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ABSTRACT - We characterize integral bordisms of (nonlinear) PDEs by means 

of geometric Green kernels and prove that these are invariant for the classic limit 

of statistical sets of formally integrable PDEs. Such geometric characterization 

of Green kernels is related to the geometric approach of canonical quant.izat.ion of 

(nonlinear) PDEs, previously introduced by us [3,4,5,6}. Sorne applications are 

given where particle fields on curved space-times having physical or unphysical 

mas.ses, (i.e., bradions, luxons and massive neut rinos) are canonically quantized 

respecting microscopic causality. 

1 - GREEN KERNELS ANO CLASSIC-LIMIT STATISTICAL 
SETS OF NONLINEAR POEs 

In this section we shall relate integral and quantum bordisms to Green 

kernels of nonlinear PDEs. In particular we will preve that to any classic-

• Work partially supported by Italian grants MURST , GNFM/INDAM and Univer­

sity oí Rome "La Sapienza". 
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limit-statistical set of PDEs 1 we can associate a Green kernel. 
Set , for any vector fiber bundle 1T : F ---t ]l.t[ , over a n-dimensional mani­
fold M, F' = p• ® A?,M, where p • is the dual of t he fiber bundle F 

and A?, 1U is t he fiber bundle of n-forms on M. We call F' the formal 
adjoint of F. If 7f : E ---+ N is anot her vector fiber bundle over N we set 

E~F = u (p,q)E NxM Ep @ Fq. This is a vector fiber bundle over N X M 
of dimension n+m+r.s, if dim Ep = r , \:/p EN, and dim Fq = s, 't:/q E /V/. 

For any vector fiber bundle E --+ N we denote by C[['(E) the space of 
smooth sections with compact support over N. 

THEOREM 1.1 - GREEN KERNELS AND DISTRIBUTION SOLU­

T!ONS OF AFF!NE PDEs. Let " J'D'(E) --+ F be a morphism of 

vector fiber bundles on a manifold /vf o( djmension n such that it de­

fin es a linear differentia/ operator of order r , "· C 00 (E) --+ C 00 (F). 

Lct E, = ker¡" e JV'(E) be an afline equation, where J E c oc (F). 
Assume that R e JV'"(E) e J~(E) is an integra/ manifold of dimen­

sion n, sud1 that in sorne neighborhood o[ all its points q E R, (except 
for a nowhere dense subset E(R) e R ), it can be represented as the r­
holonomic prolongation N(r) oí sornen-dimensional submanifold N e E. 

Furthermore, we assume that íTr,oln: R - E is a proper applicationi and 
w1«l(R) =O, where w1 «l(R) = i¡,w\'l , with iR: R --+ J ;,(W ) tl1e natural 

inclusion mapping and w\'I is tl1e fi rst generator o[ the cohomo/ogy alge­

bra H ' (l,(W); Z2 ) ~ Z2 [w\'1, ... ,w!:;l], where J,.(W) is the Grassm annian 

bw1dle over J;,( W) of oriented integral planes of J;,(W) 2 . Then , we can 

associate to R a distribution F[R] E (Cl!"(E'))'. Therefore, F[R] is a 

1 Recall that for any two admissible (n - 1)-dimensional closed compact integral mani­

folds N i, N 2 conta.i ned into a k-order PDE E1i: C J~(1V) of n-dimensional submanifolds 

of the (n+m)-dimensional manifold W, t he classic-limit statistical set fl c (N1,N2) is the 

set of ali solutions V of E.1: such that 8V= N 1 ÚN2. The ad missibility is in t he sense of 

T heorem 4.5 in ref.[12]. 
2 lf r is orientable then w~r) ( R) =01 as it coincides with t he first Stiefel-Whitney 

characteristic class of R. This is a direct consequcnce of the follow ing short exact se-­

quence: O- <wi > --H . ( BO(n);Z2)~ H . (8SO(n); Z2)-0, where <w1> is generated as 
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distributive solution oí Er, i.e., a solution of the distributional extension 
E, of E,, iff Risa multivalued solution of E, e JV'(E). Furthermore, 
if R is such that 8R = R1 LJ R2 with R 1 E [R2]E, E O,~~ 1 3 , then we say 

that F[R] satisfies the boundary condition 8R = R 1 U R2 and it ca~ be 

represented in the fo/lowing form: F[R] = ¡G + wo, with wo E Sol(E,.), 

where Sol(Er) is the space of solutions o[ the linear equa.tion Er asso­

ciated to Er, and G is the Green kernel of K.. Then, ¡G can be considered 

an invariant oí the classic-Jimit-statistical set f2c(R1 1 R2). 

PROOF. We shall introduce sorne defini t ions a nd lemmas. Let E-'.'.. M :_ F 
be two vector fiber bundles overa n-dimensional manifold M. We call for­
mal adjoint of a r-order linear differential operator": c=(E) ~ c=(F) 
the linear operator ,.• : c = (F') ~ c =(E') defined by < i<'(a) , e >=< 
a,,.(e) >,\le E c = (E), o E c=(F') . The restrict ion 1<' C0 (F') ~ 

C0 (E')satisfies thefollowingformula: JM < e, ,.·(a) >= JM < " (e),o >, 
\le E C00(E), o E C0 (F'). The Dirac kernel llli of the vector líber bun­

dle Fon a n-dimensional manifold M, dim F = n + m 1 is the distributive 

kernel of local character llli E (C0 (FG]F'))' ~ (C0 ('F' G]F))' defined 

by llli(J ® o) = fM < f, a >, \lf E C0 (F) , o E C0 (F'). The Dirac kernel 
admits the following local representation: llli{,,Jx,x') = óf6(x,x'), where 
ó(x, x') is the Dirac function. In fact we can write: 

111(/ ® o) =L,ufu9u<fu,<>u 
>= L,u fuxu 9uxufú(x)<>u,j(x')óf ó(x, x')dµ(x') 

where 9u is a partition of unity on M , subordined to the open cove­

ring {U) of M. Furthermore, the Green kernel of" is a kernel G E 

(C0 (E'G]F))' ~ (C0 (FG]E'))', such that it satisfies the following 

ideal by the first Stiefel-Whitney class w1 EH 1{BSO(n);Z2 ) and 1• is induced by the 

natural surjection j:BSO(n)--.BO(n) which forgets the orientation on the oriented n­

dimensional planes represcnting the points Goc,., = B SO(n). 

3 n;:l denotes the integral bordism group far (n- 1)-dimensional closed admissiblc 

nmnifolds of ErCJ~(E). (Sec refs.[8-12] far more informations about.) 
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equation: (í'i0 l )(IG) = (1 0í'i)(<G) = ]IJ), where ¡:¡: (Cfj"(E'))'---> (Cfj"( F'))' 

is the linear mapping such that the following diagram is commutative: 

O --t C00 (F) 

'T 
O --t C 00 (E) 

J.+ (GQ(F'))' 

F 
(Ci¡"(E'))' 

where with the same symbol j we denote the canonical inclusions. We 

call K the distributional extension oí K . More precisely ;;:¡: is given by 
í'i(w)(a) = < w, 1<•(a) >, Vw E (Cfj"(E'))', a E Cfj"(F') where 1<' is the 
formal adjoint of ,.¡,_ Furthermore, one has : 

1 0 ¡:¡ : (C0 (F [i<J E')) ' ---> (C0 (F[i<JF'))', (1 0 í'i)("=.)(f 0 a)=¡ :::: (i<'(a)) 

í'i 0 l: (C0 (E'[i<JF))'---> (C0 (F'[i<JF))', (í'i 0 l )(:::)(a 0 J) = =:¡(i<' (a)). 

LEMMA L1 - SOLUTIONS OF AFFINE PDEs AND GREEN KER­
NELS. ! ) Let E, = ker¡" e JD'(E), be an afline PDE identified by a 
linear differentia/ operator " : C 00 (E) ___, C 00 (F) , oí arder r, and a sec­
tion J E C=(F). Let us denote by S ol(E,) the set oí solutions oí E,. Let 
(E, ): ii(w) = 1 be the distributional equation corresponding to E,. Then, 

Sol(E,) is related to Sol(E,) by means oí the following exact sequence: 

O---> S ol(E,) J.. sol(E,.), where j: C 00 (E)---> (C0 (E'))' is the canonical 

inclusion. 
2) Let us denote by Sol(E,) and Sol( E,) respectively the set oí solutions 

oí the fo llowing linear equations: 1<(e) = O, e E '.Z_00 (E), and ii(w) = O, 

w E (C0 (E'))' . Then one has: j(Sol(E,)) e Sol (E,). 4 

3) Any solution w E Sol(E,) can be represented by a distribution w E 

(C0 (E'))' written in the following form: (\/): w = ¡<G + wo, wliere wo E 

ker(í'i), aiid IG is the Green kernel oí"· 
4) Let us assume that ¡<G can be identified with a section ¡GE C 00 (E) by 
meaiis oí the canonical embedding j : C 00 (E) ---> (CQ' (E')) '. Then, any 
solution e E Sol(E,) can be written in the form: e= ¡G modSol(E,). 

4 In genera l j(Sol(°'Er)) is properly contained into Sot (E,.) ._Howevcr, Lhere are some 

equations, (e.g., elliptic eq ua.tions), for which j(Sot(E,.)) = S ol('i,.) . 
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PROOF OF LEMMA 1.1 - 1) If 1<( e) = J, one has also 

í<(j(e))(ar) =< j(e),1<'(a) >= r < 1<' (a),e >= r < 1<(e),ar > 
j M j M 

= r <f,a>=](ar) 
j M 

Va E C0 (F'). T herefore, we conclude that í<{j(e)) =f. 
2) One has: 

319 

w E Sol(Er) "'° í<(w)(a) = O, Va E C[)(F') "'° w(,,:(a)) = O, 'lar E C0 (F') . 

Then, if e E Sol(Er), and w = j(e), one has aiso, 'lar E C0 (F'): 

w("' (ar)) = f <e, " ' (a)>= f < i<(e),a >= o"" j(Sot(Er) e Sol(Er). JM JM 
Vice versa, if w = j(e) E j(C00(E)) and w(><' (a)) = O, Va E C0 (F'), one 

has aiso 

O= JM <><(e), a >=0> ><(e) = O =0> e E Sol(
0

E,.). 

Therefore, Sol(Er) ílj(C00(E)) O'! S ol(Er). 
3) We must prove that í<(¡<G) =f., where f.= j(J) E (C0 (F' ))'. In fact, 

for any a E C0 (F') we have: í<(¡<G)(a) = ¡<G (><' (a)) = (>< 0 l )(<G)(J 0 

a) = D(J 0 a) = JM < J, a >= f.(a). Vice versa, let w E Sol(Er)· 
Then, one has: íi:(w)(a) = f.(a) = JM < f,a >= Illi(J @a) = í<(¡<G)(a) = 
¡<G(1<' (a)), Va E C0 (F'). On t he other hand íi:(w)(a) = w(><'(a)), Va E 

C8°(F1). Then, as Er is an affine equation, we have w = ¡G + w01 where 

wo E ker(i<), i.e., any disti:'.?ution wo E (Cif(E') )' such that wohm (• ' ) = O. 

In other words wo E S ol(Er )· 

4) In fact as j(e) E Sol(Er), we can write j(e) = ¡<G +wo, 'lwo E Sol(Er ). 
On the other hand, if ¡<G = j(¡G) a nd wo = j(eo), where eo E Sol(Er), 
(from point (2)), it follows that e= ¡G + eo is a solut ion of Er. In fact , 

one has "(e) = 1<(¡G) + "(eo) = 1<(¡G) =f. D 
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LEMMA 1.2 - DETERMINATION OF GREEN KERNELS OF LINEAR 

DIFFERE T IAL OPERATORS. 1) Let IG E (Ccf'(E'[2]F))' be a Green 
kernel of a linear dílferential operator " : C 00 (E) ~ C 00 (F) of arder r. 

Th en also G = IG + wo 0 {3 , '1{3 E (Ccf'(F))', 'lwo E S ol(Er) is a Green 
kernel of K. . 

2) A kernel IG E (Ccf'(E'[2]F))' =-' (Ccf'(E'))'@(Ccf'(F))' can be iden­
tífied with a section G: M x M ~ JV00 (E')' @J\?, (M)[2]JV00 (F)' @ 
J\?, (M ) sud1 thatlG(ct 0 f) = ÍMxM < G, D00ct 0 D00f >. One has the 
following local representa.tion : 

IG(o 0 f)= 

L u L 1>1.1m,; 00 fu xu gu xuG~01 (x , x ' )(80 . a1)(x)(8~ .Ji)(x') dµ(x)dµ(x') 

where G~..,1 are the local components of G, a11d gu xu is a partition of 

unity subordined to the covering {U x U } o[ Al x AJ. Furthermorc, if G 
is idenUfied with a section oí (E 10F)' - Al x Al then G is identified 
with loen} functions et 011 M X Nf tha.t are called Green functions. 

Furthermore, if e! are Green fun ctions of the linear differential opera.tor 

of arder r , "· : C 00 (E) ~ C00 (F) , they must satis fy the followíng local 

equa tions: 

( 1.1 ) L "71 (x)(8x,0 .G~)(x , x') = ó/,ó(x, x ' ) 
hl:5r 

where E l1'J.$r n. j1(x)8x ,"Y is the local representation o( li. Taking in to ac­

count point (1) we get also that the general solu tion of (1.1) can be wrítten 

( 1.2) G{(x, x') = Q_j(x , x') + u' (x)g,(x') 

where Q; (x, x') is any particular solu tíon of (1.1), (u') are the local compo­

nents of any solution of the linear eq uation L lol$r <º' (x )(8x, 0 .ui)(x) = O 

and g, are local arbitrary functions on M. 5 

5 Ln particu lar, if ..; is a.n hypcrbolic differential operator over a global hyperbolic 
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PROOF OF LEMMA 1.2 - 1) First !et us note that wo © (3 belongs to the 
same space to which belongs IG. In fact, one has the following commutative 

diagram: 
(C;J"(E'0F))' 

T 
c~(E) @(C;J"(F))' 

T 

~ (C;J"(E'))' @ (C;J"(F))' 

T ;01 
c~(E) @(C;J"(F))' 

T 

I'urthermore, ¡(wo © {J)(o;•(a)) = O, wo E Sol(E,) , Va E C!f(F'), Vf E 

C0 (F). In fact, one has: ¡(wo © {J)(o;'(a)) =< wo © (3, f © o;'(a) >= 
(3(!).wo("' (a)) = (3(!).l<(wo)(a) = O. Then, we also have: (1 © l<)(IG + 
wo © (3) = (1 © ¡:¡)(IG) + (1 © l<)(wo © (3) = lll. T hus we have proved the 
theorem. 
2) In local coordinates we must have: 

O= 
L:u fu xu 9U xu L1.,.. 1 .l~l~r[G~.; (x,x' )(8~ .K· (et), )(x)(8.., .f"')(x') - a, (x)f; (x')Jdµ(x)d¡.1.(x') . 

Now, if G! are Green functions 1 the above expression can be written: 

O = l:u Íu xu 9U x u [G~ (x,x')K . (a);{x)f" (x') - a;(x)f"(x')6! ó(x,x'))dµ(x)dµ(x') 

As this expression mus\ hold for any f we can write: 

c;.(x,x')1<'(a);(x) = <>;(x)óló(x,x') . 

space-time, there exists a unique Green function c+(x,x'), (resp. c - (x,x')), supported 

in t+(x'), i.e. the future of x', (resp. l'-(x'), i.e. the past of x'), Vx' EM. Then, 

G(x,z'):::G+(;i:,x')-G-(:z:,x') is cal\ed the propagator of K and satisfies the following 

Cnuchy problem: 

{ 
2::,,, •7'<x)(8x,.G~(x,z')=O } 

G~(x ,x')l,,10,..,,o=O 

( Bxó .G:. ( x,x') l,,'o=,,o = -6(x,x' )J,,.o ="'º 

whcrc (zº)=(:r0 ,:r1 ,z:.1 ,:r3 ) is any adaptcd coordinate system on f\of, i.e., fho is a time.Jike 

vector field. 
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Taking into account that 11:•(a), = I:1,1~, 11:;'; (8,.,.a; ) , we can also write 

L G;,(x,x')11:j'' (x )(8,,,.a;)(x) = a; (x )ó[ó(x , x ' ). 
l'Yl:=;:r 

From the defini tion of adjoint of " and taking into account that the above 
equation holds for any a we get equations (1.1) . O 

LE~l~!A 1.3 - Let 1<1 be a dilferentia / operator on M between the vector 

fiber bundles E -> M ~ F , of arder :s; r and class C 1', r :s; h :s; s - r . 

Let K.2 be another differential operator between F ' and E' . Define Green 

oper ator of (1<1, 1<2 ) any differential opera.tor G oforder :s; r - 1 (and class 

Ch.h 2'. 1) between E @F' a.nd A?, _1(M ), suc/1 tha.t < 1<1(u),v > - < 
u, " 2 (v) >= dG(u ® v) . If " ' = 1<¡ • , we say that G is a Green operator 

for 1\.1-6 

1) Let 1\. be a linear differential operator as given in above lemma. Let 

A e /l. / be a compact oriented domain in M . Then, one has 

( 1.3) 

{ < t<(e), v > - { <e, 1<• (v) >= { G(e®v), Ve E C00 (E), v E C00 (F' ). 
JA JA }8A 

In particular , if 8A = </J, one has: JA < 1<(e), v >= JA < e, 1<' (v) >. 
FUrthermore, if Mis a campa.et manifold formula (1.3) can be written in 

6 For example the Green operator of a second arder different.ial operator ,.., locally 

written as follows ,o.;( s)=(a~"~ (8x .. 8xo.sj)+b}"' (8x ... sJ)+c;s1 Je;, VsEC00 (E) , wherc {e¡} 

is a local basis for C00 (B), can be locally written in the following wny: G(a®"Y)= 

E .. (-1)" - 1 { a{"ª h ;(élx,a.a;)-.!1(élxfJ·'YJ)J+b{" ' ;; }d:x1A ... 11dxJ.11 ... 11dx", wit.h b{"=b{" -
(élz0 .a~"11 ), V-yeC,., (F '), -r='Y;f.i@dx1/\ ... Adx" , where {!i} is a local ba.sis for C,.,( F • ). 

In fact, tt. ('Y)=j(élx,.8xo.(a!".o-y,) - (8x,..(b{"-y,))+c1'Y,Jf.'®d%1 A .. l\dx". F\irthermore: 

< tt{.s) ,1» - <.s,K • ('Y)> =[a{ "' .O ( 8x.., 8XfJ .s' )'Y;-( 8x., 8xo (a~<>JJ -r, })a; 

+btª (ax .. ·"' )'Y;-(8x,. (b!ª1, )).s']dz 1 1\ ... 1\dx" 

= (8x,,,. L: .. {a{º.oh; (8x1J.s')-s'(8:r.,,.-y,)J+b~" .!;"'f, } )d:z:l /\ .. /\dx" . 
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the following way: 

( 1.4 ) f < i<(e )-,v> - f <e,i<· (v) >= f G(e ® v) . 
JM ÍM }8M 

T he Green operator of a linear differential operator of arder r identifies 

a section G E e = (Jvr- 1(E ® F')' @A~_ 1 M). In par ticular, if r = ! , 

onc has G E e = (E• 0 A~_ 1 M @(F' )" )). 
2) Let " · c = (E) - c = (F ) be a linear differential operator of first 
arder between vector fiber bunclles 11" : E - 1H , and 7T'1 F .- J\lf on 
a di fferential manifold M o{ dimension n . Then, one has the following 
relation between the symbol a (i<) of " and Green operator G: < a(i<)(,\ 0 

e), u >= ,\ /\ G(e 0 v), V,\ E !l1(M) = c = (AYM). 
3) Let " · : c = (E) - c = (F ) be a linear differentilll operator of arder 
r over a compact manifold M of d imension n. Then the distributional 

extension ¡:;: (C!f(F') )' - (C!f(E') )' of " is related to its formal adjoint 

"• by the fo flowin¡; formula: 

( 1.5) í<(w)(o:) = w(i<• (o:)) + Gl8M(w)(a ), 

where Gl8M(w) E (Clf (F' ))' is the distribution supported on oM identi­
fied by the w and the Green operator of "· F'urthermore, if r = 1 above 
equation can be written as fol/ows: ;;(w)(o:) = w(1<"(a))+0'1 (1<)l8M(w)(o:), 
where Ü1(1<)j8M(w) is the distribution supported on oM identified by the 

s,ymbol u 1 (1<) of " · 
4) As particular cases we have: 
(a) For tl1e Green kernel IG of " we have, ¡IG E (C/f (E'))', 'lj E c = (F). 
Thus we get. 

( l.6) ;;(¡ IG)(o:) = ¡IG(K." (a)) + Gl8M(¡IG)(o:) , a E Clf (F'). 

If r = l one can also write: 

( l.7) í<(¡IG)(o:) = ¡IG(1<"(0:)) + O'il8M(¡IG )(a) , a E C0 (F' ). 
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(b} If tbe Green kernel <G is sucJi that it can be identified with a section 

GE C 00 (E0F}, then we can write: 

(1.) f <"(¡G},a>= f <¡G,,." (a)>+ ( G(¡G ®a). 
JM JM Í aA'f 

1f r = 1 nre can also write: 

( 1.9} f <"(¡G},a>= f <¡G,,." (a)>+ ( < u,(1<}(¡G) ,a>. 
JA! ÍM 181'..r 

Furthermore the Green kernel satisfies the following equivalent eq uat;ions: 

(a) 'ii(¡<G) = ¡111!, \ff E C""(F} 

(b) ¡<G(10°(a)) +GlaM(¡<G}(a) = ( < f ,a >, \ff E C""(F },a E C(í'(F') JM 
(e) If <Gis identified by a section GE C""(E0 F) the above equations 

become: o,(¡G) = ¡ 111!, \f f E coc (F) 

( <¡G,,.'(a)>+ ( <GlaM(¡G),a >= ( < f,a > . & kM & 
If r = 1 we can also write 

(a) 'ii(¡G)= ¡lll!,\ff EC""(F ); 

(b} ¡<G(i<' (a))+ '71 (i<)laM(¡<G}(a) = L < f , a>, \ff E C""(F} , <>E Cg'(F'); 

(e) If <G is identified by a section GE C""(E0F) the above equations 

become: 1'(¡G) = ¡ 111! , \/ J E C"" (F); 

( < 1G,i<' (a) > + ( < u1(1<}(¡G},a >= ( < f ,a >. 
j M laM Í M 

PROOF OF LEMMA 1.3 - l } In fact, one has the canonical isomorphism: 

So, for r = 1 we get 
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H=(Etj9F';A?._1M) ~E" t¡y(F')' t¡yA?,_1M2': E'tf9A?._ 1Mtj9(F')". 

2) If "•·: C00(E)--+ C00 (F), "'·: C00{F')--+ C00(E') are two differential 
operators of the first arder, such that the symbols cr,.(1t1) and cr.>.(1<2), 
far any differential 1-form ), E D1(M) are skew-symmetric: "" "(1<1 ) + 
cr;("2) =O, then the operator 'Y(1<1,"2): C00 (Etj9F')--+ nn(M), given 
by'Y("1,1<2)(u@v) =< 1<1(u),v > - < u, 1<2(v) > isadifferentialoperator 
of the first order. The symbol of this operator determines the morphism 

w: C00(Etj9F')--+ nn-1(M) such that cr,.(1'("' ' " 2 ))(u ® v) = >, Aw(u ® 
v). Thus, the operators ')'(1<1, "') and w have the same symbol, and, 
hence, differ by an opera.ter of zero arder. By substituting , if necessary1 

the operator "' with 1<2 + "'" where 1<,' E Hom(C00(F'), C00(E')), we 
get far each operator 1<1 E Diffi (C00(E) ,C00(F)), the operator 1<1" E 

Dij¡. (C00(F'), C00(E')), that is the adjoint of the operator 1<1 far which 

"1("' ' "1 ' ) = dw. Thus w = G. 
3) One has the fallowing Green formula: < 1<(e), et > - < e, 1<"(ct) >= 
dG(e @ a), 'le E C00 (E), et E Clf(F' ). Then, taking into account the 

canonical immersion j : C""(E) --+ (Cif(E'))', we get: 

j¡,(j(e),a) = f < 1t(e),a >= ( <e, 1t"(ct) > + ( dG(e 0 et) 
JM JM )M 

= j(e)(1t"(ct)) + r G(e @ct) = j(e)(1< 0 (a)) + GlaM(w)(cr) laM 
where GlaM(e) E (C15"(F'))' is the distribution with support on oM, iden­

tified by e, i.e., GiaM(e)(cr) = ÍaM G(e@a). Then, we ge\: j¡,(j(e))(a) = 

j(e)(i<' (a)) + GlaM(e)(a). On the other hand, as C00 (E) is dense in 

(CO'(E'))', far any w E (Cif(E'))' we can write 

j¡,(w)(a) = j¡,(¿j(e,))(a) = ¿ r < 1<(e,), ª > 
s s JM 

=L f <e,,1<"(ct)>+L f dG(e, ®a) 
s jM s jM 

= Lj(e,)(1<"(a)) + L f G(e, @a). 
s 9 laM 
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T hus, we havew(1<• (<>)) + GlaM(w)(a) = j(I:;, e, )(i<" (<>))+ I:;, Gi aM(e, ) (<>). 

4) The proof follows from above results. O 

ow, from our assumptions on R and using results givcn in ref.¡5], we 

get t hat we can associate to R a d istribut ion F[R] E (CIJ" (E'))', t hat 

is a distr ibutive solution of Er iff R is a multivalued solution of Er C 
JV'(E) e J;,(E). Moreover, from a bove lemmas, we get that the relat ion 

between t he Green k'.::nel of " a_i:d F[R] is the following: (• ): F[R] = ¡<G+ 

wo , where wo E Sol(Er ), with Er the linear equation associated to Er 7 

F\Jrt hermore, if aR = R1 LJ R,, with R1 E [R2]E, E O:f:_ 1 , t hen we say thal 

F[R] satis fies t he bounclary concli t ions R1 U R2 C E,. lf R' E flc(R1 , R2 ) 
is anothcr solution of E'" that sat isfies the s~e boundary conditions than 

R, t hen F[R'] = ¡<G + w0, where w0 E Sol( E,). Let us denote by [F[RIJ 
the element belonging to t he space [Sol(K )J corresponding to F [R] by 

means of the fo llowing commutat ive diagram: 

o - Sol( E,) (CQ"( E '))' 

! ! • 
o - ¡sol(E, )I (CQ"( E '))' / Sol( E ,) 

! ! 

Then , lhe equivalence class [F[R]] of F[R] in t he space [Sol(E,)] is iden­

t ifiecl by a unique distribution: ¡ <G. This proves t hat ¡<G is an invarianl 

of t he classic-limit statistical set flc(Ri, R,). O 

COROLLA RY 1.1.. GENERALI ZED GREEN KERNELS AND SOLU­

T !O S OF AFFINE PDEs. A ny solut ion R of an afline PDE E, = 
ker¡ 1< e JV' (E) e J~'(E) tliat satis/ies t/ie bowidary conditions aR = 

R1 (J R2, where R1 and R2 are s uch that: (i) 7Tr,oln R - E is a 
proper application; (ii ) w,(•·> (R) = O; idcntifies a distributive kernel:(• ): 

f[Rj = F[ R]® f E (CIJ" (E' 0F'))', given by F[Rj(a ®</>) = F [RJ (<>) fM < 

i E .. is t.he dist.ributional cquntion associatcd to E .. . 
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q,, f >. Define IF[R] the ge neralized Green kernel of the singular solu­

lion R C E. that satisfies the boundaiy conditions 8 R = R, Ú R ,. The 

relation between IF[R] and the Green ~rnel<G o[" is given by thefo/lowi11g 

formula: F[R] = ¡G[R] 0 f modSol(Er) 0 f. 
PROOF. ll is a dircct consequence of Theorem 1.1. O 

THEOREM 1.2 - GREEN KERNELS A D PROPAGATORS F'OR NON­

LINEA R PDEs. 1) Let E,. = kerx" e JV•(W) bea PDEgiven as a kernel 

o[• differcnlial operalor of order 1·: ": JV• (\1' ) --+ !(, with respcct to a 

seclion ex-: y: Nf -+ I< of the fiber bw1dle !!: : J< --+ J\!I. Then, far a.ny 

Si'i'tio11 s E C"'(W ), sohition of E., and j[y) = 8\, where :¡; is a c/cforma­

tiou of \ , we can associate to Er aJJ <lfline equation E,.[s) = keI°Jlxl J[s] C 
JV'(s•vTW), where J[s): C 00 (s •vTW )--+ C"'(x.• vTI<) is the linearized 

of " at the section s. Define Er[s) J acobi equa tion o[ E,. at the solution 

~. Furthcrmorc1 define G reen kerne ls , (resp. propagator), G[s] of Er, 
at tbe section s, t:/Je Green kernels, (resp. propagat.or) of E,.[s]. 

2) Assumc that E. = ker¡" e JV•(w ) is a PDE as given in the above 

point (!). T lien, the Green kernels (resp. propagator),'G[s) ideJJtifies ru1 

integral maJJifold (integral bordism) R E rlo{R 1 , R 2)[s), i.e., belonging 

to the classic limit of a statistica / set of Er[s), if G[s) satisfies to the 

bou11dary condition 8R = R 1 LJ R2 e E .[s). 

3) Let R, and R2 be two admissible integral compact closed manifolds of 

climension (n - 1) conta.ined in to Er sucb that the following conditions are 
satisfied:8 (i) R 1 E [R2)E, E n~:. 1 ; (ii) There exists a vector fiber buJJdle 

ucighborliood E.[s) e E,. sucl1 that R, , R2 e E.[s] . T hen the equiva /ence 

dass [G[slJ, identified by tlie Green kernels, (resp . propagator), G[s) , is 

irll'ariant far rlo(R1, R2)[s), i.e., the set of solutions V of E,. with av = 

R1 U R2 81ld sucl1 that V e Er[s]. 

4) f\m/Jermore, if Er is a formal/y integrable PDE and r!c(R1, R,) is 
restricted to the regular solutions o[ Er C J~ (iV), thcn G[s) is an invariant 

offlo(Ri. R2). 

8 The sdmissibility is in thc sc11sc of defi nition given in ref. /12). 
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PROOF. For t he ful\ proof of 1) and 2) see reí.pJ. Here, !et us emphasize 
only that Er[s] is an affine equation, t hat is an affine bund le over M, with 
associated vector bundle the linearized equation of Er at. s: (DrsVvTEr e 
(Drs) ' vT JV'.(W):. JV'(s ' vTW). Therefore, with respect to a solution 
of E r [s], one has the identification of Er[s] with (Drs)' vTEr = Er[s] , 
hence one has the identification of Er{s] with a submanifold of Er· 

3) It is a direct consequence of above two points and taking int.o account 

Lemma 1.3. 

4) In fact , one has t he followingshort exact sequence: O~ 0 , (R1, Rz)[sJ ~ 
f2c( R1 , R2) . Moreover , if Er is formally integrable, tak ing into account of 

Theorem 4.5 in ref.[12J t hat relates bordism to formal integrabi li ty, we get 
also t he following short exact sequence: O,{R1 , R2) ~ O, (R1 ,R2)[sJ ~O. 
Hence, from the above point, it follows that we can characteri ze flc{R1, R2 ) 

also by means of the Green kernel, (resp. propagator) , G[s]. O 

2 - GENERALIZED KLEIN-GORDON EQUATION 

In this and in t he fo llowing sections we shall apply the results of section 

1 to obta in t he canonical quantizations of field equations t hat describe 
particle physics. In particular, in this section we shall consider scalar 

fields. In order to include in our formulation also scalar massive neutrinos 

we will introduce a generalized Klein-Gordon equation on an hyperbolic 
space-time and, after studied its geornetrical structw·e, we will obtain the 
canonical quantization of the equation following the general geometric 
method of quantization of PDEs introduced by us in [5-7J. Finally we 
prove that om geometric approach to the canonical quantization of such 
a generalized Klein-Gordon equation preserves the microscopic causality 
even if particles are massive neutrinos. 

Let /\1 be a space-time as considered in the Appendix A l. The genera­
lized Klein-Gordon equation is the submanifold (GI<G)x e JV 2 (E'), 

" : E' = M X e ~ M' obtained as the kernel of the following fib er bundle 
morphism: K.x = (O+ x) : JV2(E' ) ~E', where O is t he d'Alembert ian 
for scala.r fields with respect to the metric g on M 1 X ;; f,R + X1 with 
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( E R , R is the Ricci scalar curvat ure and j( E R , (square of m ass).9 In 

aclapted coord inates (GI<G)x can be locally written as follows: 

(2. 1) 

wherc (xº,z,z0 ,Za(J ) are coordinates on JV2(E:C) induced by fibered co­
orclinates (xº, z) on ,,. E c _, M . Furthermore, rí],: U e J\lf _, R 
denole the connection coefficients induccd by the metric g. Note that 

cquation (2.1) is equivalent to the product two times of a same equation: 

(G l<G), 9!! (GJ<G):i" X (GI<G):i" e JV2 (E) X JV2 (E) 9!! JV2 (Ec ), where 

E = Al X R _, M , (E C is just t he complexification of E: E c = e ®R E), 

ancl (Gl<G)~ = ker(K:i") e JV2 (E), with K~ =(O+ x) : JV2 (E) _,E. 
Thus in arder to d iscuss t he equat ion (GI<G)x it is enough to consider 

(CKG)~ e JV2(E) , that , in real coord inates (xº, y , y0 , y0 p) on JV2(E) , 

looks likc p R = g•Pyop - rí),9 'PYo + XY = 0. 
RE~IARK 2.1 - As K:i" is an epimorhism of constant rank 5, it follows 

that (GKG):i" is a vector subbundle of JV2 (E) of dimension 19 - 1 = 18. 

THEORE~l 2.1 - The Cartan distribution IE2 of JV2 (E) 9!! M x R x R 4 x 
R'° 9!! M X R 15, is a distribution o f dim ension 14: IE2 e T J V 2 (E). The 

Car tan distribution of ( G I< G):i" is a s ub-dis t ribution IE2 ( G J( G):i" of IE2 of 

dimension 13 generated by the vector fields ( = X º (é1x0 + y0 8 y + y0 p8yP) 

+Y0 p8y0 P on J V 2 (E) s ucl1 that: xw [g'.:J'yop - {fíJ,,wg'P + rµ,g;yJ)y0 ] + 
x(y0 X º) - ríj,g' P(y0 ; X 6) + gºPY0 p = O. Then the solu tions of (GI<G):i" 
are <&-dimensional integral manifolds of JE, ( G I< G):i" that, except for a sub­

sct of dimension lower tllan 4, are d iffeomorphic projected on 4-dimensional 

9 The numerical factor { has two values of particular interest: the so-called minimally 

complet case, {= O, and the con formally comple te case, { = A· In this latter case, if 

m-=O the field equation [D+~] lf>,,.0 =0 for free pion 11"t is conforma! invariant . Note that 

the parameter x can be, in general, considered n costant-coupling of self-interaction. In 

the particular case of brndions and luxons, is x;::o. In the case of massive neutrinos, 

instead, onc has X<O. We call the numerical factor x the geom e tric m ass of thc ficld. 

Wc can ha\-c x ~ o. 
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submanifolds of E. As each (GJ<G)~ is an involut ive formal/y inte­
grable, completely integra.ble PDE, it fo llows tl18t in the neighbourhood 

o[ ead1 point of (GI<G)~ we can bui/d a regular solu l ion, i.e. , a loca/ 4-
dimensional integral s ubmanifold, diffeomorphic to an open set of NI , by 

means of t he projection 7r2 : JV2 (E) ---> M. 

PRO O F. The proof is di rect ly obtained by appling general mcthods of the 

geomctric theory of PDEs [5,8 ,12]. O 
T I-IEOREM 2.2 - (CAUCHY PROBLEM FOR (GI<G)~ WITH T HE 

METHOD OF CHARACTERISTICS). 1) For tlw cq uation (GI<G)~ we 
can salve the Cauchy problem by means of drnracteristics. 

2) Let ( be a vector lield on (GI<G)~ that represents a.n infini tesimal 

symmetry of this eq uation. If N e (GKG)¡'- is a CaucJ1y hypers urface 

trasnversal to(, tlien Y = U tEJ rp,(N), arp =(,is a solu tion of(GKG)~ , 

far a suitable neighborhood J of O E R. 

PROOF. 1) Lct us rewrite t he equation (GI<G)~ in ort hogonal coordi­

nates: F = uoo - Uxx - Uyy - U::XU = O. Th.erefore, dim(CI<G)~l :::;; 

dim JV2 (E) - l = 19 - 1 = 18. A characteristic vector field of (GKG)~ 
is a vector field 

( = X º ( 8xa + "ºº" + u0 pauP + u0 p,auP' ) 

where Xª are funct ions defined by the following equations: 

{ 
Yoo - Yu -Y,,-Y,,=O } 

0=( J6(9):(j ~ Y00 (dxº®dx•+.txº ®dxº ) 

and the other coordinates functions in the expression of ( are constrained 

to satisfy the first prolongation of (GI<G)~: 

((GJ<G)~)+ ¡ : { uoo.-u,,.-u,,0 -u,,.+xu.=O } -

1100 - u11 - U'l'l-U33+xu=O 

Then we can see that a characteristic strip can be the following: X 1 

X 2 = X 3 = O, Xº ,¡, O. In other words: 

(2.2) 
(=Xº(8:ro+ uo8u+(u11 + «'l'l+«33 - xu)8u0+1101r8u1r +(u 11., +u'l'l., +u3h-xu., )8u0 ., + 

Uo;i.:.,811~.,1. 
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On can also directly see that ( is tangent to ( G I< G)~ and it belongs 
to the Cartan distribution!! Furthermore, we can see also that ( can be 

considered the characteristic distribution for the following subequation 

(62) e (GI<G)~: 

{ 
uoo-(u,,+un+u,,)+xu=O} 

(E2) e (GI<G)~: u,.+un+u,,=o . 

1tat:1=0, o#/J. 

For any Cauchy data N of (E2), trans versal to (, given by (2.2) we can 
general a 4-dimensional integral manifold of (E:2) that is contained into 

(Gl\G)~, hence it is a solution of (GKG)~. In par t icular if N = D 2s(N0 ) , 

wherc 'o e M is a space-like submanifold of M, and s is a solution 
of (Gl<G)~, t hen Y ; Uien rp, (N) is a regular solution of (GI<G)~ e 
JV2(E), where rf; is the Aow generated by ( on (GI<G)~. 
2) Thi a direct application of a general property of PDEs. (See e.g. 
rcrs.¡s , ,12].) Furthermore, by using the same calculations given in ref.14] 
to obtain the infinitesimal symmet ry a lgebra for the l<Iein-Gordon equa­
tion, we can see that also for the generalized Klein-Gordon equat ion the 

infinitesimal symmetry a lgebra s((GKG)~) of (GI<G)~ is generated by 
the second order holonomic prolongation of the following vector fields 

(: X º/)x. + f y/}y: El u - T(Elu ) , where Xº and f are local numerical 
functions on M solutions of the following linear PDE: ¡ 0/-lrt¡tr (Ccg)=O ) 

-(8z.,8ru X"")g"' fJ - (fJx0 X..,)h" - X º (8x., h"' )+2/h'"'+2(8x., 1)9""" -+ ~ 

u (C(g)=O 

(:X º8z 0 UC /11 - TM, lt'"' =: fij"rg..,.,a U C Af - R 

o 
By using the geometric approach to quantize P O Es, formulatcd by A.Prástaro 

in rcfs.lá- L we can prove the following important Lheorem. 
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THEORE~I 2.3 - (CANONICAL QUANT!ZATION OF (GKGJx). Let us 
assume that tlle spa.ce-time is a globally hyperbolic 4-dimcnsiona/ mani­

fold. 1) The PDE (GKG):( admits the fo//owing canon ical quantization 

far real scaJM fields : (••): [s(x),s(x')] = iTiG(x;x'I\') 1 , where 1 =id-¡.¡, 

for sorne s ui ta ble locally convex vector space rt. The propagator G is the 

Green kernel solution of tlw following Cauchy prob/em: 10 

( 2.3 ) \ 

(O,.+x)Glx;x 'lx) ~O l 
G'(x;x'lx),,o =,,'º = O · 

( 8x~.G) (x;x' lx)l ,,o="' 'º =-6(x;x' ) \ro=:i:'º 

One has the following equa.l time comrnutator: 

(2 .4 ) 

2) Tlie PDE (GKG)x admits the fo//owing canonical qua.ntization of the 

complex sea/ar Relds .'i = s1+is2: 

\S;(:z:),SJ(:r' )J=i1ió;);(x;x'lx) 1, i,j=l,2; ==> {S;(x),§j(:r')J=-iñ6;;6(x;:z:')l .o=z'º 1 , i,j = l ,2 . 

Furtllermore, we get also for the full complex .field s=s 1 +is2 and its e.e . 

.i=s 1 - u2 the following commutation relations: 

{ 
¡;(x),;(x')J~ [i(x),J("'ll~O } => 

¡.;(:i:) ,7(:z')J=2i nG( :z: ;::r:'\x} 1 

{ 
[;(x),l("')l=!i(x);¡(x')[=O } 

{S(x ),'°i'(x')Jl..,o=,.'º=-2 i1i6{x;x')\.,o..,z•O 1 . 

3) The microscopic causality is conserved also for sea/ar massive neutrinos 

(takions) having a geometric mass x"' ~R + x < O. 
PROOF. 1) The set of physical observables delined on the classic limi t 

D.((GI<G):()c of the quantum situs D.(G KG):( of (GI<G):( has a natural 

lO Note t.hat. t.he second condit.ion in (2 .3) implies that. wc cx\cude insta.ntaneous 

propagations, so to conserve the usual microscopic causalit.y. (See a\so Appendix A 1.) 
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structure oí Líe algebra. More precisely a function f E ~ R iden­

tifics a physical observable cha racterized by a íunction A C00 (E) ~ 
C (1H1 R } - R , where the last composition is obtained by means of some 
measure on M. To A we can associate a current j A : C00 (E) ~ C00(E), 

j A( ) = vd os, where vd is the vertical different ial. H B : C00(E) ~ R 

is another physical observa.ble, we can consider the corresponding current 
;D calculated in corrcpondence oí a solut ion of (CKG)11 for any vector 

fielcl V E T,C (E) belonging to t he set of solutions oí thc J acobi equatiou 

of (GI<G)~ : J[s].11 = - j A(s). Then we define the following bracket 

wherc G± E C8"(E 0 E)')' are the two Green kernels oí J[s) such that 

0c+ has support in l:he íuture oí supp(</J) and Qc- has support in t he 

pnst of supp(</J). So (J[s) ® l )G± = (! ® J[s))G± = ll) , where ll) is t he 

DirllC kernel oí J[s). 11 One can see that above bracket (2.5) satisfies 

lhc conditions for a Líe algebra, that we denote by P(GI<G):¿-. Then, 

lhe canonical quantization is obtained by means oí the íollowing bracket: 

[A, Bl(s) = i h.G(jA(s) ® jB(s) ® r¡) 1 with r¡ the canonical volume form on 

M and 1 = id.,,(,¡, with 'lt(s) a suitable locally convex topological vector 

spacc associated to the section s. The corresponding expectation value for 

11 The Green kernel G(x;x'lx) of the genera.lized Klein-Gordon equa.tion is a solu­

tion oí the following equntion (02', +x)G(.:z:;:¡;' lx)= 6(z,r'). In a geodesically convcx do­

mNn, thcre cxist two fundamental solutions e+ nnd e- which vanis h outsidc thc fu­

turc cone e: and outsidc thc pa.st cone e; respcclively. Thcn, thc propagntor is g iven 

by C(.r;.i:'lx)= G+(.i:';xl;d- G- (x';xlx ). G(x;:r'Jx), c +(.i:;:r'lx), c - (x;:r'(x) are real and 

c•(.r;.r'l~)=G- (.z:';xlx) . IL follows that G(x;x'lx)=-G(z';:i:lx). The solution of (2.3) , in 

the Mmkowsky space-Lime, is the following far x ;éO, C,.,.'b. l=~ (&r. Jo C" C :icl~lJ 

H(1+ .. >- Jh: 1a .. Jol"l"l~)JH( r- I) and far x=O, G'{:r ;:i:'lx)=-~ló{r-t)-ó(r+t)J, 

with r=:lx'-x j, r::x'0 -:r0 , l o the rcgulnr Bessel funct.ion and H(O i::i the Heaviside func­

tion (Hcre wc use the notation (z")= (xº ,x )= (:i:0 ,:r 1,z1 ,x3 ).) Furthcrrnore, o(x)= + I if 

\ >O and a(x)=-1 if x<O. 
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any q, E 'H(s ), q,' E 'H(s) is as follow : < 4i' llA , B}(s)l4' >= ihG(jA(s) ® 
j B (s) ® 17) < 4''14' >.12 In particula r, far observables identified by means 
of scalar fields, and the measure on Al taken as t hc Dirac rneasure at 

some event p E NI , where NI is splited in time and space with respcct to 
some relativistic frame, we get a quantum algebra that interpretates the 

canonical quantization of (CI<C)~ . The solut ion of (2.3) can be finded 
similarly to wath made far the usual Kle in-Gordon equat ion. Furthermore, 

the derivat ive with respect to x10 of {••) , taking x'º = xº , and consiclering 

equations (2. 3), gives us the following commutator \s(x), .i (x)Jl,o=,'º = 

ilí ( ax0.G(x; x' lx) ) lxº=•'º 1 = -iM (x; x')lxº=x'º i. 

2) It is a direct consequence of t he fact that {CKC), e.< (CKC)~ x 

(GJ<G)~ 
3) Even if t he geometric mass x is negative, t he generalized l<lein-Gordon 
operator O + x remains of hyperbolic type1 so it admits a propagator 

G(x,r'I \ ) with suppor t in E-(x' ) U [ +(x'), Vx' E M . Thcreforc , the 

quantum commutator \s(x), s(x'll = i hG(x, x'l \ l respccts the microscopic 
causali ty. O 
T HEOREM 2.4 - (PROPAGAT OR AN D TUNNEL EFFECTS IN 

(GKG)~). 1) Thc integral bordism group O~G J<G)~' oí the gcncralized 

Klein-Gordon equation is tri vial: n~GffG): = O. Therefore are admmissi· 

ble tunnel effect;s1 i. e. 1 solu tions wi th change of sectional topology. 

2) Jf the scalar fi eld is in interaction with somc other fi cld such that it 

produces a current f E C00 (E), i. e. , the PDE considered is the fo/Jowing 
affine PDE 

¡(GI<G)~ C J'D2(E) : {gªPYaP - fí),g'P y,, + XY = !) · 
12 The choice of the quantum commutator allows us also to recognize quantum spectral 

measures E :( f!((G K G)!:'° )., ,E )o---+C('H.) associnted to a random function / : íl ((G l<G)~)c­

R . 11. tore precisely, if a scalar measure µ is recognized on O ((GKG) ~'" ).,, one has < 

4¡)'1 E {X }l4>>= fx Í .;,,4' 1d¡1 , for nny X e r: :=Borel o·algebra of O(( G J< G) ~'- )., , whcrc 

f:fl:((G KG )~ ).,-- .C( 1i) is the mnp associnted to the canonical qunntization off . j is 

determincd by meuns of its spect rn l mensure on R. (Scc a.Isa rcfs .[5, ].) 



Integral Bordism and Green I<ernels in PDEs 335 

We can associat.e a generalizecl propagator to any sing ular solution V of 

¡(GKG)::-. (tlwt realizes a twrnel effect, if 8V = N 1 LJ N,, wi t l1 rr,,(N1) # 
7l'r1( 2), for sornen~ O, n E N , where rr11 (-) are the Hurewitz homotopy 

group-functors). 

PROOF. ! ) The proof can be directly obtained appling sorne general t heo­

rems given by A.Prástaro in order to calculate integral bordism groups in 

PDEo 1 12J. and taking into account t hat ¡ (GI<G):;- is a conic equation 

with trivial cohomoly: H ' ((GI<G):;- ) = O, Vs # O, Hº((GJ<GR)x) = R. 

2) lt is a direct consequence of point (! ) and Theorem 1.1. More pre­

cisely, if V is the integral manifold (quantum cobord) cobording two 

:!-dimensional aclmissible integral mani íolds No and N1 contained into 

¡ (Gl\G)::- , such tlu\l the mapping rr2 lv : V - M is a proper application 

and w\2 )(V) = O, whcre w\2l(V) is t he characteristic of Stiefel-Whit ney oí 

\', thcn thc propagator (generalized Green kernel) G[V] between No and 

N, 1s identificd wit h the following kernel G[V] E (Ci\"'(E' 0 E')', given 

byC(Vj(o ® ,P) = F[VJ(a)j~1 < ,P, f >. where E' = E'0A~M. and 
F(VJ E G0 (E' ) is the distribution associated to \/ . l3 O 

3 - GENERALIZED DIRAC EQUATION 

Here \\-"e want to formulate a generalized Dirac equation in arder to in­
clude also íermionic massive neut rinos-takions. Let (M , g) be as before 

a 4-dimensional space-time and !et " E - M be a vector bundle 

over Al identified with the complexificated Clifford bundle over M : E = 
U,..., Ep, Ep = ffi,>o Tó(C 0R TpM)/ [ P• where 11, is the subspace of 
EB.,0 Tó(C ®R TvM) generated by elemcnts of t he type v ®v- g' (v, v)l , 
wh.;;., l is the unity of R and g' the scalar product on C 0R TvM defined 

byg'(z1 ® v1,z2 ® v2) = z1z, ® g(v.,v2 ). Then, each fiber E,, becomes a 

13 Thc physical intepretation far the generalized propagator G[VJ, fJV = No (J N1, is 

that it reprcscnt.s thc amplitudc probability < NolN1 > for the transition from an extendon 

No to anothcr N1. (Compare, c.g. 1 with thc cxposition of cxtcndons g ivcn in ref. [15].) 

More precl.tely < NolN1 >=G[V](o ®.P), where o and it> represent the physicnl statcs o f No 

and N1 rcspectivcly. 
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complexificated Cl ifford algebra, hence it is ¡>ossible to define a product 

(Clifford product) on E,,. 
THEORE~ l 3.1 - 1) T /Je Levi-Civila connection on M Jihs on E. 
2) The Clifford con nection is flat iff the space-time manifold M is f/at. 

Tliis is equiva /ent to say that C1 is complete/y integrable iff (M, g) is Hat. 

PROOF. 1) Let us recall that t.he Clifford connection is a first order PDE 

on the fiber bund le n E --> M, C, C JV(E), identified by a section 

l : E--> JV(E) of n 1,o : JV( E) --> E, such t hat t he follow ing diagram is 
e 
commutat.ive: 

JVb) 

e, 

JV(E) 

T JV(o ) 

(LC ), C JV(TM) 

e, e 

(LC), 

E 

E 

T 1' 
TJW 

TM 

M 

M 

where (LC) 1 is the canonical connection on TM identifiecl by means of 

the metric g. Furthermore, ¡ is the canonical monomorphism of vector 

bundles over M given by compos it ion: TM __, TM ® C __, E. lf {xº} 
is a coordinate system on M and 8x0 is the natural basis induced on 
the tangent bundle, the monomorphism ¡ ind uces a set of sections of E 

denoted by l'o = -y(ilx0 ). Set l'o, ... o, = l'o, .. · l'o, · We get t he fo llowi ng 
relation 

"fop-r···"Yo µ - 1 ' 

The set {1 1 "'fa 1 ... a" }o::;a 1 < ... <o,,$3, 1$p$4 is a local basis for sections of 7r: 

E--> M. Hence, if 1jJ : M--> E is such a (local) section, we get the fo llowing 

local representation in the natural basis induced by the coordinate system 

{xº) on M: 

1" =<PI + 1V'"to + · · · + Lo50 1< ... <o ,,:5J 1/Jº 1· -º"1'0 1. ·ºp + · · · + 1P0 1231'0123 

= 1/J Bl'B 
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where (;a)= (l,'Ycn· ·1'Ycn ... ap1 ··· 11'0123), O :S 0'1 < 0'2 < ··· < O'p :5 3. 
(.pB) = (!/>, 1/1°, ... , ,µ0123) are C-valued local functions on M. Therefore 

dime Ep = 16, where Ep is the fiber of E over v E M. As a conse­
quence we get the following induced fibered system of coorclinates on E : 

(xª 1 z1 z8 } = {xª, zi zª 1 . z01 · ··0 P 1 ... ,z0123}, where xª are R-valued 
and the other ones are C-valued. If we denote by { xº, :i;º} thc induced 
fibered coordinates system on TNI, we get that the monomorphism 'Y can 

be locally written as follows: 

z º"! =0 

z01 "'0 P O "f = Ü 

zo t2J o f =0 

Then, denoting by { xº, :i;º, :i:íJ } the induced coord inates on J'D(T M) and 
by {xº , z, z8 , z~, zff) the induced coordinates on J'D(E), we obtain the 
following local expression of J'D('y ). 

xº o J'D('y) =xº 

z o J'D('y) =0 

zº o J'D('y) =xº 

,0123 o J'D('y) =O 

Furthermore, the Levi-Civita connection can be written as follows: 

(LC), e J'D(TM): {xp + :PfíJ,= O} 
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where r~,= g06 (,8')', óJ = 49°6((8x,.g136) + (8x13.g,6) - (8T6-Y>f3)1 are local 
numerical functions on M rcpresenting thc usual Levi-Civit.a conncction 

symbols. Thcn, the incluced Clifford connection C 1 e JV(E}, is locally 

written as fo llows: 

e, e JV(E): 

where r i'A : - (z f' O l) O /'A : - l i' O /'A : - l i'A are t he COllllCCtiOn 
e e e e 

coefficients given as R -valued local fun ctions on Al. Then, thc absolute 

clifferential 'il i/J = [ oD,P: M--> JV(E)--> T " Al ® E of asection 1/J: M ~ 
e e 

E, locally written 1/J = 4>1+1/1°')'0 + ... +1/Jª' .. o''l'o, ... a, + ... + 1/Jº 123'l'0123 = 
i,; 8 ')'8 , has t he following local expression: 

(3. 1) 

By using results on the curvature of PDEs , (see ref.[121) , wc can state that 

the curvature R of the Clifford connection can be iclent ified with a sect ion 
e 

!} : Al ~ J\~M ® E locally written as follows: 

( 
R = L Ro13 8 .Adxº/\dx13 ®')'B ®'l'A ) 
e o::;o,.8:53,A,B e 

Ro13 8 A= (8x.,.r3A)-(8x13.[:A)+ r:orfA - r&oí:?A-
C e e ce ce 

Here f}o13ª.A are R-valued local functions on A! . 14 Now thc curvaturc of 

a connection is zero iff the equat ion representing t.he conncction is com­

plet.ely integrable. On the other hand we can easily compute §ap8 . A and 

14 IL is easy LO provc the following formula for any section V•=iPº-.,0 : <R,l/1>= llo1Jª 
e e 

oi.•ºd.zºAd.z:fJ®-ru with /l.,. 1J 8 . oiPº-ru =(V.,.Va - V nV0 )(1''º-Yo) t.hnt. relates Lhe curva.. 
e e e e e 

turc of the Clifford conncct.ion to thc Clifford c:ovariant d rh'llti ve. 
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wc g t the following formula: 

R 8 e =: Ro1:/1•· •6;' ."f1 •.• 1,, = R!p."f 1 ó~~ ::~ + ... + Raµ61' .,.,,6~: :::*;,: ~. 
C 0 iJ C 

Thorcfore, @0 p 8 .c = O iff the Levi-Civita curvature R0 p6 ., = O. Thus 

thr theorcm is provee!. O 
Tl!E RE~l 3.2 - 1) Let. M be a space-time sud1 tlw1 onc lws thc following 
1:;omorphism: E ~ s· ®e S1 for a suitable , .. eccor bundle S --+ /VI. 15 1'hcn 

thf.' Clilford connection induces the following linear connection on S: 

{ u> + r :y' = o } 
Cf e JV(S): 5" f,\;=c- 1;!D>.b . 

s 

(3.2) 

llerc r ,,; aJC C-valttcd local fünctions Oll Al and 
s 

(3.3) 

{e::: 46~0 - 'Yo~'Yº¡ E L(f\11(4; C)) } 

D,,o = W'YP~'Y•l - (ox,,.-ya:'hº• E Af{4; C ), 't>. = O, 1, 2,3. 

2) One has the following consistency condition between Levi-Civita con­

nection and "ro-matrices: 

{3.4 ) 2f~p 1 = (8x,,.-y0 )'Yª + -yº(8x,,.-y0 ) E M{4; C). 

3) A/oroover by using equation {3.4) we can also write: 

(3.5) 1 p; 1" = ;¡f,, 'YP'Y6 E M {4; C ). 

l$ h is 1•t'Cll known [3J thnt if M is endowcd with an aJmo.on complex structure J such 

~hat 1 ts Ucnnitian, (this appcns e.g. if M is an almost Hermitia11 manifold oran almost 

Kihlttlan mMiíold), and such dmt it admits a. Sp1nc·st ructurc (i.c., thc sccond Sticfel­

\\'tu'~· clMS w2EH 2(M;Z2) is zcro), thcn the bundle E is canonically isomorphic to 

Homo(S,S)~S"®cS, whcre S=. /\E1 , with E1= ker (1o.1- 1dE), whcrc'"" is thc involuLio u 

C&nonaUy mduood by J. One has dime 5 = 22 = 4. S- M is called the spinors bundle . 

The teruons of S ovcr M rcprescnt spinor fie lds with spin a= t . 
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PROOF. Under our hypotheses t here is a unique first order J_i near con nec­
t ion on S, cf e J'D(S), Sl'1Ch that the following diagram is commutative: 

E ~ s·®s "' 
l'I 

í ® í 

s ·0s 
l ;¡ 

s· xS 

r x r 

s· xs 

Cf "®Cf 
n 

JV(S. ® S) 

f JV(•) 

JV(S. )x JV(S) 

u 
C1 " xCf 

9' e, 
n 

- JV(E) 

In arder to give a loca1l representation of t he isomorphism C1 ~ Cf" ®Cf, 
!et us first lornlly ch&racterize the isomorphism j : C 9< L (S) 9< s· 181 S. 

We get j(1f; = </Jl + if¡ 8 -y8 ) = </Jj( l ) + <jJ 8 j(w), where j(l) = ids E L(S), 

j('Ys) = J('Ya, ... o, ) =.i b a, ) .. j('Ya,,), wi tb j('Ya) E L(S). Hence if {Yo 181 
yª} 1 $a ,b$-1 is a coordina.te system on s· ® s' we obtain a representation 

of j('Yª), (andas a cüF1sequeace of any operator j('Ys)), as a 4 x 4 matrioc· 

function (yo 181 y" o }('Ya))= ("!0 g) such t hat j('Y0 )(p) E M(4; C) for any 

p E M .16 (For abmse of notation we shall s imply write 'YB = j('Y8 ).) 

T he matrices (18 ¡:), B = o: 1 ... a ·v· O :::; ai :S 3 1 1 :::; a,b:::; 4, a re cal!ed 

Dirac matrices. Far exai1;nple, if NI is the Minkowsky space-time and 

xº is a system of cwrtesia:n coordinates, we can identify an isomorphism 
j: E 9< L(S) such tlo¡¡,t if j('Y0 ) = -y0 g&b 181e0 , where {&º} amd {e0 } a re the 

corresponding local bases on s· and S respectively1 one has the following 

constant matrices for ( 'Yab ): 

( 

l o o 
o l o 

1'o= o o - l 

o o o 
~ ) m = ( ~ :, ! ~) ,-,,= ( ~ ~ ~ ~' ) , 

-1 - 1 o _, o o o 

16 We use smal l greek indexes for space-~ime indexes, (they run from O Lo 3), and small 

ital ic indexes fo r spinor indexes, {~hey run from 1 to 4). 



Integral Bordism and Green l<ernels in PDEs 341 

(: : ~ ~¡ ) 
"

3 1 o o o 
o 1 o o 

Onr usually puts 'Ys::: 'YOt23· If one takes anoter coordinate system Xº the 

e rresponding matrices ('"Y0 b) are related to 'Yob by the following transfor­

mauons: 

pm(l,3). 

Oí coursc (1'ob), are not more, in general , constant matrices. Now, recall 

that a linear conncction on S - M , Cf C JV(S): {y:;+ ÍobYb = O} , 
s 

id ntlfie.i a uniquc linear connedion on thc dual bundle s· --+ ft,I[' such 
that the following diagram is comrnutative: 

cfxcr e JV(S x S º ) 

111 111 
] xl " 

s xs· JV(S)> JV(Sº) 

o l l JV(<.>) 

JV(MxC) JV(AlxC) 

~lore precisely: Cf C JV(S"): {Yko - Í oiY1 =O}. Then we have: 
s 

~>'Yo = f~o ')'¡¡ = f~o ')'¡¡;o• ® er 

= s·~s"'(l'º;o• ®e,.) = (8x;.')'o;W ® e,.+ 10 ; (_i'.;8') ® e,.+ 

l'o;o• ® (~';e,.) 

=(8X.\·f'o:)fr ® Cr - 'Yo: Í11,fl11 ® Cr + i'n:O"' ® f1req 
s s 

= [(ox;')'o;) -l'o ;J~• +l'o~J~.J O' ® e,.. 
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Therefore, we must have 

This relation can be also rewritten in matrix form in the following way: 

(3. 6) 

where "!p(p), (iJx;."fa)(p), r ;(p) E M(4; C), l/p E M. Set "!ª = gªP¡p. 
s 

Then one has "!ª"la = 4 l. (This follows directly by contracting both side 
ofthe relation "10tff3 +'°Y/3/o. = 2ga:f3 1, by gª/3 and taking into account that 
gª"Ya/3 = 4.) From (3.6) we get also the fo!Iowing equations: 

r~a "/p"/ª = (iJx;."fahª + r A"!a"Iª - 'Ya r ;"fª 
s s 

r~a "lª"fp = "lª(iJx;."fa) + "!ª r >'Ya - "!ª'Ya r ;. 
s s 

Therefore, we get also: 

(3.7) 

Oí course the second oí above equations is equivalen! to the first one. 17 By 
addition oí both equations (3. 7) we get equation (3.4). 18 In arder to obtain 

17 Note also that the first term on t he left in above equation can be written as follows: 

f~6 'Y.B'Y6=f~.B 1+ rf61 -r.B1'6· In fact we have: r~6 1'1ns=í~6 ~(/131'6+1'6'Y.B)+ (~6 !h.s-r6-
"Yli"Y13)=9p5 r~6 1+ rf61 1'.o"Y6 

=í~.a i+ r~6 1 1'.o'Y6. 
18 Taking into account that 1'º"Yo = 'Yo'Yº =4 l, we get that the consistency condition 

(3.4) can be also written in the following way: 2f~lll=(8x>. - "Yoh"'-(8x>.·1'ºh .. = 

'Yª (8x;.. ·"Yo )-1'0 (OxA .-yº). 
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the explicit expression for r >. in the general case, let us rewrite equation 
s 

(3.6) asan equation fn M(4; C) in the following way: C~tf >.~ = D.>.¡: , 
s 

V>.= O, 1, 2,3, with D,¡: = r~''YP~'Yób - (&x>. ·'Yo~)'Yº¡ and C = 41 0 1 -

10 07º. So, assuming that the matrix (C;~) E L(M(4; C)), that represents 
a linear application of the 16-dimensional vector space M(4; C), over C , 
is invertible, we get for r the following solution: 

S>. 

(3.8) Í >.: = c- 1:!D>-b· 
s 

Therefore, the general expression of the connection Cf e JV(S), induced 
from the Clilford connection on E , has the local expression given in (3.1 ). 

Now let us prove that we can write r >. in the Lychnerowicz's form (3.5). 
s 

In fact, let us substitute (3.5) in the first equation (3.7). We get: 

(3 9) rP' (a l º rP' 1 rP' º . >. 'YP'Yó = X>.·'Yo 'Y + >. 'YP'Yó - 4'Yo >. 'Yn'Yó'Y · 

On the other hand we can see that 

(3.10) 

Therefore, from (3.9) we get 

(3.11) 

Now, let us substitute (3.5) in the second equation of (3.7). We similarly 
get: 

(3.12) 

Therefore, we see that (3.5) is a solution of both (3.7) iff (3.11) and (3.12) 

are both respected. On the other hand by adding these equations we get 
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(3.4). This proves that conditions (3.11) and {3.12) are not new require­
ments but are automatically satisfied thanks to the consitency condition 

~ · ~· o 
COROLLARY 3.1 - 1) The absolute differential of a controvariant spinor 

field lf;ªea: M~ S, is'V lf;= roDlf; = ('V;lf;)'dx' ®er. wherethespinor-
s s s 

covariant derivative (\7>. 1/Jt is given by 
s 

(3 .13 ) 

2) Th e absolute differential for the cova.riant spinor field <p = 'Pa Bª : M ~ 

s· is given by: 'V <p = r oD<p = ('V p<p),dxP@B', where thespinor-covaria.nt 
s · s s· 

derivative (Y,p¡p)s is given by: 

(3.14 ) 

3) The curva.ture of the spinor connection Cf e JV(S) on": S ~ M, is 

given by a morphism of vector fiber bund/es over M , 1} : Cf ~ AgM @ S 

locally written, as a section over M, as follows: 

(3 .15 ) 

where 1}- 0:{3ª .b are C-valued local functions on M. If we use the Lich­

nerowicz's formula we get tha.t (3.15) gives the following expression for 

the spinor curvature: 

{3. 16 ) R ª l R µ ( ")ª s a:.{3 . b = 4 o:¡3 .,\ 'Yµ'Y b 

where Rcx/3µ .). is the Levi-Civita curvature. 
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4) Similarly to the case of the Clifford connection, we have the following 
formula: 

(3.17) 

tl1at relates the spinor-curvature to the spinor-covaóant deriva.ti ve. 

DEFINITION 3.1 - 1) The Dirac operator º" the Clifford bundle,,. : 
E~ M is a Jirst arder linear differentiaJ operator !j : c = (E) ~ c = (E), 

given by P = iPo, where i is the imaginary unity and Po is deEned by 
e e e 

means of the following homomorphism oí vector bundles over M :19 

JD(E) 

Po! 
e 

E 

r 
e 

wherea is the morphism induced by the Clifford multiplication. Therefore, 
if 1/J = 1/J8 'Y8 : M ~ E is a section of,,. : E~ M, we get the following 
local expression of P .1/J: 

e 

['"' =igª' [(axa.1/J8 ) + b~D"'D] 'Ym = hª [(axa 1/J8 ) + b~D,¡,D] 'YB 

=i"(ª(~a1/J)8'YB · 

2) If there is an isomorphism j E So< S' 0 S, where S ~ M is a 
vector bundle over M, then we can define also a Dirac operator on S, 
(spinor Dirac operator ), as the first arder linear differential operator 

p: c = (S) ~ c = (S), given by p = iPo, where i is the imaginary unity 
s s s 

19 The imaginary unity is rcally pleonastic. Hcre it is used in order to solder our 

formulas with usually ones used in theoretical physics. 
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and fo is defined by means oí the following homomorphism oí vector 

bundles over M: 

JV(S) TºM®S 
g~I 

TM®S 

fº ! L ,01 

s Sº ® S ® S E ® S 

Of course there is also a Dirac operator far covaria.nt spinors, i.e., defined 

011 S' , P : C 00 (S') __, C00 (S'), with p = iPo. where Po is defined by 
s· s· s· s· 

mem1s oí the following homomorphism o[ vector bundles over A1: 

JV(S') TºM ® Sº 
g~l 

TM®S º 

PoL L ,01 
s· 
s· Sº®S®Sº - E @S" 

The covarian t local expression for controvariant spinor field 1/Jªea : M --+ S 

and covaria.nt spinor field 'P = <paOª : M--+ S* are respectively: 

f 1/1 = ig"' [(iix; .¡;r ) + F,1/1'] -y,~e0 , 
= ig"' [(ax; <p,) - r;,'Pr] -y,¡Bb. 

In matrix form we can write: 

P.<p 
s· 

P .1/J = ;-y"(v " . .¡;), P ·'P = h"(v >.·'Pl· s s s· s· 
3) The Cliffor d Laplace operator is the second arder linear differential 

operator on the Clifford bundle ~ C00 (E) __, C00 (E) defined as the 

square oí the Dirac operator: L'; = P 2 . So ií 1f; = 1fJ8'YB is the local 
e e 

expression of a section of the fiber bundle 7r E --+ M, then the local 

expression oí L'; .1/J is as follows: 
e 

(3. 18) 
~ .1/J = f;i(('g 0 .ip)B'Yª')'B) = - ('g p('g 0 .1/J))B-yP-yª')'B = --yP-yª('g p 

('g a·1/J)) 8 iB · 
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THEOREM 3.3 - 1) The ClifEord Laplace operator is related to the curva­
ture ~ ofthe Clifford connection, (hence also to the Levi-Civita curvature). 

In fact one has 

1 1 
~ .1/J = - 2('-/'Y"' + 'Yª'Yª}("g B };' a·1/J)8 'YB - 2hª'Y"' - 'Yª'Yª}("g 8 

z;'a·1/J)8 'YB 

=g8"' (V 8 V a·1/J)8 'Ys - -2
1 'Yª'Y"' [(V 8 V a - (V a V µ).1/J)8 ] 'YB · e e e e e e 

On the other hand we have 

Therefore we can also write: 

(3.19) 

2) Similarly we can define the spinor Laplace operator as follows: 6 ; 
s f 2 : c=(S) ~ c=(S). Then far any spinor field 1/J, locally written as 

1/J = 1/Jªe0 , we get: 

(3.20) 

Similarly we can find the expression of 6 .1/J in terms of curvature of the 
s 

spinor connection on 7í : S -+ M. We ha ve: 

(3.21) 

Moreover if we use for the spinor connection the Lichnerowicz's formula, 
we can write (3.21) in the following form: 
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Th en by using the relation Rsoµ> (-yª-yº-yµ-y> )b = 26g R, 20 where R is the 

scalar curvatw·e of the Levi-Civita connection , we get:21 

(3.22 ) 

Purthermore, for covariant spinor field <p = '-Pa()ª we similarly get: 

(3.23 ) 

DEFINITION 3.2 - 1) (Generalized Dirac-Clifford equations). One 

has two generalized Dirac-Clifford equations: 

(3.24) 

(DC)"' = ker(¡:' 'fm) e JV(E) : { [i-yº('g' .,P) 8 'f m,P8 ] 'Ys =O} 

where m E RLJiR+. An equivalent expression of(3.24) is the fallowing: 

(3.25) 

2) ( Generalized Dirac-spinor equations). SimiJarJy one has two gcnera­

lized Dirac-spinor equations:22 

2º See Appendix A2 for a proof of this formula. 
21 This expression coincides with the well known formula given by A.Lichnerowicz [l]. 

22 We set (GM)m :=(DC)- or (GM)m : (DS)-. 



Integral Bordism and Green K ernels in PDEs 349 

The corresponding dual Dirac adjoint equation results: 

(3.27 ) { (DS")'°: ker(f. :¡:{ m) c[JD(S") l } } . 
(f. :¡:m)<p = O<* h'b (&x;.<p,) -1 ';,'Pr :¡: m<pb =O 

3) (Generalized Klein-Gordon Clifford Equation). This is the fallo­

wing equation: 

(3.28) 

{ 
(I<GC) e JD2 (E) } 

(g2 - m 2 )1/J = O<* (g - m)(g +m)1/J = O<* (¡5-m2 )1/J =O · 

Tle local expression oí (KGC) is the fallowing: 

(3.29 ) lª(V' µ V' a1/J)8 + (Rµa 8 .D-l"Iª + Ógm') 1/JD = Ü. 
e e e 

4) (Generalized Klein-Gordon Spinor Equation). SimiJarJy we get 

the following equation: 

{ 
(KGS) e JD2 (S) } 

(3·3º) (P2 - m 2)1jJ = O<* (P - m)(P+m)1/J = O<* (6. - m 2 )1/J = O 
s s s s 

Tle local expression oí (KGS) is the following: 

(3.31) gµª('V µV' a1/Jl" + (Rµa ª .b"lµ"Iª + ól:m') 1/Jb =O. 
s s s 

In particular by using the Lichnerowicz's formula for the spinor connection 

we get the fallowing local expression far (KGS):23 

(3.32) gµª ('V µ V' a.P)ª + (~R + m') 1/Jª = O. s s 4 

23 Note that 

9ºº<~ fJ ".; 01")"'= gP<> {(8xp8xo .iJlª)+(fü0 .1,l/') f ~b+(8xp.l/_.b) f ;.b+1Jic[(8xp. f ~,,)+ f ~e 
s s s s 

r •·n s 
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The corresponding expression far covariant spinor field is the following: 

(3.33 ) g~ª( \l ~ \J a'l')a + ( -41 R + m 2 ) 'l'a = O. 
s· s· 

REMARK 3. 1 - The Dirac conjugated , (or h.c.), of a spinor field 1/J = 
1/Jª ea : M ~ S is the covariant field 1f, = '{Y'fo : M ~ S', where <p = 'l'aOª 
with 'l'a = (1/Jª) ', (• = complex conjugated). Then t he generalized Dirac 

equation for {J, (generalized Dirac h.c .), is the following (written in 
matrix form): i ;y. µif;-y" + mif, = O. It is important to note that the 

Dirac equation and its conjugated, must be considered together as they 
together are the Euler-Lagrange equation of a first order Lagrangian C : 

JV(S' ® S) ~ C , defined on S' ® S, i.e., defined on the Clifford bundle. 

More precisely the Lagrangian C, in matrix form, can be written in the 

following way: 

(3.34 ) 

The variation of the action integral with respect to if, , (resp. 1/J ), yields 

t he generalized Dirac equat ion for 1/J, (resp. if,). So the Euler-Lagrange 

equation, E[C] e JV2 (S' ® S), of C is the following: ¡ h" \l µ 1/J - m1/J = O ( Generalized Dirac-equa ) 

S tion) 
E[C] e JV2(S' ®S): _ _ 

i(;y. µ1/ihµ - m 1/J = O (Generalized Dirac-h.c. . 

equation) 

Above remark shows that a theory for spinor fields could be written on 
the Clifford bundle instead then on spinor bundle only. Furthermore, if 

we consider also that the isomorphism E ~ S* ® S is conditioned to 

sorne very particular categories of space-t imes, (e.g., almost Hermitian or 

almost Ki:i.hlerian space-times), it follows that it should be more convenient 
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to implement any physical theory for "spinor fields11 on Clifford bundles. 

Therefore the local expression of (GD)m with respect to local coordinates 
(x•,zA , z~) on JD(E) is the following:24 

(3.35) (GM)mCJD(E): {FA ;;hº[•!'+•A ~::A] -mo_:t,A =O} 

THEOREM 3.4 - (STRUCTURE OF THE GENERALIZED DIRAC 
EQUATION, TUNNEL EFFECTS AND CANONICAL QUANTIZA­
TION). 1) For the generalized Dirac equation (GD)m we have a struc­
ture similar to (GKG),. even if it is of the first arder. In fact, (GD)m 

is an involutive formally integrable, as well completely integrable PDE, 
/Jence it is equivalent to its first prolong:;tion ((GD)m)+1 e JD2 (E) . 

2) If there is the isomorphism E °" S' 0 S, then (GD)m is isomorpllic 
to the tensor product of two equations: (GD)m O'! (GD)m 0 (CD)m, 
wl1ere (GD)m is the Dirac hennitiarn conjugated of (GD)m such that the 
following diagram is commutative: 

((GD)mx(GD)m C 
--1 

(GD)m O'! (GD)m®(GD)m C 

JV(Sº xS)~JV(S• )xJV(S) 

1 
JD(S"®S) 

Then similarly to what made for the equation (GKG)x, we can prove that 

Cauchy problem can be solved for the equation (GD)m by the method of 

characteristics. Furthermore we can also prove that the integral bordism 
group ¡¡~GD)m oí (GD)m is trivial: nf D)m =o. Therefore, tunnel effects 

can be observed and propagators associated to these calculated. 

3) In the following we shall specialize on the Dirac equation for spin 1/ 2, 
on globally hyperbolic 4-dimensional space-time. Thus we shall consider 
the following equations: 

(3.36) 

24 Note that in the particular case of fermionic bradions and luxons the parameter 111 

is a real number, instea.d for massive neutrinos it is an imaginary number. 
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The canonical quantization o[ tlie generalized Dirac equation (GD)m C 
JV2 (E ) is given by the following anticommutation relations: 

(3.37 ) { 
[ •2(x ) , •~( x') [+= [~x),§';,(x' )J+=O } 
{sA (x ),Sa (x' )]+ = i!i.G A n (x;x' lm) 

where GAa (x;x' fm) = (•x' + m)AB G(x; x'fm), (m,,)AB = (h "'Vµ)AB , 
where G(x; x' fm) is the propagator oí the generalized Klein-Gordon spinor 

equation. Then, the microscopic causality is conserved also for fermionic 

massive neutrinos having a geometric mass x = ;1 R + m2 < O. 

PROOF. 1) This can be easily seen by rewriting equation {3.37) in the 

following splite<l form: 

(3.38 ) 

where zA =e+ ir¡A and z: =E:+ ir¡:. 

2) If there is an isomorphism E. ~ S' 0 S we can represent (GM)m in the 

form (GM)m ~ ((GM)m 0 (GD)m. 

3) The propagator G is the Green kernel solution of the following Cauchy 

problem: 

(3.39) ¡ (<IL,)¡-m6¡)a~(x;x' l m)=O ) 

G~(x;x'lm)l,..o="''º=O +h.c .. 

{ 8x~.G~) ( :t;:t1 )l.,o=.,'º =-6~.:S(x ; x') lzo=,..'º 

Let us find solutions of the type G(x; x'fm) (m,, + m) G(x; x'fm). 

Then we find t hat this is a solut ion iff G~(x; x' fm) satisfies the equation 

( ~ -m2) G(x; x'fm) =O. This means that G(x; x'fm) is the propagator 
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of the generalized Klein-Gordon spinor equation. Then we get the usual 
anticornmutation relations: 

¡;¡;::; (x) ,;;; ( x' )[+=[;f.:; (x) ,'i;, ( x' )[+=O 

[;¡;:;(x ),¡;(x')]+=i1iGAa(x;x' jm) 

On the other hand, as the operator ~ -m2 is hyperbolic its propaga­

tor GAa(x;x'lm) exists and it is unique and with support in &- (x') U 
&+(x'), Vx' E M. So the quantum commutator ¡,~A(x), ,,Z,8 (x')]+ = 
·irtCAn(x; x'lm) respects the microscopic causality even if the geometric 

mass of the field is negative. O 

4 - FIELDS IN INTER ACTION 
Above field equations are , of course, linear PDEs, and represent free fields 
on a general curved space-time background identified with a globa lly hy­

perbolic 4-dimensional manifold. For interacting fields the corresponding 

PDEs are not more linear. However t he general geometric method deve­

loped by us to quantize PDEs [5-8] works well also for interacting fields. 

In fact that rnethod has been formulated to work for nonlinear PDEs also. 

As an example Jet us consider the following. 

0 (DECAY OF SCALAR PION) . We shall study the following decay: 
;rt ---+ µ+ + vw Of course the neutrino path is not directly observed. 

We will assume that the neutrino is massive. In this case we have scalar 
particles {1rci) and Dirac particles (µ+, vµ)· So the process is described by 

a second order PDE (E2) e JV2(E), where the fiber bundle E is defined 

by E;, E(•o) X M E(µ) X M E (")• given by:25 

(4.1) 

{ 
(D,.+xc•oJ)'P=ic•oJ '=>.i¡,¡.¡.Pc.J } { - - - } 

i\i' a!Jt(,..¡1'º - m {p) l/J(µ) = j(µ) 
(i-yªV,. - m c,.¡ ) 1/Jc,.¡ = Jc,.¡ =: ,\1/J(vJY' . _ 0 _ .., { X(wo)= 
( i-yª V 0 - m {v) )tPc.,l =j( .,) =:,\~1/J(i• ) iV a W{v)"Y - m (v) t,li( .,) =J¡v) 

{(•o>R+m~,..oJ } 

2!i Here we use the following notation: ~ is the e.e. of 'P and ii=TJ1" -yº , with t/1° the e.e. 

or t,lr. 
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The local expression of ( 4.1) is the following: 

(h")V. -m'"'') )wf",=io") [e ax • .P!",>+ I ~ . .P' ]-m'"''jwf.,~""'"'i·> +h.c. ¡ ··•,,, .. -r:;,•º'"'•+Xc •o>"'~";¡,'"""'L' ) 

(ioªj v 0 -mc.¡ój ).Pf.,=<o"j [e ax • . .Pf.,l+ I ~,.P' ]-m,.,,j.Pf.,~"~"'("' 
Then, the correspoNding JacolDi OJl>erator has tf.ie folJlowim.g COffilJ!lONeats:26 ¡ (J[•).v)c.·o>" [.X<·.o>i"<•ol ~ [Íp0 9°. "l·."<.•o>.•·+· [gº"l·".<.·o>.•r".'i";¡,(.¡Jv(µ 1-¡ 

8i;[A1J.'tµ)).D(,,¡ 

(J[s].v){µJ = [n~ 1 g 0 f3 ~~j-m(µ¡8jJ.v(µ) +i{1'~jgª13 J.v(µ¡,p- [AW(.,))•v(.,,.0 ) - +h.c. 

¡>..~6jJ.vt,,¡ 

( J[s] .v)¡,, ) =:= [i¡~ 1 g" 13 Í~¡-m(v¡ój ]e v(.,¡ + i{"Y,'._.390..G J.1.1(,, ) .{3 -[>..p]. v(,..) -

[>.iJ.>(,,¡]•¡;;(11'Q)" 

The equations for \)¡e Green kernel ilire give¡;¡ by t)¡e following Cil!Uchy 

problem: 
(4.2) 

:iq "O) G ("O) (:i::;:r1 )- [ r~'Y g -rt3 Je ( 8x.,.. G (..-o) )(:z:;:r 1 J+[g"'l3 I• (él:r., 8:i: p . G (no) )(:i:;:z:' )-

6ij p.,¡;{ v) I• GL) (:c:x' )- 6¡j ¡;.,,p ¡µ))e G(v) (o: :x' ):=O 

[h~¡ g"-f3 r~j - m{µ) sj J. ªLi (:>:;.o:') +(h~j 9°'!3 ¡. ( 8:r.13 'e{,,¡ )(z:x' )- [>.."' ~ v)]. G (•o) (:r::r' )­

j)...p6;.1. c{ .,¡<":•:'):=O 

(h~¡ g°'{:J r~j-m(.,¡sj1.cf,,¡ (:1:;:1: 1 J+[h~}9''"ºl· (8:.:fl .cf,,¡ )(:1:;:1:') - [>..PJ.c(;;) (:.:;:.:')-

Set 

G(x;x')~ (e} G(x;x')~ ( f;) 

+h.c. 

26 Here and in t:he fol10wing the bracket [-) . denotes "eva!uation at a s0luticm of the 

equation (4.1)". 

( 



Integral Bordism and Green Kernels in PDEs 

Then, we get the following expression for the system (4.2): 

{4.3) 

[O.•+xc.,i].x- [>,¡;,"'J. Y- [>.P,,.,[. Z=O 

[IL,-m,, ¡J. Y- [>.Pc-il· X- [>\O[. Z=O 

[IL, -mc-il. z-[>~[ . Y- [>.Pc. il. X=O ¡ Xl, o • .-o=Yl, o • .-o=Zl,o • .-o=O¡ 

( Bxó ,X) l:cº="''º =6(x;x') L.,o,.,,.,•o 
+ Cauchy conditions: 

( 8xó 1 Y) l::i:o =z'º = 6(:z:;x ' )1 "'º"'"''º 

( 8 xó, Z)lro =r'º =6( x;:z:') l:.o =z'º 

355 

+ h.c. 

Then the propagator G = e+ - e- is given by means of the retarded and 

advanced solutions 

( 
x• ) (x+(x;x')-x-(x;x') ) 

G± (:z:;:r' )= ~±< , G'(x;:r')= y +(x;x') - Y - (x ;x') 

z±.J z + (x;x' ) - z - (x;x' ) 

As a consequence the quautization of the dynamic equatiou (4.1) is ob­

tained by considering the following quantum bracket: 

where (•' )= ( .,;, ) .27 By derivation of above commutator with respect 

W¡.,¡ 

to x'°, and taking xº = x'º , and by considering also equation (4.2) 1 we 
gct: 

27 [A,Bl-=AB- BA is the commutator or simply [A ,B/, instca<l /A ,B )+=AB+ BA is the 

antioomrnutator. If both A and B are fcrmionic one has the anticommutator o therwisc 

one uses the commutator. 
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This completes the procedure to obtain the canonical quantization of our 
dynamical equation for the decay 7rÓ ---t µ+ + vw Note that equation 
{4.1) admits the zero section (<p, 1/J(µ),1/J(vJ) = {0,0,0) as a solution. The 
canonical quantization of (4.1 ) at the zero section1 reduces to the following 
Jaco bi equation: 

Then the propagator of ( 4.1) at the zero section is directly identified 
by the propagator of the independent fields. So we get the following 

(anti)commutation relations: 

[~( x) .~( x' )J= [;¡i( x ) ,;¡;( x') [ = 0 

[.,P(x),~(.x')J=i1iGc ,.0 i (:r;x'lx<,.o > > 1 

{~(x),~(x')[=[;¡i(x) ,~(x')[=O 

[.,P(x),~(x')Jl"o=:z:'O=-i1i6(x;:r')L.,o=z'º 1 

[~(x),1/l-;;;-a(x'_))+=[1f,:;-A(x),\b(µ) B{x')J+=O 

[1"-;;-A ( x), ;¡,(µ.)B ( :r') J + =iliG (µ}AB (x;x' lm(µ)) 

[~(x),1/J¡,..¡(:r')l+=[~(x),1f,~µ)(x')]+=O 

[~A(x),,¡,c~)B(:r')]+l:~o=:i:'º=iMAs(x¡x')L,,o=z'º 
{~(x),Vi::Ja(x'))+=[;¡,c.,)A(:t),lii~(x')J+=O 

[~(x),1f,~(x')l+=ihG¡.,)AB(x¡x'lmc.,1 ) 

¡;¡;:;;(x),.Pc.>(x')[+={~(x),;¡,,.,(x') [+=O 

[~(x),;jJ(.,¡a(x')J+ l.,o=.,'º=ih6Aa(x;x')l.,0=:1:'º 

where Gc•ol• (resp. G(µ)• G(v)), is the propagator for the Klein-Gordon, 
(resp. Dirac µ-particle, resp. Dirac v-particle) , equation. Asan appli­

cation of Theorem 1.2 we get that G[s] is an invariant of íl,(R1,R2). 
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F\irthermore, the integral bordism groups oí the dynamic equation (4.3) 
&i are given by f2f2 9::: Z2, p = O, 2, and n ;-i ~ 01 p = 1, 3. In particular 

we get existence oí t unnel effects for global solut ions of (4.3). 

0 (QUANTUM PART ICLES IN !NTERACTION W!TH THE GRAYI­
TAT!O AL F!ELD). Emphasize that we can consider also t he interaction 
of above particles with the gravitational field. In fact the general method 
poinled out by A.Prástaro to describe the canonical quantization oí PDEs 

can be applied also to this case. In part icular we shall reconsider t he decay 

11"6 -+ µ+ + vµ by inserting the interaction with gravitons, i.e., the inte­
raction with the gravitational field as a quantum field. So we will consider 

the following fiber bundle 1T: E= E (•o) XM E (µ) X M E(v) XM sgM ~ M. 
A section s = (<p, 1/!(µ)> 1/!(v)>g) oí 1T must be a solution of the following 
second order PDE on E: 

(4.4 ) ¡ (D+x,.,, )~=i«o> ) 

{ 

GofJ=Rop-!9ofJ R } 
(• -mc,,.))!JJc,,.i=i c1•l 

. + h.c., n.,=n~_,=(Bz.f~,>-(az,f~0 )+ f~.r:;, -r;, r:, . 
(11- m¡.>)w¡. ¡=Jt•> R= Rª 

G=-kT, div (T)= O 0 

where the currents are as before and the stress-tensor T is given by T = 

T¡,,) + T (µ ) + Ttv) with 

Tc• o>o /J = ( l - 2{¡,.0¡'P /o'P ¡p+(2{(,.o) - ! )9ofJ9Pº "P¡p"P f o - 2{(,.o)IP /o(J'P 

+ !{¡,..0¡9ofJA- {c,.0 ¡ [R,. ¡3- ! Rgo13+ ~{(,.ol R9013 ]1.p2 

+ ! [I - 3{{,.0 )]m 2 90o 1J'P2 

T(") "'p=~ (ijj(¡.)"'Y(o ó.p¡t/J(¡.J - (Aco 1'ic"J htt>Vic">I 

Tc.,J 0 p=; [iti( ... ¡"'Y¡a .6.13¡1/J(,_,¡-(.6.101'i¡.,¡ h 11¡ 1/'c.,¡J 

The canonical quantization oí t he dynamic equation (4.4) gives 

(4.5) 



358 Agostino Prástaro 

where iY 1 is the propagator, solution of the following Cauchy problem: 

{ 
(J[sJ.G)u =o ) 

{4.6 ) Q11(xº,x;x'º,x'fs) = Ü 

(&xb.GJJ)(x; x'Js)fx'=x'' = 611 ó(x; x' )fx'=x'' 

where J[s). is the Jacobi operator of equation ( 4.4) at the solution s. Then, 

by derivation of (4.5) with respect to x'º, and taking x0 = x'º, and by 
considering also equation ( 4.6), we get: 

( 4. 7) [J(x), ;'.l(x'JJ±fx'=x'' = ilíó/J (x; x')Jx'=x'' l. 

Then 1 similarly to previous examples, as the Jacobi operator is hyperbolic 

we get that the microscopic causality is conserved even if the geometric 

mass of the neutrino is negative. Furthermore, as the integral bordism 

groups flf' = O, we get also the existence of global solutions of the dy­

namic equation with tunnel effects. 
APPENDIX : Al - SPACE-TIME GEOMETRY AND CAUSALITY 

In this paper we shall assume that space- time is a connected 4-dimensional non compact 

manifold M with a local hyperbolic metric, g, signature (+--- ). So we can locally 

orient M by means of the volume form 11 == Ji9fdx0 Adx 1 /\dx 2 /\ d x 3 canonica!ly associated 

to g 28 . Here we are interested to emphasize the following consequences of such a struc­

ture of space- time: I) The light-cone Cp CTpM, g(p)(v,v)=O, at pEM, ha.san induced 

28 Recall here the homological meaning of local orientation. Let M be a n-dimensional 

manifold. A local orientation µ"' for M at x is a choice of one of the two possible genera­

tors H,.(M,M\x;Z)~H .. (R" ,R''\ {O} ;Z )= infinite cyclic. Such aµ"' determines local o­

rientations µ 11 for a!I points y in a small neighborhood of x. In fact, if Bis a bal! about x, 

then for cach yEB the isomorphisms H. (M,M\x; Z ) ~ H . (M ,M \B; Z ) ~ H.(M,M \y; Z ) 

determine a local orientation µ 11 • Furthermore, an orientation for M is a function 

which assigns to each xE M a local orientation µ"' such tha.t should exist a compact 

neighborhood N anda class µN E H,.(M,M\N; Z ) such that p 11 (µN)=µ 11 far each yEN. 

An oriented manifold is a manifold with an orientation. For any oriented manifold 
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orientation, i.e., we ha.ve fixed the positive half cone et, such t hat Cp \ {p }=C: uc;. 2) 

Each continuous path·line·7cM has an induced orienta tion, by means of t he following in· 

duced metric: (8t . iº )(8t.itJ )g0tJdt®dt=i º g:=S~(i)ogoi:-y-A'!~S~(M)-Sg(7). Hence the 

induced volume form 77.., on f is 'h= J l±0 :i:fJg,.tJJdt. This implies that if p,p1 E71 (-y is 

nn open path· line contained in M), we can answer to the question: <loes p belong to 

the future oí p'? In fa.et, if pE-r; , , we se.y t hat p is in the future of p' , with respect 

to -,. Here -r;, is the posit ive part of 'Yp1\{p'}. 3) Let p and p' belong to M. We 

soy that p is in t he future of p' if there exists a time-like (or light·like) curve .., (i.e., 

9(i',i")~O, t=velocity of 'Y}, such t hat p,p'E"Y and p1E-r't . \Ve se.y t ha t two ordered events 

p1 ,P':IE'YC M respect the st a nda rd-causality if p2 is in t he future of p1 in t he above 

scnse, and we write p 1« p2 . We say that two ordered events p1,p 2 EM respect the -y­

pnth·causality, 'Y open path*line in M, if p 2 is in the fut ure of p1 wit h respect to the 

fixed -y, and we write p1 <., p2 . Of course the path·causality is a property st,rict ly related 

to the curve "Y considered, ancl far the same two events can be p2 <..,, p 1 , for "Y' °#"Y· fn. 

stead the standard.causality is a local property of the space-time. 4) Let us introduce 

a relativistic frame in M, i.e., a couple iJ¡::(tP•r), where q, is a flow ,P:RxM~/11!, such 

~hat its velocity ti>=fJ tP:M->TM is a time-like vector field, and -f:M-.R is a function 

oí constant rank 1 (proper t ime), such tha t <dT,4>>= 1. T hen, we can represent M 

in the split form M'i!i!!.R xS"' , where S<ti is the set oí f\ow- lines of the f\ow q,.29 T hen, 

at each point pE M, a frame 1/J:=(t/l,T) ident ifies a 3·dimensional space-like submanifold 

Mdp)=:{p'EMIT(p')= T(p)}CM. M .,.(P) is , of course, t ransversal to the flow· lines of the 

M and any compact K C M, there is one and only one class l'K E Hn( M ,M\K;Z ) which 

satisfies P:r(l'K )=µ ,, for each xE K. In particular , if M itself is compact, t hen t here is 

one and only one J.IM EHn(M;Z) wit h t he required property. This class l'M is called the 

fundamental ho mology class of M. 

29 Here flow is synonymous of l· parameter group of diffeomorphisms of M, i.e. 1 t he set 

of diffeomorphisms { c/J>. } >.E R ha.s the structure of group induced by thc additive st ruct ure 

of group of R . Note also that S<ti <loes not necessitate be a manifold fo r a gencric 

ftow. However, by assuming sorne condit ions of rcgularity S<ti becomes a 3·dimcnsional 

manifold. \Ve shall assume tha t such cond it ions of regularity will be respectcd in our 

category of frames. 
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frame, and t he orientation of M induces an orientation of M-r (p)·3º As a conseq uence, 

we can define a frame-causality. More prccisely, we say that for two ordered events 

p1,p2E M , p2 is in the fu tu re of p¡, wit h respect to the frame 1jJ if there exists a path 

con necting p1 and p 2 that belong to the positive part of M with respect to t he spacelike 

hypersurface M.,.{Pi l · We write p1< ,;. P2· So we have in M three diffe rent a rder relations 

and we can consider thc following "weakness relations": p1«p2 =:>p 1 <,¡,p2 , far any frame 

tjJ , =!>p1 < ..., p2 , for any -y rfl 1/J 31 . The principie of general covariance in Physics 

requires that ali the physical entit ies should be represented by means of geometri cal ob­

jects that have a natural way of transformation under local diffeomorphisms of M.32 

Furthermore, by studing the symmetry properties of M, we can disnguish a ver y impor­

tant category of frames. In fact, the properties of symmetry of the structure (M,g,q) are 

described by t he pseudogroup Pcaut(M) of local diffeomorphisms of M that preserve 

the met.ric g and the volume form r¡: P : {!Eaut(M) lr g= g,f•r¡= 1¡}. So the jacobian 

J (f)(p)=(8x0 .ffJ)(p) of f at p EM, must belong to the Lorentz group SO(I ,3). Then, we 

call rigid frame one 1/J =. (ef>>r) such that its flow {4>>-he n. is a 1-d imensional subgroup 

of P . A par ticulary important su bclass of rigid frames is that of the inertial frames. 

These are defined as rigid frames such t hat t heir acceleration is zero: ;p=. 'V .;,4>=0, hence 

the corresponding flow-lines a.re geodesia> of M.33 

PROPOSITION Al.1 - Rigid frames pres erve ali the three types of causallty. 

30 With respect to coord inat~s {:rº } 0 11 M adapted to !/J, one has that M..-(p) is Jocally 

characterized by t he equation xº - r(p)=O, and the coordinate li nes X1<,p, 1$k53, passing 

for pare a li contained into M.,. ¡p) · 

31 -y rf1 ip denotes a curve -y t ransversal to ali the space-like 3-dimensional manifolds 

transversal to the fiow- lines of the frame !/J=.(l/>,r). Note also that all the above mentioned 

thrce types oí causality are ali directly induced by the structure of locally or iented space­

time. 
32 From the mat hemat ical point oí view t his requires to represent physical entities 

as sections of particu lar fiber bundles. (See e.g., refs .[3,4J, the book !BJ and references 

quoted there.) 
33 Care of the name "rigid frame". In fact , it is well known that in general relativity 

<loes not exist t hc rigid body. So, with the term rigidity fo r a frame we refer to its rigidity 

wi th respect to t hc st ructure of spa.ce-time. 
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PROOF. In fact, t he flow associated to a rigid frnme is a subgroup of 'P, hence it preserves 

the metric and the orientation. o 
Of course, t here are, also, non-rigid frames that non necessarily preserve causality. Such 

frames are, for example, ones related to fiows of continuum media. 

F'inally at quantum leve] we must also consider the microscopic causality, i.e., the 

n.ssumption that t he quantum commutator [ii(x ) ,ii(x')J , for a quantum field íi must be 

a distributive kernel with support in e+(x')u l'- (x'), for any x'e M. This interpreats 

thc bcaliving thnt no pro¡mgation of interaction can exist betwcen two events x a ncl x' 

thaL do not respect the standard causality. As a by product we get, for example, t.hat 

OOtwccn two points x, x' of the space-time M, belonging to a same 3-dimensional space­

likc submanifold /1"11CM of equal-timc events, with respcct to a. relativistic frame !J.>, no 

propagation or interaction can exist, hence we should have ¡s(x),ii(x')) .,0=.,~=1 =0. Of 

course, the microscopic causality is conserved by the frame ,P, as it preserves space-like 

submanifolds and acts in a natural way on the quantum fields according to the principie 

of generaJ covariance. Furthermore, the microscopic causality is conservcd also by pnssing 

from a frame to anothcr framc, as it is fra mc-independent. These considerations on t.hc 

concept of causality and its covariance properties are suitable as we \~ant to include, in our 

geometrical mathematical model of quantized particles-fields with negative square mass. 

In fact such particles should appear describe, in semiclassical approximation, space-likc 

pnth-lines in the space-time. In the following, we report curve-types in M by using thcir 

possible interpretations as paths far bradions, luxons and takions. Note, however, that 

the introduct.ion of massive neutrinos in physics is compatible with the principie of the 

microscopic causality, but has not a natural counterpart at the semiclassical leve!, where 

massive neutrinos should be identified with takions, hence with no physical particles. 

(For details see Example 1.1 and Example 1.2. and Thcorem Al.4)34 

34 The existence of particles with imaginary rest mass should solve also the problem 

of quantum numbers of the universe. In fact, admitting that the actual universe has 

been generated from the vacuum, by meaos of a quantum tun nel effect, it is clear that 

1\11 the quantum numbers of the universe must be zero. In particular the global Casimir 

invariant P2 should be zero. This is only possible if also particles with imaginary part 

uist. On thc othcr hand , recent experimental results on the square rnass of neutrinos 
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TAS.Al .1 - Classification of curves in a locally oriented hyperbolic space- time 

Path-line Name Part icle Name Casimir inv.P2 • Physical mass 

time- like bradions P 2> 0 yes 

light-like luxons p2 = 0 yes 

space-like takions p2<0 

Ali above considerations can be putted in a natural covariant way by using the language 

of categories. (See e.g. refs .[3,4,18].) So we give the following defin ition. 

DEFli'\'ITION Al.l - The category of re lativistic frames on Mis a categonJ .:F(M ), 

su ch tha t 1/J=(<f>, r:M --+ R ) EOb(:F(M)) ; f E Homy{M)(Tj;;l/;' ), iff f is a loe.al diffeomo17Jh~m 

of M such that induces a local diffeomorphism IR on R such that the. following diagram 

M M 

'" l 
l ~,' 

M M 

T l l r' 

R R 
/R 

U!: commutative for each >. e R . In other words, a morphism in F(M) is a fiber bundle 

m orphism with respect to the structure r:M--o R , that commutes with all the diffeomor· 

phisms 4> :>..· This is equivalent to say that f sends space-like hypersurfaces with respect to 

1/J into space-like hypersurfaces with respect to 1/J ' and fiow-lines of 1/J into fiow-lines o/ 

1/J'. ( Of course for two generic frames, it could happen that the corresponding morphism 

set should be empty.) 

should confirm t his ansatz. (See e.g. ref.[17]. ) Recall that neutrinos are leptons, Le., 

particles with spin and with zero electric charge tha t do not strongly interact. T hese are 

of t hree types: v.,=elec tronic neutrino, v,.. = muon1c neutrino and 11.,. = tauonic neutrino. 

They are characterized by t hree different decays: u., -e- +V., +p+, uµ - µ - +vµ+P +, 11.,. ­

r- +v.,.+p+. 
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T HEOREM Al. l - Let / E Hom :F(M)(1P;W')=f.</). Then f pre.tenie., t ite mieroscopic cau.,ali­

'•· 
PROOF. In fact f transforms space-like 3-dimensional submanifolds N C M, with respect 

to y,i, into spnce-like 3-dimensional submanifolds N'C M , with respect to 1/J' . Further­

morc, the principie of general cova riance assures that if [S(x),S(x')J,,0=:ró = O, t hen also 

[P,(:r:),h(x1)).,0,,.,,.Ó = O. 0 
T HEOREtil Al.2 - Let us consider thc subcat egory FR(M)C:F(M) of rigid fra mes 

on M . Then a1ty f Eaut(M) that is also a fiber bundle homomorphism 

(Al.1) 

M 

T ! 
R ----+ R 

fa 

and thcit belongs to thc stabilizer S P of Pin aut(M). tronsforms a rigid f rame t/J=.(tJ>,r ) 

mio o ngid /ro.m e V;'=.(ef/,r') w ith l/J~=f- 1 1/J>.f· Th.erefore, Hom:Fn(M)(t/J;1/l' )i-</) 1s 

conlomed m to the s labilizer S'P of P into a ut(M). 

PROOF. lf we restrict. to the sub-category :FR(M) of the rigicl frames, then 

/EHomTR{M)(Vi;V/)=f.</) is a.n element of aut(M) such t.hat ¡- 1 ¡p>.f=l/J~E'P, V>..ER. Of 

course, any fiber bundle morphism (f,/n) like in above commut.ative diagram (Al.l ), with 

/ EP, transforms a rigid frame 1/J=. (¡/J,r) into a rigid frame -y,' =.(l/J' ,r ') , with ¡/J~=f- 1 1>>.f. 

However, if SP is the stabilizer of Pin au.t (M) , i.e., f'Pf - 1 C'P, Vf ES'PCaut ( M ), then 

any /ES'PC out(M), tha.t is a.Isa a fiber bundle homomorphism like in (Al.l) , transforms 

8 rigid frame 1/1=.(l/J,r ) into a rigid frame VJ'=.(q,' ,r'), with ¡/J~=/- 1 1/J>. / .35 T herefore t he 

theorem is provcd. O 

COROLLARY Al. I - lf f EH om F n (MJ(VJ;Vi')i-</) , then the standard-cau sality , frame­

cosolit:11 and path-causality, {shortly causatit y), is conserved, iff J EP. 

T HEOREM A 1.3 - Let 1/J ,VJ' EOb(:F(M )). lf f E H omT(" f)(Vi ;W')i-(ÍJ, then f prcsenies Lile 

caiaalit:11 i/J f e'P. 

PROOF. In fact ¡/J~ =/4'>.f- 1 has t he same time orientation than t/J>. as it represents a 

frame, hence it.s velocity is timelike and orientcd in the future. o 
35 Of course the sta.bilizer S'P properly contains P . In fact , if / Eaut(M) is such tha.t 

/"•=•· /" •=-•· thcn 1r'<>,ff•=f" (o; ((¡-'¡· , ¡¡=f" (o;(- •1))=-f"•=• · So JeSP, 

but / V . 
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So we can give the foll0wing definiti0n. 

DEFINITION Al.2 - We call Lerentz category on M the litele subcategory FL(M)c 

:F(M) such that Hom:rL(M)(i/J;'l/J')cP. An object of :FL(M) i.s called a 1.er.entz frame. 

PROPOSITION Al.2 - One has the following corn.rn.utative diagram: 

:FR(M) C :F(M) 

u u 
Fr(M) C :FL(M) 

whe1-e :F¡ (/11) is the categon; of inertial frames. 

PROPOSITION Al.3 - lf fEI-lomyL(M)(1fJ;ljJ'), then f preserves causality. 36 

EXAMPLE ALI - 1n tJhe particular case that Mis the flat Mink0wski SJ!lace-time, t hen 

p is exactly the F0h1ca:ré grol:l-p P: P=P. Then, Lorentz frames are relatet'I. by rigid 

transformations, Le., elemeats of the P0incaré group. 

In tbe following pr-0J!l0sitio0s we relate C0VariaF1ce with differe0tial equati0ns for ¡;iaths in 

M, as seen by tw0 d·i·ffere1ü L0reatz frames . 

PROPOSITION Al.4 - Let M be the Minkows/...-y space-time. Let E2CJV2(r:M--+R), 

Fk(x"' ,±o. ,X"')=0, be an ordinariJ dijfferential equationfor paths in M, with respect to coor­

dinates (x"') adapted tq a rigid frame ljJ=::(tjJ,r) and let E2CJ'D2(T:M-<R), frk(:i"' ,:fo. ,ff"')= 

O, be the corresponding differential equation for paths in M, with respect lo another rigid 

frnme {l=.(;f,,T) related to the previous one by means of lrnnsformations, zo.=:iº(xf.l), such 

that (8xfJ.Xº)=(A~)ESO(l,3). Then we get that the equations Fk=© are obtained from 

frk =O by means of the following transformations between the second jet-derivative spaces 

JV2(T:M--+R) and JV2(T:M--->R):31 

36 Let us emphasize tAait the eausality is always conserved in the category 0f Lmentz 

frames. This last prnperly c0ntains that of inertial frames. 
37 Here, in 0rder t0 emphasize different fiber bundle structures that are c0nsidered 

between M and R, we den0te the second jet-derivative space for secti0ns of r:M-.R l:ly 

JD2(r :M->R), instead tlrnn simply JD2(M). 

( 
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'fhe fir1t ng1d /rnme has velocity 4'= 8xo an d the second one &=8Xo . Thcn the relation 

belween t.he two is given by the following tramformatton: 8Xo=<V8xo=T(ef>- 1 )o8xooef>= 

Ag8zoodl. Therefore, the fiow·orientation is preserved ifJ Ag>O. Now, let Y.,. c J V 2(r: 

M - R) be the .mbmanifold defined by (±º=I ,Xº=O). Then Y.,. is transformed by meo.ns of 

the aboue troTMforrnation i n the submanifold Y., c JV2 (t':M-R), defined by (±º=t,iº=O), 

1/J Che following cquation is satisfied: Ag=l. There/ore, Y.,. is tronsformed in Y ., iff we 

rulnct lo lhe Poincaré group, i.c., ifJ the rigid frames con.sidernd are in the category 

1'L(M). Let, now, X,. CJV2(-r:M- R ) be the submani/old defin cd b!¿ (.::i:º= :'iº= O), thcn X .,. 

u troru/ormed in the submanifold X.,. C J'D2(i':M-R ).38 

THEOREl\I Al.4 - The interactions between non-ta.l"'l'ons and takions cannot be verified 

(at the 1em1cla.uical level) without to introduce 1ome gho1t /ore.es whose quanta are not 

kud10T11 nedher takions. 

PROOF. In fact, let -r:M x nM-->R be the configuration bundle with respect to a rigid 

frame. On JV2(T:Mx n.M--R ) we have the following adapted coordinates (xº ,:r;~ ,x~ , 

.i0.i~ ,i; ,z0,r~ ,%~). Then the submanifold far takions is defi ned by Xf' =:{qEJV2 (-r:M x n 

1\f)-Rliº=o,xº=O} CJV2 (-r:M x nM--R ) and the submanifold far bradions is defined by 

Y, : (qEJV2(-r:Mxn.M--R )l±º= t ,iº= D}cJV2(-r:Mxn.M--R ). Then we see that Y.,n 

Xr=(/). Therefore, we cannot have interaction between takions and bradions without to 

íniroduce sorne gosth forces with quanta describing path-lines t hat satisfies the following 

condition: DS±ºs i. o 
38 Yr, (resp.Yf'), represents the submanifold of JV2 (-r:M--R ), (resp. JV2(T:M--R )), 

that is the constraint far bradions-dynamics with respect to t hc frnme t/J, (rcsp. 1;1). 

lnsiead X r, and X f', are the corresponding submanifolds for takions. 
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APPENDIX , A2 - CURVATURE OF THE LEVI-CIVITA CONNECTION 

AND THE LICHNEROWICZ F ORMULA RELATING SUCH CURVATURE 

WITH THE SCALAR CURVAT URE VIA DIRAC-MATRICES 

We have used the following relation: 

(A2.l) 

where R..,.foo=(éJx ... r;a) - (Oxf3.r;0 )+í~wí6.l.l- r~w í60 • Now, in ref. [1] A.Lichnerowicz 

first proved the same relation but with the sign minus in t he second term. The motivation 

of this difference is that A.Lichnerowicz used a definition of Clifford a lgebra that differes 

from our just for a sign minus. However, a simple proof of (A2 . l) can be obtained just 

following the line given in [1] and taking into account sorne symmetry properties of the 

indexes in t he curvature that here we reca!l: 

(A2 .2 ) 

Then we get a \so: 

(A2.3) 

¡ R'.0o•~-R' .-. 0 l 
R' .. 6op+R..,.o.1>6+R")' .f36o=O . 

n-r -rof3 = 0 

R..,6<>1J =R"I. 6o.f39..,.., 

Rw6o(J=Ro.{Jw6 

Staring from the following geometric object: T º ==Rº .IJ >.µ'YfJ'Y>./1•, it is possible to prove 

above formula (A2.l) by fo llowing a road similar to one given in ref.[l]. In fact, from the 
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SCl'Ond equntiion in (A2.3) we have 

O=(Rº .fn.µ+Rº .>.µp+Rº .,,.p>.)"/'"'1>."'1'' 

=Rº.11>.µ'Yl1'Y>.'Yµ.+Rº .1J>.µ."'11'"'1/J"'f>.+Rº .fJ.>.µ"'1>."'fµ"'fl1 

Hcnce we get; 

(A2.4) 

Therefore we have als0: 

=Tº -Rº .fJ>.µ."Y>."'ffJ"'1µ+2gfJµ. Rº .fJ.>.µ."'1>. -Rº .fJ>.µ."'ffJ"'1""'1>.+2g"fJ R"' .fJ>.µ"'1>. 

=Tº -Rº .{J>.µ"'1>.'YfJ'Y" +4gfJµ. Rº .fJ>.µ'Y>. - Rª .fJ>.µ "'ffJ (-"'f>.'Y" +2g>.") 

=Tº-Rº .fJ>.µ"'f>."'ffJ"'1"+4./1" R"' .fJ>.µ"Y>.+Rª .fJ>.µ"'ffJ'Y>."'1" - 2Rº .fJ>.1, g>."'YfJ 

=T"-R"' .fJ>.µ'Y>."'1fJ'Y1'+4gfJ" Rº .fJ>.µ"'f>.+Rª .{J>.,,.( -"'1>."'ffJ +2g!3>.)"'1"' 

=Tº -Rº .fJ>.µ"'1>.'YJ3"'11'+4gfJ"' R" .fJ>.µ"'1>. -R"' .¡:¡>.,,."'1>."'ffJ"'fµ -2aJ3"' R"' .fJ>.,."'1>. 

= T"'+2R"' .fJ·>.µ9fJ"'Y>.-2Rª .J3>.µ.'Y>."'ffJ"'fµ 

=Tª-2Rª .fJµ>.9fJ"'Y>.-2R"' .J3>.µ"'f>.'YfJ'Y". 

Hence we get: 

(A2.S) 

From (A2.S) we have a.ls0: 

Therefore we get: 

(A2.6) 

0= Tª - 2Rª >.'Y>. - 2Rª .fJ>.µ(-'YfJl>. + 2gf1>.¡-," 

= T"' - 2Rª >.'Y>.+2Rª .fJ>.µ'YfJl>.'Y" - 4Rª .fJ>.µ9J3>."'1" 

=3Tº-2Rª >."'1>.-4R"µ'Y"· 

367 
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ow, by substituting {A2.6) in (A2 .5) we get: 

Hence: 

(A2.7 ) 

By utilizing equation (A2.7) in (A2.4), or taking into account the defini tion of T°' and 

equation (A2.6), we get: 

( A2 .B) 

Then, by contraction on the left of (A 2.8) by -y0 = g.., 0 ..., .., and taking into account the 

simmetry propcrty of R..,;.., (see equation (A 2.3)) , we get 
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