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In this expository article written for a non-specialist public, I should like
to relate about present day picture of the Lagrange and Hamilton geome-
tries applied in Mechanics, Physics ete. Of course, the subject is not a
simple one and the attempt to humanize it is a difficult operation. This
is the reason because I divided the matter in two parts. One is devoted
to an elementary exposition of these geometrical models. The second part
addresses to the graduate level.

All problems discussed here can be found in the books [1],[2],[4],[5],(6].

I Considerations on the Lagrange and
Hamilton geometries.

1. The Lagrange geometries.

The last 80 years were dominated by the Einsteinian model from General
Relativity given by the Riemannian geometries. These were obtained using
the manifolds described by test particles endowed with the physical entities,
as gravitational or electromagnetic fields ete.

Especially in Relativity, the gravitational field was studied by means
of Riemannian model with important results. The attempts of determi-
nation of a geometrical model which to describe the both electromagnetic

.
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and gravitational fields are very old. In 1941, G. Randers considered an
interesting metric, given by

(1) ds? = [y/ai;(@)zidd + bi(x)3*)2dt?,

where a;;(z) are the gravitational potentials and bi(z), (i,7 = 1,..,4) are
the electromagnetic potentials.

Even if it likes as a slight deformation of a Riemannian metric, in fact
the metric (1) is a pure Finslerian metric. At present the Finsler geometry
of Randers metric is an important chapter of the geometrization of the
physical fields.

The Electrodynamics is gouvernated by the known Lagrangian:

(2) L(, 3) = meag(z)d's? + :—:éb,-(z)i‘ + U(z)

m, ¢, e being the known physical constants.

Of course, the geometrical model based only on the Riemannian struc-
ture a;; can not characterize all physical properties described by L(z o)
while the variational problem of the integral of action I(c fo @, &) db
leads to the Lorentz equations

d*x '+ ()da.’dr 4 ,I)E
2 o) e = @

In this case we need a more comprehensive model. Indeed, such a model
is provided by the Lagrange space, defined by the Lagrangian (2).

On the ocassion of the Centenary of the birth of J.L.Synge an axio-
matic theory of General Relativity by Ehlers, Pirani and Schield, called
E.P.S'axioms, was formulated. R.Tavakol and R.Miron proved that the
EPS-axioms are satisfied by the metric tensor:

(4) gii(w, &) = e Pay(z)

(3)

where o(x, %) is an arbitrary function. For instance, (2, ) = 1 — —7—=,
n*(z, ©)

where n(z, ) > 1 is the refractive index of a dispersive optic medium, gives

a convenient consistence of the previous metric. It is not difficult to prove

.. 0o g T ; ; :
that, if —— nonvanishes, then g;;(z,) is not a Riemannian metric tensor.




Finally, another example. In the Relativistic Optics, based on the Synge
metric
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(5) gij(z, &) = meai; + (1 — m)ﬂﬂ

where ay;(z) is a Lorentz metric, n(z,4&) > 1 is the refractive index of
the considered optic medium and &; = a;;47, we can not consider g;; as a
Riemannian structure, because it is not reducible to a such kind of structure.

The previous examples, clearly show that we need some new geometrical
models for electrodynamics or relativistic optics ete. In the following we will
show that Lagrange and Hamilton geometries can be used in this respect.

A Lagrange space is a pair L™ = (M, L(z,y)) in which M is a real, n-
dimesional differentiable manifold and L : (z,y) € TM — L(z J) €Risa

0L
regular Lagrangian, for which the fundamental tensor g;; = 2 By has a
constant signature on TM =TM \ {0}.

Of course, 7 : TM — M is the tangent bundle of M, TM is TM with-
out the null section and (z%,y'), @ = 1,..,n, are the canonical coordinates
of the points (z,y) € TM.

Any Riemann space R" = (M, a;;(z)), where a;;(z) is the fundamental
tensor field of R", is a Lagrange space, with L(z,y) = a;;(x)y'y’. The
Finsler space F™ = (M, F(z,y)) is the Lagrange space L™ = (M, F*(z,y)).

More general, the pair GL" = (M, g;;(z,y)), where g,;(x,y) is a d-tensor
field (d-means distinguished) symmetric, nondegenerate and with constant,
signature is called a generalized Lagrange space.

Of course, every Lagrange space L™ is a generalized Lagrange space GL",
but not conversely.

As exemples: The Randers spaces are Finsler spaces; The Lagrange
spaces of electrodynamics, L™ = (M, L(z,y)) have the function L(z, ) des-
cribed in (2).

The metric g;;(x,y) from (4) determines a generalized Lagrange space
GL". Also the Synge’s metric (5) gives us a GL" space. It is the generalized
Lagrange space of Relativistic Optics, [2],[5].

Consequently, the following relations of subordinate between previous

spaces, hold:

{R"}  {F*} c {L"} c {GL"}.
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It is clear that if we are in possesion of the Lagrange geometry of spaces
L™, we can take its restriction to the geometry of Finsler spaces F™ or of
Riemann spaces R" and we can extend it to that of generalized Lagrange
spaces.

In the second part of this article we develop the geometry of Lagrange
spaces based on the fundamental principles of Analytical Mechanics: 1°
Variational calculus of integral of action I(c) = fﬂl L(z,&)dt determine the
Euler-Lagrange equations; 2° The canonical semispray; 3° The law of con-
servation of Energy; 4° The canonical nonlinear connection; 5° The metrical
linear connections (structure equations); 6° Nother theorem; 7° Applications
to electrodynamics; 8° Particularization of this theory to Finsler spaces and
9° Its extension to generalized Lagrange spaces.

The geometrical theory of the spaces from the previous sequence was
realized by some Schools from: Romania - R.Miron and his collabora-
tors; Japan - M.Matsumoto et.al.; Germany - D.Langwitz, K.Buchner et.al.
Russia - G.S.Asanov et.al.; S.U.A. - S.S.Chern et. al.; Great Britain -
M.Crampin et. al.; Canada - P.L.Antonelli et.al.; Italy - Rizza et.al.; Hun-
gary - L.Tamassy et.al. and many others, (see References from the books
(21,3)).

2. The Hamilton Geometries.

The Analytical Mechanics, operates in the same meassure with other
fundamental notion: the Hamiltonian function H(z,p) which depends on
the particle z = (z') and momenta p = (p;). Therefore an Hamiltonian
function is a mapping H : (z,p) € T*M — IR, where (T*M,7*, M) is
the cotangent bundle of the manifold M. Of course, the geometrical proper-
ties derived from H are based on the canonical geometrical objects on the
total space T* M. These are the Liouville 1-forms w = p,dz*, the symplectic

structure f = dw = dp; A dz', and the Poisson structure {f, g} = _?i -
e p; O
O—g o—f— Assuming H differentiable on T*M = T*M \ {0} it is not difficult
p; O
1 9°H ' g "
to see that — = g" is a contravariant tensor field, symmetric.
2 Op0p;

We define an Hamilton space H™ as a pair (M, H(z, y)) for which det||g"||
nonvanishes on 7*M and the signature of g is constant.
It follows that the triple (M, 0, H) is an Hamiltonian system. It has

(T .
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the properties:
1°. There exists an unique vector field Xz € x(7*M) for which
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igl = —dH.

2°. The integral curves of Xy are given by the Hamilton-Jacobi equa-

tions: s
dg*  OH dp;  OH

W@y Gp db 9T

3°. The following formula holds: {f, g} = 6(X;, X,).

For these spaces H" = (M, H) we can determine, instead of fundamental
equations Hamilton-Jacobi, a canonical metrical linear connection (and its
structure equations) etc., which give the fundamental geometrical object
fields in the geometry of H™.

The relations between the Lagrange spaces L™ = (M, L(z, y)) and Hamil-
ton spaces H" = (M, H(z,p)) are given by the Legendre transformation
Leg : L™ — H™ given by: 2' = a*,p; = 55?; This is a local diffeomor-
phism from TM to T*M. Leg transform the regular Lagrangian L(z, y) into
the regular Hamiltonian H(z, p) = piy’ — L(z,y), where ' is given by Leg™!

and H = %H,L = %L.

By means of the Legendre diffeomorphism Leg the Euler-Lagrange equa-
tions from L™ are applied into the Hamilton-Jacobi equations. The funda-
mental object fields in L™ are transformed in fundamental object fields in
100
But, there are some important subclasses of Hamilton spaces H™. One
of these is that given by the Cartan spaces. Namelly, a Cartan space C* =
(M, K (z,p)), where K (z, p) is a positive function, positively 1-homogeneous
with respect to the momenta p; and for which H™ = (M, K*(z,p)) is an
Hamilton space.

The Cartan spaces introduced by the author, are totally different of
Cartan spaces based on the notion of area. The geometrical importance
of these spaces is that they are obtained from Finsler spaces, via Legendre
transformation. Therefore, spaces C™ are called dual of Finsler spaces. The
geometry of C™ has the same importance, symmetry and beauty as that of

Finsler spaces.

)
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Of course any Cartan space C" = (M, K(z,p)) is a Hamilton space
H™ = (M, K*(z,p)). But not conversely.

More general, a generalized Hamilton space is a pair GH" = (M, g% (z, ),
where g"(z,p) is a contravariant symmetric tensor on 7 M having a cons-
tant signature and rank||g”|| = n = dimM.

The relations between the previous spaces are given by the inclusions:

{R™} c {c"} c (A"} C {GH"}

where R*™ = (M, g"(z)) is a Riemann space.
A good example of Hamilton space is given by the following Hamiltonian
(6]:

H(z.p) = Lo @y 2 @)p + (o)
3 me I me? L med A
It is "dual”, via Legendre transformation, of the Lagrangian (2) of elec-
trodynamics, with U(z) = 0.
The applications in Theoretical Physics, Mechanics, Biology, Relativistic
Optics were done by G.Asanov, S.Ikeda, R.G.Beil, R.Tavakol, I. Roxbourgh, |
V.Balan, P.Stavrinos, P.L.Antonelli, R.Miron, G.Zet and many others. See ‘

the References from the book (2].
The details from this geometry can be taken from the book [6], recent

published by Kluwer Acad.Publ. (2001).
3. Higher order Lagrange spaces.

k
e

The higher order Lagrangians are the functions L(z,#,&,.., @ ) which

; ek dz' o
depend on the particle z = (z'), velocity & = — and accelerations & =

: dt
(PR e ket
L ({—I o id_z But, on the manifold M the accelerations of order
21 di2 Kl dik

'2:3,({.,k have not a covariant meaning. Therefore there are not a wvector
bundle on which to define the higher order Lagrangians. There is a differen-
tial bundle, (7*M, 7%, M), called the higher order accelerations bundle, or
k-osculator bundle which give us an adequate geometrical framework for
studying the Lagrange space of order k.

This study is important because it is basic for the Analytical Mechanics
of higher order.

T
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It is necessary to notice that in classical Lagrangian Mechanics only
78
the acceleration —iz is a fundamental notion, since the Newton principle
ma = F. The accelerations of higher order, k > 3, are considered as derivate
notions.

In the last twenty years, many scientists, as M.Crampin and collabora-
tors, M.de Leon and collaborators, I.Kollar, D.Krupka, D.Grigore and colla-
borators, R.Miron and collaborators and many others investigated various
aspects of the Lagrangian of higher order. In the first my visit at Univer-
sity of Alberta, in Edmonton, (1995), P.L.Antonelli questioned me: Have
you examples of the regular Lagrangians of order k > 3? I was surprised
to constat that in that time there are not of such kind of examples. The
difficulty comes from the fact that the old problem, formulated by Bianchi
and Bompiani, of the prolongation of the Riemannian structures g, defined
on the base manifold M, to the k-osculator bundle (or to 7*M) was not
solved yet.

So, I was obligated to solve the following problems:
1°. The prolongations to T*M of the Riemannian structures g, defined on
the base manifold M.
2°. The construction of good examples of nondegenerate (or regular) La-
grangians of order k.
3°. The definition of the notion of Lagrange space of order k.
4°. The study of the geometry of the manifolds 7M. This is: the notions of
k-semisprays, nonlinear connections, N-linear connections, structure equa-
tions, ete.
5°. The study of the subspaces in the Lagrange spaces L*)",
6°. Applications of the previous theory in the study of Lagrange spaces of
order k, denoted by L®" = (M, L(z,yV, .., y*))).
7°. The introduction of the notion of higher order Finsler spaces F®)" =
(M, F(z,
¥,y ®)).
8°. The introduction of the generalized Lagrange spaces of order k,
GL®™ = (M, g;;(z,y,..,y™)) such that the following sequence of inclu-
sions hold:

(R(k)n} [ {F(k)n} = {L(k)n} G {GL(k)"},
For & = 1 we have the classical sequence, above mentioned. This sequence
is, of course, important in applications. The previous problems have been

M
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presented in the books [2],[3].
4. The Hamilton spaces of order k > 1.

The cotangent bundle 7*M, dual of the tangent bundle 7'M, carries
some canonical object fields as: the Liouville vector field, a symplectic
structure and a Poisson structure. They allow to construct a theory of
Hamiltonian systems and via Legendre transformation, to transport this
theory in that of Lagrangian systems on T'M. Therefore the Lagrange spaces
L" = (M, L(z,y)) appear as a dual of Hamilton spaces H" = (M, H(z,p)).

In the theory of Lagrange spaces of order k, where the fundamental
functions are Lagrangians which depend on particle and higher order accele-
rations, we do not have a ”"dual” theory based on a good notion of Hamil-
tonian of order k, which depends on particle, higher order accelerations
and momentum. This is because we have not a convenient differentiable
bundle which carries a canonical symplectic (or presymplectic) structure, a
canonical Poisson structure and its dimension be the same with dimension
of manifold T*M.

In the book [6] one can see how is possible to eliminate this inconvenient.

Indeed, starting from the k-accelerations bundle (7% M, 7%, M) we intro-
duce a new bundle (T**M, n*k, M) called "dual”of previous bundle, where
the total space T**M is the fibered product

T*M = T*'M x T*M.

The canonical coordinate on the manifold 7**M are (z*,y™", .., y*=Vi p,).
So, dimension of T7**M is the same with the dimension of 7%M.

One proves that on T** M, w = p;da* is a canonical 1-form and 0 = dw =
dp; A dz* is a presymplectic structure of rank 2n. The systems of brackets:

of 89 _ 09 of

19}a= o e =0,1,..k=1; =
{f.9} By Bp, ~ By Bpy (@=0,1 y(0) = )

defines a canonical Poisson structure on T**M for every a = 0,1,..,k — 1.

A mapping H : T**M — IR is called a Hamilton function of order k. So,
H(z,y™, ., y*Y p) is a function of particle z, of accelerations y, .., y*=1
and of momenta p. H is called nondegenerate Hamiltonian if rank of its

Hessian with respect to p; is nonsingular.



The elements of Hessian are the components of the tensor field
1 &#H

g ==
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Thus, we,deﬁne the notion of Hamilton space of order k, as a pair
H®™ = (M, H(z,y™, ..,y*", p;)), where H is a nondegenerate Hamilto-
nian and the tensor g* has a constant signature.

One can develop the geometry spaces H*)™ as a natural extension of
the classical theory of Hamilton space of order k = 1. The relation between
the Lagrange spaces of order k, L®" = (M, L(z,y, .., y*=1) y®)) and the
Hamilton spaces of order k, H®" = (M, H(z,y™, .., y*-1) p)) is given by
the Legendre mapping, Leg : L®" — H®)" which is defined by

Leg : (z,y™, .,y*,y®) € T*M — (z,y@, ., y*V,p) € T*M

where p, = 1-211—
tT 20y

One proves that the Legendre mapping Leg is a local diffeomorphism.

Consequences one can study the geometry of Hamilton spaces of order
k, H®" by means of the geometry of Lagrange spaces of order k, L¥"
using the Legendre mapping.

The generalized Hamilton spaces of order k, are the pairs GH®" =
(M, g"(z,y" | ..,y*V p)), where g” is a tensor field symmetric, nonde-
generate and of constant signature on T**M. Of course any space H*)" is
a GH™" space, but not conversely.

In particular, if H(z,y",..,y* ", p) is positively 2-homogeneous with
respect to the momenta p;, the spaces C**)® = (M, H) is called the Cartan
space of order k. The spaces R*®" = (M, H) with H = g"(z)pip;, 9" (x)
being the Riemannian (contravariant) tensor field on the manifold M, are
the Riemann spaces. We get the following sequence of inclusions:

(R'(k)"} c {Co(k)n) & (H(k)n) Pes (GHU:)u)_

In the case k = 1 we have the sequence studied above.

The applications in higher order Analytical Mechanics, Theoretical Phy-
sics or Variational Calculus are remarkable. In this respect one can read
the book [6], recent published by Kluwer Acad.Publ. in the Collection
“Fundamental Theory of Physics.”
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II Technical construction of the geometries
of spaces L", F", L,

Without enter in the demonstrations, we briefly describe the construction
of the geometry of the most important classes of Lagrange spaces.

1. Lagrange spaces.

The Lagrange spaces are defined over the smooth manifolds M, using the
total space TM of the tangent bundle and taking the regular Lagrangians
L:TM — R.

These spaces were defined twentyfive years ago. They were widly develo-
ped by the author of the present article and his group. For the extensive
presentation of the geometry of these spaces I refer to the books [1],[5].

Throughout the text we assume that manifolds, mappings etc. are of
C-class and the Einstein convention of summarizing is applied.

Let M be a real manifold, of dimension n and (T'M,w, M) its tangent
bundle. If u € TM and z = m(u), then we denote u = (z,y), y being a
tangent vector at € M. So, the canonical coordinate of the point u = (,y)
are (2',y'), (i = 1,..,n). The transformations of local coordinate on 7'M
are given by

=gi(al, ., a"), det(%)#o

bzt
a—zf

8 l

@

%_z

The natural basis 66 "5y ——) in T,,(T'M) is transformed by (1) as follows

: o _owo oio o _omo
( 37 Bwigy Owiny Bp  ddoy

Therefore the vector fields (i —a—n) spanned a distribution

The
V:iueTM — V, € T,T'M,Yu € TM. This is the vertical distribu-
tion on T'M.

The vector field, locally given by

)
(3) F_yb?

T, .
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is globally defined on 7'M and belongs to the vertical distribution V. It is
called the Liouville vector field.
Consider the F(T'M)-linear mapping J : x(TM) — x(TM),

@ o) = 3 o) -
Thus, J is an almost tangent structure, globally defined on T'M. We have
J*=0,Im J = Ker J=V,rank J =n.

A vector field S € x(T'M) is called a semispray if
(5) VD=L

Locally, S is uniquelly expressed in the form

30 a
(6) S=ygn 26'(1‘!I)$~
The integral curves of S are
U ' 4 dz . d
(6) V=" g 26 =

The system of functions G'(z,y) gives the coefficients of semispray S.
This notion of semispray is fundamental in the construction of the main

geometrical object fields on 7'M.
Now, let TM = TM \ {0} be the open submanifold of 7'M, formed by

points (z*,y') with property rank||y',..y"|| = 1.

Definition 1 A Lagrange space is a pair L™ = (M, L(z,y)) with L : (z,y) €
TM — L(z,y) € R, such that:
1°. L s differentiable on TM and continuous on the null section
0: M — TM of the projection .
2°. The Hessian of L is nonsingular, i.e.
a. rank]llg,|| = n, on TM,
1 &L

b. gy = ———,
94 20y 0y et
3°. The tensor field g,;(z,y) has a constant signature on TM.

m
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L is called the fundamental function and g,; is called fundamental tensor
of the space L".

If M is a paracompact manifold, then TM has the same property and
there exists pairs L" = (M, L) which are Lagrange spaces. An example
is given by the Lagrange space of electrodynamics, described in the first
section.

Starting from the integral of action of the Lagrangian L and based only
on the principles of Analytical Mechanics we will determine the fundamental
geometrical object fields of the Lagrange space L™ = (M, L).

A curve c: t € [0,1] — (a'(t)) € U C M, (with a fixed paramehenza—

tion) has the extension to TM given by c* : t € [0,1] — (' (t), = (t)) €

= \(U) c TM.
The integral of action of the Lagrangian L(z,y) on the curve c is given
by the functional:

) / ) % ))a.

Applying the variational principle to the functional I(c) we obtain the
Euler-Lagrange equations:

®) P oA 9y, e

The curves ¢ solutions of the differential equations (8) are called extremal
curves of the space L".

The notion of energy of the space L™ can be defined as in Theoretical
Mechanics, as follows: e

By =y By L.

It is not difficult to prove the sentences:

The energy Ey, of the Lagrange space L™ is constant on every extremal
curve.

Also, a Néther theorem holds.

For the fundamental function L(z, y) of the space L”, the Euler-Lagrange
equations (8) can be written in the equivalent form:

d*z’ dz'

o +20‘(z,—)—0 ¥==

(8)' a
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where
i 1 &*L aL
(9) 2@, y) = 5 (Wy" = 5)

g" being the contravariant tensor of fundamental tensor g;;.

But (8) give the integral curves of the semispray S, (6), with the coeffi-
cients (9). Of course, this is a canonical semispray since the coefficients are
determined only by the fundamental function L(z,y) of the space.

Throughout in the following considerations we will based on this cano-
nical semispray S.

Taking into account the coefficients G*, (9), of the canonical semispray
S we can introduce the system of functions

aG*
10) Ny soten
( 7 ay)
So, we obtain a geometrical object field on TM with the law of trans-
formation

— g ar  ay
10)' e o e Y
{20) N'"BIJ o l9zm  9rr’

Therefore N';(z,y) are called the coefficients of a canonical nonlinear
connection. They depends only on the fundamental function of the space
L".

It is not difficult to prove that % :

g g ’i E=1,.,n),

(11) - 5a Vg

are n-independent vector fields. They spann a new distribution on ﬂ7,
denoted by N, supplementary to the vertical distribution V, i.e.:

(12) T.(TM) = N, ®Va, YueTM.
: ot alls: 4B, -
By the way, we determine a local basis ( —, — |, (i = 1,..,n), adapted
6z’ Ay

to distributions N and V or adapted to the direct decomposition (12).
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The canonical nonlinear connection N is extemly useful in construction
of a canonical linear connection DI'(NV). This has the coefficients (L}, (z,y),
Cji(z,y)) in the adapted basis and leads to two operators of h- and v-
covariant derivatives, denoted by ”|” and "|”.

So, for the fundamental tensor field g;, h- and v-covariant derivatives
are given, respectively, by:

8gis . .
Jijlh = ﬁ = 9siLin — GisLip,
(13) b
Guln = i — 95iCih — 9isCih-

It is interesting to remark that, with respect to changing of local coor-
dinate (1), the coefficients L, obey the same rule of transformation as the
coefficients of Levi-Civita connection on the base manifold M. While Cj,
are the coefficients of a tensor field of type (1,2).

The canonical metrical connection DI'(N) is given by:

Theorem 1 The following properties hold:

1°. There erists an unique N-linear connection D on M verifying the
azioms:

(14) gisn =0,  gijln =0,

(15) L;h = L;xjr C'jh = C;x,-

2°. This connection has as coefficients the generalized Christoffel symbols

1A 1 4 [8gsn | 6g5s  Ogsn
(16) h = 30 Tk Goh - Gon)

o = Low[00m 09 Ogin

h 29 y oyt Ay )

3°. The previous connection depends only on the fundamental function
L(z,y) of the space L™

E; ). It follows

Let (dz*, 8y') be the dual basis of the adapted basis (%, By

for 1-form fields 6y', .., 6y", the expressions:

(17) by = dy' + N';da.

(T



Therefore the geometrical object fields
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(18) wh = Lipdz® + Clysy*
are the so called 1-forms connection of DI'(N).

Theorem 2 The structure equations of the canonical metrical connection
DI'(N) are given by

% 0)
d(da’) — dz* Awi = — ',

” . (0]
Ui d(By') - by Ay = — O,

dwj' —-wf Awi = —2,
© ()
where Q', Q' are the 2-forms of torsion:
L)AL ©
(19) Q'=C},da? A6y Q= —R‘ 142’ A dz* + Pj,da? A da’,
and Q are the 2-forms of curvature:
" el . i or i
(19) Q= ERj redz” A dz® + Py, dz” A Sy* + 55,',,63/' Aby".

In the previous equations we set:

6Ny EN% . ONY
o O B O
and
6LY. oL}
Ry = 55 = 5op + Linin — LiuLis + ChuRi,
0[4'
(21) P,M—W"Cun‘*q,ﬂn

Glolj ley
Sitn = F - By*h +CHCh = CHCly.
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We call R}, P}k the torsion of DI'(N) and Rj*xh, P;'kn, S;'kn the curva-
tures of this connection.

Now we can remark:

Whole geometry of the Lagrange space L™ = (M, L(z, y)) can be based
on the canonical nonlinear connection N, the canonical metrical connection
DI'(N) and the structure equations (19),(19)" and (19)”.

The applications in Theoretical Physics, as Einstein equations od DI'(N)
or Maxwell equations of DI'(N) can be find in the books [2],[4].

It is important to remark that in the case of Lagrange space of electro-
dynamics, L™ = (M, L), with the fundamental function

L(w,y) = meag(x)y'y’ + —:&ba(z)y‘)

the Einstein equations and Maxwell equations, determinate on this geome-
trical models are the classical one.

2. Finsler spaces.

An important class of Lagrange spaces is provided by the famous Finsler
spaces.
Definition 2 A Finsler space is a pair F™ = (M, F(z,y)), formed by a real

n-dimensional manifold M and a scalar function F : TM — IR having the
properties:

1°. F is differentiable on TM and continuous on the null section
0: M — TM of the projection m : TM — M.
2°. F 1s positive.

3°. F is positively homogeneous of degree 1, with respect to y* on TM.
4°. The Hessian of I'*, with elements
1 §°F?
(1) 94 = 55555
2 dy'dy’
is positively defined on M.
The function I is called fundamental and g,; is called fundamental or
metric tensor of "

It follows that g;; is 0-homogeneous, symmetric and nondegenerate. So
its contravariant g can be considered. Therefore the Finsler spaces can be

(T



Radu Miron 243

looked as the particular Lagrange space L" = (M, F*(z,y)). The previous
theory can be applied; taking the regular Lagrangian L(z,y) = F*(z,y).
Thus L(z,y) is 2-homogeneous with respect to y'.

If we denote by 'y;,,(;r, y) the Christoffel symbols of the Finsler space I,
after a straightforward calculus in the formula (9) we find the coefficients
of the canonical semispray of the space F™ :

@ @' = 37l Y

Consequently, the canonical nonlinear connection N of the Finsler space
F" is exactly the canonical Cartan nonlinear connection. Its coefficients are
in the Cartan form:

‘ g 5 s
(3) N'j= 30y {7 (= vy}

Theorem 1 give us the coefficients of the famouns Cartan metrical connec-
tion of the Finsler space ", denoted by CT(N). In Theorem 2 we deter-
mine the structure equations of the Cartan metrical connection CT'(N).
The Bianchi identities of CT'(N) are obtained from (19) by calculating the
exterior differential of (19), modulo the same system and using the exterior

(0) (1)
differential of 2-forms of torsion Q', Q" and Q. It is not difficult to prove:

Theorem 3 The Cartan metrical connection CU(N) of a Finsler space
F™ = (M, F(z,y)) has the properties:
2

15 Fp=0, F} =0, Fly = .

2°. F s constant on the autoparallel curves of the Cartan nonlincar
connection N.
3°. The Liouville vector field y' has the h- and v-covariant derivatives

Y =0, ¥'ln =8
4°. CT'(N) is a metrical connection:

Gijin =0, gi;In = 0.
5° R, = Y*Ry'jn, Pi = ¥ Py'sn, 0 = y* Si'jn-
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6°. The h- and v-torsion T}, %, vanish.
7°. The tensor Py, = g.-,PJ:‘h 18 complete symmetric.
: 10gi;

8. y*Cy; =0, Y’ Cyjn =0, Cijn = 5%

9°. Rijn + Rjni + Ruij = 0, Rijn = gis Ry

10°. The covariant tensors of curvature Rijnk, Pijhx, Sijnx are skewsym-
metric in the first two indices.

11°. In the canonical parameterization, the Buler-Lagrange equations de-
termines the equations of geodesics of space F™ :

EE e E)E’.Ez_" =
a0 g g s
Examples. ;
1°. Let R™ = (M, a;;(x)) be a Riemann space and 3 = b;(z)dz* an 1-form

on M. The function
F(z,y) = /ai;(@)y'y? + bi(2)y',

with b,(z)y" > 0 on an open set from TM, is a fundamental function of
a Finsler space. It is used in the geometrical theory of gravitational and
electromagnetic fields, in cases when a;; is a semiriemannian structure.

2°. In the same conditions, the function

e = %

is the fundamental function of a Finsler space. It is called Kropina space.
3°. The function

¢ A

Plz,g)=e** {@P+ -+ @7},
m integer, m > 3, a; = const. # 0 and F(z,y) is expressed in a preferential
chart on T'M, is a fundamental function of a Finsler space. F is called

Antonelli’s ecological metric.

3. Almost Kihlerian Models of Lagrange and Finsler spaces.

We shall see that the Lagrange spaces L™ = (M, L) or Finsler spaces
F" = (M, F) endowed with the canonical metrical connection CI'(N) can
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be thought of as the almost Kihler spaces on the manifold TM. We say
that such a space is an almost Kéhlerian model for L™ or F".

Moreover, a Lagrangian or Finslerian theory of gravitational and elec-
tromagnetic field can be geometrically studied much better on the almost
Kiihlerian model, since the almost symplectic structure of the space is a
symplectic one and the nonlinear connection is essential included into this
model.

Let be a Lagrange or Finsler space having g,;(z. ) as fundamental tensor
and N, with the coefficients Nj(z,y) as canonical nonlinear connection,

As usually we consider {65' 6’8 } the adapted basis to the distribution
N and V. Its dual basis is (da*, 6y').
Let us define the F(T'M)-linear mapping IF : x(TM) — x(TM) :

a a 5
(1) F(ﬁ)—_a_y—" IF‘(W)- —, (i=1,.,n).

It is not difficult to prove that IF is well defined on TM and it is the
following tensor field of type (1,1):

[

(1 IF-~W®(L~< + 50 O

Evidently, we have
(2) FolF = -1
So, we obtain:

Thgg—rem 4 1°. The mapping I from (1) is an almost complex structure
on TM determined only on the fundamental function of space L™ (or F™).

2°. The structure IF is integrable if and only if the canonical nonlinear
connection is integrable.

Now, let us consider the fundamental tensor g,,(z,y). It determines a
pseudo-Ri ian (or Ri ian) structure & on the manifold 7'M :

(3) G = g(x,y)dx' ® dx! + gy(x,y)oy' ® by’
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Theorem 5 1°. G is a pseudo-Ri wan (or Ri wan) structure on
the manifold T M, determined only by the fundamental function of the space.
2°. The distributions N and V are orthogonal with respect to G.

The pair of structures (IF,&) is important in the geometry of the con-
sidered space. In this idea we consider the Poincaré-Cartan 1-form w and
2-form @ :

OT
(4) w= iﬁdz
(5)- 0 = gij(@,y)6y' A d’.

So, we can prove:
Theorem 6 1°. The following equations hold:
(6) 0 = dw, df=0.

2°. 6 is a symplectic structure on TM, determined only by the funda-
mental function L(z,y) (or F(z,y)) of the space L™ (or F™).

Finally, one proves an important result:

Theorem 7 1°. The pair (@, IF) is an almost Hermitian structure on ™
depending only on the fundamental function L(z,y) (or F(z,y)) of the La-
grange (or Finsler) space L™, (respectively F™).

2°. The 2-form associated to the structure (G,IF) is @ given by (5).

3°. For any Lagrange space L™ = (M, L) or Finsler space F" = (M, F)
the space K** = (TM,@,IF) is an almost Kihlerian space.

The space K*" is called the almost Kéhlerian model of the space L™ (or
™).

We can ude the space K", the Einstein equations and Maxwell equations
for the gravitational and electromagnetic fields defined by the fundamental
function L (or F) of the considered Lagrange (or Finsler) space.
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4. Higher order Lagrange spaces.

The existence of Lagrangians which depend on the accelerations of order
k > 1 has been contemplated by mechanicists and physicists for a long time.
Einstein has grasped their presence in connection with the Brownian
motion. The variational calculus systemntlrall\ used the Lagrangians of
dx 1d
e’k dt
Lagrangians are not regular. This is, the Hessian of L with respect to

y(l)l -

higher order accelerations: L(z, e ) But, generally such kind of

1d*z
B is degenerate.

Some good example of higher order regular Lagrangians are given by
solving the problem of prolongation to 7*M of the Riemannian structure
given on the base manifold M.

Let R™ = (M, g;;(x)) be a Riemann space and (T%M, 7%, M) its bundle
of accelerations of order k. The canonical coordinate of 7*M, of a point
(z,yD,..,y™*) are (a,y 1), .., y ).

A nonlinear connection N on T7*M is characterized by the dual coeffi-
cients M;, .., M} from the adapted cobasis:

" "y
bz = da', 6y = dyV' + m;d:’,

(1) (k)i (k)i i gy (k=1)7 j
= b 4.4 M tdy®V Yda!.
&y dy™" M]dy (k_{n,dy + g\/lk)]dz

The first important result is given by:

Theorem 8 For any Riemann space R™ = (M, g;;(z)) there exist nonlinear

connections on T*M determined only by metric tensor g;;(x). One of them
has the dual coefficients

o s i1 ol
A, = 22Dy, A {rm ﬂl)é’,}..

1 ] 1 l .
= F{ My N (le)’}

@)

where v,,(z) are the Christoffel symbols of the tensor gy;(x) and I 1s the
Jollowing nonlinear operator

a a
3 =W gy L) el
(3) =y = + -4 ky By
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Now let us consider the distinguished Liouville vector field:

4 o (R) o (KD d (k=10 o .. 107
(4) k2 ky™ + (k I)Myy 4ot (kh_'ll),y
We obtain the second important result:

Theorem 9 The following Lagrangian is defined on ’IT“TM, is reqular and it
is determined only by Riemannian structure g,;(z) :

(5) L(z,y®, ., y®) = gy @)z,
Also, we have:
Theorem 10 The tensor field G on Tm, given by
€ = gy(x)dx' ® dx + gy(x)oy ™' @ by ™I + - - - + g (x)8y ™)' @ by ™N

has the property: ST
G s a Riemannian structure on TEM, determined only by the Riemann
space R = (M, gi;(z)).

The pair Prol*R" = (T*M,E) is the prolongation of order k to T*M of
the Riemannian space R".

Theorem 9 solves the problem of existence of regular Lagrangians of
higher order. -

Let us consider the mapping L : T*M — IR differentiable on T*M and
continuous on the null section. L is called a differentiable Lagrangian of
order k. The Hessian of L with respect to variables y*)* has the elements

9’L

1
(6) 9 = Ea—ﬁy(k)‘ay(k)l'

L is called regular if rank||g,;|| = non TEM. s, is called the fundamental
tensor of L.

Definition 3 A Lagrange space of order k is a pair LW" =

= (M, L(z,y™,..,y™)) where L is a reqular Lagrangian of order k and
its fundamental tensor gi; has a constant signature on T*M.

T—
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Theorem 9 prove the existence of these spaces on the paracompact mani-
fold M.
The geometry of spaces L*)" can be constructed by means of the Euler-

Lagrange equations.
Indeed, the integral of action of the Lagrangian L(x,y"), .., y®) is the

functional 3 ¢ £
L - 4
l(c)_/o L(a(t), S 3y o )
The variational problem of /(c) leads to the Euler-Lagrange equations:
o . 0L d OL 2 AL ..
) A8 o~ dtayw- iy lex*(aym-) "
Wi _ dz* ) — 1 d*z*
V== ey .
dt’ s

o

E, (L) is a covector field.

The notions of higher order energies (L), ...£' (L) can be introduced.
One proves that the energy of order k, £(L) is conserved along to the
integral curves of the equations E; (L) = 0. A Nother theorem one demons-
trates, too.

There are some covector, which depend by L only, important in the
geometry of the spaces L*)", One of them is as follows

k=1 aL d 0L
k= 1
E (D)= (-1) )lay(k 0 dt gy
k=1
The equation F; (L) = 0 determine a k-semispray:
(8)

8 40 o )
§=y ozt y® ot +hy® g (k)G @, v, ) g
with the coefficients
o Mt =600 oL
8y (k+1G" = 50" {T(55) ~ gyommi )

This is the canonical k-semispray of the space L*)",
So, we obtain an important result,[Miron|:

e 3
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Theorem 11 For any Lagrange space of order k, L®™ = (M, L) there
exists the nonlinear connection N depending only by Lagrangian L. One of
them has the dual coefficients

5 0G! :
Mi = . Mi=={sM inel oL
@’ oyWi’ @ 2 { e <1)’}’

i o s

(9)

Mi=— 4
[ Q2 Ve N (S Ve
where S is the canonical k-semispray.

Other fundamental notion is that of N-linear connection. It is a natural
extension of the N-linear connection DI'(N) of the Lagrange space of order
1. The fundamental tensor g;; of the space L(®)" is covariant constant with
respect to DI'(N) if

()
(%) G =0, gij |,=0, (a=1.,k)
One proves that:

There exists an unique DI'(N) which depend only on the regular La-
grangian L(z,yW, .., y®), without some torsion and for which (*) are veri-
fied. Its coefficients are given by the generalized Christoffel symbols:

L i [89sn 695  Ogin
Ly = 56°4= e 2R
(10) Z % bzl b bz

i is | 09sn 0gjs 0g;n
Sin = 39" sy t gyen ~ W} (@=Ll

DI'(N) with the coefficients (10) is the canonical metrical connection of
the Lagrange space of order k, L®)" = (M, L).

Whole geometry of spaces L*)™ can be developed only by means of
canonical nonlinear connection N and canonical metrical connection DI'(N).

The Finsler spaces of order k are defined by the pair F®" —
= (M, F(z,yW,..,y®)) where F : T*M — IR is positive, smooth on
T*M, k-homogeneous on the fibres of 7%M. F? is the fundamental function
of a Lagrange space of order k.

The geometry of these spaces is a special case of that of higher order
Lagrange spaces.

I finish with remark that the applications of these theories are find in

the books [1],[2],[4],[5].
.. P
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