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1 Definition of a field. Examples

The notion of a field (in algebraic sense) is one of the most important
notions of algebra (and of whole mathematics). The idea of a field crys-
tallized in the middle of the nineteenth century, when algebraic systems
appeared which had features of number systems but many different proper-
ties (complex numbers, fields of residues modulo p for a prime p, set (skew
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field) of quaternions etc) . The field theory was created by many promi-
nent mathematicians of the last two centuries (Gauss, Galois, Kronecker,
Dedekind, Wedderburn, Hilbert and many others). The general idea of a
field includes the most important properties of the set of rational numbers
(and real numbers) concerning the operations of addition and multiplication
but all other properties are ignored (concerning, for example, the nearness
of numbers on the real line or arithmetic properties of integers). The pa-
pers of French mathematicians E.Galois and J. Lagrange devoted to group
theory and its applications for solving algebraic equations and works of C.F.
Gauss in number theory formed the basis of the theory of fields. The term
“field” was for the first time used probably by P. Dirichlet (1871) in his
works in the number theory.

Definition 1. A set F consisting of at least two elements is called a field
if two binary operations on F are defined which are called addition and
multiplication and denoted correspodingly by (4) and (-) and which satisfy
the following conditions:

1) the both operations are associative and commutative, i.e. (a+b)+c =
a+(b+c),a+b=b+aand (a-b)-c=a-(b-c),a-b=b-q

2) they are connected by means of distributivity law, i.e. (a+b):c =
(E(ein Pl (e

3) there exists in F' a zero element 0 such that a + 0 = a for all a € F,
and for any

element a € F there exists an opposite element —a such that a+(—a) = 0;

4) there exists in F' an identity element 1 such that a-1 = a for all a
€ F, and for any element a ¢ F, a # 0 there exists an inverse element a~!
such that a- (a™!) = 1;

Therefore all elements of a field F' form a commutative group on ad-
dition and all nonzero elements of F' form a group (also commutative) on
multiplication. By standard way, one can prove that a field possesses the
unique zero element 0 and identity element 1 (0 # 1) and for any element,
a € F the opposite element and the inverse element (in case a # 0) are
uniquely defined. The following relations are also true in fields:
a-0=0,a(b—c)=ab-acfor all a,b,c € F.

Example 1. The set of rational numbers Q with natural operations of
addition and multiplication is a field.

The set R of all real numbers with addition and multiplication of num-
bers is also a field. The most important field is the field C of all complex
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numbers, which contains the both previous fields.

If in the condition. 4) of the definition 1 one refuses the requirement

of existence of inverse for every nonzero element, one has the definition of
commutative ring (with an identity element). The most important examples
of rings are the ring Z of all integers and the ring F[z] of all polynomials
over the field F.
Example 2. Let us consider the set Q[v2] of all numbers of the form
a+ bv/2 where a,b ¢ Q, with operations of addition and multiplication. For
any two numbers from Q[v/2), their sum and product are of the same form.
The numbers 0 and 1 = 1+0v/2 belong to this set and for any z € Q[v/2] the
opposite element —x is of the same form. Further, for any nonzero element
y = a+ by/2 the inverse element is of the form y~' = (a — bv/2)/(a® — 20°)
and is contained in Q[v/2] (note that a® — 2b* # 0 because the numbers a
and b are rational). Thus, the set Q[v/2] is also a field. Obviously, Q C
Q[v2].

All above considered fields are number, i.e. their elements are numbers.
The following fields consists of subsets of the set Z of all integers, but not
numbers,

Example 3. Let p be an arbitrary prime and Z, be the set of all residues
modulo p. Elements of Z, are of the form 0 = {pZ},T = {1+pZ},...p— 1 =
{p—1+pZ}.

As representatives of these classes we take the smallest non-negative inte-
gers contained in them. The operations of addition and multiplication are
defined in Z, in natural way: T+ 7 =z +y, T-7 = Ty (the result of
the operation does not depend on choice of representatives from the residue
classes) . The class 0 is a zero element in Z, and the element T = {1 + pZ}
is the identity in Z,. If @ # 0, then the GCD(z, p) = 1 and therefore there
exist elements y, 2 ¢ Z, such that zy + pz = 1. This implies the relation
Z -3 = 1 and therefore Z, is a field relatively above mentioned operations.
Obviously |Z,| = p. Finite fields are called Galois fields, in honour of the
prominent French mathematician Evariste Galois who was one of the crea-
tors of group theory and theory of fields. Galois field is often denoted by
GF(k) where k is the number of elements of this field (this notation does
not canse any misunderstanding because finite fields F} and F, with |F|
= |F,| are isomorphic). It is convenient to illustrate addition and multipli-
cation in small fields by two tables. The result of the operation (a; + a;
or a, - a,) is putting on the crossing of the i-th row and the j-th column
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for all enumerated elements ay, ..., a, of the field F. Let us write now ta-
bles of addition and multiplication for the simpliest field Z, = Z/2Z. For
convenience, we will write residue classes 0 and T without bars.

i O L
Z: (O RO 0(0 0
s (o) 0™ 1

Analogously, we can write two tables for the field Z;

+]0 1 2 o
7 O[O 0[0 0 0
B 181 G s ISR | FO R D
28 R ) 2410 Sa2

2 Subfields. Prime fields

In general, algebra studies really not sets with algebraic operations but al-
gebraic operations. Therefore for disengaging from inessential properties of
the sets on which algebraic operations are studied, the notion of isomor-
phism was introduced. For fields, it sounds so: let F' and H be two fields.
A bijective mapping ¢ : F' — H is called an isomorphism from F' onto H

if ¢ preserves sums and products of elements, i.e.

d(a+0) = ¢(a) + ¢(b), ¢(ad) = ¢(a)p(b), ¢(0)=0, ¢(1)=1
for arbitrary elements a,b ¢ F. Note that the sum and the product of
elements a and b are calculating in the field F, but the correspondence
operations on elements ¢(a) and ¢(b) are carried out in the field . In
case, when there exists an isomorphism of a field F' onto a field H (may
be F' = H) , the fields F' and H are called isomorphic (notation F' ~
H). From the algebraic viewpoint, isomorphic fields are indistinguishable
(although their sets of elements can be radically different) .
Example 4. Let F' = C be the field of complex numbers,

C={n+hz[n,[ch}andK={(_Z :)Ia.b(R}

be a subset of the matrix ring My(R). It is easily seen that sums and
products of such matrices are of the same form, zero and identity matrices
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belong to K, opposite and inverse matrices can be written in the same form.
Thus, K is a field contained in the matrix ring Mz(R).
Let the mapping ¢ : F — K be defined by the rule:

¢(a+ln‘)=<_: :)

It is easy to check out immediately that for any complex numbers 2, =
a) + byt and 23 = ag + byt the following relations hold:

d(21 + 22) = P(21) + ¢(22) and ¢(2122) = P(21)P(22).

Besides,

¢(0)=(g g) nnd¢(1)=o(l+01)=(é (1’)

and ¢ is obviously a bijection. Thus, ¢ is an isomorphism of the field F
onto the field K.

Let F be a field. If a set K C F is a field relatively the operations from
F then K is called a subfield of F. The field F is called an extension of
the subfield K. From this definition, it follows particularly that the zero
and the identity of the field F' belong to the subfield K and are zero and
identity element correspodingly for the field K.

If one has a family K, i € I of subfields of the field F, then K = N, K;
is a subfield of F. Indeed, K contains 0 and 1 from the field F, and if a,b
¢ K, then a,b e K, for all i € I. Therefore a + b,a — b,ab,ab™! for b # 0
belong to the subfield K; for all i € I.

Then a + b,a — b,ab,ab™", (b # 0) all belong to K, and thus K is a
subfield of F.
Definition 2. A field containing no proper subfields is called prime.
Theorem 1. Giwen any field F, there exists the unique prime subfield K,
of F. This field s 1somorphic either to the field Q of rational numbers, or
to a field Z,, for some prime p.
Proof. Show first the uniqueness of the prime subfield from the field .
Are there two different prime subfields K, and K3 of F, their intersection
K N K; is different from both K, and K3, in contradiction to choice of the
fields K, and K,. Let K; be the intersection of all subfields from the field
F. Then Kj contains 1 and all integer multiples

. 0
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n-l= 141+4+..4+1.
(e fim )
n summands

Consider two cases:

(1) n-1 # 0 for all integers n. Then the subfield K contains all inverses
to the elements n- 1, which we will denote 1/n and all their multiples m/n.
It is easy seen that all such elements form a subfield in Kj, and in view of
being K, prime, Ko = {m/n, n € Z}. It is almost obvious that K, ~ Q.

(2) There exists an integer n such that n-1 = 0. Take the least positive
integer p with property p-1 = 0. It is easily seen that the number p is
prime. Indeed, if p=7s, 7,s # 1 then0=p-1=r-1-5-1 and therefore
either 7-1 =0 or s-1 = 0. The later is impossible because of the number
p is minimal with property p-1 = 0. We here used the following property
of fields: the equality ab = 0 implies either a = 0 or b = 0. Now consider
elements 1,...,(p — 1) - 1 of the subfield Kj. It is easily seen that they
form a subfield of the field F and since the field Kj is minimal it holds
Ky = {0,1,...(p — 1) - 1}. Assign to the element 7 - 1 from the field K the
residue class 7 from the field Z,. This correspodence is bijective and is an
isomorphism of the prime subfield Ky onto the field Z,.
Definition 3. A field F is called having characteristic 0 if its prime subfield
is isomorphic to the field Q. If the prime subfield of a field F' is isomorphic
to the field Z, the field F is called of prime characteristic p > 0.

Note that in every field F' of prime characteristic p it holds

a+a+..+a =(p-1):-a=0-a=0
—_——
P

for any element a ¢ F. Thus, F regarding as a group with operation of
addition is of exponent p (i.e. all its elements are order p). Fields Q,R,C
above considered are of characteristic 0, the field Z, has characteristic p.

Example 4. Let F be an arbitrary field and F( ) the set of rational frac-
tions with coefficients from the field F, i.e. F(z) = {f(z) / 9(z) | f(z),9(z)
€ Fz], g(x) # 0. where F(z] is the the ring of polvnmmak in one variable
z. It can be vn.snlv checked out that F(z) is a field relatively natural opera-
tions of addition and multiplication of rational fractions. This field has the

same characteristic as the field F.
[ - 5\ &
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3  Extensions of fields. The splitting field of
a polynomial

Let F be a field and K its proper subfield. Take an element 0 € F, 0 ¢ K
and consider the intersection of all subfields of F, containing both K and
. This subfield is denoted by K(f) and is called the prime extension of
the field K; 0 is called the primitive element of this extension. Since K'(6)
contains subfield K and the element 6, the subfield K () contains all terms
of the form f(#) where f(z) is an arbitrary polynomial with coefficients from
K. Moreover, all elements of the form f(0)/g(8) where f(z),g(z) ¢ K[z],
g(#) # 0 belongs to the field K(0). But all such terms obviously form a field
and therefore K(0) = {f(0)/9(0) — f(z),9(z) € K[z], g(0) # 0}. In case
when the field K(0) is isomorphic to the field K (z) of all rational fractions,
the element @ is called transcendental over the field A" and algebraic over
K in other case. If an element @ is algebraic over K, there exists a nonzero
polynomial f(x) € K [z] with property f(#) = 0. Then a polynomial mg(x) of
the least degree with leading coefficient 1 (monic polynomial) can be found
such that mg(6) = 0. This polynomial is called the minimal polynomial of
the element @ over the field K. The field K(¢) then consists of all elements
from F of the form ag + @10 + ... + a,_10™", where a, ¢ K, i = 1,...,n,
n = deg mg(z).

Obviously, the field K () can be regarded as a vector space over the field
K with basis {1....,0""'} . In general. every extension F of the field K can
be regarded as a vector space over K; its dimension dimy F' is called the
degree of extension /K and often denoted by [F: K] . For a transcendental
element 8 over K | the degree of extension [K(8) : K] = oo because all ele-
ments {1,6,...,6" ...} are linearly independent over K. In case of algebraic
element @ one has [K (0) : K| = deg mg(z).

Indeed, the following statement holds:
Theorem 2. Let F' O K be an extension of the field K. Then an element
0 ¢ F is algebraic over K if and only if [K(0) : K] < co. If the element 0 is
algebraic over K, then K(0) = K (0] where K [0] = {f(0)| f(z) € K[z]}.
Example 5. The field C of complex numbers is an extension of the field R.
Its degree equals 2 because C = R-1+Ri. and elements 1 and ¢ are linearly
independent over R. The minimal polynomial for i is m,(z) = x* + 1.

If there is a sequence of fields # 5 K O P (a tower of extensions), then
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one has three vector spaces: F over K, K over P and F over P.
Theorem 3. Let F D K D P be a tower of extensions. The degree [F : P|
is finite if and only if the degrees [F : K| and [K : P are finite. In case of
their finiteness the following equality holds

[ Pl= R [ RER]

Let now K be any field and f(z) an irreducible polynomial from K [z].
There is a standard procedure how to construct an extension of the field
K which contains at least one root of the polynomial f(z) . To build such
an extension, consider residue ring of the form K [z]/(f(z)) where (f(z)) is
the ideal of the ring K [z] consisting of all multiples of the polynomial f(z).
The elements of this residues ring are subsets of polynomials of the form
g = g(z)+K]|z]f(z),i.e. residues modulo f(z). Dividing with remainder the
polynomial g(z) by f(z), one can write every polynomial from the set g in
the form r(z) + f(z)h(z) where degr(z) < deg g(z). If g(z) = g(z) + (f(z))
is a nonzero residue class, there exist polynomials u(z) and »(z) such that
u(z)g(x) +v(z) f(z) = 1. After passing to residue classes modulo (f()) one
gets a relation of the form ug =T, where T = 1+ (f(z)) is the identity
element of the ring K([z]/(f()). Thua every nonzero element of the ring
K[z]/(f(z)) is invertible and this ring is a field. Residue classes containing
elements of the ring K form a subfield in K(z]/(f(x)) which is isomorphic
to the ring K, i.e. K[z]/(f(z)) is an extension of the field K. Note that
the element T = x + (f(«)) is a root of the polynomial f(z); more precisely
of the image of this polynomial in the ring of polynomials over the field
Klz]/(f x)) Indeed, if f(z) = ag + a1z + ... + a,z", then in the field
K[z]/(f(z)) one has Gy + @®T + ... + GpT" = f(r) =0 So we have proved a
known l»\rono( ker’s theorem about symbolic adjunction of a root.
Theorem 4. Guwen an wrreducible polynomial f(z) over a field K, there e-
zists an extension F O K, which contains at least one root of f(z). One may
take this field so that it is isomorphic to the fields of residues K (xz]/(f(z)).

Repeating, if necessary, just now described procedure of adjunction of
a root one can build an extension of the field K such that the polynomial
f(z) decomposes into linear factors.

The field F' is called splitting field of the polynomial f(z) over the field K
if F = K(cy,...,cq), where ¢y, ..., ¢, are all roots of the polynomials F(z), i.e.
F can be constructed from K by adjunctions of roots only the polynomial

(=) .

(T
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For any polynomial f(z) e K[z] of degree n > 0 there exists at least one
splitting field. 3

Moreover, any two splitting fields Fy and F, of a polynomial f(z) over
the field K are isomorphic.

Example 6. The polynomial f(z) = 2 + = + 1 is irreducible over the field
Za.

Indeed, none of the elements from the field Z; is a root of this polyno-
mial. Since the degree f(a) is two, this polynomial is irreducible. We now
build an extension of the field Z, which contains a root 6 of this polyno-
mial. Consider the ring of residue classes Za[z]/( f(z)). There are four such
classes: 0+ (f), L+ (f), @+ (f), @+ 1+ (f). Note that 2* = @+ L(mod(f)),
because of relation 2° —z—1 = 2*+a+1 € (f(z)) (in a field of characteristic
p = 2, it holds a = —a for any element a from this field). Since 0> =0 + 1
in the field Zy[2]/(f(2)) (we will denote it by GF(4)), one can write down
the addition table for this field:

GF(4) :

Analogously, one can write down the multiplcation table for this field.
For convenience. write the result of dividing z* and z* by f(z) = 2?2 +1
in the polynomial ring Zpz]: a® = (2 + z + 1)(z + 1) + 1; a* = (a? +
o+ 1)(z? 4 z) + z. It follows from these relations that z® = 1(mod(f));
z' = z(mod(f)). Thus, in the field GF(4) the following equalities hold:
6°=1and 6= 6.

GF(4):

4 Finite fields. Basic properties

Let F be a finite field. Then the prime subfield F, from F is isomorphic to
the field Z,, for some prime p and the characteristic of F is p. Regarding I

_




as a vector space of dimension n over the subfield Fy, we obtain |F| = p".
Indeed, after choosing of a basis in the vector space F over Fy, one can see
that F is isomorphic to the vector space Fg' of rows (ay....,ay) of length
n. At that the coordinates a; independently run over p values from F and
therefore |F| = p™ .

Theorem 5. Given a finite field F' and an integer n > 0, there emists an
extension K O F of degree n. = [K : F]. All such extensions are isomorphic
one to each another.

Note that the uniqueness (up to isomorphism) of the above mentioned
extension follows from the isomorphism of splitting fields of the polynomial
21" — @ because the field K of degree n over the field F (|F| = g) has ¢"
elements and all these elements are roots of the polynomial 27" — o .

Taking in the last theorem instead F the prime field Zy, one obtains
that for any prime p and any integer n > 0 there exists a field consisting of
p" elements and it is unique up to isomorphism. The finite field consisting
of p" elements (p is its characteristic) is often denoted by GF(p") or GF(q)
where g = p", or Fq.

If ' is an arbitrary field then the set of all nonzero elements of F' form
a group relatively of multiplication. This group is called the multiplicative
group of the field F and is often denoted by F* . For a finite field GF(q)
the multiplicative group F* is of order ¢ — 1. Let m be the exponent of the
group F* | ie. the least positive integer m with property a™ = 1 for any
ae F* . If m < g— 1 then the polynomial z™ — 1 has more than m roots
(namely g — 1) in F. It is impossible, and therefore m = g — 1. Thus, we
have proved the following
Theorem 6. The multiplicative group ¥ of a finite field Fq 1s cyclic (of
orderq—1).

Definition 4. An isomorphism ¢ : F' — F of a field F onto itself is called
an automorphism of the field F.
Example 7. Let C be the field of complex numbers and ¢ : C — C
defined by the rule ¢(2) = Z where Z is conjugated to z. Then ¢(z, + 23) =
d(21) + 0(22), d(z122) = @(z1)9p(22), #(0) =0, ¢(1) = 1 and therefore ¢ is
an automorphism of the field C.

All automorphisms of the field F form a group (denoted by Aut(F) )
relatively to the composition. Obvious, the identity mapping from F onto
F is an automorphism and is an identity element of the group Aut(F).
Example 8. Let Fy be a finite field consisting of ¢ = p" elements where

T
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p is a prime. Consider the mapping ¢ : Fq — Fq defined by the rule
#(z) = 2. Since (z +y)? = z” + ¥ (coefficients ({’:} .1 # 0 by other
monomials are zero in the field of characteristic p) and (zy)? = aPy?, the
mapping ¢ preserves sums and products. The equality ¢(z) = ¢(y) means
2? = y” and therefore (z — y)? = 0. From this, it follows z = y, ie.
the mapping ¢ is injective. As the field is finite, the mapping ¢ is also
surjective and is an automorphism of the field Fq. This automorphism is
called Frobenius automorphism. If F is the field consisting of p" elements
then the Frobenius automorphism ¢ : # — z” is of order n and generates
the group Aut(F). Thus, the group of automorphisms of the finite field Fyn
is cyclic of order n.

Let F bea field , K its subfield. All automorphisms of the field /' leaving
fixed all elements of the subfield K form a subgroup H from Aut(F). Con-
versely, taking any subgroup H from the group Auf(F) one can show that
the set of all elements from F' leaving fixed relatively to the automorphisms
from H make up a subfield Fy from F.

These correspondences replace all inclusions of subfields (subgroups) by
opposite inclusions of subfields (corespodingly subgroups). Under some
restrictions there is a bijective correspondence between subfields of /* and
subgroups of Aut(F). This correspondence is called Galois correspondence
and is one of the most important tool for studying of fields and their ex-
tensions. More precisely, the Galois theory studies normal and separable
extensions F of a field K of finite degree and establishes a bijective connec-
tion between intermediate subfields P: F* 5 P O K and subgroups of the
group Aut(F/K) of all automorphisms of F' leaving fixed the subfield K. In
this case, the group Aut(F/K) is finite and the structure of all intermediate
subfields can be investigated by studying of the group Aut(F/K) .

Theorem 7. Let Fyn be a field of order p® and ¢ the Frobenius auto-
morphism of the field Fyn . If Fpa is a subfield of Fyu then d|n. Con-
versely, to every divisor d of the number n there is ezact one subfield
Fp = {z€Fn| ¢U(z) = z}. All automorph l g fired the subfield
Fyu form a subgroup Aut(Fyn /F4) =< ¢% > . This correspondence between
subfields of a finite field and subgroups of automorphism group (Galois cor-
respondence) is byjectwe and makes all inclusions opposite.
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Theorem 8. Let Fq be a finite field. For any positive integer m there exists
at least one irreducible polynomial of degree m over Fq.

Actually, the number of all irreducible monic polynomials of degree m
(with leading coefficient being equal 1) over the field F, can be exactly
counted. This number is often called the Dedekind’s number and denoted
by Dy, 4. To write down a formula for the Dedekind ’s number, we need
some information about Mébius function
Definition 5. A function p: N — Z defined by the rule

il i mi=l
p(n)=<{ (=1)% if nis product of k distinct primes
0 if n divides by square of a prime

is called the Mobius function . This function is widely used in number
theory, algebra and combinatorics. It is multiplicative, i.e. is not identically
zero and p(mn) = p(m)p(n) for coprime positive integers m and n. It is
easily seen that

> Bl =3" (@

where 71 = p, - - - py. is the product of all distinet prime divisors of the number
n. Further, note that the number of divisors of the number 7 of the form

d= Pi, - pi, 18 equal to {t} Therefore, it holds for n > 1

Y o u@=Y =YY" {*ly=a-1y=o
din dlfi r=0 | 7

From this, it follows the relation

1 i =
Zd;.."(d)_{o, ifn>1

The Mébius function allows to find one function by means of another if
there is a connection of certain form between them. Let f and g be two
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functions from the set N of all positive integers into Z, R, F(z] (or another
commutative group) connected by the relation

fm =3, 9
Then, it holds
g(m) =3, ninld) f(d).
This is the inverse formula for Mébius function. If we have two map-

pings f,g : N — G where G is a commutative gronp with multiplicative
denotations and

fo =TI, 96
then
g(n) =TT f(@*".
Using the inverse formula for Mobius function one can obtain the following

expression for the number of monic irreducible polynomials of degree m over
GF(q)

1
Dpg = — Zdln p(d) g™

This number is called the Dedekind’s number.

6 Wedderburn’s theorem

We include the commutativity law in the definition of a field. When the
commutativity law for multiplication in the definition of the field is omitted
one has the skewfield.

The most important is the skewfield of quaternions H. It was first built
by Hamilton in 1843. As a real vector space H is dimension 4 with the basis
{1,i,§,k}, i.e.

H=R+iR+jR+kR,
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where 1, j, k are symbols which can be multiplied by the rule

P=i2=k=-1, ij=k=-jijk=i=-kjki=j=-ik
The element @ = ag + a;i + asj + agk is called a quaternion. It can
be immediately checked out that H is an associative ring with identity
1. For every quaternion z ¢ H one can define the conjugated quaternion
' = ap — a3l — agj — agk. The product za* = N(z) is called the norm
of the quaternion z and equals of + a? + a3 + @3. It is easily checked
that for element 2=! = z*/N(z) the following holds zz~! = 27! = 1 i.e.
o~ is the inverse for the element z. All quaternions with zero coefficients
at imaginary identities i,j,k form a field which is isomorphic to the field
R. Bach element of this field commutes with any quaternion from H i.e.
belongs to the center of H. Thus, H is a division algebra over the field R.

The famous theorem of Frobenius shows the importance of skewfield of
quaternions in algebra:

Theorem 9. QOuer the field of real mumbers there emist only three finite
dimensional associative dwision algebras: R, C, H.

In finite case there is no distinetion between notions “field” and “skew-
field” because of the well-known result:

Theorem 10. (Wedderburn) Any finite skewfield is commutative.

7 Finite fields and codes

Finite fields are widely used in finite geometries, combinatorics and com-
puter science. They are very important in information and communication

theory: signal processing, coding theory, cryptography. We only give a
sketch of some ideas of coding theory.

7.1 General properties of codes

Long since people happened to decide a problem of protection of infor-
mation from hindrances af transmission it on distance'. Probably, single
sasonable decision of this problem is the attachment to a sent message

Tt is at the same problem appears at storing information. However we shall

analyze only the transmission process.
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some additional information, which allows to detect and to correct possible
distortions. Consider the simplest example.

Example 9. Suppose that we need to send a message A. To insure our-
selves, we can double it and send a message block AA. We shall assume
that appearing a hindrance at the transmission is sufficiently rare, so at
least one of the copies will come to hand without errors. Then there are
two possibilities:

1) the addressee gets a message AA; then he can consider the message
as correct;

2) he gets a block AB or BA, where B is different from A, and then he
can be assured that an error has oceurred; however herewith he does not
know, what from the messages, A or B, is right and, consequently, he can
not correct the error .

If we shall transmit a triple block AAA, the addressee will get one of the
messages AAA, AAB, ABA or BAA and will be able not only to detect an
error, as well as correct its: it must consider as correct that message, which
is contained in the block not less two times.

Formalize now our problem. It is usually expected that process of trans-
mission of information yields the following three conditions:

1) The information is presented as a sequences of words of the same
length, constituted of symbols 0 and 1; thereby, it is possible to consider
these words as elements of a linear space V' over the field F(2). More
generally, we can consider vectors over an arbitrary finite field F(p™).

2) Errors, which are aroused as a result of hindrances, are considered as
independent random variables.

3) For checking errors the following trick is used: to each word A, which
we want to send, a word A is added (of fixed length too) , hanging from A,
and then the word AA will be sent. An addressee, knowing dependency A
from A, defines, whether an error has aroused at the transmission.

Words AA, A and A are called a code word, an message part and a check
part accordingly. The set of all code words is called a code. If |A| = k % and
[A[ + |A] = n, the code is called a (n, k)-code. Therefore, a (n, k)-code is a
subset of a n-dimensional linear space V' over the finite field.

Example 10 (checking parity). Let an message part A = a; ... a4 is a
k-dimensional vector over F(2) and A consists of one symbol b = a; +

2By | Al the length of the word A is denoted.

_



.. + ax(mod2). If in the received word the last bit is not equal to the sum
of preceding ones, then it is doubtless that an error has occurred at the
transmission.

In the last example the code isia hyperplane in a (k + 1)-dimensional
linear space, given by the equation @y + ... + @ = 0.

From the example 9 and following reasoning it is clear that increasing
the length of a check part of a code word, we can detect and correct a
greater number of errors. However for such improvement we have to pay
a send rate of information. So at the building and analysis of codes their
parameter is taken into account - the rate of a code, which is equal to k/n,
where n is the length of a code word, k is the length of its message part.
In the example 9 the rate of the code is 1/2, whereas in the example 10 it
equals k/(k+1).

Other important parameter is the code separation. If A = a;...a, and
B = by..b, are vectors, by a distance between them a number pairs of
corresponding symbols (a;, b;) , different one from another, is called. The
distance is denoted by p(A, B). For instance, if A = 00110, B = 10100 then
p(A, B) = 2. For p(A, B) usual axioms of the distance are fulfilled:

(A, B) = /)(B A),
p(A,B) =
p(A, B) = 0 — A="Bj
p(4,C) < p(A, B) + p(B, C).

A separation of a code C is the number

156 FPinite fields

p(C) = min{p(4, B)| A,B €C, A+# BY.

There is connection between the separation of a code and detection/correc-
tion of errors. If it has occurred ¢ errvors at transmission of the word A,
the received word B differs from A in ¢ positions: i. e. p(A4,B) = t. So
under rather greater value of p(C) the word B does not coincide with any
element from C and an addressee, getting the word B, can be assured that
it contains errors. Moreover, if p(B,C) > t for all words C ¢ C, C # A,
the word A is uniquely defined by B, and errors which appeared at the
transmission can be corrected. This reasoning brings us to a simple, but
important statement:

Theorem 11. If p(C) > d (d ¢ N), the code C detects d — 1 errors and
corrects | Y] errors (here (@] denotes the integer part of the number ).

(T
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Remark. This theorem shows that both of problems — a detecting and
correction of errors — are similar. We shall deal only with the last below.

It is clear that codes with the big value p(C) are more preferred. However
increasing the separation of a code draws a decrease of rate of the code. It
is not a single contradiction in Coding Theory. From the standpoint of an
engineer a condition of efficiency of a code is very important too: encoding
and decoding devices must be technically rather simple. Requirement of
efficiency of a code is one of the reasons: because of which codes are usually
considered as subsets of vector spaces over fields, rather then, generally
speaking, of modules over rings.

7.2 Linear codes

In this subsection we shall consider only codes over F(2). Let C be a (n, k)-
code contained in a vector space V (dimV = n) . C is called linear: if it is
a subspace in V.

For a linear code the determination of the separation of a code p(C) is
simplified. Define a weight of a vector = ¢ V as the number w(z) of its
nonzero coordinates. Then p(z,y) = w(z — y), whence it follows
Lemma 1. IfC is a linear code then p(C) = min{w(z)| z € C, z # 0}.

Since check symbols of a code word are defined by its message part, the
linear code will be determined by the equation

Hz =0, (1)

where z ¢ V and His a (n — k) x n-matrix of rank n — k, which is called a
check matriz.

Using the check matrix, we can find out, when the separation of the
code equals 1. In this case by Lemma 1 there is a vector z € C, all of whose
coordinates but one (say, the ith) equal 0. But according to (1) this is
possible, only if the ith column of H is zero. Therefore p(B,C) > 2 if and
only if H contains no zero columns. Similarly, there is a vector of the weight
2in C if and only if H has two equal columns. Now it follows from Theorem
11 ford = 3:

Theorem 12. If H does not contain equal columns and all its columns are
nonzero then C corrects any single error.

Such simple characterization of linear codes, correcting one error, allows
us to build those of them, which possess the most rate. To do this we fix a

__
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length 7 = n—k of the check part. Then maximal length of words of a code,
satisfying Theorem 12, is 2" — 1 (in this case the matrix H contains all 2" —1
different nonzero columns of height 7). The codes with such matrices are
called Hamming codes. Their rate is equal to 1 — 5= and they are enough
efficient in the meaning that was spoken in the end of preceding subsection

about.
Example 11. A minimal Hamming code is obtained for r = 1, n = 3. The

matrix H is of the form
_ (i
e (101) ]

and the system of the equations is reduced to the equality z; = x5 = 3. So
in this case encoding is realized by the tripling of each symbol (see example

9).

7.3 BCH-codes

Building of efficient codes which correct at least two errors, turns out to be
a more difficult problem and requires to use the theory of finite fields. The
first such codes were built by Bose, Chaudhuri and Hoquenghem in 1959-
1960 and are called BCH-codes after the names of their authors. They are a
generalization of Hamming codes and also turn out to be linear. Moreover,
they belong to the class of so called polynomial codes. We will begin our
consideration with just this class.

Let integer positive numbers k,n € N, k < n and a polynomial f(t) =
fo+ fit + ... + futk over F(2) be fixed. Besides, let U,V be vector spaces
over F(2), dimU = n — k, dimV = n. Compare to each vector a =
(@g, .-y an—k-1) € U a polynomial a(t) = ag + a1t + ... + an_x—1t"*=1. Then
the polynomial b(t) = a(t)f(t) can be identified with a vector from V. So
the subset C; = {a(t)f(t)| a € U} C V may be consider as a code.® It is
called a polynomial code. Evidently, a polynomial code is linear.

As in the preceding subsection the weight of a polynomial g(t) is the
number w(g) of its nonzero coefficients. From Lemma 1 it follows at once

Lemma 2. p(Cy) = min{w(af)| a # 0,dega <n —k — 1}.

31t needs to require additionally that fo and fi did not be equal to zero, otherwise
the first and last coordinates of the code vectors will carry no information.
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In what follows the next assertion plays the main role for BCH-codes:

Theorem 13. Let € be a primitive root of nth degree out of 1, g be a
polynomial di.fferent from 0, deg g < n. Suppose that €,€?, ...,e4! are roots
of the polynomial g for certain d < n. Then w(g) > d.
Proof. Since d < n, all numbers ¢, €2, ...,e%"! are different. Assume that
w(g) < d—1. Then g can be presented in the form g(t) = > ;| aqt |
where s < d, 0 < k; < ... < k; <n—1and a; # 0 for all 5. From the
condition of Theorem we get the system of equations

9 =S e =0 sy,
i=1

which is linear relatively to aj,...,@ . Since this system has a nonzero

solution,
BEL ek
2k 2k,
€ Gl
=0
eski sk

From properties of van der Monde’s determinant it follows that ek # £k
for some 7 # j . But this is impossible because k;, k; < n.

Now we can pass on the building BCH-codes. Choose a generator of the
multiplicative group of F(2™) (which is cyclic by theorem 6) as e. Then
€ is a primitive root of degree n = 2™ — 1. Fix certain d < n. Denote
by f; the minimal polynomial over F(2) of the element ' (1 <i < d—1)
and set f =g.c.d.(f1,..., fa-1). Then by Theorem 13, w(a f) > d for any
polynomial a(t) # 0 such that deg(a f) < n. We obtain the polynomial
code Cy = {a(t)f(t)| dega < n —1—deg f} of the length n with the check
part of the length deg f and with the separation of the code > d. It is
called a BCH-code.

Further on, since the map z — a? is an endomorphism of F(2™) (see
example 8) (h(z))? = h(z?) for any polynomial h and any z € F(2™). So
fi(e*) = 0 and, therefore f; and fa; coincide for 2i < d— 1, since both these
polynemials are irreducible. So there are amongst polynomials fi, ..., fu—1
no more than d/2 different ones. Hence deg f; < m = [F(2™) : F(2)] for all
i <d— 1, since f; are irreducible. Consequently, deg f < md/2.

. s
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Thereby, the built BCH-code has the length 2™ — 1 and corrects [%]

errors. Its check part has length < md/2, so the rate of the code is not less
than
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md

S

Example 12. Let m = 3, ¢ be a primitive root of degree 2° — 1 = 7. Its
minimal polynomial is of the form f;() = t* + ¢ + 1, moreover fi(?) = 0,
fi(e®) #0,i.e. d=3. Since f; = f, then f = fi. So the encoding is realized

by the transformation
(g, i, @3, a3) — (ag, @ + i, @1 + Q2,00 + a2 + 03, 01 + 03, Oz, 3)

If we denote the vector on the right side by (8o, 81, .., 3s) and exclude alphas,
we obtain the system of equations which defines the code as a subspace:

Bo+P1+Ba+ P =0
B2+ fa+ s + s =0
fo+ B3+ PBs+ s =0

Its check matrix is of the form

1110010
H = 0010111 |.
1001011

i.e. our code is a Hamming code. This is not accidental: it can show that
all Hamming codes are BCH-codes.

Here is an example of a BCH-code, not being the Hamming one.
Example 13. Set d =5, m = 4, n = 24 — 1 = 15. Minimal polynomials
for primitive elements of F(2™) are of the form g(t) = ¢* +¢ + 1 and
h(t) =t*+ 13 + 1. Let fi = g. As it is proved above f, = fs = fi. Besides,
fa(t) =t* + t3 + 2+ ¢ + 1 because (¢%)° = 1. So

f=ged(fi,fa, f3, fa) = ged.(fi, f3) = fifs =5+ 7 + 5+ ' + 1

and we obtain a (15,7)-code, which corrects 2 errors.

(T
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7.4 Conclusion

In this section we did not try to give some introduction to Coding Theory,
but want to show only fragmentary relations of this theory with finite fields.
Indeed, this connection is much deeper. First, there are many kinds of li-
near codes and analyzing each of them requires its own algebraic approach.
Secondly, much attention is attracted to nonlinear codes in last decades, for
which methods of Algebraic Geometry over finite fields are used. Finally,
the nature of hindrances can be other: for instance, the condition of inde-
pendence of errors can be not executed, and in this case other methods of
building of codes are developed (but with using algebraic tools t00).

At last we give a small reference list for the reader who will want to make
the closer acquaintance with Coding Theory. Elementary introduction can
be found in the book of G. Birkhoff and N. C. Bartee, Modern Applied
Algebra, (New York, 1970).

The book [1] pays the greater attention to technical realization of diffe-
rent codes. The monography [11] is really an encyclopedia of Coding Theory
(certainly, at the time of its publishing). The applying methods of Algebraic
Geometry is shown in the work [18]. A modern introduction in Coding
Theory is contained in [14]. Some special questions are considered in [16]
and [5].
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