® [nf + Lfm"] —méin* =0

where z4 = ¢4 + in? and 22 = €2 +ind.
2) If there is an isomorphism E = S* ® S we can represent (GM), in the
form (GM)m = ((GM)m ® (GD)m.

3) The propagator G is the Green kernel solution of the following Cauchy
problem:

(W5 -mé5) G (aia’ Im)=0
(3.39) G (zia’'|m)] ,0_p0=0 +hici

(06-G#) (232")] o aro=—645(ziz")] co_,10

Let us find solutions of the type G(z;2'|m) = (M, +m) G(z;a'|m).
Then we find that this is a solution iff G (z;a’|m) satisfies the equation

(% —mz) G(z;a'|m) = 0. This means that G(z;z'|m) is the propagator
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of the generalized Klein-Gordon spinor equation. Then we get the usual
anticommutation relations:

(A @) ¥ ()4 =[P (2) B (=')]+ =0

[PA(@)F5 (=) =ifiGan(zia’|m)

On the other hand, as the operator %—mQ is hyperbolic its propaga-

tor éAB(I;z'|m) exists and it is unique and with support in £ (a/) U
£*(a'), V&' € M. So the quantum commutator [} (z), B (') =
ihéAg(z;m’|m) respects the microscopic causality even if the geometric
mass of the field is negative. O
4- FIELDS IN INTERACTION
Above field equations are, of course, linear PDEs, and represent free fields
on a general curved space-time background identified with a globally hy-
perbolic 4-dimensional manifold. For interacting fields the corresponding
PDEs are not more linear. However the general geometric method deve-
loped by us to quantize PDEs [5-8] works well also for jnteracting fields.
In fact that method has been formulated to work for nonlinear PDEs also.
As an example let us consider the following.
[T] (DECAY OF SCALAR PION). We shall study the following decay:
mg — w4+ v,. Of course the neutrino path is not directly observed.
We will assume that the neutrino is massive. In this case we have scalar
particles (g ) and Dirac particles (u*, v,.). So the process is described by
a second order PDE (E;) C JD?(E), where the fiber bundle E is defined
by E = E(zy) X E(u) XM Ey), given by:%
(41)

(CartX(r)) #=3n0) =P iy {

V()Y =11 0) P40 =T () 13
(#° Va=m )b =i =X @ {xtrr=

iVa (o)1 M) B(w) =I(v)
(7% Va=m () () =5 ) =AY ()

2
§(xo) REM{xs)

25 Here we use the following notation: @ is the c.c. of ¢ and #=y"°, with %* the c.c.

of ¥.

L g\
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The local expression of (4.1) is the following:
9P 0ap=[5,97° PatX(ro) P=AP(1)5 Vi
+hic,

(7%5 Ve =mu 8 )9, =07 [(51c-¢f,‘))+g ’;,11"] —mG0 85, =Mevl,)

(73 Va—mu) 6} )i, =i7"] [(ez., B+ Lg,w] —m) 8307, =AY

Then, the corresponding Jacobi operator has the following components:
(J[s)-v) (e = [X(xo)!umo)f[rE,y"’l-V(no),a+[g""lo"<wo).aa—6-3'[)\15{'”]”{‘,)~
RN )
(675097 e =) 85l Gy Hil0a5 0% ey =Dt loiror = Ly

(J1s)v)guy =
Ae85levl,,
[i9509°° [h5=m () 65)e g,y Hilra; 950 )e 1,y o =(Aevy ~

sl
P¥(uyleZ(mo)-

The equations for the Green kernel are given by the following Cauchy

problem:
(4.2)

X(m0) So) (#i# )= (15 97Ple (0zax-G (g ) (=i= )+ (9P )0 (82085 -G () ) =iz ) =
1y @32)= 8500 )10 6 (miz!)=0

AT
84509010 €1
5w 8310 Gl ==+ 0Pl (0267 ) @iz =AW, 1o G (o) (i) =
(Ap6i)eGI  (ziz!)=0
drin 2 +h.c.

By 0%PTL,;

[‘TE,QQB[L]—m(u)ﬁzloGju)(z;x')"'[i‘v;jﬂaﬂh(9x/3,ij))(z‘;zl)—[»\5]. @)=
(A9 )0 & (mp) (i=)=0

G (20,x;z0,x")=0

(0261 (=32 Lo _ 10=6"7 6(ziz")| o _ /0

i

G(zz’)=

Y

Set
Yi |

Gz

26 Here and in the following the bracket (—]. denotes “evaluation at a solution of the

equation (4.1)”.
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Then, we get the following expression for the system (4.2):

[ +X ()], X =My o Y (M) ) Z=0
(WL —m0], Y =D le X—Agle Z=0
(W —m)], 2= DgleY = [Ag,)) X =0
(43) Xlp0—er0=Y;0_0=2],0_0=0 ) \ p
(825, X)|.0— .0 =6(x;z")| ;0_10

+Cauchy conditions:
(820,Y)| 20— 10 =6(2;z")| jo_10

(820,2)| .00 =6(z;z")| Lo_,10

Then the propagator G=G+-G-is given by means of the retarded and
advanced solutions

X b & Xt (zia’)— X~ (xj2')
Graz)=| v |, GE@e)=| %9 |, G@x)=| v*(me)-Y(aia')
z+d Zd zt(z;z')— 2~ (z52’)

As a consequence the quantization of the dynamic equation (4.1) is ob-
tained by considering the following quantum bracket:

[#(), 8], = inG" (a1

v
where (¢')=| i, 2" By derivation of above commutator with respect

Vi)
to 2, and taking z° = 2, and by considering also equation (4.2), we

get: :
Wmﬁwﬂmﬂ=mwmmmu
e

&l [A,B]-=AB—BA is the commutator or simply [A,B], instead [A,B]=AB+BA is the

anticommutator. If both A and B are fermionic one has the anticommutator otherwise

one uses the commutator.
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This completes the procedure to obtain the canonical quantization of our
dynamical equation for the decay 7§ — p* + v,. Note that equation
(4.1) admits the zero section (¢, %), %)) = (0,0,0) as a solution. The
canonical quantization of (4.1) at the zero section, reduces to the following
Jacobi equation:

X|p0_20=Y|,0_,0=2],0_.0=0
(O +x(my ) X=0

(M, 7)Y =0
(WL —mw)2=0

Cauchy (024, X)| 010 =6(z;z")| 1010
conditions | (3zf,v)| o_.0=6(2;")|,0-10
(820,2)| 20 =210 =6(z;2") | 10— .10

Then the propagator of (4.1) at the zero section is directly identified
by the propagator of the independent fields. So we get the following
(anti)commutation relations:

[$(2),$(="))=[3(x),2(2")]=0

[6(2),3(2)1=ihG (rg) (@i’ X (rp)) 1

($(2),8(=)1=[3() 3(=)]}=0

[6(=)/7 @] 2o sio=—ihb(xi2) | sommrol 1

(i @) 90 s =8 (=) B ()] =0

[ (2): B0 5 (= )4 =ihG a5 (=52 Im )

om0 =) =l (@), By (24 =0

A =) (T Lo e (o TP

[ @08 @) =504 @) B0y 5 (@) =0

[ @ Fp @) =i ) an @iz’ Imw))

Ty @0 @)+ =y @) By @)1 =0

[Fora @ Frn @)+ | o 0 =iRban(@5")] om0
where é(”), (resp. Ev‘(,.), é(.,)), is the propagator for the Klein-Gordon,

(resp. Dirac p-particle, resp. Dirac v-particle), equation. As an appli-
cation of Theorem 1.2 we get that G[s] is an invariant of Qc(Ri,R)-

o
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Furthermore, the integral bordism groups of the dynamic equation (4.3)
E, are given by Q2 = Z,, p = 0,2, and Q2 =0, p = 1,3. In particular
we get existence of tunnel effects for global solutions of (4.3).

[] (QUANTUM PARTICLES IN INTERACTION WITH THE GRAVI-
TATIONAL FIELD). Emphasize that we can consider also the interaction
of above particles with the gravitational field. In fact the general method
pointed out by A.Prastaro to describe the canonical quantization of PDEs
can be applied also to this case. In particular we shall reconsider the decay
mg — w* + v, by inserting the interaction with gravitons, i.e., the inte-
raction with the gravitational field as a quantum field. So we will consider
the following fiber bundle 7 : E'= E(x,) X m E(u) X By XM SIM — M.
A section s = (i, %), ¥(v),9) of 7 must be a solution of the following
second order PDE on E:

(4.4)
(CHxre) ) =d(mo) 3
™ ) Gap=Rap—39apR
="M () ) ¥ () =0 ()
0 pthes § Rap=Rja =(87a(3:)—(0za2g) 20 52~ (0220
(-7 ¥ =itw)

R=RZ
G=—kT, div (T)=0

where the currents are as before and the stress-tensor 7' is given by T' =
Tiro) + Tiw) + T(w) With
T(x0) ap=(1=2(n0) /e ?/8+(2(x0) = 5)9089°7 0/ 09 /0 =26 (x0) P/ P
+3€(rg) 908 I —E () [Rap— 3 Rgap+3&(ng) RIaplP®
+3(1-8(ng)Im* gap®
T 0= [P() Y@ B ) Y () = (B (aB())V8) Yio0) ]

T() ap=1 [P(1) V@ B0y Y1)~ (B(aP()V3) Y1)
The canonical quantization of the dynamic equation (4.4) gives

(45) [57(2), % (")) = ihG™ (a;2']s) 1
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where G?7 is the propagator, solution of the following Cauchy problem:

(J[s)}G) =0
(4.6) G (20, %;2'%, x/[s) = 0
(04.G) (2 7)) | 30—gr0 = 677 8(;2") | g0—gr0

where J[s]. is the Jacobi operator of equation (4.4) at the solution s. Then,
by derivation of (4.5) with respect to 2'°, and taking «° = z'°, and by
considering also equation (4.6), we get:

(4.7) [ ()60 ] s i iy

Then, similarly to previous examples, as the Jacobi operator is hyperbolic
we get that the microscopic causality is conserved even if the geometric
mass of the neutrino is negative. Furthermore, as the integral bordism
groups Qf’ = 0, we get also the existence of global solutions of the dy-
namic equation with tunnel effects.

APPENDIX : Al - SPACE-TIME GEOMETRY AND CAUSALITY

In this paper we shall assume that space-time is a connected 4-dimensional non compact
manifold M with a local hyperbolic metric, g, signature (+——-). So we can locally
orient M by means of the volume form n=1/[g|dz®Adz* Adz* Adz® canonically associated

to g 28 . Here we are interested to emphasize the following consequences of such a struc-

ture of space-time: 1) The light-cone C,CT,M, g(p)(v,v)=0, at peM, has an induced

28 Recall here the homological meaning of local orientation. Let M be a n-dimensional

ifold. A local ori 2 for M at z is a choice of one of the two possible genera-

tors H,(M,M\z;Z)~H,(R",R"\{0};Z)= infinite cyclic. Such a u. determines local o-

rientations s, for all points y in a small neighborhood of z. In fact, if B is a ball about z,

then for each yeB the isomorphisms H.(M,M\x;z)HH.(M,M\B;Z)QH.(M,M\y;Z)
determine a local orientation s,. Furthermore, an orientation for M is a function
which assigns to each zeM a local orientation . such that should exist a compact
neighborhood N and a class un € Hn(M,M\N;Z) such that p,(un)=pu, for each yeN.

ifold is a ifold with an ori For any oriented manifold

An oriented
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orientation, i.e., we have fixed the positive half cone C;, such that Cp\{p}=C;fuC; . 2)
Each continuous path-line’yc M has an induced orientation, by means of the following in-
duced metric: (8t.i%)(8t.i")gapdt@dt=i* g=S3 (i)ogoiy— M —S3(M)—S3(y). Hence the
induced volume form 7., on 7 is '7'v=\/m‘“* This implies that if p,p’€y, (v is
an open path-line contained in M), we can answer to the question: does p belong to
the future of p’? In fact, if pE‘y:',, we say that p is in the future of p’, with respect
to 5. Here 7:‘, is the positive part of ~,/\{p'}. 3) Let p and p’ belong to M. We
say that p is in the future of p’ if there exists a time-like (or light-like) curve v (i.e.,
49(4,%)20, 4=velocity of v), such that p,p’€~ and p’'e~;;. We say that two ordered events
P1,pa€YCM respect the standard-causality if p, is in the future of p, in the above
sense, and we write py<p2. We say that two ordered events py,po€M respect the -
path-causality, v open path-line in M, if p, is in the future of p; with respect to the
fixed ~, and we write py < p2. Of course the path-causality is a property strictly related
to the curve y considered, and for the same two events can be p2<./p1, for v/#v. In-
stead the standard-causality is a local property of the space-time. 4) Let us introduce
a relativistic frame in M, i.e., a couple y=(¢,7), where ¢ is a flow ¢:RxM—M, such
that its velocity ¢=8¢4:M—TM is a time-like vector field, and #:M—R is a function
of constant rank 1 (proper time), such that <dr,¢>=1. Then, we can represent M
in the split form MR xSy, where Sy is the set of flow-lines of the flow o] Then,
at each point peM, a frame y=(¢,7) identifies a 3-dimensional space-like submanifold

M, () ={p €M|7(p')=7(p)}CM. M., is, of course, transversal to the flow-lines of the

M and any compact KCM, there is one and only one class pux €H,(M,M\K;2Z) which
satisfies p-(ux)=p- for each zeK. In particular, if M itself is compact, then there is
one and only one pp € Hn(M;Z) with the required property. This class pa is called the
fundamental homology class of M.

29 Here flow is synonymous of 1-parameter group of diffeomorphisms of M, i.e., the set
of diffeomorphisms {¢x }xer has the structure of group induced by the additive structure
of group of R. Note also that S, does not necessitate be a manifold for a generic

flow. However, by assuming some conditions of regularity S, becomes a 3-dimensional

manifold. We shall assume that such conditions of regularity will be respected in our

category of frames.
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frame, and the orientation of M induces an orientation of M.,(,,,.ao As a consequence,
we can define a frame-causality. More precisely, we say that for two ordered events
p1,p2EM, p2 is in the future of pi, with respect to the frame v if there exists a path
connecting p; and p, that belong to the positive part of M with respect to the spacelike
hypersurface M (py)- ‘We write py<yp2. So we have in M three different order relations
and we can consider the following “weakness relations”: p;<p2=>p1<ypa, for any frame
¥, =p1<4p2, for any y m ¢ 31 The principle of general covariance in Physics
requires that all the physical entities should be represented by means of geometrical ob-
jects that have a natural way of transformation under local diffeomorphisms of M.32
Furthermore, by studing the symmetry properties of M, we can disnguish a very impor-
tant category of frames. In fact, the properties of symmetry of the structure (M,g,n) are
described by the pseudogroup PcCaut(M) of local diffeomorphisms of M that preserve
the metric g and the volume form n: P={feaut(M)|f*g=g,f n=n}. So the jacobian
J(f)(p)=(8za.f?)(p) of f at pe M, must belong to the Lorentz group SO(1,3). Then, we
call rigid frame one y=(¢,7) such that its flow {¢x}ser is a 1-dimensional subgroup
of P. A particulary important subclass of rigid frames is that of the inertial frames.
These are defined as rigid frames such that their acceleration is zero: ésvé$=o, hence
the corresponding flow-lines are geodesics of M3

PROPOSITION Al.1 - Rigid frames preserve all the three types of causality.

30 With respect to coordinates {z*} on M adapted to ¢, one has that M., is locally
characterized by the equation 2°—7(p)=0, and the coordinate lines zk,p, 1<k<3, passing

for p are all contained into M, ;).
31 5 fﬁ 4 denotes a curve v transversal to all the space-like 3-dimensional manifolds

transversal to the flow-lines of the frame y=(¢,7). Note also that all the above mentioned
three types of causality are all directly induced by the structure of locally oriented space-

time.
32 From the mathematical point of view this requires to represent physical entities

as sections of particular fiber bundles. (See e.g., refs.[3,4], the book [8] and references

quoted there.)
33 Care of the name “rigid frame”. In fact, it is well known that in general relativity

does not exist the rigid body. So, with the term rigidity for a frame we refer to its rigidity

with respect to the structure of space-time.

[ b
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PROOF. In fact, the flow associated to a rigid frame is a subgroup of P, hence it preserves
the metric and the orientation. (m]
Of course, there are, also, non-rigid frames that non necessarily preserve causality. Such

frames are, for example, ones related to flows of continuum media.

+d

Finally at quantum level we must also the micr i lity, i.e., the

that the q or [§(x),5(z")), for a quantum field § must be

a distributive kernel with support in £+ (z’')UE~ (2'), for any z’eM. This interpreats
the bealiving that no propagation of interaction can exist between two events = and z’
that do not respect the standard causality. As a by product we get, for example, that
between two points z, =’ of the space-time M, belonging to a same 3-dimensional space-

like sub ifold M,C M of equal-time events, with respect to a relativistic frame ¥, no

propagation or interaction can exist, hence we should have [5(1),3(1')]”:,5:,:0. Of
course, the microscopic causality is conserved by the frame v, as it preserves space-like
submanifolds and acts in a natural way on the quantum fields according to the principle
of general covariance. Furthermore, the microscopic causality is conserved also by passing
from a frame to another frame, as it is frame-independent. These considerations on the
concept of causality and its covariance properties are suitable as we want to include, in our

H

geometrical 1 model of ized particles-fields with negative square mass.

In fact such particles should appear describe, in semiclassical approximation, space-like
path-lines in the space-time. In the following, we report curve-types in M by using their
possible interpretations as paths for bradions, luxons and takions. Note, however, that
the introduction of massive neutrinos in physics is compatible with the principle of the
microscopic causality, but has not a natural counterpart at the semiclassical level, where
massive neutrinos should be identified with takions, hence with no physical particles.

(For details see Example 1.1 and Example 1.2. and Theorem A1.4)34

34 The existence of particles with imaginary rest mass should solve also the problem
of quantum numbers of the universe. In fact, admitting that the actual universe has
been generated from the vacuum, by means of a quantum tunnel effect, it is clear that

all the bers of the uni must be zero. In particular the global Casimir

invariant P? should be zero. This is only possible if also particles with imaginary part

exist. On the other hand, recent experimental results on the square mass of neutrinos
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TAB.A1.1 - Classification of curves in a locally oriented hyperbolic space-time

Path-line Name Particle Name Casimir inv.P? * Physical mass
time-like bradions P?>0 yes
light-like luxons = yes
space-like takions P%<0 no

(*) P?=pdc?, po= rest-mass, c= light-velocity.

All above considerations can be putted in a natural covariant way by using the language
of categories. (See e.g. refs.[3,4,18].) So we give the following definition.

DEFINITION Al.1 - The category of relativistic frames on M is a category F(M),
such that Y=(¢,7:M—R)EOb(F(M)); fEHom 5(nr)(i0'), iff f is a local diffeomorphism

of M such that induces a local diffeomorphism fr on R such that the following diagram

M i Sree? M

ox L¢'s
M — M
Tl L+
R —— R
fr

is commutative for each AER. In other words, a morphism in F(M) is a fiber bundle
morphism with respect to the structure T:M—R, that commutes with all the diffeomor-
phisms ¢x. This is equivalent to say that f sends space-like hypersurfaces with respect to
4 into space-like hypersurfaces with respect to ¥’ and flow-lines of i into flow-lines of
Y'. (Of course for two generic frames, it could happen that the corresponding morphism

set should be empty.)

should confirm this ansatz. (See e.g. ref.[17].) Recall that neutrinos are leptons, i.e.,

particles with spin and with zero electric charge that do not strongly interact. These are

of three types: v i trino, v, = and v, i
They are characterized by three different decays: ve—e™+e+pt, vu—p~ 4o, +pt, vr—

T+ 4pt.
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THEOREM Al.1 - Let fEHom;(M)(\bN")¢®- Then f preserves the microscopic causali-
ty. :
PROOF. In fact f transforms space-like 3-di ional sub ifolds N M, with respect

to ¥, into space-like 3-dimensional submanifolds N’cM, with respect to y’. Further-

more, the principle of general covariance assures that if [5(z),5(z")], o=zfu=0, then also
(F3(@). 75" N agmay =0- o
THEOREM A1.2 - Let us consider the subcategory Fr(M)CF(M) of rigid frames

on M. Then any f€aut(M) that is also a fiber bundle homomorphism

IVt M

(A1.1) Tl L+
R —— R

fr

and that belongs to the stabilizer SP of P in aut(M), transforms a rigid frame »=(¢,T)
into a rigid frame Y'=(¢/,7') with $A=F"'¢xf. Therefore, Homzp o (Wit )£ is
contained into the stabilizer SP of P into aut(M).

PROOF. If we restrict to the sub-category Fr(M) of the rigid frames, then
]enm,n(u)(w;w’);&@ is an element of aut(M) such that f~2¢5f=¢)\€P, VAER. Of
course, any fiber bundle morphism (f, fr ) like in above commutative diagram (A1.1), with
f€P, transforms a rigid frame =(¢,7) into a rigid frame y'=(¢',7'), with ¢\ =f"1¢x 7.
However, if SP is the stabilizer of P in aut(M), ie., fPf~*CP, VfESPCaut(M), then
any feSPCaut(M), that is also a fiber bundle homomorphism like in (A1.1), transforms
a rigid frame y=(¢,7) into a rigid frame v'=(¢’,7’), with ¢;=f"duf.35 Therefore the

theorem is proved. 0O
COROLLARY AL1 - If feHomspa(¥it')#£(), then the standard-causality, frame-
lity and path ity, (shortly lity), is conserved, iff fEP.

THEOREM A1.3 - Let 1,4 €Ob(F(M)). If f€Homr(as) (650 )£(]) , then f preserves the
causality iff fEP.

PROOF. In fact ¢} =f¢»f~* has the same time orientation than ¢, as it represents a
frame, hence its velocity is timelike and oriented in the future. O

35 Of course the stabilizer SP properly contains P. In fact, if f€aut(M) is such that
f*9=g, J*n=—n, then (f=¢xf)"n=F"(#3((S ") n)=F"(83(~m)=—f"n=n. So feSP,

but fgP.
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So we can give the following definition.
DEFINITION Al.2 - We call Lorentz category on M the lttle subcategory Fr(M)C
F(M) such that Homzy vy (Wi )CP. An object of Fr (M) is called a Lorentz frame.

PROPOSITION Al.2 - One has the following commutative diagram:

Fr(M) C  F(M)
u U
Fr(M) C  Fp(M)

where Fr(M) is the category of inertial frames.
PROPOSITION A13 - If feHom x, ar) (i), then f preserves causality.>®
EXAMPLE Al.1 - In the particular case that M is the flat Minkowski space-time, then
P is exactly the Poincaré group P: P=P. Then, Lorentz frames are related by rigid
transformations, i.e., elernents of the Poincaré group. "
In the following propositions we relate covariance with differential equations for paths in
M, as seen by two different Lorentz frames.

PROPOSITION Al.4 - Let M be the Minkowsky space-time. Let EQCJ’DZ(T:M—vR),

Fk(z®,5%,5%)=0, be an ordinary differential equation for paths in M, with respect to coor-

dinates (z°) adapted to a rigid frame $h=(¢,r) and let ByCID*(F:M—R), F*(z*,

0, be the corr ding differential ion for paths in M, with respect to another rigid

frame P=(¢,7) related to the previous one by means of transformations, 3=z (), such
that (9zp.2%)=(Ag)ESO(1,3). Then we get that the equations F*=0 are obtained from
F*=0 by means of the following transformations between the second jet-derivative spaces

JD?(1:M—R) and JD?(7:M—R):3T

36 Let us emphasize that the causality is always conserved in the category of Lorentz
frames. This last properly contains that of inertial frames.

2 Here, in order to emphasize different fiber bundle structures that are considered
between M and R, we denote the second jet-derivative space for sections of :M—R. by

JD?(7:M—R), instead than simply JD?(M).
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22=AgaP +y
with the

O i(AS2%+y°=0; AJz0+AJ3°+i°=0)
conditions

o =AgaP +AGEP 4y
#0=AgaP +2A52P + AGEP 1~

for non-takions:{#°=1; z°=0}
+constraint equations
for takions:{4°=i"=0}

The first rigid frame has velocity ¢=0zo and the second one ¢=0%o. Then the relation
between the two is given by the following transformation: 8%o=¢"do=T (¢~ *)odzoop=
AQdzq06. Therefore, the flow-orientation is preserved iff A9>0. Now, let Y,CJD?(r:
M—R) be the submanifold defined by (°=1,i°=0). Then Y is transformed by means of

the above sformation in the sub ifold Y CJD?(7:M—R), defined by (¢°=1,5°=0),

ff the following equation is satisfied: Ag: Therefore, Y. is transformed in Yz iff we

restrict to the Poincaré group, i.e., iff the rigid frames considered are in the category

Fu(M). Let, now, X;CJD?(r:M—R) be the submanifold defined by (#°=i°=0), then X,
is transformed in the submanifold X CJD?(7:M—R).38
THEOREM Al.4 - The i i between taki and takions cannot be verified

(at the semiclassical level) without to introduce some ghost forces whose quanta are not
bradions neither takions.

PROOF. In fact, let 7:MxrM—R be the configuration bundle with respect to a rigid
frame. On JD?(:MxpM—R) we have the following adapted coordinates (z°,zf,z5,
2z} #5 2% &} #%). Then the submanifold for takions is defined by X={qeJD?(r:M xr
M)—R|2°=

,2°=0}CJD?(7:M xg M—R) and the submanifold for bradions is defined by
Y2=(q€JD?(1:M xp M—R)|3°=1,°=0} CJD?(:M xp M—R). Then we see that YN
X .=®A Therefore, we cannot have interaction between takions and bradions without to
introduce some gosth forces with quanta describing path-lines that satisfies the following

condition: 0<°<1. [

38y, (resp.¥»), represents the submanifold of JD?(r:M—R), (resp. JD*(7:M—R)),
that is the constraint for bradions-dynamics with respect to the frame v, (resp. ).

Instead X., and X5, are the corresponding submanifolds for takions.
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APPENDIX : A2 - CURVATURE OF THE LEVI-CIVITA CONNECTION
AND THE LICHNEROWICZ FORMULA RELATING SUCH CURVATURE
WITH THE SCALAR CURVATURE VIA DIRAC-MATRICES

We have used the following relation:
(A2.1) Rpaur1?15v# v =2R 1

where R sap=(0%a.[]5)—(02p.[7,)+[20 55—}, [§a- Now, in ref.[1] A Lichnerowicz
first proved the same relation but with the sign minus in the second term. The motivation
of this difference is that A.Lichnerowicz used a definition of Clifford algebra that differes
from our just for a sign minus. However, a simple proof of (A42.1) can be obtained just
following the line given in (1] and taking into account some symmetry properties of the
indexes in the curvature that here we recall:

RY sap=—R" spa

R sapt R aps+RY psa=0
(A2.2)

RY yap=0

Rusap=R" s0p9~w

Then we get also:

Rusap=—Réwap
Rusap=—Ruspa
Rusap=Rapuws
Rusop+Ruapst+Rupsa=0
(A2.3) R® 50p=9"° Rusap=0
Rusapg™?=0

Rsa=R" sax=9"" Rusap=—9“*Rusap

Rsa=Ras

R=9’"Rsa=9""¢°* Rusag

Staring from the following geometric object: T<ge 5y, +fy*y*, it is possible to prove

above formula (42.1) by following a road similar to one given in ref.[1]. In fact, from the
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second equation in (A2.3) we have

0=(R™ gaut R aup+R™ upa) 7?1 1"
=R® pru 7PV 4R pap P RS pauy il

Hence we get:
(A2.4) R (VP v+ Py 4> 4 4P} =0.
Therefore we have also:
0=T°+R™ gruv (=7 7" +29°#)+ R pau(—7P 7" +29"P )3
=T°—R% aau 7 7P +20P4 R® pxuv* =R® panv® v 7> +20"P R® pauv®
=T°—R® pau 7 7" +40P4 RS prur* —R® paun® (=7 7 +20™)
=T—R® gy, Py +49P% R® pany* +R® paur® v v* —2R® prug™+P
=T —R% pau 7 VP9  +40PH R® 53,y +R® pau (=7 7P 42052 )v#
=T°—R* g7 7P 7* +49P* R® pruv* —R® pauv vPy* —2¢P* RS paur®
=T 1R pru g 7> =2R™ prur v o

=T*—2R" 5,xgP* 7  —2R* paur 7P y".
Hence we get:
(A2.5) T*—2R%\v*—2R® g,y 7P y*=0.
From (A2.5) we have also:

=T =2R%\7* ~2R® gy, (=7° 7 +20° )7
=T =2R%x7*+2R% paur® v  v* —4R® pangP ot

=3T°—2R*\y*—4R% ,v*.

Therefore we get:

(A26) T®=2R" 7>,
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Now, by substituting (A2.6) in (A2.5) we get:

2R \y*—2R*xv*—2R® gauy P44 =0.

Hence:
R* gy Py =0
(A2.7) R guav*7Py*=0
—R* gau* 7P =0.
By utilizing equation (A2.7) in (A2.4), or taking into account the definition of 7% and

equation (A2.6), we get:
(A2.8) REANATE AR —2 RN

Then, by contraction on the left of (A42.8) by 7a=gua7* and taking into account the

simmetry property of R.x, (see equation (A2.3)), we get
Ruaaut 77 Y =R (vt ) =2Rix g% =2R 1,
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