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1 D efinit ion of a field. Examples 

The nolion of a field (in algebraic sense) is one of t~he most irnportant. 
notions of algebrn (and of whole mathematics). T he idea of a field crys­
t.allized in t:he midclle oí the nineteenth cent.ury, when a.lgebraic systems 
appc.nred which had feat.i1res of number syst.ems but. marny dififerent proper­
t.ies (romplex nnmbers, fields of residues modulo p for a prime p, set (skew 
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field ) of quaternions etc) The field theory was created by many promi­
nent mathematicians of the last t.wo centuries (Gauss, Galois1 Kronecker, 
Dedekind, Wedderburn , Hilbert, and many others). The general idea of a 
field includes the most important properties of the set of rat.ional n11mbers 
(and real numbers) concerning the operations of addition and mult.iplication 
but all other propcrtie.s are ignored { concerning1 for example, the nearness 
of numbers on the real line or arithmetic propert.ies of integers). The pa­
pers of Frencb mat.hematicians E.Galois and J. Lagrange devoted to gronp 
theory and its applications for solving algebraic equations and works of C. F. 
Gauss in nwnber t heory formed the basis of the theory oí fields. The term 
"field" was for the first time used probably by P. Dirichlet. (1871) in his 
works in the munber theory. 
Definition l. A set F consist.ing of at least two elements is called a field 
if two binary operations on F are defined which are called addition and 
multiplication and denot.ed correspodingly by(+) and (·) and which satisfy 
the following conditions: 

1) the both operations are associative and comm11tative1 i.e. (a+b)+c = 
a+ (b +e), a+ b = b +a and (a· b) · e= a· (b ·e) , a· b = b ·a; 

2) they are connected by means of distr ibntivity law, i.e. (a+ b) ·e = 
a c+ b· c; 

3) there exists in F a zero element O such that a+ O = a for all a < F, 
and for any 

element a E F there exists an opposite element -a such that a+(-a) =O; 
4) there exists in F an identit.y element 1 such that a 1 = a for all a 

E F 1 and for any element a€ F , a::/= O there exists an inverse element a - 1 

such that a- (a- 1) = !; 
Therefore all elements of a field F form a commutative group on ad­

clition and ali nonzero elements of F form a gro11p (also commutative) on 
multiplication. By standard way, one can prove that a field possesses the 
unique zero element O and identi ty element. l (O # l ) and for any element 
a E F the opposite element and the inverse element (in case a ::/= O) are 
uniquely defined. The following relations are also true in fields: 
a O = O, a(b - e) = ab - ac for a ll a, b, e< F. 
Example l. T he set of rational munbers Q with natural operations of 
addit.ion and muJt.iplication is a field. 

The set R of ali real numbers with addition and muJliplication of lllllll­

bers is also a field. The most important fieJd is the fieJd C of all complex 
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numbcrs, which contains thc both previou fields. 
lí in th condition 4) of the defini t ion l on r fuscs the requiremcnt 

of x.ist ncc of inverse for cvcry nonz . ro element, onc has the definit;ion oí 
commut a livc ring (wil h nn idcnti t.y clement). The most import;ant examples 
of rings ar t h ring Z oí ali integers and the nng Flx) of ali polynomials 

º'' r thc ficld F. 
Example 2. Let. 11s consid r t.hc t QI 2) of al i numbcrs oí t.hc íorm 
a+b 2 wher a 1 b Q, with opcrat ionsofadd1lion and m11ltiplicat ion. Por 
uny 1wo numb rs from Q(J2], t.h ir sum and prodnct. are of t he sa.mc form . 
Thl' numbcr.; O a n 1 1 = 1 + 0/2 bclong to th i set and íor any x < QI /2) the 
opposuc lc111 nt. - .e is of t lic sarn fo rm. Further, fo r nny nonzero clcmcnt 
y a+ b 2 the inverse clerncnt is of thc form y- 1 = (a - b/2 )/ (a2 - 2b2 ) 

anti 1s <'Onla incd in Q [/2[ (not.c that a2 - 2b2 .¡,O bcrn11se U1e n11mbcrs a 
nnd b are rnt ional). Th11s, t.he set QI v'2J is also a ficlcl. Obvio11sly, Q C 
QI 2¡. 

All nbove ('onsidr rcd fi clcls a re number, Le. 1hcir clcmcnt s nrc nnmbcrs. 
T hr following fi lcls C"O n~ ists of subsets of t he et Z of a li int,cgcrs, b u!. not 
munh<:'rs. 
Exa.mple 3. Let. p be an arbit.ra ry prime and ZP be Lhc set. of a li rcs id11es 
modulo p. Elemcnt.s oí z,, are of the form O= {pZ}, T = {l + pZ}, ... ,p=J = 
(p- 1 +pZ ). 
As rcpres nla tives of t hes · classes we take the smallcs t non-ncgative in!.e­
gcrs containcd in t.hcm. T he operat.ions of addilion and nml!.iplication are 
drfincd in z, in nal.11ral way: x + ¡¡ = x +y, x · ¡¡ = x ·y (t.hc rcsnlt oí 
Lhc op rntion does not. dcpencl on choice of represent.at.ives frorn t;he rcsidne 
da.sscs) . The lass O is a zcro element in z, and thc clement T = {l + pZ} 
is t he id ntity in z,,. lf x .¡, O, 1.hen 1.he GC D(x, p) = 1 and therefore therc 

xjst. 1 mcnts y , z e. Z , s11ch t hat xy + pz = l. This implics t hc rclat ion 
L. y = T n.ncl t.hcrcfo r z,I is u ficld rela t iv ly above rncntionc<l operations. 

bviously IZ,1 = p. Finite ficlds are rallcd Galois fi clds , in honour of l:he 
promm nt F'rcnch nmt.h mnt.icinn Evaris te Galoi who was one of the crca­
lor of sroup thcory nnd t hcory of fi lds. Galois fi eld is often dcnoted by 
G F(k) wherc k is 1.he numb r of 1 ments of this fi cld (t.his notation docs 
1101 c-nuse any misundcrstan ling beca use finil e ficlds F1 and F2 wit.h 1F11 

= IF1I ar isomorphic) . lt is convenient to ill ust ra tc adcl it.ion and mult.ipli­
c·at ion in small fic lds by t.wo tables. The result of t hc operation (a¡ + a1 

or a, · a,) is p11t.t.ing on t.he crossing of t he 1-th row and t,he j-t.h colnmn 
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for ali enwnerated elements a1 , ... 1 an of the field F. Let us wri te now ta­
bles of addi t ion and mult.iplication for the simpliest field Z2 = Z/ 2Z. For 
convenience, we will write residue classes 5 and T wi thout bars. 

z, : 
+ 
o o 1 ' 

1 o 
Analogously, we can write two t.ables for the field Z3 

+ 
z, : 

2 Subfields. Prime fields 

o 1 
o o o 
o 2 
o 

In general, algebra studies really not. sets wi th algebraic operations bu t al­
gebraic operations. Therefore for disengaging from inessential properties of 
the sets on which algebraic operations are stud ied 1 the uot ion of isomor­
phism was int roduced. For fields, it sounds so : Jet F and H be two fi elds. 
A biject ive mapping <P : F -----> H is called an isomorphism from F onl.o H 
if rp preserves stuns and products of elements, i.e. 

<P(a + b) = <P(a) + <P(b), <P (ab) = <P(a)<P(b), <P(O) =O, <P( I ) = 1 

for arbitrary elements a, b < F . Note that the sum and the prodllct of 
element.s a and b are caJculating in t. he field F , but the correspondence 
operations on elements <P(a) and <P (b) are carried out in the field H. In 
case, when t.here ex..ists an isomorphism of a field F onto a fie1d H (may 
be P = H) , the fi elds F and H are called isomorphic (notation F o= 
H). From the algebraic viewpoint 1 isomorphic fi elds are indistinguishable 
(although their sets of elements can be raclically di fferent) . 
E xamp le 4 . Let F = C be the field of eomplex numbers, 

C ={a+bila, b <R )andf( = {( _~ : ) 1a.b< R ) 

be a subset of the matrix ring M2 (R ). Jt is easily seen that sums a ncl 
prod ucts of snch maLrices are of the same fo nn , zero and identity mat r ices 
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brlong to /( 1 oppositc and invcrse matrices can be written in the same form. 
Th11s, /( i a field cont.ain · 1 in t.hc matrix ring M2(R ). 

L l the mapping </> : P - !( b d · fined by th rule: 

</>(a + bi) = ( -~ ! ) . 
l t. is easy to check out immediat ly that for any complcx numbcrs z1 
a1 + b11 o.nd z2 = a2 + b2i U1c following rclations hold: 

13 id ' 

</>(O)= ( ~ n and </>( 1) = 9(1 01) = ( ~ n 
nml <P 1s olw iously n bijr<·t.ion. Thus, <fJ is an isomorphism of thc fleld F 
onto 1hc fi Id !< . 

Lr1 P be a fiel l. 1 f a set. K \:; P is a field relat i\'cly t.hc opcrat:ions from 
/·' thcn /\ is callccl a s11bficld of P. Thc field Pis callcd a 11 cxtcnsio11 of 
1 hl' suhfi Id /(. Prom this dC'finition, it follow partirularly thal, Utc zcro 
nnd th id ntit.y of 1.hc ficld P belong to the subfi Id /( and a re zcro ancl 
idcnmy el m ni. correspodingly for th field I<. 

lf one has a family J<,, i ' I of subficlds of the field P, thcn !( = n,.11<, 
is a subfield of P . lndc d , J< contains O o.ncl 1 from thc ficld F , and if a, b 
' /{ , th n a,b E /(, for a li i' l . Therefore a+ b,a- b,ab,ab- 1 for b f' O 
bclong to th s11bficld /(, for a li i e 1. 

Th n a+ b, a - b, ab, ab- 1, (b f' O) a li belong to I< , and t:h11s /( is a 
s11bficld of P. 
O finition 2. A ficld contai11ing no propcr subfi lds is called prime. 
T h r m l. Gwcn any ficld P , l/1ere c:nsts the umquc prime subficld 1(0 

o/ P . Tht.S ficld is isomorplnc either lo lh field Q of rational numbe1s, or 
lo a field Zp /or sorne prime p. 
Proor. h w first. thc uniqucncss of the prime subfi Id frorn thc ficld F. 
Are thC"rC" 1wo di IT rcnt. prim subfields I<1 and K2 of F 1 t.heir int,crscct.ion 
/( 1 n /\", 1s diífercnt from both /( 1 and /(.1, in contradict.ion to choice of thc 
fields ¡.,·, and I<,. Let. /(o be 1 h intcrsection of a li subfields from thc ficld 
F. Th n Ko oon1 oins 1 ancl ali int ger muli.ipl 
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n.· 1 = l + l + ... + I . 

n summands 

Consider two cases: 
(1) n· l f' O for ali integers n . Then the subfield J<0 contains ali invcrs 

to the elements n- 11 which we will denote l / n and ali their multip\rs m / n . 
It is easy seen that ali such elements form a subfield in /( 0 , and in vicw of 
being J<0 prime, 1(0 = {m/n , n < Z). It is almost obvious that. 1(0 "' Q . 

(2) There ex.ists an integer n such that n l = O. Take thc lcast posit.ive 
integer p with property p · 1 = O. lt is easily seen that the numbcr p is 
prime. lndeed, if p = rs , r, s f' l then O = p · 1 = r · 1 · s · 1 and thcreforc 
either r · 1 = O or s · 1 = O. The later is impossible becausc of thc numbcr 
p is minimal with property p · l = O. We here used the following propcrt.y 
oí fields: the equali ty ab = O implies cither a = O or b = O. Now considcr 
elemcnt.s l , ... , (p - 1) · 1 of the s11bfielcl K0 . It is easily sccn that. thcy 
fo nn a subficld of t.hc fi eld F and sinrc the fi eld 1<0 is minimal it. holds 
/ ( 0 = {O , l , ... (p - 1) · l) . Assign to t.hc elemcnt. i · 1 from thc ficlcl K0 t.hc 
r idue class l from thc fi eld Zp· This correspodence is biject.ive and is an 
isomorphism of the prime subfielcl ](0 onto t.he fi eld Zp. 
Definition 3. A field F is called having characteristic O if its prime s11bfi Id 
is isomorph.ic to the field Q. If t he prime s11bfield of a field F is isomorphic 
to t he fi eld Zp the field F is called of prime characteri t ic p > O. 

ote t hat in every field F o[ prime characteristic p it holds 

~ = (p l ) ·a = Ü·a=O 

p 

for any elernent. a f F . Tlms, F regarding as a group with op ration of 
addition is of exponent p (i.e. ali its elemcnts are order p). Fields Q, R , C 
above considered are oí charact.cristic O, the field Zp has charactcristic p. 
Example 4 . Lct F be an arbi trary fi eld and F(x ) the t of ra tional frac­
tions wi th coefficients from thc fi eld F, i.e. F(x ) = {f (x) / g(x) 1 f (x ), g(x ) 
e F lxJ , g(x) f' p. wherc PlxJ is t.hc t.hc ring of polynomials in on variable 
r . lt can be easily checked out t.hat. F(x ) i a fi cld relauvely natu ral op r8" 
tions of addit 1on and m11\l. iplication oí rational frocu ons. This fi Id hn.s the 
same characteristir as thc ficld F . 
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3 E xtensions of fields. T he splitting field of 
a po lynomial 

Lct F be a fielcl and /( it.s propcr subficld. Take an elcment O < F, O <le I< 
ancl ronsid r thc int.ersccLion of ali ubfi lds of F , oontaining both /( ancl 
O. This >ubficld is clcnot.ccl by K(O) 1mcl is callccl the prime extension of 
ti!(' íit'ld K ; O is rallcd 1.hr primitivc clC'm nt of this cxtension. Since K(O) 
contnin• subficlcl K 11.nd t.h el rnent O, lhc M1bfield K(O) coutains a li tcrms 
of t h form / (O) whcrc /(x) is irn arbitrary polynomial wilh coeflicients from 
K. ~loreovcr, nll clcment.s of thc form f(O)/ g(O) where / (x) , g(x) < K[xl, 
y(O) "#O b longs to 1.hc ficld K(O). 13ul ali such tcrms obviously form a fic ld 
and thcre¡ re K(O) = {f(O) / y(O) f(x ).g(x) < Klxl, g(O) "# O}. In case 
whr•n thc ficld /\(O) is isomorphic lo thc ficld K (x) of ali rnt.ional fract.ions, 
t hr C'lrmenl O is cn.llcd t.rnnsecndcnl al ovcr thc field J< and algcbraic over 
/\' in othrr rnsC'. lf lln el mcnt O is n\gcbrair over /f , ih{'rc cxist.s a nonzcro 
polynomial /(r) < /<[,·I wit,h proprrty / (O)= O. Thcn n polynornia l mo(x) of 
1 he kast dc-grC'C' wit.h lracli 11g coeffkicnt 1 (manir polynomial) can br found 
surh t hat mo(O) = O. T hi:; polynomial is ralled the mini1nal polyno111ial of 
thc clem nt 8 ovcr t.J1c ficlcl J<. Thc ficld J\ (O) then ronsist.s of a li clcmcnts 
fr m F of lhc form o0 + a10 + ... +a11 _ 19n-1, where a.1 E /(, i = 11 ... 1 n 1 

n = deg ma(x). 
Obviously, thc field }( (O) can be regarded as a vector space over the field 

/( wilh basis { l.. .. , O"- '} . l n general. every e.xtension F of t;he field }( can 
be rcgardcd ns a vector spacc ovcr I< ; its dimension d'i.mKF is called the 
dcgrce oí extension F / !( ancl often clenoted by 1 F : /(1 . Fer a transcendental 
lcment e over /( , t he dcgrce of extension IK(O) : F<I = bccause a li cle-

rnrnls { 1, 9, ... , 011
1 ••. } are linearly independent. ovcr /( . In cose of algebraic 

el ment 8 one has [!((O) : l<I = deg me(x). 
lndecd, th following statemcnt holds: 

T heore m 2 . Let F :::> /( be an extenswn o/ the field /(. Then an elemenl. 
O< Fu algebro1c over /( ·if and only •! 11<(8) : KI < . lf the element O is 
algebro1c over /( , lhen 1((0) = /( IOI where !( IBI = {!(O)I j (x) < K [x]}. 
Example s Th fi Id e of compl X numbers i 8Jl extension of t.he ficld R. 
lts degrce equals 2 bcrnus C = R · 1+ R ·1. and lemenls 1 and i are lincarly 
ind pcndenl over R . T hc minimal polynomial for i is m.(x) = x 2 + l. 

lí th re is a scq11cnrc oí fi · lds F :::> !( :::> P (a tower of extcnsions), t.hen 
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one has three vector spaces: F over K 1 /( over P a.nd F over P. 
Theorem 3. Let F :::i I< :::i P be a tower of extensions. The degree [F: Pj 
is finite if and only if the degrees [F : J(j and [!( : Pj are finite. In case of 
their finiteness the following equality holds 

[F: Pj = [F: J(j[J(: P J. 

Let now J( be any field and f( x ) an irreducible polynomial from l<[xJ. 
There is a standard procedure how to construct an extension of thc field 
J{ which contains at least one root of the polynornial /(x) . To build such 
an extension, consider residue ring of the form J( [x]/(J(x)) where (J(x)) is 
the ideal of t he ring J<[x] consisting of ali multiples of the polynomial /(x). 
The elements of t his residues ring are subsets of polynomials of the form 
g = g(x)+J<[x]f(x), i.e. residues modulo / (x). Dividing with remainder the 
polynomial g(x ) by f( x), one can write every polynomial from the set, gin 
the form r (x ) + f(x)h(x) where degr(x) < deg g(x) . lf g(x) = g(x) + (J(x)) 
is a nonzero res idue class, there exist polynomials u(x) and v(x) snch that. 
u(x) g(x) + u(x) f (x ) = l. After pa.ssing to residuo classes modulo (/(x)) onc 
gets a relation of the form üg = T, whcre T = 1 + (/ (x)) is the ident.ity 
elcment of tbe ring l<[x]/(f(x)). Thus, every nonzero element of the ring 
¡,·¡xj / (f (x)) is inverbble and this ring is a fi eld. Residue classes containing 
elements oí t he ring J( form a s1dofield in l< [x]/ (J (x)) which is isomorphic 
to the ring I<, i.e. I< [x]/(f(x)) is an extension oí the field /(. Note that 
the element x = x + (f(x)) is a root oí the polynomial / (z); more precisely 
of the image of this polynomial in the ring of polynomials over the field 
K[x]/ (J(x)) . lndeed , ií /(x) = ao + a1x + ... + a,, x", then in the field 
I<[x]/(f (x)) one has li'-0 + i'i1x + ... + i'inX'' = J(x) = O. So we have proved a 
known Kronecker's theorem about symbolic adjunction of a root. 
T heorem 4. Given an in-educible polynomial f(x ) overa field I<, there e­
nsts an extenswn F :::i I<, which contains at least one root of f(x). One may 
take tlu.s field so th.at it is isomorph·ic to the field.s of residues I<[x] / (/(x)) . 

Repeating 1 if necessary, just now described procedure of adjunction of 
a roo one can build an ext. 11sion of the field f( uch that the polynomi al 
f (x) de<'omposes into lin ar factors. 

T he fi Id F is called split. t. ing fiekl oí t.he polynomial / (x) over 1.hc fi eld I< 
if F = /<(c1, .. 1 cn), whcrc c11 ... , e;, are all root.s of the polynomjaJs F(x )1 i.e. 
F <'8.n be construrted from /( by adjunct.ions of roots only t.he polynomial 
f (x ). 



V. V. I<iricbenko et al. 149 

For nny polynomial J(x) ' I<Jxj of degree n > O there exists at least one 
splitt.ing field. 

r..itoreo" r, any two spli titing fields F1 nnd F2 of a polynomial f(x) over 
1.hc ficld /( a re isomorphic. 
Example 6. T he polynomial J(x) = x2 + x + 1 is irreducible over l:he field 
z,. 

lndeed, none of t.he element.s from t.h field Z1 is n root of this polyno­
min\. Since t,he degr e f( x) is two, t.his polynomial is irreducible. We now 
build an ext.ension of t,he field Z2 which cont.ains a root. O of this polyno­
mial. on i ler t.he ring of residue classes Z2Jxj/ (f(x)). There are four such 
d a:;ses: o+(!), 1 + (!) , m + (!), X+ l + (!). Note tha l. x' = X+ l(mocl(f)) , 
bc<'ausc of relat.ion x 2 - x - l = x'+x+ l '(f(x)) (in a field of characterist:ic 
p = 2, ii holds a = - a for any element a frorn thls field) . Since 02 =O + 1 
in tite field Z,Jx j/ (J(x)) (we will denote it. by G F (4)), one can wri te down 
th addition table for this field: 

+ o º' o o o o 
GF(4) : l º' o 

8 º' o 1 

º' º' o o 
Analogously1 one can write clown the mult.iplcat.ion table for thjs field. 

For oonvenience. wril:e t.he resuJ t. of dividing x3 and x' by f( x ) = x 2 + x + l 
in the poJynomiaJ ring Z2[xj: x3 = (x2 + X+ l}(x + 1) + l ; X4 = (x2 + 
x + i )(x2 + x) + x . !t. follows from these r la t ions that: x3 = l(mod(J)); 
x'' = :z:(mod(J)) . Thus, in the field GF(4) t be following equali t.ies hold: 
03 = 1 and 04 = O. 

o 1 o O' 
o o o o 

GF(4) : 1 o 8 º' o o O' 1 

º' o º' 1 o 

4 Finite fields . Basic properties 

L L F be a finit.e field . T hen the prime subfield Fo from F is isomorphic 1.0 
t.h field z. for sorne prime p and 1.he c:harac:teristic: of F is p. Regarding F 
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as a vector space of dimension n over tf.l.e subfield F0 , we obtain 1 F I = p" . 
Indeed, after choosing of a basis in bliJ.e vector space F over F01 one can see 
that F is isomorpruc to tloe vector space F0 of rows (a1 .. . . ,a:,,) of lengU1 
n. At that t he coordinates O:¡ imdepemcilently run over p values from F0 and 
therefore IFI = p" . 
Theoren1 5. Given. a fi,nite fi eld F and an integer n > O, thern exist.s an 
extension I< ::i F of degree n = [I< : Fl] . Ali such extensions are isomo1-phic 
one to each anothe1·. 

Note that the uniqueness (1.!1p bo isomorphisrn ) of tbe above mentioned 
extension follows from the isomorphism o! spli tting fields of the polynomial 
x"" - x because the field I< o! degree n over t.he field F (IFI = q) has q" 
elements and a li t hese elemeril.ts are roots of t h.e polynomia} xq" - x . 

Taking in t he last. theorem instead F t he prime field Zp 1 one obt.ains 
that for any prime p and any irnteger n > O there exist.s a field consisting of 
p11 elem nt.s and it is unique 11 p to isomorphism . T he fin ite field consist ing 
of ¡>'' elements (p is it.s charnct.eris t:i c) is often denoted by GF(p") or GF(q) 
where q = p" , ar Fq. 

lf F is an arbit rary fi eld the¡;¡ the set of a li nonzero elements of F form 
a group relat ively of nm lt iplicati on . This group is called t.he m11lt iplica t ive 
group of the field F and is oft:en denoted by F " For a finit.e fi eld GF(q) 
t he mul t.iplicative group F ' is of order q - l. Let m be the exponent of the 
group F ' 1 i.e. the least positive inl'.eger m with property a.m = 1 for any 
a f F " . lf m. < q - 1 then t l~e polynomial xm - 1 has more than m roots 
(namcly q - 1) in F. lt is impossible, and therefore m = q - l. Th11s 1 we 
hnve preved lhe fo llowing 
T heo re m 6. The multiplicative group F ", of a finite fie/d F q is cyclic ( of 
orderq- 1) . 
D efinit io n 4. An isomorphism </J : F ~ F of a fi elcl F onto itself is called 
nn automorphism of the field F. 
Examp le 7. Let C be the field of complex uumbers and <jJ : C ~ C 
defined by the rnle </J(z) = z where z is conjugated to z. T hen <jJ(z1 + z2) = 
<jJ(z 1) + </J(z2), tf>(z1z2) = <l> (z1)</J (z2 ), 4>(0) = O, 4>( 1) = 1 ru1d tcherefore </J is 
an nutomorphism of t.he field C . 

Ali aut.omorphisms of t.he fi eld F form a group (denoted by A11t(F ) ) 
r ·lnti \•ely to lhe c:omposit ion. Obvious, the idenLity mapping from P ont;o 
Pis an aut.omorphism and is an ident it.y element of the group Aut (F ). 
Example Lel F q be a fini te field consis t.ing of q = p" el ments where 
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p is a prime. onsidcr th mapping </> : F q - F q d fined by the rule 

</>(x) ~ :r:•. inc (x + 11)'' = x• +y• (coefficients ( { ~} , i t O by ot.her 

111011 1nials are zcro iu t.h fi 11 of charact ristic p) and (xy)P = x11yP, l;he 
mapping o pr<'S<'rv s11111s nnd products. Th cquality </>(x) =</>(y) means 
.i;P = y' and thcr for (x - y)" = O. From this, it. follows x = y, i.c. 
thl' mnpping 4> is injcd,ivc. J\s the field is fimte, the mapping <I> is also 
surjl't"ll\'t' ami is an aulo111orphi m of thc fi Id F q · This automorphisrn is 
cnl!('d Frobcnius n11to111orphisrn. lf F is 1 hl' field roru.1st ing of p" clcm nts 
1hC'n th<" F'robr111us a111ornorphis10 </>: x -- :rP ih of arder n ancl gcncrntcs 
lh<' group Aut(P). Thns, !.he gronp oí a111omorplu,m& oí the finitc ficld F,, .. 
is t'ydk of rcll'r n. 

Lt-1 F hl'• a fü•ld, K it H :mbficld. Ali nutomorp)usms of t.hc ficld F lcavi11g 
íixt'(I ull dC'mC'nts of 1 ht' s11hflrld /{ form n subgroup /-1 from Aut(F'). Co11-
vi•rM·I~', 1a.king nny s11bgro11p 11 from thc- group Aut(F) onf' nw show t.hnt. 
1 llt' M'l (')f nJJ d('!llC'llf S Írom F' lc>nvi11g fiXC'd rr)al l\"(•ly IO j hC' ai 1f.OlllOl'pJ 1isn1S 
from /1 rnak(• up n snbfi Id F11 fro111 F . 

i'h<"" rorr pondenC'cs rcplarc ali indusions oí subficlds (subgroups) by 
oppo,ntc 111rl11sions oí snbficlds (corcspodrngly subgroups). Under somc 
rcst rwl1ons t h r<' is a bijcctivc rorrcspondcnrc bNwecn subfields of F nnd 
subgroups of Aut(F). This e rrcspond ne is called Galois corrcspondcuce 
and 1s one of thc most important tool for studying of fi lds and thcir cx­
tcnsions. lorc prociscly1 t,hc Calo is thcory st udies normal and separable 
cxt ns1ons F oí a ficld /( oí finite degrcc and cstablishcs a bijective connec­
li 11 be wren int rmcdint · subficld P: F ::> P :::> /( aud subgroups or t.he 
group Au!{P/ !()oí a li aul.omorphisms oí P leaving fix 11.hc subfield /(. In 
t.his rase, lhe group Aut.( F/ /() is fiuitc and th s tructurc oí a li intcrmcdia t.c 
snbficlds can b invcstignt 1 by studying of thc group Aut(P/ I() . 

T h ore m 7. let F p"' be n field o/ ordcr p" and if> t11e Frobenius auto­
mo11Jhmn o/ tJi field F... lf FI"' 1s a subfield o/ Fp .. then djn. Con­
versrly, to '""'>' divisor d o/ tl1c number n tJicre 1 exacl one subfieül 
FP" {zc F,,..¡ </>•(x) = x ). Ali aulomorphisms lcavmg fi:J:ed the subfield 
F I"' formo . ubgroup Au.t(F ... / F ,,..) =< t/>d > . Th1 corres¡iondence between 
subjields o/ o finite field nnd subgroups o/ automo11Jhism group (Calois co1·­
rcspondentt) is b11echve and makes ali mclu.s1on.s oppostte. 
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5 The D ed ekind number ( the number of 
monic irreducible polynomials of given de­
gree) 

Theorem 8. Let F q be a finite field. For any positive mteger m tltere e:rot.s 
al leasl one irreducible polynomial of degree m over F q · 

Actually, the munber of ali irreducible monic polynomials of degrec m 
(with leading coefficient being equ!>I 1) over the field F. can be exac·f,Jy 
rounted. Thjs n11mber is often called the Dedekind 1s number and denot.ecl 
by Dm,q· To write clown a formula for the Dedekind 's number , we necd 
sorne information about Móbi11s function 
Definition 5. A function µ : N ~ Z defined by the rule 

{ 
! , 

µ (n)= (-~)k, 
if n= 1 ) 
if n is product of k dis tinct primes 
if n divides by square oí a prime 

is ralled the MObius function T his function is widely used in n11mber 
t.heory, algebra a..nd combinatorics. It is multiplicative1 i.e. is not identica\ly 
zero aud µ (mn) = µ(m)µ(n) for coprime positive integers m and n. lt is 
easily seen lhat. 

where ñ = p1 · • · Pk is the product of ali d istinct prime divisors of the number 
n. Fhrlher, note that the number of divisors of the number n of t,he form 

d = p,, · · · p,, is ec¡ual to { ~}. Therefore, it holds for n > 1 

~ µ(dJ= ~ µ(d) =~· { k}(- 1r=P- 1)' =0. 
L cfin L..,dlíl' L..,r=O 7 

l'rom this, it follows t.he relation 

~ ¡; (d)= { 1, ifn = l 
L..,dju 01 if n > l 

The Móbius funct. ion allows to find one funct.ion by mea.ns of another if 
there i a ronnect ion of ccrt.ain form between them. Let f and g be t.wo 
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f1111('t1 115 frorn thc set N of nll po itiv integers inl<> Z , R , F[xJ (or nnother 
<·omnmtat1ve group) cpnnectccl by thc r lation 

Th 'n , 1l holds 

g(n) = 
din 

¡1 (nJd)f (d) 

This is thr mv rsc for11111la far ~IObi11s funrtion. lf we havc t.wo map-
pmgs j,g. - G whcrc C is a rommutarl\·c gronp wit.h 11111\Uplicat.ivc 
df.•1totattons tUld 

f (n) = rr g(d) 
din 

lhf'll 

8ing thr mvcrsc formula for M6bi11s íunction one ran ob1.ain t.hc following 
•xprc:,....,ion for t h m1mb r of monic irreducible polynomials of dcgr e nt ovcr 

GF(q) 

D.,,, = ..!._ '<;"" µ(d)qmld. 
' m L....djn 

This nurnbcr is callcd thc Dcdekind's nurnber. 

6 W dderburn's theorem 

'vVr inrlude lh romrnutat.ivity law in the definition of a ficld . Whcn t.he 
(' mmulat1vity IAw for rnultipliration in th definition of t.hc ficld is o rniUed 
onc h t he ~k wfield. 

Thr mo:,t import ant. is t he skcwfi Id oí quatemions H . lt wns first. built. 
by llrumlton m l 43. As u r ni ve<·tor spnre H is d1mension 4 wit.h l,hc basis 
( 1, i.j . k}' 1 

H = R + iR + jR + kR, 
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where i , j , k are symbols which ca'1 be m>ilt iplied by the rule 

i2 = j2 = k2 = -1, ij = k = -jijk = i = - kjki = j = - ik 

T he element x = a:0 + a: 1i + a:2j + a-3k is called a quaternion. lt can 
be inunediately checked 0 1'1t tl:iait H is an associative ring with identity 
l. For every quaternion x e H one can cl.efine t he conjugated quaternion 
x· = ao - et1 i - a ,j - a 3k. The product xx' = N(x) is called the norm 
of the quaternion x and equals a:6 + o:f + a:~ + a·~- It is easily checkecl 
that. for element x- 1 = x'/N(x) tne following holds xx- 1 = x- 1 = J i.e. 
a;- 1 is t he inverse for t he element x . Alil ClJ.Uaternions with zero coeffi cient.s 
at imaginary ident it ies i ,j 1 k form a field which is isomorphic t.o t.he fi eld 
R . Each element of this fi eld cornrnmtles with any quaternion from H i. c. 
belongs to the center of H . Thus, H is a division algebra over the field R. 

The farnous t heorem of Flrobenius shows the importance of skewfield of 
quat.ernions in algebra: 
Theorem 9. Ove,. lhe fie ld of real numbers lhere exisl only lhree fimlr 
dim en.sional associative division algebras: R , C 1 H . 

In fin ite case there is no distinction between notions 11field 11 and "skew­
fiekl11 because oí the well-known result: 
T heore m 10 . (Wedderburn) Any fini le skewfield is commulat.ive. 

7 Finite fields and codes 

Fini t.e fields are widely used in fini te geometries, combinatorics and com­
pu t.er science. They are very important in information and communicat.ion 
~heory: signa! processing, coding t.heory, crypt.ography. We only give a 
sketch oí some ideas of coding t,heory. 

7.1 Gen r a l propert ies of codes 

Long since people happened to decide a problem oí protiection of infor­
mntion írom hindrances at. t:ransmission it on distance1• Probably, single 
rcasonabl d~ision of t.his problem is the attachment to a sent. message 

1 h ls clcnr tha1 Lhe snm · problem uppenrs nt. storing information . Howevcr we s hRll 
nna.lyz.e only Lhe tnLnsmission proccss . 
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somc ndd1uo11a l iníormati n , which allows to det t and to correct possible 
distort.ions. nsid r thc simplest example. 
Exampl 9. u¡ pose t.hat wc nced to send a message A. To insure our­
s lvcs1 w ran doubl it and s nd a message block AA. 'vV shall assume 
t.hnt appcaring n hindro.n<"C at. th trw1smi ion i ufficiently rare, so at 
lca.">t ne of t h copi<.'S will carne to hand wilbout errors. Then therc are 
two possibilitics: 

1) lhc addr g· Ls a 111 ·age AA; th n he can consider Lhe messagc 
H.S ('OrreC'I; 

2) he gcts a bl ck AD or DA, wh re Bis diff rent from A , and l.hen he 
run lw EL.~11rrd thnt. an C'I'rOr hM oc·c·nrrN:I; howe\'Cr her wit.h he doe8 not 
kuow, what from thr 111 ssngcs, A or 8 , is right and, C"Onscq11ently1 he c-nn 
110 1 rorrC<'t 1 h C"ITOr . 

lf w (' shnll i ran:smil a triple block AJ\J\ , the acldre;..-;cc wi ll gct one of t.hc 
111<'s.."iagt'S AAA, AAB, ADA or BAA and will be ablc- not. only !,o dctcc'I. a n 
<·rrm . ;L'> well AS C'OrrC'ct. its: it m11s l ronsidrr as rorr(>('I that rncssagc, which 
iH <·ontruncd in t hC' block not, 1 ss two limes. 

Forma.liz.c- now 0 11r problcm. lt is us11nlly cxp('('trd that process of t.rnns-
111is~ion oí míormat i 11 y iclds thc íollowing thr{'(' rondit ions: 

1) Th informal i n is prc::;cntcd as a sec¡ucnt oí words of t,hc sa111e 
1 nglh, consli l uled of symbols O and 1; 1 hereby, 11 1 possible Lo considcr 
Lh e words as 1 m ·nts of a linear spacc over t h fi ·Id F{2). More 
g n rally, we can consider vectors over an arbitrary finit.e fiel el F(pm ). 

2) Errors, which n.rc aro11secl as a resul t. oí hindrances, ar considcrcd as 
i ndcp nd nt rnndom variabl s. 

3) for chccking errors l:he following trick i used: to each word A , which 
w want U> nd, a word A is added {of fixed 1 ngth t<>o) , hanging frorn A, 
and lhcn <he word AA will be scnt .. An addr , knowing dependency A 
from A, d fines, whcthcr 0.11 error has arousecl nt the t.ransmission. 

Words AA, A nnd 1i ar rnlled a code word, an mes age parl and a check 
part acc:ordmgly. Th scL of ali rod words is called acode. lf IAI = k 2 and 
IAI + IAI = n, <he rodc is callcd a (n, k )-code. Thcrefor , a (n., k)-code is a 
s11bsct oí a n-dimensionnl lin ar spa e V over the fini1e field. 
• xampl LO (rh<X'king pnri l,y). L t an message part A = a 1 ... ª• is a 

k-dimel\Slonal Ve<'tor ovor 1'(2) a nd A con ists of on symbol b = a 1 + 

10y IA th<- lcnglh of lh word A is dc.not.cd. 
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.. + a,(mod2). 1f in the received w0uc! the last bit is not equal to the sum 
of preceding ones 1 then it is dm1IDtless that an error has occurred at the 
t ransmission. 

In the last exarnple the c0de is a hyperplane in a (k + 1)-dimensione.l 
linear space, given by the e6}uaiti0FJ. x 1 + ... + Xk = O. 

From the example @ am.d foll0wimg reasoning i t is clear that increasing 
the length of a check ¡Dart. of a c0Ci.le word 1 we can detect and correct, a 
greater munber of errors. However for such improvement we ha.ve to pay 
a send rate of information . So at the building and analysis of cedes their 
parameter is taken into acco\!l.mli - tf.i.e rate of acode, which is equal to k/n 1 

where n is the length of a code word, k is the length of its message part. . 
In t.he exarnple 9 t he rnte of t.foe code is 1/ 2, whereas in the example 10 it 
equals k/(k + 1). 

Other important parametler is t h1.e code separation. If A = a 1 ••• a,1 und 
B = b1 ••• bn are vectors, by a dist.ooce between them a number pairs of 
correspondiug symbols (a; 1 b1) , dó.fíFerent one from another 1 is called. The 
distance is denoted by p(A, B). For iiostance, if A = 00110, B = 10100 then 
p(A, B) = 2. For p(A, B) usmal axioms of the distance are fulfill ed: 

p(A,B) = p(B, A). 
p(A,B) ~ ©, 
p(A, B) = O<= A = B , 
p(A,C) ~ p(A , B) + p(B,C). 

A separation of a code C is the number 

p(C) = min{p(A, B)J A, B < C, A f 8). 

There is connection between the separation of a code and detection/correc­
tion of errors. ff iL has occurred l errors at transm.ission of the word A, 
Lhe received word B differs fü-0111 A in l posit ions: i. e. p(A, B) = t. So 
under ralher greal.er value of p(C) the word B does not coincide with any 
el menl from C and an add'ressee, getting the word B. can be assured t.hat 
it rontains errora. Moreover , if p(B,C) > l for a! I words C < C, C I A, 
t he word A is uniqHely defin ed by B 1 and errors which appearecl at the 
transmission can be correctied. This reasoning brings ns to a simple, but. 
import.ant statement: 
T h or m 11. lj p(C) ~ d (el ' N ), the code C detect.s d - 1 ernws and 
com:<:t-' [';') em>rs (he1-e JxJ denole3 tlie mteger port of tJ1.e number :t). 
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R. maJ"k . This 1.hoorcm shows that bolh of problems - a dctecting and 
c·orrcclion of errors - ar similar. \.Ye shall deal only with t.he lost below. 

l t is elcar lhnt cod with th big vnlu p(C) are more pref rred. Howcver 
incr('asmg thc scparation oí n codc drnws a decr ase of ratc of tho codc. lt 
is 1101 a s mgle c·ontrru:lict ion in o ling Throry. From th s t.andpoint. of un 
1.:ngi11{'('r a rondition of effictency of acode is \'<'11' 1mportant. t.oo: encoding 
nncl ci('(.·oe:hng d vices 11111s t br t hnirnlly rathcr simple. Rcquircmcnt, of 
Pflirit•nc·y oí n c·ode is on of thc r n::;cms: b aust: oí whirh tecles are 11s11nlly 
ro11s1ch.•r('(l u.s subscts of vector spnres ovcr firld~. rat hcr 1.hcn, gencrally 
spcnkmg, of modulC'S ovcr ri11gs. 

7.2 Linear cod s 

In 1I11s sub=tion w sha ll cousidcr only redes owr F (2). L 1. C be a (11, k)­
t•ocfo l'Onll\lllt'ti lll a VCC'IOr 8pHC \/ {drnt \ ' n ) C IS r a lled linear. jf it, is 

a snb:-;pn<'<' in \ '. 
l'or n hnrm rodr t,f¡p d t.crmination of thc scpma11011 of n codc p(C) is 

s i111phfü-d Deíirw a 111t)ighl of n v tor I t \' as d1e nurnbcr w(:r) of it.s 
11onzrro roordina1rs. Thr 11 p(x, y) = w(x - y), whrnrc it fo llows 
L mma 1 l/C r.s a. lmea.r code thenp(C) = mm{w(x )/ x ' C, x f O). 

in('(" r hetk syrnbols of n (·odc word a re defined by its 111cssagc part, t,hc 
linrar rod will b d t,crmin 1 by the equntion 

Hx = 0, (1) 

wh re z < V and H is a (11. - k) x n-malrix of rank n - k, which is callecl a 
check matru:. 

smg l he check matrix, wc C'nn find 011t1 when thc separat,ion of t hc 
cod cqual.s l. In t.his C!IS by Lcmma 1 therc is 8 vector X (e, a ll of whosc 
roordmate. but onc (sny, t.h ith) cc¡unl O. But acrording to ( I) t.his is 
poss1bl , only 1f thc 11.h cof11m11 of H is zcro. Thcrefore p(D,C)?: 2 if and 
only tí 11 ronl.runs n zcro col11111ns. imilnrly, thcrc is a vector of t.h weight 
2 in e IÍ and only if JI has two cc11ml C'Ol11mns. Now ll follows from Theorcm 
ll ford = 3 
Th o r m J 2 1/ JI does 1t0l contarn cqual columns and ali i ls cofornns are 
0011..:cro thf ne corn:cls any single en-or. 

urh unpl(' rJ1ara<:tcriznlion of linear rodcs, rorrecting onc error, allows 
us to bmld thOS<' of lhC'rn 1 whirh posscss th mos1 ra1e. To do this wc fix a 
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length r = n - k of the check part. Then maximal length of words of a code, 
satisfying Theorem 12, is 2' -1 (in this case the matrix H contains al! 2' -1 
different nonzero columns of height r). The codes with such matrices are 
called Hamming codes. Their rate is equal to 1 - 2,.~ 1 and they are enough 
efficient in the meaning that was spoken in the end of preceding subsection 
about. 
Exarnple 11. A minimal Hamming code is obtained for r = 1, n = 3. The 
matrix H is of the form 

(110) 
H = 101 ' 

and the system of the equations is reduced to the equality x 1 = x2 = x3. So 
in this case encoding is realized by the tripling of each symbol (see example 
9). 

7.3 BCH-codes 

Building of efficient cedes which correct at least two errors, turns out to be 
a more difficult problem and requires to use the theory of finite fields. The 
first such codes were built by Bose, Chaudhuri and Hoquenghem in 1959-
1960 and are called BCH-codes after the names of their authors. They are a 
generalization of Hamming codes and also turn out to be linear. Moreover, 
they belong to the class of so called polynomial codes. We will begin our 
consideration with just t.his class. 

Let integer positive nurnbers k, n < N, k < n and a polynomial f(t) = 
fo + f1t + ... + f•t• over F(2) be fixed. Besides, !et U, V be vector spaces 
over F(2), dim U = n - k, dim V = n. Compare to each vector a = 
(a,¡, ... , <>n-k-1) <U a polynomial a(t) = ao + a1t + ... + <>n-k-itn-k-t. Then 
the polynornial b(t) = a(t)f(t) can be identified with a vector from V. So 
the subset C¡ = {a(t)f(t)I a< U) e V may be consideras a code.3 It is 
called a polynomial code. Evidently, a polynomial code is linear. 

As in the preceding subsection the weight of a polynornial g(t) is the 
number w(g) of its nonzero coefficients. From Lemma 1 it follows at once 
Lemma 2. p(C¡) = min{w(af)I a ;i O,dega '.": n- k- 1). 

3It needs to require additionally that fo and f1r. did not be equal to zero, otherwise 
the first and last coordinates of the code vectors will carry no information. 
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In what follows the next assertion plays the main role for BCH-codes: 
Theorem 13 . Let € . be a primitive root of nth degree out of 1, g be a 
polynomial di.fferent from O, deg g < n . Suppose that E, c2 , .. . 1 € d- l are roots 
of the polynomial g for certain d S n . Then w(g) 2: d. 
Proof. Since d :S n, all numbers c, e2, ... ,cd-t are different. Assume that 
w(g) S d - l. Then g can be presented in the form g(t) = I::~i a;tk' , 
where s < d, O S k1 < < k, S n - 1 and a; -f O for ali i . From the 
condition of T heorem we get the system of equations 

g (€1) = t Cl; (, ••)' = o (1 S l S s) , 
i=l 

which is linear relatively to a:1, . .. ,0'3 Since this system has a nonzero 
solution, 

= 0 

From properties of van der Monde's deterrninant it follows that ,•, -f ,k, 
for sorne i =f:. j . But this is irnpossible because k11 ki < n . 

Now we can pass on the building BCH-codes. Choose a generator of the 
multiplicative group of F(2m) (which is cyclic by theorem 6) as €. Then 
E is a primitive root of degree n = 2m - l. Fix certain d :S n. Denote 
by /, the minimal polynomial over F (2) of the element ,• (1 s; i s; d - 1) 
and set J =g.c.d .(/1 , ... , fd- 1) . Then by Theorem 13, w (a f) 2: d for any 
polynomial a(t) -f O such that deg(a !) < n. We obtain the polynomial 
code C1 = (a(t)/(t)I deg as; n - 1 - deg !) of the length n with the check 
part of t he length deg f and with the separation of the code 2: d. It is 
called a BCH-code. 

F\trther on, since the map x ---+ x2 is an endomorphism of F{2m) (see 
example 8) (h(x) )' = h(x') for any polynomial h and any x ' F (2m). So 
/ ,(€2' ) =O and, therefore f; and f,; coincide for 2i S d- 1, since both these 
polynomials are irreducible. So there are amongst polynomials !1, ... 1 fa- i 
no more t.han d/ 2 different. ones. Hence deg /, S m = [F (2m) : F(2)] for ali 
i :S d - 1, sinr.e f¡ are irreducible. Consequently, deg f :S md/2. 
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Thereby, the built BCH-code has the length 2m - 1 and corrects [d:;l J 
errors. Jts check part has length '.S md/2, so the rate of the code is not less 
than 

md 
l -2{2m- l)" 

Example 12. Let m = 3, € be a primitive root of degree 23 - 1 = 7. Its 
minimal polynomial is of the form f 1(t) = t3 + t + 1, moreover !1(€2) = O, 
/ 1 (€3) f. O, i.e. d = 3. Since / 1 = ¡, then f = / 1. So the encoding is realized 
by the transformation 

If we denote t he vector on the right side by (/30.fJ1, ... , {35 ) and exclude alphas, 
we obtain the system of eqnations which defines the code as a subspace: 

{ 
/30 + /31 + /32 + /3s = O 
/32+f3, +/3s+f35=0 
/3o+/3,+/3s+f3. = 0 

Its check matrix is of the form 

H = 0010111 . ( 
1110010 ) 

1001011 

i.e. our code is a Hamming code. This is not accidenta1: it can show that 
ali Hamming codes are BCH-codes. 

Here is an example of a BCH-code, not being the Hamming one. 
Example 13. Set d = 5, m = 4, n = 24 - 1 = 15. Minimal polynomials 
for primitive elements of F(2m) are of the form g(t) = t4 + t + 1 and 
h(t) = t4 + t3 + l. Let / 1 = g. As it is proved above ¡, = / 4 = / 1. Besides, 
fo (t) = t4 + t3 + t2 + t + 1 because (€3) 5 = l. So 

f = g.c.d.(/1.f,, J,,/,) = g.c.d.(/1,/3) = !1h = t8 + t7 + t6 + t4 + 1 

and we obtain a {15,7)-code, which corrects 2 errors. 
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7.4 Conclusion 

In this section we did not try to give sorne introduction to Coding Theory, 
but want to show only fragmentary relations of t his theory with finite fields. 
Indeed, this connection is much deeper. First, there are man y kinds of li­
near cedes and analyzing each of them requires its own algebraic approach. 
Secondly, much attention is attracted to nonlinear ce des in last decades, for 
which methods of Algebraic Geometry over finite fields are used. Finally, 
the nature of hindrances can be other: for instance, the condition of inde­
pendence of errors can be not executed, and in this case other methods of 
building of codes are developed (but, wit h using algebraic tools too). 

At last we give a small reference list for the reader who will want to make 
the closer acquaintance with Coding T heory. Elementary introduction can 
be íound in the book of G. Birkhoff and N. C. Bartee, Modern Applied 
Algebra, (New York, 1970). 

The book [l J pays t he great.er attention to technical realization of diffe­
rent codes. T he rnonography [11 J is really an encyclopedia of Coding Theory 
(certainly, at the time of its publishing). T he applying rnethods of Algebraic 
Geometry is shown in the work [18] . A modern introduction in Coding 
Theory is cont;ained in [14] . Sorne special questions are considered in [16] 
and [5] . 
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