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In this r.x pository art.iclc wri tten far a non-specialist publi C', 1 should like 
lo n?lat e about prescnt, day pir t.m c of the Lagrange and 1-l am ilton gcome-
1 ri~ applied in 1 chan ics1 Phys ics ele. Of eoursc, the s11bjcct is 110 1. a 
s impl<' onr and t he at.lcmpt. t.o lmmanize it is a diffir11 lt. opNat.io11 . This 
is tht• rrason becausc 1 di vidccl t.hc mattrr in two part.s. O nc is dcvot.ed 
10 an elcm nLary ex pm; it.ion of 1.hcse gcometriral models. Thc scconcl pmt 
nddrcsscs to 1 he grad uatc leve!. 

Ali problems cl isc11ssecl herc cnn be fo11nd in the books [l],[2],[4],[5],[6]. 

1 Considerations on the Lagrange and 
Hamilton geometries. 

1. The Lagra nge geometries. 

The las1 O ycars were doniinated by Lhe Einsteinian model from Genera l 
n. lal1\'ily gi" n by t.hc llicmannian gcomctries. These wcrc obta ined 11s i11 g 
1 he rnnnifolds dcscribcd by l.cs t. pnrticlcs cndowcd wit h t he physk a l cnt. il. ics, 
ns gra\•itational or clccLromagnctic fi clds etc. 

· 'pc<'inlly in Relnt,ivit.y, t. hc gravitat ional field was s t.udied by mcans 
f Ricmannian modcl wit.h impa r! ant resul ts. The at.tcmpts of dctcnni­

nnl ion of a goom t rica! modcl which to descri be t he bot.h elcc t,romagnctir 
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and gravitational fielois are very oloi . In 1941, G. Randers considered an 
interesting metric1 given IDy 

(1) ds2 = 1Ja;;(x)3h) + b;(x)±'J2dt2, 

where a;;(x) are the gr&vit8'tional ¡;>otentials and b1(x), (i,j = 1, .. ,4) are 
the electrornagnetic ¡;>otentiatls. 

Even if i t li.kes as a sl·i~fut cleformation of a Riemannian metric, in fact 
the rnetric (1) is a pw:e FiNsleria.n metr ic. At present the Finsle• goometry 
of Randers metric is am. i·m1=>0rtam.t chapter of the geometriiz.ation of the 
physicaJ fields. 

(2) 

The ElectrodyMmics is gou'lernated by the known Lagrangian : 

L(x,:i: ) = mca;; (x):i:'xi + ~b,(x):i:' + U(x) 
me 

m , c 1 e being the knowlil. pfo.ysical constants. 
Of course, t he geornetr icail :rnodel based only on the Riemarmi.an struc­

ture a¡1 can not charact.erize ail1I physical properties described by L(x 1 X); 
wb.ile the variational p•oblem of the integral of act ion I(c) = f0

1 L(x, :i;)dt 
\eacls to the Lorentz equahioFJ.s 

(3) 
d2xi . dxi dxk . dxi 
--¡¡jl + 'Yjk (x)dtdt = F](x)dt. 

In th.is case we need a moFe comprehensive model. Indeed, such a model 
is provided by the Lagn;nge space, defined by the Lagrangian (2). 

On the ocassion of t.he Centenary of the birth o[ J .L.Synge an axio­
mat.ic theory of General Rel&tivity by Ehlers, Piran.i and Schield, called 
E.P.S'a..'Cioms, was formu la\'.ed. R.Tavakol and R.Miron proved that the 
8 P S-ax.ioms a re sat;isfiecl by the metric tensor: 

(4) 

1 
where a(x,.:t) is an arbit.rary fonction. For instaoce, a(x,X) = 1 - n.2(x

1 
.±), 

where n(x, :i;) > 1 is the refractive index of a cüspersive optic medium 1 gives 
a convenient consisbence of the ¡:>revious mehric. l t is not difficu lt to prove 

t hat , if a~ nonvanishes 1 then 9ij(X 1 :i;) ÍS not 8 Riemann.ian rnetriC tensor. 
ax• 
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Finally, anotber example. In the Relativistic Optics, based on the Synge 
met..ric 

(5) 
1 .. 

g;;(x,±) =mea;;+ (1 - n'(x, ±)):i;'X' 

where a,,(x) is a Lorentz metric, n(x, ±) > 1 is the refractive index of 
the considered optic meclium and :i;¡ = a,;±1 , we can not consider 9ii as a 
Riemannian structure, because it is not reducible to a such kind of structure. 

The previous examples, clearly show that we need some new geometrical 
modeJs for electrodynamics or relativistic optics etc. In the following we will 
show that Lagrange and Hami lton geometries can be used in this respect. 

A Lagrnnge space is a pair L" = (M, L(x, y)) in which M is a real, n.­
dimcsional diff rentiable manifold and L : (x , y) E TM ,__, L(x, y) E lR is a 

1 82L 
regular Lagrangian, for which Lhe fundam nta1 tensor g.1 = 2 ByiByi has a 

ronstanl signature on TM = TM \{O}. 
Of roursc,": T M Mis the tangent bundle of M, TM is TM wit.h-

out the null ection and {xi 1 yi), i = 1, .. ,n, are lheca 11onical coordinat,es 
of the points (x , y) E TM. 

Any Riemann space 7?." = (M ,a,,(x)) , where a.,(x) is the f1111d amental 
t nsor field of 7?.", is a Lagrange spare, with L(x, y) = a,;(x)y;yi. Thc 
Finsler space F" = (M, F( x, y)) is the Lagrange space L" = (M, F2(x, y)). 

lore general, the pair GL'' = (M, g,,(x , y)) , where g,1 (x, y) is ad-tensor 
fi eld (d-means dist inguishcd) symmetric, nondegeneratc and with constan!, 
signatlrre is called a gcncral izcd Lagrange space. 

Of course1 every Lagrangc spa e L" is a ge.neralized Lagrange space G L'' , 
but not conversely. 

As exernples: The lland rs spaces are Finsler spaces; The Lagrangc 
spaces of eJectrodynamics, L" = (M , L(x, y)) have the fun ction L(x, :i;) des­

ribed in (2). 
The rnctric g,1 (x, y) from (4) determines a genera lized Lagrange space 

GL". Also the Syngc's metric (5) gives usa GL" space. lt. is thc generalized 
Lagrange pace of ll lativistic Optics, 12),15). 

Consequenlly, the following relations of subordinate b tween previous 
spaces, hold: 

{7?."} e {F") e {l") e {GL") . 
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1t is clear that if we are in possesion of the Lagrange geometry of spaces 
L" , we can take its restriction to the geometry of Finsler spaces F1' or of 
Riemann spaces nn and we can extend it to that of genera1ized Lagrange 
spaces. 

In the second part of this article we develop the geometry of Lagrange 
spaces based on the fundamental principies of Analytical Mechanics: ! º 
Variational calculus of integral of action I (c) = Jd L(x , :i: )dt determine the 
Euler-Lagrange equations; 2º The canonical semispray ; 3º T he law oí con­
servation o í Energy; 4° The canonical nonJinear connection; 5° T he metrical 
linear connect ions (structure equations); 6° NOther theorern ; 7° Applications 
to electrodynamics; 8º Particularization of this theory to Fins ler spaces and 
9º Its extension to generalized Lagrange spaces. 

T he geometrical theory of the spaces from the previous sequence was 
realized by sorne Schools from: Romania - R.Miron and his collabora.­
tors; Japan - M.Matsumoto et .al. ; Germany - D.Langwitz, K. Buchner et.al. 
Russia - G.S.Asanov et.al. ; S. U.A. - S.S.Chern et. al. ; Great Britain -
M. Crampin et. al. ; Ganada - P.L.Antonelli et.al. ; Jtaly - Rizza et.al. ; Hun­
gary - L.Tamassy et.al. and many others, (see References from the books 
l2J,l3)) . 

2. T he Han1ilton Geometries. 

The Analytical Mechanics 1 operates in the sarne meassure with other 
fundamental notion: the Hamiltonian function H(x 1 p) which depends on 
U1e part icle x = (xi) and momenta p = (p1 ). T herefore an Harnil tonian 
function is a mapping H : (x,p) E T ' M ____, IR, where (T ' M , rr', M ) is 
the cotangent bundle of the manifold Nf. Of course 1 the geometrical proper­
t ies derived from H are based on the canonical geometrical objects on th 
total space T ' M. T hcse are l.he Liouvi lle 1-forms w = p,dx', t he symplec l.ic 

. . a¡ Bg 
structure O = dw = d.p¡ /\ dx' 1 and the Pmsson structure {f, g} = Bp, ax' -

aag 8
8 f . Assuming H di fferentiable on r-:X,1 = T ' Al \ {O} it is not difficull, 

p, X' 

1 82H .. 
to ee that 2 8p18p

1 
= g11 is a contravariant tensor field , symmetric. 

\ e define an Hami lton space H" as a pair (M, H(x. y)) for which det jjg''ll 
nonvani hes on T-:-¡1 and the signature of g'1 is constant.. 

lt fo llows t hat the triple (T-:X,J , O, 11 ) is an Harni ll.onian syst m. lt has 
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~he properties: 
! º . There exists a.n· unique vector field XH E x (T' M) for which 

2º . The integral curves 0f X11 are given by the Ha.milton-Jacobi equa-
ti o ns: 

dx' {}H dp; {}H 
di = 8p; ; di = -ax; · 

3°. The following fonm da holds: {f,g) = O(X1, X9) . 

F'or these spaces H11 = (NI, H) we can determine, instead of fundamental 
equations Harnil ton-Jacobi, a canonical metrical linear connection (and its 
structu.re equations) etc.) which give the fundamental geometrical object 
fields in tbe geornetry of H". 

T he relations betwee10 the Lagrangespaces L" = (Nf, L(x, y)) ancl Hamil­
ton spaces H" = (M, H(x, p)) are given by the Legendre transformation 

. . 1 {}L 
l eg : L" - H" giveFI by: :i:' = x\ p¡ = 2' By• . This is a local diffeomor-

phism from TM to T7ÑI. Ceg transform the regular Lagrangiato L(x , y) into 
the regtda r Hamiltorui>n 7-i(x ,p) = p;y; - C(x, y), wbere y; is given by Ceg- 1 

1 1 
and 7-1 = 2H ,C = 2L. 

By means of the Legendre diffeomorph.ism Ceg tbe Euler-Lagrange equa­
t;ions from L" are applied into the Hamilton-Jacobi equations. The funda­
mental object fields in L 11 are transformed in fundamental object fields in 
H'I. 

But1 there are sorne important subclasses of HamHton spaces H" . One 
of ohese is t.hat given by the Cartan spaces. Namelly, a Carl:an space C" = 
(M, I<(x,p)), where I<(x, p) is a posit ivo ftmction, posit ively 1-homogeneous 
with respecL to the momen!;a p¡ and for wltich H" = (A11 I<2(x, p)) is an 
Hnmil ton spn e. 

The Cart.a.n spaces introduced by the author, are tol.a lly differenl; of 
Cartnn spaces ha.sed on the notion of area. The geometrical importance 
of these spaces is t;Jmt they are obtained from Finsler spaces 1 via Legendre 
t.ransformation. Therefore, spaces C11 are caUed dual of Finsler spaces. The 
geomeLry of C" has t.he same importance, syrnmet.ry and bea11 Ly as that of 
Finsler spaces. 
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Oí course any Cartan space C" = (M , K (x, p)) is a Hruni lton space 
'/t" = (M, K1 (x,p)). But not conversely. 

More general, a generalized Hamilton space i a pair GH 11 ::::: (,A1J,gii(x 1 p)), 

where g'J(x,p) is a contravaria.nt symmetr ic tensor on T-:¡f having a cons­
tant signature and rank llg'i ll = n = dim M. 

T he relations between the previous spaces are given by the inclusions: 

{n'") e {C"} e {H'' ) e {CH") 

where n·n = (M,g'i(x) ) is a R.iemann space. 
A good exrunple of Hrunilton space is given by the íoilowing Hamil toni an 

[6] 

H(x,p) = ~a'i (x ) p;p; - -2.:,&'(x)p, + e~1 b'(x)b,(x). me me mc.-
It is 11 dualn, via Legendrc tra.nsformation, of the Lagrangian (2) of lec­

trodynrunics, wit.h U(x) = O. 
The applications in Thcoretical Physics, Mechanics. Biology, Relativist.ir 

Oplirs were done by G.Asanov, S.lkeda, R.G.Beil , R.Tavakol, l. Roxbomgh, 
V.Balnn, P.Sl avrinos, P.L.Ant.onelli , R.M iron , G.Zel and many others. See 
thc Reíerenres [rom t.he book [2]. 

The details from 1.his gcometry can be taken from the book [6], recen!. 
publi hed by Kluwer Arnd .Publ. (2001). 

3. Higher arder Lagrange spaces. 

k -Th higher order Lagrangians are t. he íunctions L(x , :i:, i, .. , ··x · ) whirh 
. dx' 

depcnd on the particle x = (x'), velocity :i: = dt and aecelerations i = 
k 

1 <Í'x1 ....-"'--.. l <lkxi 
2!dt1' ' .. , x = kJ--;¡¡k· Bnt, on the manHold Nf the accelerat.ions of order 
2,3, .. 1k have not a covariant meaning. T herefore there a.re not. a vedor 
bundle on which to defin e the higher order Lagrangians. Tbere is a differen­
t.ial bund le, (T• M ,7r', M), caLled the higher order aceelerations bundle, or 
k-osculator bund l which give 11s an adeq uat.e geometricaJ frarnework for 
si udying lhe Lagrange spacc of order k . 

This study is important. because it is basic for !.he A.uaJytical Mechanics 
oí high r order. 
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IL is necessary to notice that in classical Lagra.ngian Mechanics only 
d2x' 

th ncce.leration dt'! is a fundamental notion, since t.he Newton principie 

ma = F. The accelerations of hlgher arder , k ~ 3, are cansidered as deriva te 
notions. 

In t.he last twenty years 1 many scientists, as LCrampin and collabora­
tors, l.dc Leon and collaboratars, l.Kollar, D.Krupka, D.Grigore and calla­
borators, R.Miron and collaborators and many others investigated various 
aspcclS of the Lagrangian of higher arder. In the first my visit at Univer­
sity of Alberta , in Eclmonton, (1995), P.L.Antonelli questioned me: Have 
you examples of the regular Lagrangians of arder k ~ 3? 1 was surprised 
to constat that in that time there are not of such kind of examples. The 
lifli ulty com from the fact that the old problem, formulated by Bianch.i 

and Bompiani 1 of the prolongation of the Riemannian st;ructures g , defined 
on lh bas manifold M, to the k-oscrtlator bundle (or to T ' M) was not 
solved y t . 

So, l was obligated to salve the following problems: 
1°. The prolongations to T'M of the R.iemannian structmes g, defined on 
the base manifold M. 
2°. The const ruct.ion of good examples of nondegen rate ( or regular) La­
grangians of arder k . 
3°. Tbe defi.nition of the notion of Lagrange space of arder k. 
4°. The study of the geometry of the manifolds T" M . T his is: the notions of 
k-semi prays, nonlinea.r connections, N-linear connections, structure equa.­
tions , e . 
5°. The study of the subspaces in the Lagra.nge spaces L«»•. 
6°. Applicat.ions of t;he previous theory in the s tudy of Lagrange spaccs of 
arder k, denoted by L(' )" = (M, L(x, y<•l, .. , y<» )). 
7°. Th introduction of the notion of higher order Finsler spaces p (k)ri = 
(M, F(:z:, 
y(l l, ..• y<•l)). 

0 • Th introduction of Lhe generalized Lagrange spaces of arder k1 

G L(k)n = (M,g,1(x ,y(l >, .. ,y<•l)) such that the fol!owing sequenc · of inclu­
sion hold: 

For k = l we have the classical eq11encc 1 above men1.ioned. T his seq11ence 
is, oí course, imporLanl. in npplicatfons. The pr vious problems have been 
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presented in the books [2],[3]. 

4 . The Harnilton spaces of order k ~ l. 

The cotangent bundle r·M, dual oí the tangent bundle TM, carries 
sorne canonical object fields as: the Liouvi lle vector field, a symplectic 
structrne and a Pois.son structure. They allow to construct a theory of 
Harniltonian systems and via Legendre transformation, to transport this 
theory in that oí Lagrangian systems on TM. Therefore the Lagrange spaces 
L" = (M, L(x,y)) appear as a dual of Ham.il ton spaces H" = (M, H(x,p)). 

In the tbeory oí Lagrange spaces of order k, where the fundamental 
ftmctions are Lagrangians which depend on particle and h.igher order accele­
rations, we do not have a ndual" theory based on a good notion oí Hamj l­
tonian oí order k , which depends on particle, higher order accelerations 
and mornentum. This is because we have not a convenient d.ifferentiable 
bundle wrucb carries a canonical symplectic (or presymplectic) structure, a 
canonical Poisson structure and its dimension be the same with dimension 
of manifold r• M. 

1n tbe book {6J one can see how is possible to elimine.te thls inconvenient .. 
lndeed, starti ng írom the k-accelerations bundle (T' M, "'• M) we int ro­

duce a new bundle (T •k Ad 1 rr•k, !vi) called 11 dual11 oí previous bundle, wher 
the total space r ·• M is the fibered product 

The canonical coordinate on the manifold T "kM are (x', yC1)1
1 •. , yCk- 1)1,pí) · 

So, dirnension of T "" NI is the same with the di mension oí Tk M. 
One proves that on r·k M 1 w = p¡dx 1 is a canonical 1-forrn and fJ = dw = 

dp, A cl:r.' is n presymplectic structure oí ran.k 2n. The syst ms of brackets: 

8f 89 89 8f 
{f ,9) 0 = 8y (• )• 8p1 - 8y(•) i 8p, ' (a=O, l, .. , k- l ;y(O)=x) 

d fines a canonical Poisson structure on r·k M far every 0 ' = o, 1, . ' I k - l. 

mapping H : r·• M _, IR is called a Hnmilton function of ord r k. So, 
H (.t , yll> . .. , y(• - 1>, p) is a f1111ction of parti 1 x, of acceleralions y(l>, .. , yC•- t) 
and oí momenta p. H is called nondegenerate Hru.niltoniM if rank of i ts 
Hessian with respect to p, is nonsinguJar. 
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Th clcmcnts of Hessian are the components of the tensor field 
1 tflH 

911 = 2t>p, Pi. 
1'ht1S1 w define the notion of Hamilton space of order k, as a pair 

11<•l• = (M, H (x,y(ll, .. , y<•- 1l, p, )), where H is a nondegenerate Hamilto-
11iru1 and lhe tensor gi1 has a constant signature. 

ne ran dcvclop the gcomet,ry spaces ff (k)n as a natural extension of 
lh dnssical thcory of Hamilton space of order k = 1. Thc rela tion betwcc11 
the Lagrang spaccs of ordcr k, [,(•)• = (M, l (x, y(ll, .. , y<•- 1l, y<•l)) and the 
Hrunilton spares of order k, H I' )" = (M, H (x,yOl, .. , y<•- 1l, p)) is given by 
th Legcndr mnpping, Le_g : [,(k)n ~ H (•l•, which is defined by 

wherc p, = ~_!!:___. 
28y(•)• 

One proves that the Lcgendre mapping Ceg is a local diffeomorphism. 
nsequ nccs onc can st11dy th goometry of Hamilton spaces of ordcr 

k, ff (k)n by means of the gcometry o[ Lagrange spaces of order k, ¡)'l•', 
11sing the Legcndre mapping. 

Th gencralized Hamilton spaces of order k, are thc pairs G H l'l" = 
(M,g''(r, y<1l , .. , y<•-1l, p)) , where g'' is a tensor field symmetric, nondo­
gcnerate and of constan!. signature on T ·k /\1. Of course any space ff(k)n is 
• e ff (k)n space, but not converscly. 

In particular, if H(x,y(l> 1 •• , y<k- i}, p) is positive:ly 2-homogeneous wit.h 
rcsp t to th mom . nta p,, thc spaccs c-<•l• = (M, H) is called thc Cartan 
spotc of order k. T hc spaccs n·<•)n = (M, H) with H = g;i(x)p;p¡, g1i(x) 
bcing thc Ricmanninn (cont.rnvariant) tensor field on lh ma nifold M , ar · 
1 he Ricmrum spa W gct thc following sequ nce of in l11sions: 

1 n Lh rase J; = t wc hnvc t.hc sequence studied abo\·e. 
Th apphrations in highcr arder Analytical Mcchru1irs, T heorctical Phy­

sirs or Va.riauonaJ nk11l11s nrc rcmnrkabl . In th1s rcspcct onc can rcnd 
1 he book (6), rl!<'Cnt p11blishcd by l{l11wer Arad.P11bl. in 1 he ollccl.ion 
"F\mdamcntal Thcory of Physirs." 
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II Technical construction of the geometries 
of spaces Ln, pri., L(k)n . 

\ .Y ithout enter in tihe demonst,ra.tions, we briefl.y describe the construction 
of the geometry of the most important classes of Lagrange spaces. 

1. Lagrange spaces. 

The Lagrange space.s are defined over the smooth ma.nifolds M, using the 
total space T M of the tangent J;iundle and taking t he regular Lagrangians 
L:TM---->IR.. 

These spaces were defiaed twentyfive years ago. They were widly develo­
ped by the author of the present article and his group. Far the extensive 
presentation of the geometry of these spaces 1 refer to the books [!J ,[5J. 

Throughout the text we assume that manifolds, mappings etc. are of 
C00 -class and the Einstein convention of summarizing is applied. 

Let M be a real manifold, of dimension n and (TM, ,,. , M) its tangen\ 
bundle. lf u E TM and x = 7r(u) , then we denote u= (x,y), y being a 
tangent vector at x E M. 80 1 the canonical coordinate of the poiut u= (x , y) 
are (x' ,yt (i = I , .. ,n). The transformations of local coordinate on TM 
are given by ¡ -- a:; 

x' = x'~x 1 , .. ,x"), det( 8x,) "f O 

-. 8x' . 
y'= ax/!l· 

(1) 

Tbe natural basis ( 8
8 . , 8

8 .) in T,, (T M) is transforrned by ( l) as fo llows 
X' y' 

(2) 
a a:;;'ª aY'a a a:;.a 

éJxi = Bxi a~ + 8xi aY, 1 éJyi = av aY, 
a a 

Tberefore t.he vector fi elds ( Byt , .. , &yn ) spanned a distribution 

\1 u E T M ----> V,, E T,,TM , '</u E TM. This is the vert ical distribu­
Lion on TJ\J. 

(3) 

The vector fi eld, locally given by 

r = v·~ 
8y• 
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is globally d fined on TM and belongs to tb ' 'erLical distribution V. lt is 
!'Olled the Liouville veétor field . 

onsider th J'{TM)-lincar mapping J : x(TM) - x(TM ), 

{•I) J(a~.l =a~" J(a~, l = 0· 

T hus, J is an almost tangent structure, globally defined on TM. We have 

J 2 = 0, l m J = K er J = V, ronk J = n . 

A ,, tor field S E x(T M) is called a semispray if 

(5) JS= r . 

Locally, S is uniquclly expres.sed in t he form 

{6) S = y'_!_ - 2G'(x,y)_!_. 
ax• 8y' 

The integral curves of S are 

(6)' 
dx' dy' 

y' = dt; dt + 2G'(x,y) = O. 

The sy tem of functions G'(x ,y ) gives the coefficrents of semispray S. 
Tiús notion of scmispro.y is fundamental in the construction of the main 

gcomeLncal o~t fields on TM. 
ow, let TM = T M \ {O} be the open submanifold of T M , formcd by 

points (z',y' ) wilh propcrty ranklly1, •• ,y"ll =l. 

Deflnitio n 1 A lagmnge space is apair l" = (M, L(x, y)) w1tl1 L : {:r, y) E 
TM L(x, y) E O~, such that: 

1 º L "' drf!erentiable on W and contrnuous on lhe null section 
O: M - TM of tJie pmjection "· 

The llessran of L is no,isingu/a,., 1.e. 
o ronklllg,,11 = n., 0 11 TM , 

1 82 L 
g,, = 2.ay·ay,· 

3º The l.t:ruor field .g,,(x, y) has a constant Slgnature on TM. 
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L is called t he fundamental funotion and g1, is caJJed fundam ental tensor 
of the space L". 

If M is a paracompact manifo ld, then TM has the same property and 
t here exists pairs L" = (M, L) whioh are Lagrange spaces. An example 
is given by t.he Lagrange space of electrodyna.mics , describe<! in the first 
section. 

Sta rting from the integral of aotion of tbe Lagrangian L and based only 
on tbe principies of AnalyticEUl Mecha.n.ics we will determine the fundamental 
geometrical object fields of the Lagra.nge spaoe L" = (M , L). 

A cun•e e : t E [O, l ] -• (x'(t)) E U CM, (witb a fixed para.meteriza,. 

tion) has tbe extension to TM given by e· : t E [O, l] ___, (:ii(t), ~~; (t)) E 

ir - 1(U) e TM. 
The integral of act.ion of the Lagrangian L(x , y) on the curve e is given 

by the fnnctional: 

(7) r1 dx I( c) = Jo L(x(t) , dt(t))dt . 

Applying t.he var iational principie to the functional I(c) we obtain the 
Euler-Lagrange equations: 

() E;(L) := aL. - !!. aL = o, y'= dx' . 
ax• dt &y• dt 

The curves e solutions of t.he differential equations (8) are cal led extrema! 
urves of the space L" . 

The noLion of energy of the space L11 can be defined as in Theoretical 
ti.itechanics1 as follows: 

.&L 
Et = y' &y• - L. 

lt is no difficult t;o preve the sentences: 
The energy Et of the lagrange space L" tS constant on. even1 extremal 

CUnJe. 

Also, a ot her theorem holds. 
Por lhe fundamental function L(x, y) of the space L" , the Euler-Lagrange 

eqnnlions ( ) can be writt.en in the equivalent fonn: 

( )' 
d2x1 dx dx' rJ;' + 2G' (x , dt) = O, y' = di 
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wh r 

(9) 1 1 ( a2L • aL ) 2G (x,y) = 2 ay,ax•y - ax• 

g*l bcing thc contrnvariant tensor oí fundamental tensor 9ii· 

But ( ) ' give 1.h int.egral curves of the semispray S, {6), with the coefli­
ci nts (9). Of course, this is a canonical se.mispray sinr the coefficients are 
det rmined only by t.he fundamental function L(x , y) of !.he space. 

Throughout in thc following considerations w will based on this cano-
11iral nispray S. 

Taking int,o account. the coefficients G1, (9)1 of t.he canonical semispray 
S we can introduce t,he system oí functions 

(10) 

So, we obtain a geometrical object field on TM wit.h t:he law of trans­
format1on 

{10)' 

Therefore N';(x, y) are called the coefficients of a canonical non linear 
conn lion. They depends only on the funda.mental function of the spa e 
l" . 

lt is not diflicult t:o preve that -6
6 : 
x• 

(11) .!.._ = !.._ - NJ !.._ ( ) 
óx' ax• '{)yi • • = l ,.., n ' 

ar n·ind p ndent vector ficlds. They spann a new dist.ribution on f7Vt , 
d noled b , snppl 111 ntary to the vertical distribut,ion \f, i. 

{12) T,.(TM) = N" Ell v., Vu E TM. 

By thewny, we dct.crmine a local be.sis (6~,. 0~) , {i = 1, .. , n), adnpt.cd 

to dlStnbuuons N and V or ndnpted to lhe direcl de<'ornposition {12). 
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The canonical nonlinear connection N is exte.mly useful in const.ru tion 
oí a canonical Linear connection Dr(N). This has the coefficients (Lj.(x , y), 
c ;.(x, y)) in the ada~ted hlasis aud leads to two operators oí h- and v­
covariant derivatives, denoted by 11 ¡11 and 11 ¡11 • 

So, for the fundamental tensor field g¡11 h- and v-covariant derivatives 
are given, respectively, by: 

(13) 
1 8g;; C' C' 

g¡; h = 8y'ª - 9ai ih - 9 i8 j h· 

lt is interesting to remarl< that, with respect to changing oí local coor­
dinate (! ), the coefficients Ljk obey the same rule oí transformation as the 
coefficients oí Levi-Civita coru1ection on the base manifold M . While Cj, 
are tbe coefficient.s of a tensor field oí type ( 1,2). 

The canonical metrical connection Dr(N) is given by: 

Theorem 1 The fol/owing properties hold: _ 
l º. There exi.st.s an uniqu.e N-linem· connection D on T M verifying tJ1.e 

axaoms: 

{14) 

{15) 

2°. Thrs con.nection has as coefficients thc generalized Christoffel symboL! 

' " 29 6x' 6x" 6r' ' 
L'. = ~ ;, l 69,,, + 6g;, _ 6g,. } 

C' _ 1 ,, 8g,. i'Jg,, 8g,. (16) } 
;• - 29 ay' + ay• - aY' · 

3°. The prrww us connection depends only on tM fun damental function 
L(x, y) of tM space L" . 

LeL (dx' , óy' ) be l,he dual basis OÍ the adapted basis (-!-, aª ) . 1 L follows 
ux ' y' 

far 1-form fields óy1
1 .. 1 6y11

1 t.he expressions: 

(17) 6y' = dy' + N';<b:' . 
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Th refore the geometrical object fields 

( l ) 

nre the so cnlled 1-forms connection of Dr(N). 

Theore m 2 The stnicture equations of lhe canonical. metrical connectfon 
D r ( N ) aro given by 

(19) 

(O) (11 

(O) 

d(dx1) - dx' /\ w; = - il', 

(1) 
d(6y1) -6y' /\w; = - il', 

where n1 1 n· am llie 2-f01ms of torsion: 

(19)' 
(DI (0) ¡ 
il'= Cj,dxi /\ 6y'; íl1= 2R~,dx' /\ dx ' + P;,dxi /\ dx', 

arad n; are the 2-forms of curuature: 

(19)" n; = ~R/,.dx' /\dx'+ P,',.dx' /\5¡/+ ~S,'"6y' /\6y' . 

1 n the previous equations we set: 

(20) 1 6N1; 6N'•. P' _ 8 ', 1 
R;• = 6x• - TxJ• '' - 8¡/ - L,;, 

nnd 

(2 1) 
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We call Rjk, Pjk the tl0rsi0n 0f Dr(N) and R1'kh i P,'1rh 1 S,' kh Lhe m1rva ... 
t.w·es of thjs connechion. 

Now we can remark: 
W hole geometry of the Lagrange space L" = (M , L(x , y )) can be based 

on the canonical nonlinear connection N 1 the canonical metrical conn tion 
Dr(N) and the structure equ!>tions (19) ,(19)' and (19)" . 

The applicat.ions im Tbleoretical Physics, as Einstein equations ad Dr{N) 
or Maxwell equations of Dr(N) can be find in the books [2] ,[4]. 

It is irnportant to vemark thrut in Vhe case of Lagrange space of elecLro­
dynarn.ics, L" = ( M , L), wioh t.he fiundamental function 

L(x,y) = mca;;(x )y'yi + ~b,(x)y', 
me 

the Einstein equations aind Maxwell equat.ions1 determinate on t.his geome­
trical models are the classica.J otile. 

2 . Finsler spaces. 

An important class of La.grfl.!nge spaces is provided by the famous Pinsler 
spaces . 

Defini t ion 2 A Fi.nsler space is a pair F" = (M , F(x , y)) , fo1m ed by a real 
n-dunenswn.al m.a.nifold M and a scalar fmict:ion F : TM --> IR having Ute 
properttes: 

l 0 . F rs differentiable on TÑ! and continuous on tJi.e null sec tion 
O: M __, T M o/ !.he projection " : TM _, M . 

2°. F is positive. 
3°. F is posi.tively homogeneous of degree l 1 w1 th respect. to y' on TM. 
4º. The Hessian o/ F', with elements 

(1) 

1s posit-wely defined on TM. 

l 8' F' 
g;; = 2 8y•8y1 

The funct.ion F is called fundament.a\ and g., is called fundamental or 
m trie tensor of F 11 • 

l l íollows t.h nt. g1¡ is 0-homogcneous, symmeLric and nond g n · rate . So 
ils contrnvnriant gii can be considerecl . Th r fore Lhe F'ins l r spaces can be 
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lookcd ns lh p11rt.i ulttr Lagmnge space L" = (.11, F'(x, y)). Th pr vious 
thcory can b appliecl; ta.king t.he r guiar Lagrangian L(x, y) = F'(x, y) . 
Thus L(.z, y) is 2-homogen· 11s wit.h respec-t to y' 

11" d note by -y;1,(x, y) t.he 'hrist.offelsymbolsoftherinsl r spac· F", 
uÍI r n straightforwar l calculus in t.he formula (9) we fiu 1 t.he c·ocfficiont.s 
of thc canonical s mispray of t,he space F" : 

(2) 

Consequ ntly, the canonical nonJinear connoclion N of t.he Pinslor spac· 
t'1 is e.'\'.a tly the canonlcnl Cartan nonJinear co1mection. l t.s co ·íllci ·nts ar 
in the Garlan form: 

(3) N'¡ = _21aª · {'Y;, (x , y)y'y') . 
yJ 

Theorcm 1 give us t.he coefficients of the famous Carl an mctrical conn 
Lion of the F'insl r . pace F", denotecl by Cr (N). In T hcor m 2 wc del. r­
rnine the str11 tur eqmit.io11s of t.he artan metrical connect.ion J"'(N). 
Th Clianchi idenl.iLies of Cr (N) a.re obtainecl frorn (19) 1 y cultula t.ing 1.hc 
xlcrior differ nt.ial of ( '1 9), modulo t.he srun t.em and 11sing t.h e., 1,crior 

(O) ( 1) 

liff r ntial of 2-forms of t.orsion n', n• and n;. IL is not. d iffiClllt. Lo prove: 

T heorem 3 The Cartan metrical connection Cr ( ') o/ a. Fin'Jicr space 
F"' = (M, F(x, y)) ha.s !.he pmperties: 

aF' 
Iº. F. = O, F¡~ = O, F'I,, = -8 , . 

y 
. F ,.. con tan!. on the autopamllel curoes o/ the Cart<m nonlinear 

conn« l1011 
3° 7ñe L1ouv11/e vector field y1 has tlie h- and v-covaii ant d •1ival.ives 

~1°. Cr(N) rs a m.et1·ical connectlon: 

g,,,. = o, g,, I· = O. 
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6º . The h.- an.d v- t.orsion Tjll ) S~h vanish. 
7°. The tensor ?¡;11 = git1PJ11 is complete symmetnc. 

8 •. ·e· o ·e © e 189'' Y 11; = , Y 11; 11 = 1 ¡;11 = 2 Byh . 

9º. Rs;h + R;hi + R11i; = ©1 R,¡;11 = g¡.,R~h· 
10º. Th e cova.riant lensors of curvat'U1-e R,1hk 1 P,1hk , S.¡hk are skewsr1m· 

m e trie i n the fi rsi. two indices. 
11 º. In the canonical parameterization, lhe Euler- Lagmnge equatioris de­

termines the equ.ations of geodesics of space F'" : 

d2x' . dx dx; dx' 
ds' + 1j.(x, ds)dsds =O 

Examples. 
1°. Let R " = (M, a,;(x) ) lDe a Riemann space and /) = b,(x)dx' an 1-form 

on M. The function 

F(x , y) = J a;;(x)y'y' + b,(x)y', 

wit.h b,(x)y' > O on an open set from f'M 1 is a fundamenta l function of 
a Finsler space. lt is used in the geometrical theory of gravit;ational and 
elec.t.romagnet.ic fields 1 in cases when a,1 is a semiriernannjan stru tnre. 

2° . lo the same cond it ions 1 the fnnction 

F(x y) = a;;(x)y'y' 
' b, (x)y• 

is Lhe íundament,al function of a Finsler space. lt is ca.lled l<ropina space. 
3°. The function 

F(x,y) = e20•"' {(y1)m + · · · + (y"¡m};!;, 

m inLeger1 m ~ 31 et, = const .. ~ O a.nd F(x, y) is exi>ressed in a preferentia l 

d1arl on fft , is a f11nd amentnl function of a Finsl r space. F is called 
Antonelli 's erologi al m · t.ri c. 

3. A lmost K iih le rinn Models of Lagrange and F ins ler spaces. 

\Ve hall t,hat th Lngrnnge spnces l " = (M , J..,) or Pinsl ·r spaces 
F" = (,\/ , F ) endowed with the canonical melrical conn t.ion Cf(N) 
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be thougbl of as lh almost l{iihlcr spaces on tbe manifol 1 TM . Wo •ny 
thnt surh n spa.ce is un almost. l<tihl rian model íor L" ar F11 • 

~ lorrov ·r, n Lngranginn or Pinsl rian th ry ar grov1tationnl nnd ok'<'­
tromngn ti ficld ran b g m trirnlly tudied much hct.t r 011 t lw nlmost 
1\liltll'riM mod 1, sinre t.hc n.lmost symplertir . ln1C"1urr oí th spnc·c is a 
¡.¡:ympll'C"llC' onc and t h nonlincn.r C'Onncct ion is C"S'ocnl iAl ind11dcxl int. 1 his 
modd 

Ll'l ben Lagrang r Finsl r spar having g,,(.r y) as fundam 111 ni tensor 
and N. with the coefficicnt.s N;(x,y) as canonkal nonJin ar con11 c·tio11 . 

As usually wc consid r {-!--. 88 } th adapt«I basis to t.h d ist.rib111.i n 
vx• y1 

N 1md 1' lts lual basis is (dx', y') . 
Lct us d fin th F(TM)-linenr mnpping lF \ (Til) - \('Í'M): 

(1) IF(~) = -~; IF{~) = ~. ( 1 ) 
óx1 8y1 8y• ~x· 1 = · ··' 11 • 

lt is not diffirult. t.o provc thal 1F os " 11 d finl'<I on TM all(l it is 1 he 
foil wmg omsor fi Id of t.yp ( 1, 1 ): 

( ! )' 1F = -~ ® clx1 + ~ 6y1• 
8y• x' 

Ev1dent ly, w havc 

(2) IF o lF =-1. 

• " obtain: 

T h r m 4 1°. Tlie rrrnp¡¡i11g 1F from (1) o. on olmo.•t. compl x striicturr 

011 fM d•l.t:rmmcd only on Uoe fundam ental function of spacc /.,'' (o,. P"). 
2' The .•truclure IF is mlegroblc •f ond only 1f the canonical nonlrnrar 

connttl•on ...., mt gmble. 

¡ ow, Jet us ronsidcr th íundrun~ntal tensor g,1(z, y). It d tcn11i11t::1 n 

P5 1do-R.oom1U1mrui (or flic1nsnnian) trncture tC on thc mnnifold Tiíí : 

(3) tC = su(x,y)dx1® d.: +g.(x.y} y'·. y'. 
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Theorem 5 l º. ~ i.s a pseudo-n,emanntan (or !Ueman man) s trocture 0 11 

tlie maru/ o/d TM, dele1mined only by the /und<Jmental ftmclron o/ lite space. 
2°. The d1stri.but.ions N and V are orthogonal unth respect to IC . 

T he pnir of struct.ures (1F,IC ) is important in the geom t.ry of the con­
siderecl space. In t;his idea we consider the Poiucaré-- nrtan l-form w and 
2-íorm O: 

(4) 

(5). 

o, we can prove: 

w = ~ 8L tb;' 
2 8y• 

O= g;,(x, y)6y' A dx'. 

T heorem 6 1°. The /ollowing equat-ions ho/d: 

(6) O= dw, dO = O. 

2°. O IS a symplectic slructure º" TM, detenmned only by the funda­
mental juncl1on L(x, y) (or F (x, y)) o/ tlie space L" (or P" ). 

Finally, one preves an important resul t: 

T heor m 7 lº. Th.e pai1· (IC , IF) is an almost Hem11t1an slructure on T M 
dependmg onJy on t.he fm idamental / unct1on L(x, y) (or F (x, y)) o/ tJie Lar 
grnnge (or Fmsler) space L" , (1"esp ctively F" ). 

2°. The 2-/on n associaled to tite structure (IC , IF') IS O gr.ven by (5). 
3°. For any Lagmnge space L" = (M, L ) ar Fm.sler space F" = (M , F ) 

lhe pace J("' = (T M ,IC , lf) i an almost Kiihlenan space. 

The spare /( 2" is called the almosL l\ iihlerian model of t.he space L" (or 
F"). 

\\"ecan ud t.he space /( 2" , t.he Einst.ei11 cquations and M axwell eq11ations 
for th gravit.ntional and elecLromagn tic fields delined by Lh fund am ntal 
funcllon L (or F) of t.h considered Lagrang (or Fmsler) spac . 
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4. Hig her arder Lagra.nge spaces. 

Th cxist.ence of Lagrangians which depend on 1 he ncc -lernl.ion. of a rel r 
k > 1 hns been cont.cmplated by mechnnicis ts and phi idst.s for a long t.im 

Einstein has grusped their presen in co1wection wit,h Lhe Orowni1111 
motfon. Th variat.iono.I calculus systemntically used t,h Lngrangians oí 

' dx 1 d»: 
higher order accel rut.1ons: [,(x, lt ' .. , ki dt• ). But, gen -mlly s11d1 kind of 

Lngrnnginns a re not. regular . T~is is, the Hessian oí L wil.h rcspcct. to 
1 d"x 

yC•l• = ¡;¡ dt• is degenerate. 

Sorne good example of higher order regulBT Lagrangians are given by 
~oh·in.g th probl m of prolongation to T" J\/ oí th ru mannian sl.rncturc 
giv n on th bns manifold M . 

Le• n• = (M,,g,i(x)) be a 11.i numn pace and (T" M , " " M ) its b1111 11 
of a«:el rntions of ord ·r k . The canonical coordinale of Tk M , of a point 
(x,yC•l, .,ylkl) 1.re (:c',¡¡l'l' , .. ,yC•)•). 

A non.linear onnect ion N on T " M is chBTacwized by the dual co · fl1-
t i nts ~~· .. , [);\; from t.he adapl.ed cobnsis: 

( l) 
ó:z;' = dx1,6yi' )' = dy<•l• + N~dx',. .. , 

( I ¡ 

óyC•l• = diP'' + [Yj}ifyC•- •l' + ... + ci'-1,?y<"' + MlrLo/. 
The 6rst importa.ni. rcsuJ•t is given by: 

T beor ro 8 Por any Riema11n space 1?." = (¡\/,g,,(x)) t.here existnonlin ar 

connecl>on.s on TkAd detennined 011ly by metn c ten or g,;(x) . One o/ them 
htJJ the dual coefficienl.s 

(2l <1>' - 11• ·' Y • c•l' - 2 hr c•1' ,, · .. , M' - 1 ( ·) (1)• M' - ~{rM'+ > l ' ~4' } 
M' = _!_ {r M ' + M' ·I · } 
M' k! C•- 1¡' ( t )' <•-n' 

where <t;,(:r) ore tJw Ch1istof!el symbol:s o/ the tensor g,,(x ) a11d r u¡ tite 
follou·mg nonitn.cor overalor 

(3) 
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ow let us consider the cl isting11ished Liouville vcclor fi Id: 

\•Ve obtain t.he second importnnt resul t: 

Theore m 9 The following Lagrangian rs defined on T' Al, r.s rcg11/ar arid rt 
r.s detennined only by Riemannian structure g,,(x}: 

(5) 

Also. we have: 

T heorem 10 The tensor fi eld !!; on T' Al, given by 

IJ; = g,,(x}clx1@ chj -1- g;¡(x)6y( l)i@ y<IJ) -1- • • · -1- g¡¡(x)6y(k)I@ 6/klJ 

has the properly: 

([: r a Rremann.ia.n s/.1·ucl1Lre on Tk Al , d t.e,mmed only by the !?rnm.arrn 
space 'R." = (Al , g,,(x)). 

The pnir Prol' R" = (1"'M, 1!; ) is th prolongation of ordcr k t,o T'M of 
the R.i mannian space n11 • 

Theor m 9 solve.s t.he problem of xiste.nce of regular Lagrnngians of 
higher ordcr. 

Lel us considcr the mapping l : T' M - IR differentiable on T' M and 
ronunuous on the 111111 sect.ion. [., is nl led a diff ren<.iable Lagrangia.n of 
ord r k. The Hessi1tn of [., with respoct to variables yCkl• has t.he 1 ment.s 

l (J' [., 
g,, = 2 8y(kloi'Jy(k)J. (6) 

L 1 ral lcd regulnr if rcm.kllg,,ll = non T'M. g,1 is cnlled 1.h f11ndam ntnl 
l nsor of L . 

D finilion 3 A t~cigmnge spac of ordcr k r o prur ¡)k)n 

= (M. l(x.yll l, .. , yCkl)) uihe.-c r., r o .-cgulor Lagrongion of arder k and 

·~ fundamental tensor g¡) ha ' a con tant signaturc on r""i:'ft1. 
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Th rem9prov t.hc x.ist.en cof l l1ese paresonthepar11ron1pnct rnnni· 
fold ¡\f 

The goomct ry of spuccs Ll•)u can b ron trut"led by mcnns of t.he 8 111 r­
Lngrtwgc «Jnnt ions. 

lndl'<'<i. the intcgrnl of nrti n of th Lagrangian L(r, yPl,.. ,y<•I) is t.hc 
funrtionnJ 

Thc vnrialionnl problarn of f (c) lcads lo the Eulcr-Lagnrng equa t.ions: 

(7) 

e, (L) IS • rovcctor fi ·Id. 
The not1ons of higher ordcr energi c•(L) ... c1(L) can be i11t,rod11C' d . 

One prO\'CS 1 hnt. t.h ncrb'Y or ~rd r k , c!(L) i ro1u rvcd ni ng to t.h 

integral curv of t.h cquat.ions E, (L) = O. A Nothcr thcor 111 oncd· 111011,;.. 
trate:;, too. 

There nr som covector, wluch d pend by L only, important. in thc 
g m uy of tbe spaces Ll•)u. One of them is as follows 

•-1 •-• 1 lJL d fJL 
E, {L) = (- 1) (k- l )!lly<• -1¡. - 'difJyC•I·· 

•-1 
The equalion E, (L) = O determine a k-semispray: 

() 

= uº¡.~+2yc•1•_8_+-
llz• lJy(l)I 

+ ky<•l•_ll __ (k l )G' (x, yl ' I, . ,yC•l)fJ1·~C•I• lly<•- •)• ' 

with tite coeJliri nl.s 

( )' (k + 1 )G' = ~g'' (r(ll~<~>,) - ll;:,1, } 

T1u:. IS the ranonica l k- mispray of lh spare Ll' l". 
, "' obt.nm 1u1 imporlanL result,lhlironl: 
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Theorem 11 Far any Lagrange space aj arder k, L(k)n = (M, L) there 
exists the nonlinear connection N depending only by Lagrangian L. One of 
them has the dual caefficients 

M' = _!!2:__, M' = ~ {sM'.+M' M'} 
( 1)1 8y(k)J' (2)1 2 {1)1 prs (1)1 ' 

M' = _l_ {s M '· + M' M ' } 
(k/ k! (k - 1)1 ( 1)5 (k-1)1 

(9) 

where S is the canonical k-semispray. 

Other fimdamental notion is that of N-linear connection. It is a natural 
extension of the N-linear connection Dr( N) of the Lagrange space of order 
l. The fundamental tensor 9ii of the space L(k)n is covariant constant with 
respect to Dr(N) if 

(a) 

(•) g;;¡¡, =O, 9i; 1 n= O, (a= 1, .. , k). 

One proves that: 
There exists an unique Dr( N) which depend only on the regular La­

grangian L(x, y< 1>, .. , y(k)), without sorne torsion and for which (*) are veri­
fied. Its coefficients are given by the generalized Christof!el symbols: ¡ L,'·· _ ~ ;, j 89," bg,, _ bg;n} 

" - 29 óxi + óxh óxs ' 
(JO) C' 1 ,, bg," bg;, bg;n } 

<»'" = 29 by(a)J + byla)h - by(a)• ' (a= 1, .. , k). 

Dr(N) with the coefficients (10) is the canonical metrical connection of 
the Lagrange space o[ order k, L(k)n = (M, L). 

Whole geometry o[ spaces Llk)n can be developed only by means of 
canonical nonlinear connection N and canonical metrical connection Dr( N). 

The Finsler spaces o[ order k are defined by the pair p(k)n = 
= (M,F(x,yll), .. ,ylkl)) where F r•M ~ IR is positive, smooth on 

Tk M, k-homogeneous on the fibres of r• M. F 2 is the fundamental function 
of a Lagrange space of order k. 

The geometry of these spaces is a special case of that of higher arder 
Lagrange spaces. 

1 finish with remark that the applications of these theories are find in 
the books [l],[2),[4],[5]. 
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