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1 On hypercomplex numbers

The really great success of the introduction of complex numbers makes it
natural to look for generalizations to higher dimensions. The true rea-
son is founded in the possibility of its geometric interpretation. So the
consideration of so-called “geometric algebras” with their elements the “hy-
percomplex” numbers shifts the geometric-algebraic observation techniques
to higher dimensions.

1.1 Complex numbers

We consider in the vector space R? pairs of real numbers z = (z,y). Any
such pair characterize a free vector in this plane. Two vectors z; and 2z,
are equal if and only if z; = z; and y; = y, where z; = (z;, ;) (¢ = 1,2).
Vectors which denote points lying symmetric to the real axis = are called
conjugated, i.e. Z := (z,—y) is conjugated to z. The set of all such pairs
is denoted by C. Further, we induce in C the addition and multiplication
with real numbers from the vector space R2. Now any element from C can
be given in the so-called cartesian form

(T

z=zl+yi=:z+1iy,
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where 1 = (1,0) and i = (0,1). These two special pairs are called unit
vectors of the corresponding axis  and y. Let z; = z; +iy: € C (¢ = 1,2).
We define a scalar product and a vector product as follows:

2y + 22 '= T1Tg + Y1Ye

[21, 2] 1= T1yp — T

By definition we obtain i-i = —1 and [i,i] = 0. Each of these products
is not suited to generate a commutative field. In the following way we can

define a product which transforms C in a commutative field. We have only
to set

2129 = T1%y — Yay + 121y + Yri22) = 71 - 20 + 71, 22

C is now called field of complex numbers and the elements z = x + iy is
called complex number. Furthermore, it is called « = Rez real part and
y = Imz smaginary part of the complex number z. Complex numbers with
zero real part are called imaginary numbers. From complex numbers with
zero imaginary part we reobtain our traditionally real numbers. Because of
multiplication and division of such complex numbers leads to very compli-

cated expressions it is necessary to represent complex numbers in the polar
form :

z=r(cos ¢ +isin ¢).

Each complex number z # 0 is uniquely representable by the modulus
r = |z| of the complex number z and its argument of ¢ := Arg z(mod 2).
It is useful to introduce the abbreviation:

cos ¢+ isin ¢ =: €.
Thus the complex number z has the representation
b

Z=T€x.

By the help of trigonometric relations and the definition of the complex
multiplication we obtain the following rule:

e Piryei®? = pipyei(bitea),
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where 2 = riel®* (k = 1,2). It is simply to show by induction that
(cos ¢+ isin ¢j“ =cos ng +isin ng (A. De Moivre).
In the history of complex numbers the so-called circle division equation
A=l
plays an important role. We have

2= 1= (2= Go)(z = Q1)--(z = Gua)

2mk

G=e% 0<k<(n-1).

The complex numbers (i are just the cornerpoints lying on the unit circle
of a equilateral m-angle. Moreover, they are the zeros of the polynomial
p(z) := z" — 1, which is a special case of the so-called fundamental theorem
of the algebra:

Theorem 1 A non-constant polynomial of degree n posesses exactly n ze-
ros. Here the number of zeros is to compute in accordance with its multi-
plicity.
Corollary 2 The quadratic equation

2+az+f=0 (e,8€C)

has at most two solutions z; and z; in C.

Remark 3 An alternative definition can be given in the following way: Let

Mc:={<z _Iy>:1:,yEIR}C]R(2)

furnished with the operation matriz addition and (real) multiplication. Mc
has the structure of a field, which is isomorphic to the field of complex
numbers C.

Fr
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1.2 Hamilton’s creation — real quaternions

There is a little story on the discovery of quaternions. Briefly we will des-
cribe this: It was on Monday, October 16 in 1843 and it happened that in
this morning W.R. Hamilton had to preside at a meeting in the Royal Irish
Academy. He was walking with his wife along the Royal Canal in Dublin
when the answer of this 10 years old problem came to his mind. With his
knife he then and there carved on a stone on Broome Bridge the formulae:

==K =ik=-1L (1)

By the way in the above mentioned letter of Hamilton named this bridge
errounously Brougham Bridge and up to now this bridge bears this name
gwen by W.R. Hamilton.

Hamilton called these numbers
qg=a+bi+cj+dk

quaternions (cf. [18]). In that way the notion of a quaternion was intro-
duced. The first paper on quaternions appeared 14. November 1843 in the

Council Books of the Royal Academy at the First General Meeting of the
Session (cf. [1]).

Consider the real four-dimensional vector space R* with its standard basis
€9, €1, ez and eg where the element e; (k = 0,1,2,3) is to identify with that
4-tuple which has at the (k+1)-th component the number one and has zeros
otherwise in a cyclic denotation. The element e, will be identified in the
following by 1 and will mostly be omitted. Notice that ey (k = 1,2,3) are
so-called “axial” vectors in R%. In case of cancellation of the first component;
one can identify these “axial” vectors in R* with ordinary vectors or “polar”
vectors in R? (cf. [21]). It is necessary to use sometimes these identifications.
An arbitrary element z € R* can now be represented by

T=xzo+X Wwith x=uaze; +aes +z3e3 (zx ER, k=1,2,3)

The part x is called scalar part of = written zgeq =: Sc(z) and the part x
is called vector part and written x = Vec(z).

Recalling the computation rules in R* we have for z,y € R*%:

(T
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(i) [Identity: x =y if and only if zp=y, and x=y
(i) Scalar multiplication: R x R* 5 (\,z) — Az € R* with

Az = Azo + Az1€1 + Azseg + Azzes =: Azp + (Ax) (A € R).
(iii) Addition: R* X R* 3 (2,9) — = + y € R* with

z+y = (2o0+yo)+ (1 +y1)er + (z2 + ya)ea + (z3 + ya)es
(zo+y0) +x+y

Il

and Tk, Yk € R.
Now we define a multiplication in the following way:

R x R* 3 (z,y) — 2y € R* with

TY =ToYo — Xy + Ty +YoX +X XYy

where
Xy = iy + T2y + T3y
e, e eg
XXy = |3 ®p x3
Y Y2 Y3

= (293 — Taya)er + (z3ys — rys)ez + (@132 — Tayn)es.

Definition 4 The space R? furnished with the above defined multiplication
rule has the structure of an algebra and is called algebra of real quaternions.
Its elements are called simply quaternions. In honour of W.R. Hamilton we
will denote this algebra by H.

If z = x then z is called pure quaternion or simply vector. The set of all
pure quaternions is denoted by Vec H ¢ H, while the set of all scalars will
be denoted by Sc H C H. Vec H and Sc H are real linear subspaces of H
which are not closed relatively to the multiplication introduced above.

Corollary 5 The map p, : R® 3 ¢ — —yzy~' € R® 1s a reflection in the
plane which lies orthogonal to the vector y.
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Proof. The map p, is linear and py(y) = —y, while for any vector r Ly it
follows that py(r) = —grg" P Twﬂ = .

Corollary 6 Each rotation in R® has for some non-zero y the form —p,.
Conversely, any such map can be seen as rotation in R®.

Proof. We already know that the product of two plane reflections is just
a rotation and vice versa. u

Proposition 7 Let y be a quaternion. Then there erists a vector a # 0,
such that ya is also a vector.

Proof. Let a be a vector in R? orthogonal to the vector part of y. Then
ya=yoatyxacR:. m
Corollary 8 Each quaternion can be described as a product of two vectors.

Proposition 9 An arbitrary unit quaternion can be represented as the pro-
duct yzy~'a~!, where & = & and y = y are non-zero vectors.

Proof. We know from proposition 7 that for any unit quaternion e a non-
zero vector z exists such that ez is a vector. Because of |e| = 1 we have
|ez| = |z|. In this way ez has to be a rotation. Then there exists a vector
y # 0 with ez = ygg" and so the statement follows. |

1.2.1 Representation of real quaternions

‘We will group here some of the most important properties of the represen-
tation of real quaternions.

Theorem 10 An arbitrary quaternion € H, z # 0 permits the represen-
tation

2 = |@|(cos ¢ + w(z) sin ¢),

where ¢ = arccot(zo/|z|) and w(z) = z/|z| € 3.

T 4
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Proof. It is well known that
; 1 cot ¢

sing = m and cos¢ = \/m.

We obtain under our assumption

an 1 b B
sin arcco(‘.l?o| = and cos arccotﬁ e P
z 2
= 1555 (I—;I) 1+ (f—ﬁ)

Then we get by a straightforward calculation cos ¢ + (z/|z]) sin¢ = z/|z|
which verifies our theorem. [ ]

Example 11 Let z = 3+ 2e; + 2e; + e3 then |z] = 3v/2, |z| = 3,¢ = 45°.
Thus we obtain the representation

(2e1 + 2e3 + e3)
3

z=23V2 [ cos45° + sin 45“] {

Corollary 12 (MOIVRE’ formula). Let z € H,z # 0,n € N, then the
following formula is valid:

(cos ¢ + w(z)sin @)™ = cos ng + w(z)sin ne.

Proposition 13 The R-linear hull of the set {1, z}, where @ is not real,
forms a subalgebra which is isomorphic to C.

Theorem 14 The algebra of real quaternions H can be represented by the

matrices
10 —i 0 0 -1 05, =4
O/ R (05 /i - 0/
Therefore each quaternion @ permits the representation

i =7
il 1 2
22 2

with zy := T + 1z and 2y := Ty + 1T3.

W .
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Corollary 15 The algebra of real quaternions H can be generated by the
real matrices

1000 () =1l )
(IRSIRRORN0 TRe0F 10, 0
ORI o (U g e gl L
0001 L) Uit V)
@ O it o (1 Aoy
Mo © =i ORSSON=1"50
AN R () S (1 | ORISR0
ORNIREROBEN0) =110..0. 0

1.3 Pauli algebra — a realization of complex quater-
nions

More than real quaternions, complex quaternions take an important part
in theoretical physics. Let us now discuss the fundamental properties of

quaternions with complex-valued coefficients. We will use the so-called
PAULI matrices:

b 10 i i@ 0 —1d v el

= ; = o= . 3 = 3
S\ SN0 = RO =i o
PAULI matrices form an algebra P. Then we get the representation of an
arbitrary element € P in the form

T = To0g + T101 + Te0 + X303 + T40903 + T50307 + L0103 + T7010203.

We have to distinguish four classes of elements, namely complex linear com-
binations of scalars oy, vectors oy, o, 03, bivectors o203, 0304, 0107 and pseu-
doscalars 10903, PAULI matrices satisfy the conditions o,0; + 7,0, = 26;;,
where §;; denotes KRONECKER’s symbol. On account of (0y0403)* = —aq

we obtain that the linear space generated by {00, 010203} is isomorphic to
the field of complex numbers C.

Remark 16 The centre of P is C.
Proposition 17 With € :=iog (Hodge star map) we get

—E0( = 010203, —E0) = 0203, —E03 = 0301, —E03 = 0102,£0,02 = +03,

€0903 = +01,E0301 = +02,£010203 = +0y,

(T

-
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i.e. the multiplication by € transforms scalars into pseudoscalars, vectors
into bivectors, bivectors into vectors, and pseudoscalars into scalars.

2 Clifford algebras

We will consider a class of algebras which form the frame for our further
considerations. This structure shall incorporate number systems like com-
plex numbers and quaternions as well as vector and multivector systems.
We will be able to realize in this algebra a large number of fundamental geo-
metric and analytic ideas. Let us start with the description of this algebra
in expressing the main ideas.

Definition 1 (Real Clifford algebra). An associative algebra over R with
unit eg := 1 which 1s freely generated by n basis elements ey, ..., e, together
with the defining relations

ée;+eje,=—26; (i,j=1,..,n). (2)

18 called real Clifford algebra (denoted by: Cly,). Here 6;; denotes the
Kronecker symbol. This means

eie;+ejei=0 iff i#j, el=-1 (i,j=1,.,n).

Usually the elements ey, ey, ..., e, belong to the vector space R™ and form
there a basis. After the canonical embedding we have identified the “initial”
vectors ey, €y, ..., e, in R™ with corresponding elements in C¢,. Further-
more, we identify the unit element in C%, with 1 € R.

Definition 2 (Clifford algebra of the (p,q)-type). Let ey, ...,eq,...,ep1q
form a basis of RP*9. We introduce the denotation

€;:=1 egqj.

The Clifford algebra of the (p,q)-type (denoted by: Cl,,) is defined following
an idea of F. Sommen by the real associative algebra with unit ey := 1 freely
generated by elements of the form

e e et nyles
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which fulfil the defining relations
&5 bk + éx &5 = 2651,
e; ek + ex e = —20;x,
ejéx+ére;=0
Definition 3 The Clifford algebra Cly g is called complex Clifford algebra

can be seen as complexification of the real Clifford algebra Cly, i.e. Cly g =
C® Clon.

2.1 Involutions and Bott’s classification
2.1.1 Involutions

In a CLIFFORD algebra there are at least three involutions. Depending on
the degree k of o € C¢,,, we define the following:

(i) grade involution (or main involution) by the formula & := (=1)*z,
(ii) reverse involution (or inversion) by the relation & := (—l)mf_uz,

(iii) conjugation by Z := (—l)ﬂ%ﬁz‘

Proposition 4 These involutions satisfy the following isomorphic and anti-
isomorphic conditions with respect to the multiplication of two el ts

(@y) = 2y, (zy) =gz, (zy)= yz.
Reversion and conjugation can be extended complex-linear to complexified
CLIFFORD algebras. In addition it is usual to introduce a complez conjuga-
tion by z* = z) — ixy for @ = zy + izg (T € Clyy)-

Example 5 Let be z € C® Cl3 the element

T =1+ 3e; + 2e; + ez + €23 + €23,

(.
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where ey = exe; and exim := exeienm, then we have for the above-mentioned

involutions:
z 1 — 3ey — 2e; + €9 + iess — eos,
Z = 1+ 3e; + 2e; — ey — iz — €123,
Z = 1-—3e; —2e; — ey — ieg3 + €103,

£

z* = 1+ 3e + 2ey + ez — ieg3 + €123

Definition 6 Let ¢ € Cl, o U Cly, then \/Sc(zz) is called absolute value
of . It is denoted by |x|.

Remark 7 For z € C,, the product Zz is not necessarily real. P. LOUNES-
TO gave a counterexample: Let p = 3,¢ = 1,2 = (1 + e1)(1 + eps4) € Cls,
and o7 = 0 € R but Zz = 4egsq + 4e1234 obviously does not belong to R.
The so-called square norm which can be defined by Zz = ||| is often used.

2.1.2 Table of matrix representations

CLIFFORD algebras are isomorphic as associative algebras with unit to
corresponding matrix algebras. Setting now s := (p + ¢)/2 one can show
that only eight different rings of matrices occur in the description of the
structure of CLIFFORD algebras. The following table gives an overview on
the possible structures. For this reason let M(d, F') denote the ring of d x d
matrices over the field F.
(p-g) mod 8 | matrix ring
MU R)
M (25, R) @ M (2!, R)
M2l R)
M@, )
M (261 H)
M@UT) H) @ M(21T"), H)
M(26-1 H)
M(@2*F), )

N OU AW o

‘We mention that s depends only on the dimension of the algebra and not
on its special structure. The denotation [s] means the entire part of s.
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2.2 Examples of Clifford algebras

An excellent possibility of representing CLIFFORD algebras, especially those
of low dimensions, is to do it with the help of the PAULI matrices oy, 01, 09, 03
introduced in Section 1.3. In this way we will interchange the basic elements
e; (1 = 0,1,2,3) by the PAULI matrices o; (1 = 0,1,2,3). It is easy to see
that 02 = 0p and that the elements o; also fulfil the anti-commutativity
property. We will agree upon the use of the symbol “ =" for the identifi-
cation of algebras. Let us now discuss the following examples:

Clopo: In this case the basis consists only of the identity element . There-
fore Clyo = R. An isomorphism is explicitly given by @ = zy0y.

Cloy:  This algebra is generated by og and ioy with 0 = —0y, therefore
Cly,, = C. This is clear by the representation z = zg0¢ + 110.

Clp2:  The matrices 0g, —ioy, —i0y, 0102 (= —iog) form a basis in Cly .
For any element x of this algebra we obtain the representation

i, To — 1Ty — Tp +1iT3
= To+iT3  To+ 1Ty
withz; e R (i=0,1,2,3).

This describes a matrix realization of the algebra of real quaternions H.
Hence Cty, = H.

Cl3o: The matrices 0y, 0y,09,03,0102, 0903, 03071, 010203 form a basis in

the algebra Cls . We find that 010y = —igg, 0903 = —igy, 0301 = —ioy and
010203 = —i0og. An arbitrary element  of this algebra can be represented
by

z = (20 — T7i)00 + (21 — @51) 01 + (T2 — T61) o2 + (T3 — T41)03.

Then it is easy to get Cls o = C (@ H. This algebra coincides with the PAULI
algebra. The denotation by P is made in honour of WOLFGANG PAULL

(T .
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Cly3 : In this algebra a basis can be constructed by the so-called d-
numbers Yo, 71,72, Y3 of DIRAC which are formal 2 x 2 matrices in which
entries are the PAULI matrices. So we have

ey ] s 0 —o;
Yo 0 = ali ge. 0
for i = 1,2,3. Clearly, we have 7¢ = 79 and 77 = —7o. The basis in C¢; 3 is
now given by

1,

Y05 Y15 Y25 V3,

7170, Y270, Y370, M172, V273, V3715
F0Y1Y25 YoY2735 V03 V1 V172735
Yo17273,

where 1 : R — R is the unit matrix. This algebra is called space-time
algebra. One can show that this algebra is isomorphic to M (4, R).

3 Important operators in the theory

3.1 Classes of monogenic functions

Let G C R™ be an open (nonempty) domain and I' = 9G a piecewise smooth
surface. We denote by B(Q2) one of the following BANACH spaces of real or
complex valued functions on §2 where Q can be G,3G =T, or any suitable
subset of G :

(i) C¥(Q) (k = 1,2,...) is the space of k-times continuously R-differentia-
ble functions in 2.

(i) C%)(Q) (k = 0,1,2,...; € (0,1]) is the space of k-times R-differentia-
ble functions, whose k-th derivative is HOLDER continuous with the
exponent a.

(iii) Lp(2), (1 € p < ), is just the space of all functions, whose p-th
power is LEBESGUE integrable in 2.

W[ .
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(iv) WE(Q) is the space of k-times R-differentiable functions in SOBOLEV’s
sense, whose k-th derivative belongs to L,(S2).

(v) W (G) (1 € p < o005 k = 1,2,..), is the space of k-times R-
differentiable functions in SOBOLEV’s sense which k-th derivative be-
longs to L,(G) and vanish on the boundary I'.

Definition 1 Let £ be either R or C. Then the space B(Q2) ®¢ A, where
A= Cl,, is called E-linear space B(, A) of all A-valued functions.

Remark 2 For both A = Cly,, or A = Clyq the space B(Q, A) is a BA-
NACH space. This means that

dimA

B(Q,A):{u: Zu,-s.v:uieB}

=0

is furnished with the norm ||ul| = {94 ||u||?}2. Here ey is a k-vector
such that {eo, ..., Edima} form a basis in A.

Definition 3 Let u be given in a basis representation u = ?:'.f“‘ u; ()€,
z € Q C R", where {eo,...,€aima} i a basis in A, then we say that u €
B(2, A) if and only if u; € B(Q). Often we will briefly write instead of
B(Q,.A) B(Q2).

Corollary 4 Topological properties as continuity, differentiability, and in-
tegrability of the coefficients u;(z),z € ), in a suitable basis repr tati

transfer to the A-valued function u = Zf::)“‘ u;(z)e;.

3.1.1 Clifford regular functions

In general regular functions are those which belong to the kernel of a proper
differential operator.

Definition 5 The operator

D:= i e:0;
=1

e A
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which acts on the space C'(G, Ct,,,), where G € RP9 is called DIRAC opera-
tor and 0, := 0/0z; 1s the i-th partial derivative and z = Y1 | zie; € RPY.
The operator

0:=0+D

which acts on C'(G, Clyp,q) with G C RP? is called CAUCHY-FUETER opera-
tor where 8y := 8/0x and x = xo + Y -, z:e; € RSB RPI,

Definition 6 Let G C RP?, p + g = n, be an n-dimensional vector space
with signature p,q. A function u € C'(G,Cl,,) is called left CLIFFORD
reqular (right CLIFFORD regular) if and only if

Du =0 ((uD) =0).

A function which is both left and right CLIFFORD regular is called two-sided
CLIFFORD regular. Functions which fulfil the condition

du=0 ((ud)=0)

are called left(right) CLIFFORD holomorphic. We agree that the denotations
Cly o~ regular or C¥y, o~ holomorphic will sometimes be used if it is necessary
to emphasize this special algebra.

Remark 7 In Clyy left(right) Clifford regular functions are often called left
(right) monogenic functions. In such algebras the DIRAC operator is some-
times called standard EUCLIDean DIRAC operator. The set of all monogenic
Junctions s denoted by M(G,Cly,,).

Through the whole paper we will view the action of D and @ as an action
on the left. It is sufficiently known that there are corresponding results for
action of these operators on the right. Sometimes we will simply say regular
functions instead of left regular functions.

Remark 8 The CAUCHY-FUETER operator & which acts on C'(G,Cl,,)
with G € RP9 can be considered as the DIRAC operator on C(G, Clpi1,q)
with G € RP+19,
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Example 9 Let G C R?, ey = (1,0,0,0)7,e; = (0,1,0,0)7, 5 = (0,0,1,0)7,
e = (0,0,0,1)7 form a basis in R*. Under the governing conditions

(i) eie; +ejei = —26; (3,5 =1,2,3; i < j),
(i) €3 =1,e;eq = ege;i = €;,
(ili) ejex = eg,

{eo, €1, 62,3} also form a basis in the algebra of real quaternions H. The
DIRAC operator has the form

D = ¢,0; + €20, + €303.
3
Together with u = upeg + u, u =Y w;e;, it follows that
i=1

Du = —div u + rot u + grad ug,

where
3 3 e, e e3
divg:=2<’i.ua, graduo:=zea6m, rotu:=|0 0 Os
i=1 i) w up; ug

For (uD) we get in an analogous way
(uD) = —div u — rot u + grad up.

Proposition 10 Quaternionic regular functions can be also characterized
by the following properties:

(i) quaternionic-regular functions are sourceless and in the case of ug =
const. also rotationless vector fields.

(ii) Clyg-regular functions are rotationless and sourceless vector fields with
ug = const.

. A
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Definition 11 Let be 8 defined by
8:=08y — D.

This operator is called adjungated ( CAUCHY-FUETER operator.
In Clyg, p+ q = n, the operator D defined by

D= i €0;
i=1

19 called adjoint DIRAC operator.

Assume now that G is a domain R?, or sometimes in R*.

Proposition 12 Let be u € C*(G,Cly,) . Then we have
DDu=DDu=Au,

where Au= " 0% u.

Corollary 13 Let u € kerD N C*(G, Clyy)) then u € kerA NC*(G, Cly,),
e.g., CLIFFORD regular functions of this type are harmonic.

Proposition 14 (Generalized LEIBNIZ rule). Let be u,v € C*(G,H) then
D (w) = (Du)v + T D v+ 2Sc(uD)v.

Proof. In [11] is contained the proof for the algebra of real quaternions.
| |

Corollary 15 (Product rules in vector analysis). Let u,v € C'(G,H).
Then in accordance with the definition of the vector field operations grad,
div, rot we have the following relations:

(i) grad (ugvo) = (grad uo) vo + uo grad vo,
(ii) div (uov) = (grad up) v + u div v,

(iii) rot (uow) = grad ug X v + ug rot v,
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(iv) grad (u,v) = u X rot v + v X rot u + (u, grad) v + (v, grad) u,

(v) rot (ux v) = udivy — v divu + (v, grad) u — (u, grad) v.

Proposition 16 (Multiplier problem). Let u € C'(G,H) NkerD be an
arbitrarily given function. If for all v € ker DNC*(G,H) also vu € ker DN
C(G,H) then u = const.

Proof. A straightforward calculation leads to the result. n

Proposition 17 The class of H-regular functions does not contain the squa-
res of each of its elements.

Proof. Let o = x1€, — a2e; € ker D N C'(G, Clyg). Then we have

z? = (2181 — To€2)(T1€1 — T2€3) = T2 + T3
Hence D 22 = 2(z,01 + 2903) # 0. [ ]
Remark 18 For a so-called totally analytic variable z with z(x) € ker DN
CY(R*, H) follows with necessity z* € ker DN C*(R*, H).
We studied in [11] a generalization of an interpolation formula of LA-
GRANGE’s type with quaternionic ‘regular functions. The result is as
follows: let 2(z) := Y, wid;, 2(a:) := ¥r_ a,0d;, a? € H. We write
in abbreviated form:

z;(z) = 2(z) — 2(a), z&j 1= 2(a®) — 2(a"?)

and demand zx; # 0 for k # j . A quaternionic regular interpolation
function s then given by the following formula:

Slawm 7 Zkk-) ke Zkn

o) (o) E": [h(_i) 2 2-1(2) 2641 (2) A M] W,

with

(i) (Lnu)* € ker DNCY(R4 H) (k=1,...,n),

(T .
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(i) (Lnuw)(@?) =u; (j =1,...,n).
Proposition 19 Let u € ker D N CY(G,H), u(z) # 0 then u™" € ker DN
CY(G,H) not in general.
Proof. Tt is sufficient to give a counterexample. Taking u(z) = z,€; — ¢y €
ker D N C*(G,H) then for 0 ¢ G we obtain

—1 _ Taep — 1€
U ==

22 + 23
and one can easily verify that
o A=) . dzyzy
Du™' = 2‘ 222v0+1 = 55037 0. W
(a} + 23) (aF + 23)

Omission of a LEIBNIZ rule in the classical sense leads to considerable diffi-
culties in the construction of systems of regular functions. We will formulate
some easy principles to produce quaternionic regular functions.

3.1.2 Quaternionic regular polynomials

Let {eo, €1, e, €3} be a basis in H and be z = Z,Loz,‘e,u We assume as
before that e?, = e, eie; + eje; = —26;;. We consider the new variables

2k i= Toek — Trep (kK =1,2,3).
For 8 = Z?:o ¢;0; one has 9z, = 0. Unfortunately, the product of two of
such variables is not quaternionic regular, e.g. 0 zxz # 0 for any k and [.
Nevertheless, one can find homogeneous quaternionic regular polynomials of
any degree by symmetrization. These polynomials are given by the formula

1
Pn(z) = — z i

m!

where (p1, ..., ftm) covers all distinguishable permutations of {1,...,m} and
(f1, -y #m) is an arbitrary combination of m elements out of repetitions of
the set {1,2,3}. For m =0 we fix Py(x) = eo. This construction was first
made by R. DELANGHE and is also valid in real Clifford algebras.
Comprehensive results on CLIFFORD regular polynoms can be found in [6]
and also in [7].
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3.1.3 Regular singularity functions

Moreover, we will describe an important class of quaternionic regular func-
tions which can be used in collocation methods for boundary value problems
of partial differential equations. Let z*) be a system of points outside a
given domain G' C R®. Then there exists a system of quaternionic regular
functions {¢x} which are defined by

a=d®
dila) = o= 2®F

Under some conditions completeness and advantageously numerical proper-
ties are possible to obtain. This is a system of singularity functions which
are used in calculations.

3.1.4 Regular functions from harmonic functions

Let G be an open set in R™ and star-shaped with respect to the origin and
ug : G — R is harmonic in G then

1 il
o) = ) = / 2 (Do) ) e / "2(D o) (tz)a dt)o
0 0

is Clon- regular in G.

3.2 On the spherical Dirac operator

In this part we will put together useful properties of operators which result
of a suitable decomposition of the DIRAC operator. Let z be the paravector
n

z = mp+ z with = ) ze;. Setting wiy = zi/|z| (@ = 1,..,n) and
i=1

w =Y i wie;. Then z = |z|w, where w? = —1. We consider the so-called
CAUCHY-FUETER operator § = 8y + D. Here denotes 8y := 9/0z¢ and
D = Y i, €0; with ; := 0/0a;. Introducing the denotations

L= ellis) with  Li(z) = |z|6; — z:L,
=1
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and £, = Zn:w.-a,- we obtain D = ﬁL +wl, .
i=1 H
Proposition 20 We have forj <1, n

(i) luz=w, (PTOjection onto the unit sphere)
(i) Lw=0
(i) Let f= f(l al), then &,f = d/d f =: f'
(iv) Gy = |— (6% = wrw;)
(V) Ljwk = 6k — Wpw; = |z|0jws.

Proof. The following straightforward calculations lead to the result:

(@) luz;= Zw: i = Zugﬁu =R (=)
i=1

i & (bw;)|z| = bolzl|z; L le_@l i
@ ew=(g |) Tl 0
(G=1..,n).

(i)  lof =Y wOif = wifblzl=Y wif =
i=1 i=1 i=1

Due to (iv) it is easy to see, that

o _ (Gjax)|z| = Gjlelzn _ Gwlw| —wime 1

Owi = 8;— =
i R 22

Relation (v) we get from

Ljwy = |z|O0jwi — @jbowi = b —wiw; W
Corollary 21 Let f € C'(R) and f = f(|z|), then Lf = 0.
Proof. By definition we get for j = 1,...,n

Li(1z]) = |2|8;|z] — wite|z| = |z|ws — wilzllolz] = |zlw; — wjlz| = 0.
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Hence, it follows

n
Llg| =Y eiLilz| =0.
i=1
Furthermore, we obtain

2|8, f — w,Zzaf 'zldl |6|1:| w,Zz.dl |a|,~,|

=1

L; f(lz])

A Ll =

il =
(el -2,

and therefore Lf = 0. [ ]
Proposition 22 [t holds
(i) Lw=wL+ (1-n)
(i) wL=-zAD=Y ee;(z:0;—z0).

i<

dll

where the operator wL =: T is just the spherical DIRAC operator.

Proof. By definition we have

T = oDxé= Zz,a +Zz.6ee]+215

i#]
Zz.-aje,-e]- 4 Zz,-@jeiej = Z B0 e85 = ZI.‘@_,EJ'E;
i<j i>j i<j i>]
= Zz,-aje;ej - Za;ja.-e.-e,- = Z(z,@] — z;0;)e;e;. u
<) 3> i<s
Theorem 23 [5] The following formula is valid:
Tw=(n-—1)w.

Proof. By definition
lw = (wlhw= Zw,e ;L (wkek) Zw,e.e,{sz, — wiwk}ex

ik ik

E E wie; — E WiW;Wi €;e;eg = +Nnw — E Wiw;Wwy e;ejex .

k=j=1 i= 17,k 17k

(D

Il
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Finally, we find
Eu.w,-wk eiejey = Z(w,w, — wjw;)exeie; — Z Z w? wke ex
gk e k=1 i=j=1
i f»
N (zw,?wkek) e
k=1 i=1

Corollary 24 [5] The DIRAC operator permits the representation

D=w (l.’.,, + Ll")
||

Proof. We know that wL = zD + |z|¢,. Then
awL = —[z|*D + zle|t.,
and

T T 1
D = —@w[ﬂ- l-z—lﬂ,, = ﬁ(—[_ + zl,)

wé’+||uL w( H) [ ]

3.3 Teodorescu transform

This part is dedicated to the consideration of a very special weakly singular
integral operator, which will play a key role in the whole theory.

Let G be a domain in R™ with a piecewise smooth boundary G = I'. We
will use here the following norms:

Nl = 1l ) = vri e )

where |-| is just the CLIFFORD operator norm . Furthermore, for 1 < p < oo

we define
1/p
[lullp = llullz,e) = (/l“l"dl‘)

G

1/p
llullp.a == ( [Iullrl“l’dx)
/
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‘We abbreviate

llullwa ) =: llullp.a-

By |G| we denote the volume of G.

Definition 25 Let u € C(G)). Then the linear integral operator

(Tew)(e) = - [ e(a = uls)dy @
(¢}
with
e(z) = :——nl-f%, (= %, T=g= Zz.e,

is called TEODORESCU transform over G.

We remark that T corresponds to the known T-operator from the one
variable complex analysis. In the case n = 2 it coincides with the complex
T-operator up to a constant factor. First in this section we consider the
existence of this integral and some elementary properties.

Proposition 26 Let u € C(G). Then the integral (3) exists for all x € R™
and we have

1 1

Teullc £ —max [ —————dyl||ullc.

oo < -max [ ——dulule
G

Proof. Because of the the uniform convergence of [ 1/(|z — y|*~!)dy it is
continuous according to y and, therefore, we can take the maximum over
G. [ ]

This means that Ty is a continuous operator in C(G).

Corollary 27 For |z| — 0o it follows that |(Tgu)(x)| — 0. Furthermore,

we have (Tgu)(z) € C®(R" \ G).
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This property will be essential for the investigation of boundary value pro-
blems. .

Proposition 28 Let u € L,(G). Then (Tgu)(z) ezists almost everywhere
on R™ and belongs to Ly(G') for q with 1 < q < n/(n — 1) and any domain
G'cR".

Proof. Let v € L,(G),p > n. Then we get by HOLDER’Ss inequality

(7 1

G G

Clearly, (n—1)g < n. Thus V() is defined by a uniformly convergent inte-
gral and therefore continuously. Then V(z)u(z) € L,(G). Using FUBINI's
theorem we obtain the identity

[V = [ eivei )
G (e}

with

[u(y)|
|z —yI™!
(&)

U(z) =
Hence we conclude U(z) € Ly(G), where 1/p+1/g = 1. In this way we get
(Tou)@) € Ly(G). ~ m
Now, we will prove continuity results of 7¢ in the scale of SOBOLEV spaces.

Proposition 29 Let u € Cy(R™) then

OuTeu)(a) = =+ [ Doz~ uwidy + "2,
(&)

n

Proof.  For the proof we will refer to our book ([11]). ®m

Wl
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Theorem 30 The operator
OkT : Ly(R™) — Ly(R™)
s continuous and
2
1Ok T || iz (rmy) < (Cﬂn’ I —) (1<p<oo).
n
and
T : Ly(G) — W, (G)

18 continuous.

By the help of SOBOLEV embedding theorems it is easy to obtain the fol-
lowing results on the continuity of 7¢ between other important spaces.

Corollary 31

(i) Te: [L,(G),CO'E»_"(G)] is continuous for p > n.

(ii) Let u € Ly(G),1 <p <n. Then for allr < ;"f’; we have that

Te : Ly(G) — L (G) is compact. For all € > 0 there exists 6 > 0 with
Teu(@) — Tou(a)|l- < &ljull,
for |z — 2’| < 8. Especially, we have that Tg is compact in Ly(G).

Remark 32 Also in the case of unbounded domains, continuity proper-

ties of the operator T can be proved. Unfortunately, the proofs require

additional expertise. We will only formulate some results and refer to the

literature. The TEODORESCU transform Tg is in the case of p < n a con-
tinuous mapping from L,(G) into L;*(G). For

1—;—l<a<n(l—;l))

the transform T is continuous from Lg(G) into Lg~}(G). Corresponding
considerations for different kinds of unbounded domains can be found in

(T .
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3.4 Borel-Pompeiu’ s formula and its consequences

In this part we will concern ourselves with Céy ,-versions of classical theo-
rems of the function theory of one complex variable. In the centre of the
considerations will be the generalization of BOREL-POMPEIU’s formula.

Proposition 33 Let u € C'(G)NC(G,). Then

/Du (y)dy = /
r

where n(y) = YO, ni(y)e; is the unit vector of the outward pointing normal
at y.

Proof. Using GAUSS’ formula we obtain

/(Du)( Ny = ZZee‘/auA )dy

G i=1 A

Zzee,\/n,(y uA(y)d.

i=1 A

1

/ n@u(y)dr, ®

I

Corollary 34 (CAuCHY % integral theorem.)
Let we CY(G)NC(G) and u € ker D (Du = 0!) then

where 7y 15 an arbitrary surface with v C G.

Let

/2

E(z) = [o[F®=2 (n>2) with on=

.

(Ll
on (2 —n)

 —
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then we obtain AE(z) = 0 (z # 0) (oy, is again the surface area of the unit
sphere in R"). It can be easily seen that the DIRAC operator D = 77 e;0;
yields

-

e(z) = DE(z) =

nle®

Proposition 35 Let u € C*(G) N C(G). Then
_ [ (=) in G,

Proof.Firstly, we note that in case of 8;; = 0

n

z Z e;€;0ij = — Z Z e:e;0;

i=1 j=1 =1 =1

i Z eie;0i; — Z(e,-ej —eje)0;; = A.

i=j i>)

DD

Furthermore, we have for ¢ € G

(DTgu)(z)

e(z — y)u(y) dy) /DE(I —yuly dy)

I

Rl s
G/ L B gt (y)dy)~

an(2

The latter integral is just the volume potential which solves the POISSON
equation. Hence, (DTgu)(z) = u(z).

For AE(z) = 0in R"\ G it follows our assertion. [}

Theorem 36 Let G C R" be a domain which is bounded by a piecewise
Li1APUNOV surface I'. Then for each u € C*(G) N C(G)

- ) ¥ @) G

[ ece=wmtiutiar, [ ea-poawa={ ' 2EE Y 6
r G

where n(y) denotes again the unit vector of the outward pointing normal at

' in point y.
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Proof. Let z be an interior point of G, B.(z) a ball centered at  with
the radius € (¢ > 0). Further, let G, := G\ B.(z). Applying Proposition
35 and choosing for u = e(z) then it follows that

[ela= o) -
Ge
& / ele =L, - [ ez =y nWas,.  ©)
T Se
On S, (y € S;) holds
_l_ Teye yse: 11 1
P Py i Rl PR

e(z —yn(y) =

It remains to show that the latter integral converges to v(z) if ¢ tends to
zero. We have

iy [ @ = ity = tim | — [ vy | =v@). ()
S,

Se(x)

For £ — 0 the first integral in (8) exists and BOREL-POMPEIU’s formula for
interior points is shown. For the second part we have to repeat the proof
without excluding a neighbourhood of z. ®

Remark 37 Using STOKES’ Theorem 36 can be proved on compact n-
dimensional, oriented C'*™°-manifolds which are lying in a domain of R™ (cf.

(81, [5))-
Definition 38 Let u € C'(G) N C(G). The operator Fy: defined by

(Fru)(z) = / e(z - y)n(y)uly)dL,
1

15 called CAUCHY -BIZADSE operator.
Remark 39 In this new notation formula (5) has the representation

(Fre) + (Tau(@) = { *§)  1€8, 5 1
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Proof. (Theorem 36) Let z be an interior point of G, B, (z) a ball cen-
tered at z with the radius € (¢ > 0). Further, let G, := G\ B.(z). Applying
Proposition 35 and choosing for u = e(z) then it follows that

[ eta = 00wy -
Ge
= [ ela= pmtwuiar, - / ez - YnE@)dS,,. ()
r Se
On S. (y € S.) holds
_1_ T=YR YSTn i 1
oulz—yl" lr—yl o [z -yt

e(z —y)n(y) =

It remains to show that the latter integral converges to v(z) if £ tends to
zero. We have

’ g 1
liy [ @ = wn(uoo)dy = timy | — [ @iy | = v(a)
Se Se(z)

For € — 0 the first integral in (8) exists and BOREL-POMPEIU’s formula for
interior points is shown. For the second part we have to repeat the proof
without excluding a neighbourhood of z. ]

Remark 40 BOREL-POMPEIU’s formula is also valid in the case of mul-
tiply connected domains. Suppose G; (i = 0,1, ...,n) be simply connected
bounded domains in R™ with smooth boundaries I'; (i = 0,1,...,n) which
fulfil the relations
(i) GodDUGi=K and (i) GiNnG;=0 (i# j). Then

=1

(Fr)(@) = (e @)+ Tanw D) = { 0 10 QNG }

for every function in C'(Gy \ K) N C(G \ K).

Now it is easy to transfer many of the results of the theory of one complex
variable which are connected with CAUCHY’s integral theorem.

M
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Theorem 41 (CAucHY’s integral formula). Let G C R™ be a domain with
a piecewise LIAPUNOV boundary. Furthermore, let u € ker D, then

@ = {7 & 7] )
holds.

Proof. Because of Du = 0 formula (9) holds. m

Corollary 42 Let u € ker D. Then u has partial derivatives 0y, i,
(it € {1,...,n};L € {1,...,k}) of any order.

Proof. The kernel function e(z — y) has for = # y partial derivatives of
any order. n

Corollary 43 (Mean-value theorem). Let B,(z) C R™ be a ball centred at
z of radius r. For any u € ker D

n
u(a) = T / u(y)dy .
Br(z)
Note that o, ™ /n 1s just the volume of the ball B.(z).
Proof. The proof is an immediate consequence of Cauchy’s formula. ™

Corollary 44 (Mean-value formula). Let B.(z) again be a ball centred at
@ of radius v. Then

u(z)=# / w(y)dS

Se(x)

where u € (ker D)(B,(z)) N C(B,(x)).
Proof. Applying CAUCHY's integral formula then

i Y 1
/ 7 TI" |"J = -T| u(y)dS,, = Tl / u(y)dS,, . [ ]

Se(z)
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Theorem 45 (Maximum modulus theorem). Let G C R™ be a connected
bounded domain and u € (ker D)(G) N C(G) with G = GUT, I' = 8G. If
there exists some z € G with

[u@)| < |u(z)]  (Vz€G)
it is necessary and sufficient that u is constant.

Proof. For z € G there exists a ball B.(z) C G. Applying the mean value
formula we obtain

u(s) = o [ ula)dSe. (10)
Se

Assume now that |u(z)| < |u(2)| and u is not constant in B,(z). Then there
exists a decomposition of S, into two sets

={z €S : [u(a)| = [u(z)[}, S¢={z €S.:|ulz)| < |u(z)]}.
Formula (10) yields

_ IS +18¢1

Ten]

ju(a)| < = [ / ju@)ast+ | lu(z)as]

Sy

— (@) = Ju(2)]-

This is a contradiction. Hence on S, we have |u(z)| = |u(z)|.

Choosing now smaller balls B./(z) (' < £) we obtain the same. Therefore,
|u(z)| = |u(2)| in the whole ball B,(z). Since G is connected we get imme-
diately |u(z)| = const on G and for the continuity of |u(z)| such also on G.
It remains to show that u(z) is also a constant. From |u|* = const. we

conclude
0=DJu* = DAY u}) =23 > (Bua)use;
A A =1

and also

n n
0=Alu=DDu* =2} [(Biyun)unese; + (Bun)(Buun)ee;) .
A

=1
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Since the components of a CLIFFORD left regular function are harmonic one

gets
0=3"3 (Bua)?
A i=1

and consequently dius =0 (i = 1,...,n; A). [ ]
Corollary 46 Let G C R" be a connected and bounded domain and u €
(ker D)(G) N C(G) then

sup |u(z)| = sup |u(z)|.
€0 z€8G

Theorem 47 (LiouviLLEs theorem). Let u € (ker D)(R™). If |u(z)| <
M (z € R") then u is a constant.

Proof. The proof is left to the reader. ®

Theorem 48 (MORERA s theorem). Let u € C'(G), Du € L.(G), r > n.
If for all balls B.(z) (r >0, z € G)

n(y)u(y)dy(y) =0,
By (z)

then Du =0 in G.

Proof. Let z € G be an arbitrary point (B,,) k € N a regular sequence

of balls which is contracting to z € G. We have z € [ B,,. For the validity
k

of LEBESGUE’s theorem we obtain for each v € L,.(G)(r > n),

1
v(y)dBy, (y) =: i(z)
'B'*'BZ

lim
k=00

and v = © in L.(G). Substituting v = Du it follows by Proposition 33 that

/ (Du)(y)dy = / n(y)u(y)dSn,,

By, Sy
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and also |
— /(Du)(y)d'y =0 (F=001, 2,20
1B.
ok

and, therefore, (Du)(z) = 0 almost everywhere on G. ]

Theorem 49 Let u € (ker D)(R™\ G) N C(R™\ G). Suppose
I lljm u(z) = u(o0). Then

(Fru)(z) = { Zgzi - u(z) zgﬂé"\é .

Proof. Let Bg(z) be such a ball that Bg(z) D G. Write briefly
s = (wz,wy) = (z/|z],y/|yl). On account of

Lo it o) A )
ey nas g e S
and CAUCHY’s integral formula for multiply connected domains we get
1 D=1
] S, — | ———n(y)u(y)dl’
”"/Iz_yl,, St = [ ot

_Jw , z€R"\ (Br\G)
) zeBR\E'

The first integral transforms into

1 T-y Y- /
— y)dSg, =
) o=y = | PRt it

ini / (y)dSpzl?.

For R — oo the right-hand side converges to

n-a
CT
%" O) [ y(oo)asy = u(e) (Ch(s) = 1),
w g
which provides the result. u

(T
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3.5 Plemelj-Sokhotzkij-type projections

The operator Py := 3(I+5f) denotes the Plemelj-Sokhotzkij-type projection
onto the space of all Céy,-valued functions which may be Céy,-regular
extended into the domain G. Qr := %(1—5{!) denotes the Plemelj-Sokhotzki-
type projection onto the space of all Cfy,-valued functions which can be
Céy-regular extended into the domain R™ \ G and vanish at infinity. The
operator

A — 26(x)

(Stu) == =2

u(z) + (Spu)(z) 0<6<4m)

where & is the space angle taken from outside at the point z. It is easy to
see that

(S)2=1.

Note that Plemelj-Sokhotzkij-type projections coincide in case of the unit
ball with the well-known Szegd projections. We have the following state-
ments :

Proposition 50 [11) Let u € C'(G) N C(G). Then we have the formulas

() (Fru)() + Te Du(z) = { u(Oz) : :‘ 2 gn(\Bg_;relfPampeiu formula) }

” _Jful@) , z€CG
() (DTou)() = ¢ jem\@}
(iii) (DFr)u(z) =0 in GU(R"\G)

Theorem 51 [11](Plemelj-Sokhotzkij's formulas). Let u € C%%(G), 0 <
a < 1. Then we have

(1) lim Fru)(z) = (Pru)(€)
(W) Jim Fru)(z) = (-Qru)(€)
aeR™\T

for any € € T.
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Corollary 52 [11] Let u € C%*(T'). Then the relations

(1) (Stu)(§) = u(é) (i)  (FrPru)(§) = Fru(§)
(1)  (Pfu)(§) = (Pru)(€) () (Qtw)(€) = (Qru)(§)
are valid for any £ € T.

3.6 Hilbert space decomposition

Let us now consider the Hilbert space Ly(G) with an inner product (u,v) =
[avdz € Clop.
G

Theorem 53 The Hilbert space Ly(G) allows an orthogonal decomposition

Ly(G) = [ker DN Ly(G)] @& D[V;’.} (G)]

Proof. The right-linear sets X; = Ly(G) Nker D and X, = Ly(G) \ Xi
are subspaces of Ly(G). Let u € X,. Then it follows v = Tgu € W3 (G)
and u has a representation u = Dv,v € W3(G). | F\‘om u € X, we have
f Duv gdz =0 for all g € X; and in particular f Dv e(z — y)dz = 0 for all

numbels L € N, where y; € 'y, T4 = 0G4, and clos G € G4. We assume
now that the set {u} € Ty, is dense in T'4. Integration by parts leads to

fe(y: — z)n(z)v(z)dly = (Frtrpv)(y) = 0 for all [ € N, hence, Fptrpy =0
r
in G~ and lim (Fptrpo)(y) = 0. Consequently, we have trpv € im FPp N

nsr—

W ,‘ ’2(G‘). Using theorems about traces we obtain the existence of a function

V € ker DNW}(G) : trp V = trp v. If we consider now v — V € W} (G),
then the application of D shows that D(v — V) = Dv = u and we have

u€ D[H ! (G)]. This result means that ((ker DN Ly(G))* € D[W2 G)).

If we suppose now that w € D[W2 (G)] we conclude as follows:

w € D[W) (G)] = w = Dz,z €W; (G) =

M
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/nwdz=/aozdz=/mzdz=o
< v G G

for all u € ker D.

Then we have D[W} (G)] C [ker DN Ly(G)]*. m

Corollary 54  There exist two orthoprojections F; and Q¢ with
Pg: Ly(G) — ker DN Ly(G)
Qc: Ly(G) — D[W; (G)], Qe=1-FPg

Remark 55 If we use the operator Ru = 3 rjquses with positive real
A

numbers r4 and the inner product [u,v]z = [ B-'uR~'0vdG then Theorem
G

53 can be generalized

in the following way:

L3(G) = [ R kerD (\ Ly(G)) @r DIW} (G)]

We can prove this decomposition using the same methods as in the proof
of Theorem 53.

Corollary 56 Let f € Ly(G), (Tgf)(z) =0 forz € R\ clos G = f €
im Qc‘

Proof. We use the representation f = Dg with g = T f. From the as-
sumption it follows that trpg = 0 and hence, f = Dg € D[W,; (G)].m

The last corollary enables us to formulate a theorem concerning the com-
pleteness of {e(x — )} and to prove the theorem without using Hahn-
Banach’s Theorem.

Theorem 57 Under the above mentioned conditions for {yihien C La the
system {e(z — y) hen is complete in Ly(G) Nker D.
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Proof.As usual, we assume the existence of u € ker D N Ly(G) = imlPg
with property (u,e(- —y)) =0 VI € IN. Note that imlPg is the image
of the operator IP;. Then we have (Tgu)(z) = 0 for Vo € T'y, because
Teu € C=(IR™\ clos G). Furthermore, using Tgu € ker A(R™\ clos G),

(Teu)(z) T‘)O we arrive at (Teu)(z) = 0 for = € R™\ clos G. The

previous corollary implies that u € im Qg. Hence u € im IPg Nim Qg =
{0}. This proves the theorem. M

4 Applications

4.1 A new sort of elementary functions

Let us start with the introduction of an exponential function. For this
section we assume that z is a paravector in Cly,, e.g. = € PVec Cly, C
Cty . Each paravector permits the representation x = zo + z with z =
i, z:e,. Furthermore, we define a function w : R™ — S™ given by w(z) :=
z/|z|. We will use for our definition a normally convergent series expansion.
For an arbitrary € > 0 it is always possible to find a sufficiently large number
N such that for any 7,5 > N holds

I("|z|"

<'E,

k=r

where K is a constant which only depends on n and satisfies the inequality
|zy| < K?|z||y|. Note that |z|* = a7 = 23 + 23 + ... + z2.

Definition 1 Let z be a paravector in Cly,,. The exponential function e*
is defined by the power series

:L'k

o (11)

[V]s

=
[}
o

Proposition 2 The ezponential function permits the representation

e* = e*(cos |z| + w(z)sin |z]).

.. A



Proof. Using the CAUCHY product of two power series we get

Wolfgang Sprossig
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It remains to consider e . We have
o~ 2t i o0, ot
Z T + Z
k=0 k! =0 [=n 2[ e 1
2 i(-l | i _pye 2 |z[35E ;
= (26)! = (26 +1)! = cos |z| + w(z)sin |z|.

Corollary 3 Let x,y be paravectors in Cly,. If zy = ya we gel

etV = g%e¥,

Corollary 4 For any paravector @ € Cly,, we have

(i) e™%e® =1, (in1) e“®™ =—1,

(i) e #0,

(iv) € = (e%)* (k € N) (MoIVRE s formula), (v) |e*| = e®,

Using an idea in [2] we obtain:
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(12)

Corollary 5 Let x be a paravector in Clo,. Then the exponential function

may be described by the limat

= lim (1+2)".

lim
Proof. Consider the difference

@ NS 1
B ) =§(ﬁ‘

7. .
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Since (1+ =)™ is a polynomial this series is normally convergent. The same
is valid for the series e®. The coefficients in front of z* are positive. Now
we obtain

- k m
e’—(1+%) lSi(%—&:—g)|Ka:|"=e'K*'—(l+[K—mm—|) i

k=0

which tends to zero for m to infinity. |

Definition 6 Let z be a paravector in Cly,,. Then hyperbolic and trigono-
metric functions are defined by the following formulae:

i e’ —e® oehs Ciar 2
i= ———, coshzi=———
nhz TR o)
For |z| # 0 we define:
ezu(z) 43 e—zu(z) e;w(x) o e—-:w(z)
sing = ——w(z), cosTi= —————
?) 2
Corollary 7 It holds
sin ¢ = —sin (—z) and cos & = cos (—z).

Proposition 8 The hyperbolic functions sinhz and coshz and trigonome-
tric functions sinz and cos z permit the following representations:

cosh @ = w(z) sinh 2 sin |z| + cosh z cos |z,
sinh z = w(z) cosh 2 sin |z| + sinh z cos |z].

and

sine = w(z)sinh |z| cos zg + cosh |z|sin x,

cos & = w(x) sinh |z| sin zg + cosh |z|cos zp.

The right-hand sides of these representations can be used for the definition
of sin and cos in the case of |z| = 0.

(T



Wolfgang Spréssig 298

Definition 9 Let x € Clyy be a paravector, e.g. = xg+z, @ # zo < 0.
Then a paravector valued logtm'thm log z 1s defined by

log 2 := In || + w(z) arCCos > |z| #0 or |z| = 0,30 > 0.

[ |
Corollary 10 The above defined logarithm log = has the following proper-

ties:
(i) log 1 =0 and log ¢; = g (i=1,..,n),
1
(i) 1- —— m'(‘tan la| < |log | < |z| =1 -(—m(‘lanu
|| ool |zo]*

Theorem 11 The fun(,tmn log @ 1s the inverse to the exponential function
e* introduced above, which means

% =g and log e* =z.
Proof. The proof is to realize by a straightforward calculation. ®
Corollary 12 Let zy = yx then the well-known logarithm rule

log (zy) = log « + log y

15 valid.
Definition 13 Let o be a real number. The general power function a® is
defined by

2O 1= OB T,

One example will confirm this definition.

Example 14 Let © = z and @ = 1 . We have to line out the following

calculation:
z* = egunmw(x)mm,'-,ﬂ,-w(z)u*kn)

Vi [cos (l(urccoso + 2k1r)) Pz 0 (%(arcsino + 2k7r))]
Yzl [cos (2— + %—1-r) + w(z) sin (21" - %TW)]

fork=0,1,..,n—1.
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4.1.1 Radially differentiable functions and FUETER’s mapping

The elementary functions introduced above are not CLIFFORD regular. This
is caused by the operator I' in the following representation of the CAUCHY-
FUETER operator

8 = B+ w(z)dlg + w(z)l—i—lr.

Thus it holds as already proved I'w = (n—1)w. This expression is disturbing
the structure of our elementary functions. By the way, we note that scalar
and vector fields which are only depending on |z| are lying in the kernel of
I'. It seems to be useful to introduce the following operator:

Definition 15 The differential operator
1
Dya = 5(60 — w(2)0)z)
1s called radial CAUCHY-FUETER operator.
Note the denotation D,,u := u' for a paravector u € Cly,. Let us now

investigate in which manner this operator is acting on the elementary func-
tions.

Proposition 16 We list here the following differential actions:
(1) Bzw(x) =0, (i) Oylz| = :a:_ll' (1ii) Oz = w(z).

Proof. For u € C*(R",Cl,) we have for instance
Ojgwi(z) = Ojg1Oilz| = 0,01z |z| = 81 = 0,

where w,(z) = z;/|z|. We note only for (iii) that z = (z/|z|)|z|. Property
(ii) is easy to verify. [ ]

Proposition 17 Let u,v be paravector valued functions. If w(z)u = ww(z)
then for D,, the LEIBNIZ rule holds.

Theorem 18 The radial differential operator D,, generates in the set of
elementary functions the following rules:
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(i) () =e*,
(1) (sin z)' = cos z.' (cos z)' = —sin z,
(ii) (sinh z)’ = cosh @, (cosh z)' = sinhz ,
() (log =)' = 1,
(v) (z°)' = az®"! where a € R.
Proof. All properties follow straightforward. =
Definition 19 Let f : PVec Cly, +— PVec Cly, be a paravector valued

Junction in Clon of the type f = fo+ w(z)fi with fo,fi € R and h =
ho + w(z)|h|. Such a function is called radially differentiable or radially

CLIFFORD regular if and only if

o U@ 1) = S

=0 |h|?
exists. In the case of existence the radial derivative is just f'(z) = Dy,.
Theorem 20 Let f; = fi(wo,|z]), (i = 0,1) real-valued functions and
f = fo+w(z)fi. Further, there emist continuous partial derivatives 0o f;
and ; f; (1 = 0,1). Then the function f is radially differentiable if and
only if the relations

Oofo=Ofs,  Oofi =—-8afo

are vald.

Corollary 21 All above defined elementary functions are radially CLIF-
FORD regular.

Now we will demonstrate how to transform radially regular functions to
Clifford regular functions. The basic idea goes back to R. FUETER, who
formulated a transformation of holomorphic functions to quaternionic regu-
lar functions. Later M. ScE (22] and T. QIAN [20] generalized these results.
We will illustrate this mapping in Cy,. Let z ;== u+iv € C and h :=
u+wv € Cly,. Introducing by 7 the mapping:

g=1(z) = A®-V/?p,
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Proposition 22 [20] Let h = u(=zo, |z|) + wv(zo, |z|) be a function radially
regular in an open set of R™'. Then for any number k € N we find

AFh = w(, |z]) + wor(zo, |z])

where

1 Vg1
= 2k 1 =2k ( &
i e (g~ ) -2t
Proof. The proof given in [20] follows by mathematical induction. [ ]

Theorem 23 Let n = 2. A radially quaternionic regular function fulfils
the follounng differential equation

|z[*Ah — |z|dz|h +w Vech=0

Proof. The action of the operator A on h.

Ah = = Bigqu(|z], o) + wig) (ﬂz_l—’"—)) :

[a] [T}

Further we obtain

1 v
Ah = 6:cu+w01 ( )=—— zlu + wizlv| —w—s
Veclz

Ah 6|.’£|h I |2 .

Hence
(12 ~ |zlojz] +w Vec] h = 0.
Corollary 24 The Laplacian realizes the mapping
A : ker Ojzjq — ker d,

where 8,o = 8y + Dy .

(I .
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Remark 25 For an arbitrary n we have to substitute the operator A by
the operator A™~1/2." In this way we have for odd n that this operator is
just a pointwise differential operator and for even n we have to consider the
Fourier multiplier operator induced by the symbol

(2milg))" .

We will now restrict our considerations to the case of real quaternions.

Theorem 26 FUETER' s mapping delwers us the following quaternionic
reqular elementary functions.

= sin ~|z| cos |z|+sin |z|
1. exp z:= (+—|‘l'il +w-m—14—4|£| )e""
2 sin z:= sinxo""; d 4w (Ll-lg—““"hl;“"""“ ) ©08 Tp
3. cos 7 := coss:no""il —w(‘ ml ’]:, ey )Siﬂlg
4. cosh z := + cosh In%lﬂ +ul'"m|-}f'{&i sinhzg

5. sinh 7 := +sinh.1:u"j"%illﬂ + uﬂll—;‘#—‘:i cosh z

Proof. Using the paper ([20]) the proof is an exercise. ~ ®

Remark 27 FUETER s method also generates a “logarithm” which we will
denote by log z. After a straightforward computation we find:

1 1 1 70
1 R e — —_— 4 — arcs ———— | .
Tl (r2 +23) 2 (r(r2 +z3) Vri+ zg)
Unfortunately log is not the inverse of exp.

Now we will consider some elementary properties of the regular exponential
function exp z. Setting
3= (30 o B)

2
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Theorem 28 The exponential function has the property:
expAz = XexpAz , A€ C

Proof. We obtain D = r;|L + wl,,. As for definition

1

Dexp\z = (
h) []

L+ wL,) expAz

using Lf(|z|) = 0 (for any real function f!) and Lw = 2 then we get.

Lo il (sinAlgl-Aglcon ]
Dexplz = (EL+w£’w) (!:Izlz +w (S ))
2 in Alz| =\ Al A Alzl(Alz])=Asin A
— g (o)) | (2m )
Ixco.,\zb-,\imum,\;t,\cm,\;v§?4a’;(ﬁnxiﬂi cos A[z])|
(Alz])
A sin Alz|—Alz] cos Alz AcosMz| _ Alzlsin AcosAz|
= (_LL,_I_[“ Ta _“L') - "G - Zha + o
2l Alzl(Alz])=Asin A
~ B fin M — Mai cos gl + w (Ae=lGighhencie
s r| i 2| 31212
= 2 [{-}T’\gﬁl - 1“’;’] +2 [i‘t\ldl;l’T‘ cos A|z| — ﬁjéllgcos/\lg] +wl..))
= =X ["—'i—l';lﬁl] +w|...] = —AexpAz [ ]
Corollary 29 It holds

(i) |expz|* >0, (ii) lif(l)lexpﬂ =
4.2 Selected boundary value problems in fluid me-
chanics

We assume for the moment that the domain G is bounded by a pieceweise
smooth bounded Liapunov surface. In the last years these assumptions
could be considerable weakened.

4.2.1 Linear equations of Stokes’ type

1 [P
—-Au+ -V ~f in G
o) 3 7l£

divu = fo in G

u = g on I

(T .
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Here 7 is the viscosity and p the density of the fluid. We have to look for
the velocity u and the hydrostatical pressure p. Between fy and g we have

to fulfil the relation:
/ Jodz = / ngdl.
G r

For g = 0 then the measure of the compressibility f; satisfies the identity

b/ Jodz = 0.

For all such real functions fy can be represented the unique solution (p is
unique up to a real constant) as follows:

Theorem 30 [12] Let [ := fo+ [ € W,',‘(G. H) (k>0,1<p< o). Then
we have

u

:—:Tc Vee Tgf — g",, Vec Fr(treToVee Fy) ™ trpTeVee Tof — Tefo,

PSCTGI — pSe Fy(trpTeVecFy) ' trp T Vee Tef +nfo.

P
In that way we strongly separated velocity and pressure,

4.2.2 Nonlinear equations of Stokes’ type

Now we assume that the compressibility depends on the velocity and the
nonlinear outer forces. The equations describing this state are the following:

—Ag+;1;V,, - Aflu)iaG (13)
div(p™'u) = 0 in G
u=0o T

The parameter of viscosity 7 (1 > 0) depends on the position. The main
result is given by:
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Theorem 31 [15]

1. Let f € Ly(G,H),p € W}(G),n € C=(G). Then every solution of the
system (13 ) permits the integral representation

U
0

ARBf — RBDp (14)
SeAQTBf — ScQTBDp.

Here B is the multiplication operator by n~"* and R := T QT
2. If the operator function f(u) satisfies the estimates

(@) N = F@)l2 € Lllw = vllza, for ullaa, o]l € 1,
(ii) ||Bll2 < K for positive constants K,L

(i) A < {ITllmoncacall Tlliaa KL}
the iteration procedure
up = ARBf(un-1) — RBDp,
AScDBRf(up-1) = ScDBRDp,
o1
[huollzn €1 (ug €W, (G, H))
o1
is converging to a unique solution {u,p} €W, (G,H) N ker(divB) x
Ly(G) of (14), where p is unique up to a real constant.
4.2.3 Problems of Navier-Stokes type

In the stationary case Navier-Stokes equations are described in the following
way:

P 1 Dir
-Au+=(u-Vu+-Vp = =f in G 15
4 n( Jut Vo= -f (15)
divu = 0 in G
g0 on T

We will abbreviate with M(u) := M*(u) — f, where M*(u) = (u - grad)u.
The main result is now the following:

Theorem 32 [9)/11]

. AW
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1. Let f € Ly(G),p € W) (G). Buery solution of (15) permits the opera-
tor wmtegral representation
= ——Rl\l(u 25 —Tch (16)
SSCQTGM(u) = ’-ISch =

ol
2. The system (16) has a unique solution {u,p} €W, (G, H)Nker(divB)x
Ly(G), where p is unique up to a real constant, if

@ Ml < (18K*Cy) ™
with K = 5”Tc‘,‘"{l,,mmq.w;l“T”in.Lnl
ol
(i) uo €W, (G, H)N ker(di\ B)
with |jugll2y < man(V, _I\T - A)

holds. Here means V := (2KCy)~", W := [(4KC;)~* — 214! elfle)y and
G = 9+C, where C is the embedding constant from W} in L. The

iteration procedure (starting with ug)
= 2 RM(un_1) - - RDp,

Ul n
e T 1
=8eQTgM (un-y) = —=ScQpn
n n

0l
(uo €W, (G, H) N kerdiv)

converges in W (G, H) x Ly(G).

4.24 Navier-Stokes equations with heat conduction

We will now consider the flow of a viscous fluid under the influence of
temperature. The corresponding equations read as follows:

4 L 91 3
—Au+=(u:-Vu+ -V, + —gw = in G
u ’7( Ju n' P Yl"l f
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-Vuw + 7-'-l(u~V)w = lh in G
K K
divu = 0 in G
u=20 on I
w =20 on I’

We denote by p the density of the fluid, by 7 the viscosity, by 5 the Grashof
number, by & the temperatur conductivity and by m the Prandl number.
As usual u stands for the velocity, w for the temperature and p for the
hydrostatic pressure. We will here only formulate the main result. It can
be shown that the solutions of this system fulfil the following system of
operator integral equations, where boundary conditions will be fulfilled au-
tomatically. Here we have this system:

u=~R{M(w) - Jeyu] - 760 an)
0 = SeDR[M(u) - %e;w] i %Q,,
w= - RSc(uD)w + Ry

where M(u) := 5(! -grad)u + f(u) — F.

Theorem 33 [13]

1. We consider the following iteration procedure:
= = R{M (1) = Jesunea] - ToQm (18
0= ScDR[M(tn_,) - %e;w,,_ll pas }'Qp,.
= = % RSc(unD)w, + Rg.
The computation of w, will be done by the inner iteration:

w} = " RSc(unD)wy + Ry.

ol
2. Let u, €W, . Further, let m # 4x and u,|| < x/mKC. The sequence

{w} e converges in Wi (G).
e .
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3. Let F € Ly(G,H), g € Ly(G), j WG, H) — Ly(G, H) with || f(u)—
f(v)lla € Llju = v||2, and f(0) = 0 Under the additional smallness
conditions

L o 1 Sy T
(@) JIFl+ Kld gl < o7 1emc (d =(4- )n)
) >
(i) ||9||2 < (1 \/_)nd (321\30".)
(112) m<dr
the sequence {un, W, Pu }(neny converges in W) x W, x Ly to the unique
1 1

solution (u,w,p) evi'z (G, H)x vi', (G.H) x Ly(G) of the originally
boundary value problem, where p 1s unique up to a real constant.

Remark 34 We note that conditions (1) and () can always be realized for
flurds wnth big enough viscosity number.

4.3 Eigenvalues and Teodorescu transform
4.3.1 On the first eigenvalue of Dirichlet’ s problem

We are going to establish connections between suitable norms of the Teodo-
rescu transform and the first eigenvalue of Dirichlet’s problem. Assume that
(' is a bounded domain with a boundary I' which satisfies weak smoothness
conditions for instance the cone property. Then the Dirac operator

D M;,‘ (G) = imQ
is invertible and
D' :i=Tg:imQ —~W;1' (G).
We obtain in this way the following estimates:

1 Tevlla < cllvlla (v € Q)

[1Dulla = ¢ ulla  (u €W; (G))
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For the smallest eigenvalue A; of Dirichlet’ s problem we get

M= inf Ce—Bub_ o C(EGTGREES PlDule

& o 7 n .

ooy Il wenje iz ey Tl
o o wdd

Hence

1 Dull = Aullullz-
With u := Tgv and v € 1mQ it follows

1
1Zallz < —IHUIE

and || Tg|lmowy) < /\,'1/ 2 Assume now that u, is the corresponding eigen-
function to the eigenvalue \,.We obtain

1
ITewlls = 1T Dwillz = lul2 = || Dwillz = Ilwug,\—!

with w = Du; and (u; €W} (G)). As a consequence, we have
A = | Tellimo oy

In a similar way we find

A+ 1
Te||? o =—
I G"[-‘mQ,w,'(cn A

Because of || 76 ||L,,L5) 2 176 l[im@,L2) We get, applying Schmidt’ s inequality,

/1G]
T < =
176 £a,2) B

Here B, denotes the unit ball in R™ and |B, |, |G| denotes the volume of the
unit ball and the domain G, respectively. Thus we have obtained under
these very weak conditions the domain G the following lower estimate for

Ay
¥ |B,|)’
A 2> —
e (IGI

(T .
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Remark 35 Under additional g trical and th conditions there
exist better lower estimates. Lower bounds for eig lues were first esta-
blished in 1956 by E. Trefftz/F.A. Willers, stimuloted by problems in engi-
neering. Essential contributions were given by J. Hersch (1960), W.A. Kon-
dratiev (1967), J. Cheeger (1970), L. Payne/I. Stakgold (1973), W.K. Hay-
man (1978), M. Taylor (1979), R. Ossermann (1979), C. Bandle (1980),
C.B. Croke (1981), M.H. Protter (1981), R. Klotzler (1983), J.V. Je-
gorov/W.A. Kondraticv (1984) and so on.

4.3.2 First eigenvalue of Neumann’ s problem

By modification of the Teodorescu transform we will get a lower estimation
of the first eigenvalue of Neumann' s problem

—Au=)u in G,
Gu=0"on T.

For this purpose, we introduce the factor space

WA(G) = {u € WN(G): /u{.r)dG = 0} /ker-D
(e

and the modified Teodorescu transform
Thw:= T~ ﬁ (Tw)(2)dG  (u € Ly(G)).
Note that ;
D : W)(G) B La(G).
The following properties can be proved:
(i) im D(W3(G)) = La(G)
(i) ker DNWI(G) = {0}
(iii) ker TN La(G) = {0}

(iv) im T(L2(G)) = Wi(G)
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Hence, it follows immediately that the inverse of the operator D as a map
between this pair of Banach spaces is given by

Dl=T.

Using the same technique as before, we prove by consideration of the ope-
rator T (cf. [13]) the estimate

where A denotes the first eigenvalue of Neumann’s problem.

4.4 An eigenvalue problem of Stokes type

Let f: W}(G) — Vee Ly(G) be a non-linear operator which fulfils a Lips-
chitz condition

1) = F@)ll2 < Llu=vll, (u,v) € {u € W(G) : [|ul| < 1}.

We are going to consider the following non-linear Stokes’ eigenvalue problem

—Au+n'gradp = Af(u) in G.

divu=0 in G,

uw=i0on PE.
The real number A is called eigenvalue parameter. 5 = 5(z) describes the
viscosity function. After transformation in a corresponding quaternionic

language we get the equivalent operator-integral formulation

ut+n ' TeQp = ATcQTof(u) (19)
n7'ScQp = AScQT:f(u) (20)

where u = ug + u and f(u) = f(u).

. A
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Definition 36 If for problem formulated above the parameter A there emist
non-zero functions u and p which solve the problem formulated above then
A 1s called a point of the spectrum o of our problem. If u ||ully, < 7 then
we denote this part of the spectrum by o,.

Theorem 37 Let A € a1, f(0) = 0. Abbreviate [Ty := ||T||mo,wy) and
[I7ll2 := ITllime.Ls)- Then

[A] = (LT[ lIT[2) "
Proof. The differentiation of the representation formula (19) yields
Du + %Ql) = AQT f(u).
As in the case of the linear STOKES system we have
0wl + <1 QplE = (AFIQT ) @)
It can be shown (cf. [12]) that

Al
1+

llell2ix < [ALIT 2]l £ ()2 < |AFIT|2L.

Here, we used that || f(u)||2 < L for |jul|,» < 1 as a consequence of the local
Lipscuirz condition. Hence,

[lallz;y < (AN N7l
Now the following iteration procedure can be formulated:
ol
u € W;(G)Nkerdiv, |lugll <1,
1
Up = ATQT f(up—y) — '—'TQp,. =12 ..).

At each step a linear STOKES problem has to be solved. Making some
Operator estimations, we obtain:

Wum = vinallz0 < AT T2 Lllttns = tun-alfa.
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Assuming |A|||T]l[|7|l2L < 1 we conclude the contractivity of the non-
linear mapping. With the help of (21) it is ensured that [|ual2 <1 (Vu €
N). Now, we can apply BANACH’s fixed-point theorem and obtain that
{ts, pn} converges to the unique solution. Therefore, A such that

1
A = Zrmve
can not belong to oy. ]

What happens when we omit: the restrictive condition f(0) =0 ?

Remark 38 If f(0) # 0 then,it can not be ensured that u, — 0, although

ol
the proof of convergence goes through. If we assume that f :W,— Ly(G)
(§<p<}) and

() = F@)llp < Lilw = vll2
Vu,0 € WHG) : llullag S 1, floflas € L.
We can prove that
inf |Al > (LT )T lgy,cail ™"
A€oy
This is a consequence of
o llullzs < ATz, za L

which can be concluded from (21). The assumption p > £ guarantees that
T:L,— L; is bounded.

one has the following theorem:

Theorem 39 Let A € 0y, f(0) = 0. Then under the assumption

£ (w) = f@)ll2 € Lllw = vllz, Vv fjullz < 1, {lvfls < 1.

we have that

inf [A] = ML
A€oy

(T
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ol
Proof. We already know that |[Dulls > VAi[lulla  (¥u € W,). Therefore,
from (21) we get

Arlleld < IFITWNS @)IE < APITIZLE full3.

Now [|T]|2 < 1/v/A; makes the proof complete.  ®

Remark 40 The Lipscuinz condition in Ly s more useful than the condi-
tion between Ly and W, But we have to pay for this convenience. Namely,
we have another ewgenvalue in our final result. Nevertheless, all estimates
are constructive, because N, as well as the T-norms can be explicitly esti-
mated by properties of G.

4.4.1 Lower bound of the spectrum of a non-linear problem in
elasticity
Let us consider the following eigenvalue problem (cf. [?][13]):

n

—-Au - 2 ,)gm(l divey = Af(u) in Lic)

m
w = 0. on I

The parameter m denotes Poisson’ s contraction number and u is the vector
of displacements. As in the previous section we complete the vector function
u to the quaternionic function 4 = ug + u. We obtain the quaternionic

formulation
DMDu = A f(u)
u = 0,
where
m-—2
Mu = muo +u.

An iteration procedure is now defined by

tUp = TQuM ' ATg f (un-,
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It is easy to show that trpu, = 0!). In [12] it is verified that the sequence
(uy) converges to zero if

m-—2
A T o o P
A 2 S DT

In that way we get lower bound of a.

Remark 41 Swumilarly, one get an estimation of the first eigenvalue of the
oscillation problem in lincar elasticity:

—Au — L grad divu—0%p = Af(u) in G
m=2

8= Ditson 1t

Here @ denotes the oscillation frequency and p the density of the material.
The estimation reads :

m=2 #p

M2 g 1)\/W'

where A, denotes the first cigenvalue of Dirichlet” s problem.

4.4.2 Comparison of eigenvalues of different eigenvalue problems

In this section we want to deduce relations between the first eigenvalue of
Diri-

chlet’ s problem, Stokes’ problem and Lamé' s problem. The results were
obtained by K. Giirlebeck . Confere our book [12]. Lamé's system

A m’t 2grurl divy = Au in G,
u =0 on I
where Sc u = 0 for A € R. This system has only the trivial solution if
||| T Qe M T it ) < 1

Hence

—2

m
1331 3(m — 1)

o .

Ai(m, G) 2 || Tl
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Now we can estimate, on the one hand,

3 (DM D u,u), 5 (Du, Du)
,G)= inf ——m——< inf — =A,,
e T A e g
w0 -

On the other hand
Al By it { (IIDull} + ﬁ:wc Dull3)
[l
Therefore, we have monotonicity relatively to m i.e.
Ay(m,G) € Ay(m',G) for m<m'.
Then there exists the limit
'l"in.n'.l\l —

ol
, UEW,, Scu=0,uaé0}.

We are able to formulate the following result:

Theorem 42 (Giirlebeck(10])  Let A, be the first exgenvalue of Stokes equa-
tion under Dirichlet's condition and m > 2. Then we have the inclusion

BN R :
] m* < M(G) < Ay(m,G) € A(G)

and Ay(m,G) — A(G). In other words: The first eigenvalue A, of Dirich-
let's problem is smaller than the first ewgenvalue Ay of Lamé’s problem and
this agamn 1s smaller then first eigenvalue A, of Stokes' problem.
Remark 43 B. Kawohl obtained in 1957 (c¢f. [16] the estimation
(1 s ﬁ) M(G) > Ay(m, G) > M(G).
Remark 44 If one has a solution u of Stokes’ problem
—Au+n'gradp = f m G,
divu = 0 m G,
u =0 on T,
then it is possible to get an upper estimate for Ay. It holds
0< A (G) < l—_’%
where K = (V2||Tq f|l, - 0 1 Qpll)llullz; has to be small enough.
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