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Abstract

Five uniqy questions for multiple tri tric series are surveyed.
If a multiple trigonometric series converges everywhere to zero in the sense
of spherical convergence, of unrestricted rectangular convergence, or of ite-
rated convergence, then that series must have every coefficient being zero.
But the cases of square convergence and restricted rectangular convergence

lead to open questions.’

1 Introduction

Let T¢ = [0, 1) be the d dimensional torus. This means that T¢ is a bounded
part of d dimensional Euclidean space, but that addition is modulo 1 in
each coordinate. Let {¢,(2)}=12,.. be a real or complex valued system of
functions that are in L2(T%) = {f : T¢ — C : [ |f[*dz < co}. If the
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inner products in L2, (om,@n) = [1u @m (%) @n (#)dz, where the bar denotes
0 if m#n
1L if =
thonormal (ON). Given an ON system and a function f on T it is often
possible to represent f as an infinite linear combination of the elements of
the system. The word “represent” may be given a variety of meanings, but
in this work we will narrow the possibilities down by always demanding that
the linear combination, Y a,¢n(2) be everywhere pointwise convergent to
the value f(z) ,

(1.1) f(@) =3 anpn(a) for each z e T

Even with z fixed, so that the series in definition (1.1) is a series of
numbers, the notion of “‘represents” is still incomplete because it depends
on what it means for this series of numbers to converge. As we study
different systems here, we will carefully explain what “converges” means for
each system. Once we have settled on an ON system and a definition of
convergence, two natural questions immediately arise.

I: Existence. Which functions are representable?

II: Uniqueness. Does any function have at least two distinct represen-
tations?

To study the first question seriously, we would have to introduce the
notion of completeness and then restrict ourselves to complete ON systems.
The first question is very interesting and has a vast literature associated
with it, but we will not consider it here. In particular , the notion of
completeness will play no role whatsoever for us.

Turning to the question of uniqueness, we can immediately reduce the
general question IT to what seems to be a special case, a case involving the
function 0, i.e., the function which has the value 0 at each = ¢ T¢. Now the
function 0 will always have the trivial representation 0 = 32 0y, (), and
the function 0 may also have a nontrivial representation, 0 = Y ann(2),
with some a,, # 0.

Definition 1. If an ON system {¢.} and a method of convergence are
qiven, say that uniqueness holds if 0 has no nontrivial representation, i. e.,
if 0= 3" anpa(x) implies that all a, = 0.

To see that this definition is fully general, fix {¢,} and the meaning of
convergence. Suppose that there is a function f with two distinct represen-
tations so that f(z) = 3 a,p.(@) for each z € T¢, where a,, # af, for somen.

complex conjugate, satisfy (pm, @n) ,we call the system or-
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Then we will have 0 = f(z) = f(z) = Y(an — a},)@n(x) which is a nontrivial
representation of 0. Thus any instance of nonuniqueness immediately leads
to the seemingly special case of nonuniqueness given in the definition.

We will begin with an example where uniqueness does not hold.
Example 1 (Haar functions). Letd = 1, (h,.ISz)} be the Haar functions, and
let convergence mean Y anhn(z) = A;l_{nw Y om0 Gnhin(z) . Then uniqueness
does not hold.

Proof. What I shall take for the Haar functions is only a subset of the
standard Haar functions. My Haar functions are defined as follows. For all
n hp(0) =0, ho(z) =1for0 <z < 1.

o8 0 <t
h'(z)z{—ﬁ lesel

2t 0<z<}
h,(z)={ 514 Jig s,

0 3<z<1

2" O0<z<
hn(z)={ 2 Lcz<gh

0 2,.%Sz<l

Note that

and if n > m, [} hp(@)ha(z)dz = [2 " hy(2)dz = 0, so the Haar
functions are an ON system. Now

a0 !
gt 0 othefw?s? 5

2 1
NENTREININ 1T I
ho(z) + b (2) + .. + 2P b () = (2)" gt:;wfsj"

o ([
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Consider the sum ho(z) + 3%, 2°7 hy, (z). If 2 = 0 every term is 0, while
if # > 0, as soon as n is such that 7 < z, the sum of the first n + 1 terms
is 0. But for such an z and n, for every m > n we have h,,(z) = 0. so that
the infinite sum is the same as the sum of the first n + 1 terms. It follows

that
= 1
(1.2) ho(z) + ZZ"”E“h,.(z) =0 for every z € [0,1).
n=1
Since (1.2) is a nontrivial representation for 0, uniqueness fails for the Haar
system.

o
For several other examples of ON systems where nonuniqueness occurs,
see reference [AWal].
Example 2 (trigonometric functions). Let d = 1, {ta(z)}n=0,1,
{1, cos2rz, sin2wz, cos2m2z, ..., cos2mna, SIN2wN, ...}

be the ln’gonomrlnr functions, and let convergence mean ). antn(z) =
Inn ag+ YN (@ top—y (@) + agitor(@)). Then uniqueness holds.

Already from these two one dimensional examples we see that the mean-
ing of convergence can be delicate. For example, the series

1P =A==

is divergent with respect to the definition given in the first example, because
the sequence of its partial sums is then 1,0, 1,0;..., but it converges to 1
with respect to the method of convergence given in the second example since
there every partial sum is 1.

The remarkable result that forms example 2 was proved by Georg Cantor
It, we will change to a notation that is a
ing trigonometric series.

in 1870. Before stating hi
little more convenient for dis

Bi)

Notation 1. From now on, by T¢ we will mean [0,27)* with addition
defined modulo 27 in each dimension. We wnll /mncejorl]z, only consider
systems of the form {"*} | where ne = mzy + ... + ngza VVhen (ef — il
convergence will be defined by Yo cne™ = Im’lv Z;\;_\ cae™. When
d = 2, to avoid subscripts we will write e™MX with M = (m,n), X = (z,7),
and MX = mz + ny.
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For each d our system is orthogonal, but it is not exactly ON , since
fr |e™=|* dz = (2r)?, rather than 1. Wen d = 1, taking Euler’s formula,
e = cos z + isinz into account, we now have the nth term expressed as
C_ne™'™ 4 ¢, rather than as ag,— cos (2mnz) + ap, sin (27nz) . To see
the connection, we calculate that when ¢, = 9“;—"" and ¢, =0h= Eﬂizﬂﬂ
there follows

c-ne "™ + cpe'™* = a, cosnz + b, sinnz.

Theorem 1 (Cantor). Letd = 1. If Yo" c.e™ =0 for allz € T, then
sllcn=0:

For the details of the proof and a discussion of the history and signifi-
cance of this celebrated theorem, see reference [A] . We will however here
list the major steps of the proof, because they seem to be the starting point
for all known generalizations to higher dimensions.

(1) Establish the Cantor-Lebesgue Theorem, that |c,| + |e_,| — 0,

(2) show that the Riemann function F(z) = z-o!._.i + 3 ni0 2e'™ is con-

tinuous,

(3) establish the consistency of Riemann summability, that the Schwarz

second derivative D? defined by
(1,3) DQF(I) - 'l‘lﬂ(l) Fx+h)~2l;(x)+F(x—h)

satisfies

i o\
DF(z) = limeo + 3 cne™ (“’;f’) =0, and
n#0 2

(4) prove Schwarz’s Theorem, that continuous functions with identically
zero Schwarz second derivative are of the form azx + b.

2 Uniqueness for Multiple Trigonometric Se-
ries

The remainder of this paper will discuss the following five questions. All
are framed for dimension d > 2.
(1) Does uniqueness hold if convergence means iterated convergence?
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(2) Does uniqueness hold if convergence means unrestricted rectangular
convergence?

(3) Does uniqueness hold if convergence means spherical convergence?

(4) Does uniqueness hold if convergence means restricted rectangular
convergence?

(5) Does uniqueness hold if convergence means square convergence?

Before discussing these questions we will define the five methods of con-
vergence.

We will restrict ourselves henceforth to d = 2, since this case is suffi-
ciently general to display the full complexity of the issues.

Fix X = (z,y) and set ap; = ap(X) = cpe™X. There are many ways
to add up the terms of T = Y7 ap, but we will consider here only the five
methods listed above.

Definition 2. Let |M| = v/m? +n?* and for each real v > 0,define
e S
|M]<r
to be the rth spherical partial sum of T. We say T converges spherically to
tif
lim 7" =%,

7100

For double indices M = (m,n) and P = (p,q), say that M'> Pifm > p
and n > g, and for any real number r, let 7 denote the double index (r,) .

Definition 3. For N > 0, define

Tni= E ayy
~NSMEN

to be the N th rectangular partial sum of T. Let r be a nonnegative integer.

We define
L= Y ay

~r<M<r
to be the r th square partial sum of T and say T 1s square convergent to t if

Wheal 7055
r—oo =
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If we define a different norm ||:|| by ||M|| = max{|m|,|n|} , we see that T,
can also be expressed as

Ty =Tirry = Z ayr.

lIMli<r

The various methods of summing 7" can be viewed geometrically. For exam-
ple, the spherical (circular, when d = 2) partial sum 77 are so named be-
cause the indices associated with the terms of 7' appearing in the partial sum
are exactly the indices contained within the closed origin-centered sphere
of radius r. Spherical summation is a plausible way of adding up all the
terms of 7' becanse any fixed index M is in all spheres of sufficiently large
radins; equivalently, a), is included in all sufficiently late spherical partial
sums. Similarly, if (r, s) = 0, the indices M satisfying —(r,s) < M < (r,s)
are exactly the indices contained within the closed origin-centered rectangle
with lower left corner (—», —s) and upper right corner (r,s). In particular,
if » = s, the rectangle is actually a square. (If ||M| = r , then M is on
the edge of the square.) Again, as r — oo, any fixed index M is in all
sufficiently late squares; equivalently, ay is included in all sufficiently late
square partial sums. In short, any method which eventually captures all
points of the index set Z? is a plausible summation method. The three
methods yet to be described will also eventually capture the entire index
set.

Definition 4. Say that T is iteratively convergent to t af both of the nested
limats

> (Sa)-am s (o) w3 (5w

are equal to t.

Definition 5. Say that T' is unrestrictedly rectangularly convergent to t if

lim T e
AT s A

We will often abbreviate unrestrictedly rectangularly convergent to just
rectangularly convergent. Finally,

[
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Definition 6. T 1is restrictedly rectangularly convergent to t if for any
e > 1, no matter how large,

1
lim sup {IT,\, —t|: min{|m|, |n|} =, and = < ‘%l < e} =0}

All five methods are symmetric, i.e., if ay is included in a partial sum and
if M' differs from M only by a coordinate signs so that |m’| = |m| and
|| = |n| , then aye will also be included in that partial sum. There are
only two obvious connections between these methods: unrestricted rectan-
gular convergence implies restricted rectangular convergence and restricted
rectangular convergence implies square convergence. To better understand
these methods of convergence, it may be useful to construct examples which
show that there are no other connections between the various methods. For
example, if ag, = (—=1)", a1, = (=1)*", and am, = 0 otherwise, then T is
unrestrictedly rectangularly convergent to 0, but 7" is not iteratively conver-
gent. See [AWe] for other examples. The definition of restricted rectangular
convergence is particularly tricky, since the limit must be ¢ for every choice
of the eccentricity it almost seems that this method is not very different
from the unrestricted method. We will see below that the two methods are
quite different.

The answers to the five questions are yes, yes, yes, don’t know, and don't
know. Only the first question is easy. It is a routine induction argument.

Proposition 1. Uniqueness hold for iterated convergence. If 5 cae™* s
iteratedly convergent to 0 everywhere, then all ey = 0.

Proof 1f d = 1, this is Cantor’s Theorem. If d = 2, our hypothesis asserts
that for each fixed y,

m

(2.1) lim Y C,(y)e*® =0 for every z,
M—00 "

where

(2.2)

0
Cul)= X cuwe™.
v=—oo
Cantor's Theorem allows us to conclude from equation (2.1) that Cy,(y) =0
for each y. Then fixing 2 and applying Cantor’s Theorem again to equation
) ¢

(2.2) shows that ¢, = 0 for all v. Since u was arbitrary, the proposition is
verified (]

(T
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3 Unestricted Rectangular Convergence

The historical path to the two nontrivial positive results did not follow the
straightforward path we present here. What actually happened was that
first a flawed proof for unrestricted rectangular uniqueness was published
in 1919. Since it appeared that the unrestricted rectangular case had been
resolved, it was natural for attention to turn to spherical uniqueness, where
a proof for d dimensional uniqueness involving extra assumptions on the
coefficient size was achieved by Victor Shapiro in 1957.[S] A corollary of
one of Shapiro’s results was this.

Corollary 1. If 3 c,e™ =0 spherically for all z € T¢, and if

(3.1) limi~ P =

r=1<|m|<r
then all ¢, = 0.

Then in 1971 Roger Cooke found this generalization to the Cantor-
Lebesgue Theorem for dimension d = 2.[Coo]

Theorem 2 ( Cooke ) . Letd = 2. If {¢x} is a doubly indezed set of complex
numbers such that
Z ™

|m|=r

tends to zero for almost all z, then

(8:2) Z |em|* tends to 0 as r — oo.
v ml=r

It is clear from the definition of spherical convergence that spherical
convergence at z to 0 (or to any other finite value for that matter) implies
that the hypothesis of Cooke’s theorem holds at z. Now it turns out that
when d = 2, the conclusion of Cooke’s Theorem implies the validity of
condition (3.1) and thus the unconditional spherical uniqueness theorem in
dimension d = 2. [AWa] , page 42

The pendulum then swung back to the unrestricted rectangular conver-
gence uniqueness question. Just at the time of Cooke’s work, Grant Welland
and I looked at an argument that Hilda Gehringer had given in 1919 in sup-
port of uniqueness for unrestrictedly rectangularly convergent series. We




106 Uniqueness for Higher Dimensional...

found a gap in the proof that we could not fill. We were able to prove only
this.

Theorem 3. Uniqueness for unrestricted rectangular convergence holds in
two dimensions.

If Spun = 3700 Aoy we have the simple “Mondrian” identity
Amn = Smn = Siip—1 =8 m=1m - Sn-1n-1y

which leads to a fairly strong (and best possible) Cantor-Lebesgue type
theorem. To see why I named this identity after the artist Mondrian, see
Figure 1 on page 411 of reference [AWe].

Theorem 4. If a series s unrestrictedly rectangular convergent everywhere,
then the coefficients satisfy

(3.3) ¢m — 0 as min|m;| — co and all ¢, are bounded.

The proof of Theorem 3 depended on two “lucky” facts. Lucky fact

number one is that in dimension two, this condition implies the Shapiro
condition (3.1).
Now as one would suspect, at a single fixed point (z,,y,), unrestricted
rectangular convergence does not imply circular convergence. Furthermore,
it is even possible for a double trigonometric series to be unrestricted rectan-
gular convergent almost everywhere while being circular convergent on at
most a set of measure zero.[AWe], p. 418 However, unrestricted rectangu-
lar convergence everywhere does imply spherical Abel summability every-
where.  (The multiple series Y- ay, is spherically Abel summable to s if
lim, .o, 3 ae ™" = 5) This was a second stroke of good luck because
the corollary mentioned above was to a theorem of Shapiro which postu-
lated that a multiple trigonometric series satisfied Shapiro’s condition (3.1)
and was everywhere spherical Abel summable to 0 and concluded that all
the coefficients were zero.

So dimension two was done, but in retrospect, the proof really was as
lucky as it seemed and shed no light at all on the higher dimensional un-
restricted rectangular uniqueness question. Twenty years went by without
any further progress. Then in the early 1990s came the complete solution,
with two independent and completely different proofs.
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Theorem 5. Unrestricted rectangular uniqueness holds n all dimensions.
[Tet], [AFR]

We will discuss both proofs only in dimension two, since all the ideas
already come into view there.

Tetunashvili’s proof is based on a simple, but powerful idea. He noticed
that it is easy to prove uniqueness for iterated convergence. In fact, we have
presented the routine induction argument which accomplishes this above.
(See the proof of Proposition 1 above.) So he would have an immediate proof
of Theorem 5 if he could prove that unrestricted rectangular convergence
implies iterated convergence.

But consider the numerical double series given by

(=1)™™ if me {0,1} or ne {0,1}
Qmn =

0 otherwise

Here is a representation of this series where the value of a,,, is attached to
the point (m,n).

¥

n
1 0
|

1
1 A

As soon as both m and n exceed 1, the (m,n) partial sum S,,,, is 0,

b R ey

50 that limym(mn}—ce Smn = 0. On the other hand, Sp, = (1+(-1)")/2 and
Smo = (14 (=1)™)/2, so that neither limy, ..o Son NOr limy, .o Smo exist. In

L
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other words, this double series in unrestrictedly rectangularly convergent,
but not iteratively convergent. Nevertheless, Tetunashvili was able to prove
that if a multiple trigonometric series is everywhere unrestrictedly rectan-
gularly convergent to 0, then it is also everywhere iteratively convergent
to 0. We will now explain the idea behind Tetunashvili’s proof. Assume
that a double trigonometric series converges unrestrictedly rectangularly to
0 everywhere, so that for all (z,y) € 7

m

..
(B4)T(z,y)= lim  Tma(z,y)= . lim DRI o0 =)

min{m,n)—o0 min{mn}—oo £ L
It is enough to show that this implies that every row sum

" n
= i(mz+uv)= imz 1. vy
R(z,y) = lim B Goe e lim e

v=-n v=-n

is identically zero for then the iterated sum will be

Jim 37 Rm(@,y) = lim 3 0=0.

p=—m =—m

Let us assume, with a slight loss of generality, that

Ro(0,0) = lim 3~ coe™ =1.
(What follows differs from the full proof only by being slightly less painful
notationally. Compare [AWa), pages 44.45.) We will produce constants
{A}me1,-12.-2. such that

m
(3.5) 1+ Ane™ = lim 1+ > Me*==0 at every z,
mes

m#0 p=—m
contradicting Theorem 1, Cantor’s original one dimensional uniqueness theo-
rem. Once and for all, fix y = 0 and set

n

Aun= Y cny m =01, =1,2; =23 S0t

v=—n

We will now need a theorem that Grant Welland and I proved as a lemma for
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Theorem 4 which says that all the rectangular partial sums are bounded,
|Tn (2,0)| € B(z). In one dimension, such a theorem amounts to the
trivial remark that the partial sums of a convergent series are bounded,
while here there is definitely something to prove, even though the constant
B is allowed to depend on z.(See [AWe], pages 406-407.) Next, if B, = {«
¢ T: B(z) < n}, UE, = T so that some E, has positive Lebesgue measure.
In other words, there is a set £ of positive measure and an absolute constant
B so that

[T (0,2)] < B for all z € B, all m >0, and all n > 0.

An important theorem of Paul Cohen asserts that we can expand the above
inequality to hold for every @ ¢ T. The reason for this is that we may think
of Tyun as a trigonometric polynomial of degree m, since

m n m
el (z ) o
p=—m \v=-n p=—m
and Paul Cohen’s lemma says that for each nonnegative m, there is a bound
B(m) = B(m, B, |E|) so that
[Tonn(@,0)] < B(m)

holds for every = and every n. Even though our constant is no longer ab-
solute, but now depends on m, this is quite a strong fact, since there are
infinitely many values of n. This powerful lemma has the further conse-
quence that whenever || < m,

2 [ m
2_1;/0 (Z A“,.ei“’> dx

ji=—m

14| < ;—_/o B(m) dz| = B (m)

un =

Recall that Ag,, — 1 as n — oco. Because {4, ,} is bounded by B(1), we
may find a first subsequence {n;} and a number A, € [-B(1), B(1)] so that
Ain, — A1 Because {A_,,} is bounded by B(1), we may find a second
subsequence which we will still denote {n;} , namely a subsequence of the
first one and a number A_, e [-B(1), B(1)] so that Ay n, — A_y. Because
{ Ay} is bounded by B(2), we may find a third subsequence which we will
still denote {n,} , namely a subsequence of the second one and a number \y
¢ [~ B(2), B(2)] so that Ay, — A;. Continuing this process recursively,
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after 2m repetitions we come to a 2mth subsequence which we will still
denote {n;} and a number A_, such that A_;,,; — A_p. Furthermore,
since each subsequence was extracted from the previous one, at this stage
we know that

for each p € [-m,m], Ayn, — Ay 85 j — oo
This process generates a number A, for every nonzero integer p. To see that

condition (3.5) holds, it suffices to show that if z ¢ T and e > 0 are given,
then there is an M so that whenever m > M,

"
143 A

p=-—m

(3.6) <L

Let 2 € T and € > 0 be given. Because the original series is unrestric-
tedly rectangularly convergent at (z,0), there is an M so that whenever
min{m,n} > M, [Ta(z,0)| < €. Fix any m > M and pick n; beyond M
and from the 2mth subsequence. Then

m
inz
E Apnj€

p=-m |

= | T, (2.0)] <,

so letting j — oo, gives inequality ( 3.6), and consequently the required
contradiction.

The other proof of Theorem 5 is completely different. Again let the di-
mension be two for simplicity and again assume that a double trigonometric
series converges unrestrictedly rectangularly to 0 everywhere, so that for all
(z,y) € T?, relation (3.4) holds. Following Cantor’s program listed under
the statement of Cantor’s Theorem 1, we start by trying to get some control
of the coefficient’s size. There is indeed a Cantor-I.ebesgue result available
here which asserts that the coefficients are uniformly bounded and tend to
0 “in the corners” , that is there holds the relation

(e = 10).

lim
min{jm|, n|}—oo

Continuing Cantor’s program, we next form an analogue of the Riemann
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function, namely

o Con cmo cm
a5 s 1ny my n z(mz+ny)
F(z,y) = co—— — & 2 E + E

n#0 0

The Weierstrass M-test shows that F' is continuous, being the uniform limit
of its partial sums. If we were allowed to differentiate term by term, we
would get

o 10 = S 0

If a twice continuously differentiable (C?) function F satisfies this differen-
tial equation, integration shows that it must have the form
(3.7) F(z,y) = a(y)z + b(y) + c(z)y + d(z).
It turns out that if the heart of the matter is to show that F' has this
form. Since termwise differentiation is not justified, we may try to mimic
what Cantor did when he used the second Schwarz derivative in place of
the ordinary second derivative.

So we introduce the generalized Schwarz derivative D2 F(z,y) which is
defined to be

+1F (x — h,y+ k) —2F(z,y+k) +1F(z+h,y+k)

—2F (z — h,y) +4F (z,y) —2F (z + h,y)

. +lF(z—hy—k) —2F(z,y—k) +1F(z+h,y—k)
lim ’
hk—0 h2k2
hk#0

From assumption (3.4) it readily follows that D, F(z,y) is identically zero,
so that if F' were C?, the theorem would follow easily. However, F is only
known to be continuous. Well, in the one dimensional situation, continuity
was sufficient, so it seems natural to conjecture that a continuous function
with identically zero Dy, generalized fourth derivative must have the form
(3.7) . But the function E(z,y) = (z + y) |z + y| satisfies Dy 2E(z,y) iden-
tically zero and does not have the proper form.[AFR], p.148 So something
more is needed. The example causes mischief because of its symmetry, so
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+1F (z — h,y+ k) —2F (z,y+2k) +1F(x+ h,y+ 2k)
—2F (z — h,y) +4F (z,y+ k) —2F (z+ hyy + k)
+1F (z — h,y — k) —2F (z,y) +1F (z + h,y)

lim e >

hik—0
Rk#0

+1F (z,y+ k) —2F(z+h,y+k) +1F (z+2h,y+k)

—2F (z,y) +4F (z + h,y) —2F (z + 2h,y)
 +1F(z,y—k) —2F(z+h,y—k) +1F (z+2h,y—k)
lim , and
hk=0 2
k0

+1F (z,y + 2k) —2F (z+ h,y +2k) +1F (z + 2h,y + 2k)
—2F (z,y+k) +4F(z+h,y+k) —2F(z+2hy+k)

. +1F (z,y) —2F (z + h,y) +1F (z + 2h,y)
lim
B0 1
R0

Notice that as the numerators become less symmetric, the denominators
exert less of an impediment. The original hypothesis (3.4) also implies that
all three of these connectors are identically zero. Even better, we were
able to prove the real variable theorem that a continuous function with
identically zero connectors and identically zero Schwarz derivative Dy o must
be of the form (3.7).

So the hard part of the proof is the real variable theorem. In order to
prove this theorem, we had to come up with an entirely new technique.
Given the simplicity of Tetunashvili’s proof above, probably the main re-
maining value in the proof is this technique. In the paper [Al], the technique
itself is illustrated by applying it to give a (harder) proof of Schwarz’s origi-
nal theorem, that continuous functions with identically zero Schwarz second
derivative (see definition (1.3) above) are of the form az +b. The basic idea
is to find for the second difference, an analog of the following “additive

interval function” property of the first difference:
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(3.8) FO) = £0) = Y (@) = fl@)},
i=1

where the interval [0,1] = UL [z, %], 0 =2 < 23 < ... < 3, = L.
Given a function F(z) defined on [0, 1] associate to it a function f(z,y) of
two variables defined on the square S = [0,1] x [0, 1] by

(39) f@y=F (;y)

Then the function F(z) can be identified with the function f restricted to
the diagonal {(z,z) : 0 < ¢ < 1}, since F(z) = f(z,z). Note that f has
the constant value F(a) on the entire line segment passing through (a,a)
and having slope —1. Let UL, P, be a partition of S into nonoverlapping
squares. Then associate to each square P with lower left corner (a, ¢), upper
left, corner (a,c+ h), upper right corner (a+ h,c+ h), and lower right corner
(a+ h,c), the value

fl@+h,c+h)— fla+h,c)— fla,c+ h) + f(a.c).

The result is additive and produces this analogue of the decomposition (3.8):
f(L,1) = f(1,0) = £(0,1) + f(0,0) =
D {f @+ hiy i i) = flait hiy ) = flasy i+ i) + f e )}y
=1

where P, is the square which has lower left corner (a;,c;) and upper right
corner (a; + h;, ¢; + h;). Now translate this back into a statement about F
by means of equation (3.9). We have

(1)~ 2F (%) +F(0) = Y {F () — 2F(mi) + F(5)),

where t; = 3(a; + ¢;) + hi, b = 3(a; + ¢;), and m; is the midpoint of ¢; and
b;. To see this idea lead to a proof of Schwarz’s Theorem, see [Al]; and to
see how it is used in the proof of the higher dimensional analogue involving
D, and the connectors, see [AFR].
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4 Spherical Convergence

As was mentioned in the last section, it took two strokes of good fortune to
make the leap from the conditional theorem of Victor Shapiro to the final
two dimensional spherical uniqueness theorem. These were Cooke’s Theo-
rem and the fact that Cooke’s condition (3.2) implies Shapiro’s condition
(3.1).

The next development took place in 1976 when Bernard Connes found
a beautiful extension of Cooke’s Theorem to higher dimensions.[Con]

Theorem 6 ( Connes ) . If {¢n} is a multi-indezed set of complez numbers

such that
> cns™

|m|=r

tends to zero for almost all z, then

(4.1) Z lem|® tends to 0as 7 — oo.
\ imi=r

Unfortunately, when d > 3, condition (4.1) does not imply condition
(3.1), so this did not immediately lead to an unconditional spherical theo-
rem in higher dimensions. What it did do, however, was set the stage for
what is probably the deepest theorem in the entire subject. This was done
1995 by Jean Bourgain, who proved a spherical uniqueness theorem for all
dimensions with only condition (4.1) assumed. [B] Just as Cooke’s Theo-
rem had removed the side condition (3.1) and thereby converted Shapiro’s
Theorem into a full strength spherical uniqueness theorem when d = 2, so
Connes’ Theorem means that in reality Bourgain’s Theorem has no side
condition. Thus we finally had the full spherical uniqueness theorem.

Theorem 7. If che'"’ = 0 spherically for all z € T, then all, ¢, = 0.

The proof of this theorem is very difficult, requiring numerous ideas as
well as strong technique. It does, however, follow the steps of Cantor’s
original proof listed above. Suppose that ¢, = 0 and that 3 c,e™ = 0,
where the prime denotes the absence of an n = 0 term. (This involves no
loss of generality.[AWal, page 49) The higher dimensional Riemann function
introduced by Shapiro is F(z) = — 5 ’—fj;e"‘? It is easy to calculate that
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the Laplacian of ein= js — |n|2 , so, formally, F' has zero Laplacian and hence
is harmonic. By “formally” I mean that if you were allowed to interchange
the summation sign and the Laplacian operator A = %? I %g A op Ar 5‘9;3,
then you would get AF(z) = 3’ ¢,e™® = 0. From this it would follow that
F were harmonic and hence infinitely differentiable, whence integration by
parts would show the coefficients of F' and hence the original coefficients to
be decreasing faster than any fixed negative power of |n| . Then the original
series would be absolutely convergent () |ca| < z), so that the theorem
would have this one line proof: for any m,

’ ’
4.9) (27)¢c— % i(n-m)z g :/ inz) ,—ima g =/ 0d
(4.2) (27)%n ;c /Tde ks Td(;cne )e e Pl
—0

The fallacy in all this is that there is no justification available for the in-
terchange of A and ) . Even though AF doesn’t make sense due to F'
not being smooth enough, there is a generalized Laplacian A which can be
applied to F. The definition is

~ e 1

s =1 % (5 ey, FO% -0,
where B(z,p) is an z centered solid d dimensional ball of radius p,and m
denotes Lebesgue measure. Taylor expanding a C? function about z shows
that the generalized Laplacian agrees with the ordinary one if the constant
¢q is chosen appropriately. A straightforward calculation involving Bessel
functions shows that the generalized Laplacian of the Riemann function F
agrees with the original series and hence is everywhere 0. There is a classical
theorem of Rado that if the generalized Laplacian of a continuous function
is everywhere 0, then that function must be harmonic. So if F' were shown
to be continuous, spherical uniqueness would be established.

Showing F to be continuous seems to be very difficult. Here is the
logical flow of Bourgain’s argument. Suppose that F' is not continuous
and let Z be the nonempty set of discontinuities of F. A Baire category
argument on Z produces a point p € Z and a solid ball B about p such
that if Z N B is “thin” (is of measure 0 with respect to a certain harmonic
measure) , then F is harmonic and hence continuous on B, contrary to the
definition of Z; while if Z N B is “thick” , then F must be continuous at p,
contrary to p € Z. Bourgain achieves the first contradiction using a Balayage
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argument. His other contradiction is reached by hard analysis, harmonic
measure, and capacity theory. The proof appears in at least three places.
There is Bourgain ’s original 15 page article[B], a somewhat expanded 22
page version appears in [AWal], and a 42 page version of the proof specialized
down to dimension 2 only appears in [A2]. This last version should be the
most accessible to the novice.

5 Square Nonuniqueness?

This section will be speculation. There are several obstacles to proving
a uniqueness theorem for the remaining two methods, square convergence
and restricted rectangular convergence. First of all, there is no Cantor-
Lebesgue theorem, at least in the usual sense. What I mean by this is that
the usual Cantor-Lebesgue theorem associated with one parameter methods
of convergence assumes that the difference of successive partial sums tends
to zero everywhere ( or at least at every point of a “substantial” subset
of T¢), and concludes that the coefficients themselves must be small. But
there is a double trigonometric series which is square convergent to a finite
value at every point, so that the differences of its partial sums tend to zero
everywhere, whose coefficients grow faster than any polynomial. The series
is

0
) 3/2,n/lnn 2 (T o 2n-2 (E
(5.1) T(z) = 24/ ;n € cos (2) sin 2) cos ny.

The partial sums of the series as written coincide with the square partial
sums of a double trigonometric series as can be seen from expanding

£ z ginl2 L g—iz)2 2 /eiz/2 _ o=iz[2 2n-2
59 52 (7 . on-2 (_ s .
il oeen 2) e 2) 2 2%

If 2 =7 or —m, cos (%) = 0 soT(—m) = T(r) = 0, while if z € (—, ),
then a = sin? (%) < 1, so that the series defining 7' converges absolutely
by comparison with 2v/7/a 3% ) n%/2¢7/nnq™, To see that the (0,7) coef-
ficients of 7' grow like e" "™ involves multiplying out the right hand side of
equation (5.2). It is also true, but somewhat more technical to verify, that
this series is also restrictedly rectangularly convergent to a finite value at

every point. See [AWa2] for details.




It is logically possible that everywhere square convergence to zero is
different than everywhere convergence to finite values, but this would involve
a completely new and much more delicate type of Cantor-Lebesgue type
theorem. So the method of proof used by Cantor, Shapiro, and Bourgain,
which involves forming a Riemann function or second integral of the original
series by dividing by |n|? is not very likely to have an analogue here.

Second, I have devoted some effort to trying to prove a conditional square
uniqueness theorem in the spirit of Shapiro’s work. In other words, I simply
add some reasonably mild condition on the coefficients such as ¢, — 0
as maz{|m|,|n|} — oco. Even such a conditional uniqueness theorem for
square convergence seems difficult to achieve at this time.

With all efforts to prove something positive at a standstill, it seems natu-
ral to wonder if there might be a counterexample. Since at a fixed point
restricted rectangular convergence implies square convergence, proving a
uniqueness theorem should be easier for restricted rectangular convergence,
while finding a counterexample to uniqueness should be easier for square
convergence. So we will move in the direction of trying to find a coun-
terexample to square uniqueness; that is, of trying to construct a double
trigonometric series that is square convergent to 0 everyvhere.
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We start with an example of a one dimensional trigonometric series that
has a subsequence of partial sums that converges to zero everywhere. Such
a series was discovered by Kozlov.[K] See example 2.2 on pages 187-190
of[AWal] for two different ways to construct such a sequence. The basic
fact used amounts to this.

N
FACT Given any trigonometric polynomial f = Zansinnz, any € >
n=1
0, any 7 > 0, and any integer M > N, there can be found a trigono-
M+R
metric polynomial p = 3 a, sin nz such that for all z € T \ (—¢,¢),

n=M
|£(z) +p()] < 7.
We will construct two one dimensional trigonometric series, P(z) = p;(z) +
p2(z) + ..., and Q(¥) = q1(y) + q2(y) + ...where every p and g is a linear
combination of sine functions, the lowest frequency of each p,.1 is greater
than the highest frequency of p,, and the ¢’s have the same property. We

[——
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will then consider the resulting double trigonometric series

T(z,y) = P(z)Q(y)-

The nth square partial sum of T is exactly the product of the nth partial
sum of P and the nth partial sum of @ ,

Ton(2,y) = Po(2)Qn(y)-

The plan is to design P and @ is such a way that for (z,y) fixed, for a
certain subsequence of n, P, tends to zero and @, is not too big, while for
the subsequence consisting of the remaining n, P, is not too big and @,

tends to zero.
Let {e;} be a sequence of positive nurnbers tending monotonically to 0.

Then the intervals { (—&;,¢;) } shrink to 0, so the complementary subinter-
vals of T, I; = [-m, —&;] U [e;, 7] increase monotonically to T\ {0} . Also
let {n.} be another sequence of positive numbers tending monotonically to
0. Start with p;(z) = n; sin z so that

o [pr(2)] < m

zely

and let m; =deg p; = 1. Then use the FACT to pick p, of degree my with
frequencies starting at m; + 1 = 2 so that p, satisfies

sup |py(z) + p2(z)] < 72

elp
This creates a first “bad z zone,” [2,my — 1] , bad in the sense that for n
in this interval, the nth partial sum of P may not be small. So, let ¢; be a
nontrivial trigonometric polynomial in y of degree n; = 1 satisfying

sup |q1(y)] < m,
yeh

in particular 1(y) = 7y siny. Next use the FACT to pick ¢2(y) to have
frequencies starting with my, to be of degree ny, and to satisfy

sup |q1(y) + 2(y)| < 72
yelz
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We have
Tir(z,y) = p1(2)ai(y) = ni sinzsiny
and if n is in the first bad = zone,
Ton(,y) = (p1(2) + P3(2)) (@1 (y)),

where pj is a partial sum of p, . This creates a first bad y zone; for n e
[ma,n2 — 1], the nth partial sum of @ may not be small. For n in the first
bad y zone,

Tnn(z,y) = (p1(2) + p2(2)) (01 (y) + a3 (¥)),

where pj is a partial sum of p,.
Now use the FACT to pick ps to have frequencies starting with ny, to

be of degree mg, and to satisfy

sup [pi(z) + pa(z) + ps(@)] < 7s.
zely
The second bad z zone is [ny, ms — 1] and for n in this zone, we have

Ton(2,y) = (p1(2) + pa(2) + p3(2)) (01 (¥) + ©2(v)),

where pj is a partial sum of p3. So use the FACT to pick g3 to have fre-
quencies starting with mg, to be of degree n3, and to satisfy

sup |q1(y) + ¢2(y) + g3(¥)] < 7s.
yels

This creates a second bad y zone, [mg, ng — 1] on which the nth partial sum

of @ may not be small.
We continue inductively. Having chosen px—1 with frequencies belonging
to [ng—2, mk_1) and satisfying

sup [py(z) + ... + pr_1(2)] < M
zel_y
and also gx—, with frequencies belonging to [y, n—,] and satisfying

up [qu(y) + - + g1 (¥)] S M-y,

S
zelk—_y

P\
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120
use the FACT to choose first py with frequencies belonging to [n/c—lyka

and satisfying
sup [p1(z) + ... + px(@)| < 7k
aely

and then use the FACT to choose g with frequencies belonging to [my., ]

and satisfying
sup [q1(y) + - + ()] < M-

el
Notice that if n is in the (k — 1)th bad z zone [nx_y, my_,], then
(5.3) Ton(2,9) = (p1(2) + - + PE@) @ (Y) + - + %-1(9)),

where pi () is a partial sum of py(z) , while if n is in the (k — 1)th bad y

zone [my, 7y — 1] , then
(5.4) Ton(2,y) = (pr(2) + - + @)@ (¥) + -, G (@),

where pji(z) is a partial sum of pg(z) .

We remark that this construction has been carried out in such a way
that the partial sums of

P(z) =p1(2) + o + pi(@) + -0

have the constant value
Po(z) = p1(z) + ... +pi(z)

for m = myg, Myyy, ..., ng — 1, and the partial sums of Q(y) have the constant

value
Qn(y) = a(y) + . + a(y)

for n = ., g, oo Mppy — 1.
Let (,y) be any point of T?. If z = 0, then P, (z) = 0 for all n, so that

nlfgo T3n(0,y) = lim 0- @n(y) = 0.




|
J. Marshall Ash 121

Similarly,
lim Tpn(@,0) = lim Pa(z)-0=0.
n—oo n—oo

The question is whether the polynomials {pm} and {gn} can be chosen in
such a way that for every other pair (z,y) € 28

lim Ton(z,y) = 0.

The basic idea of the construction is that every square partial sum of the
double series T is a product of two terms and one of these two terms is
always very small. The hope for constructing a counterexample to square
uniqueness lies in trying to control the other term.
Conjecture 1. In the above construction it is possible to pick the sequence
{nn} \\ 0 and the trigonometric polynomials {pm} and {g.} in such a way
that for fired nonzero z and vy,

Jim (sup (o)) s =0

and also

Jim <81:p qu,z(y)l) =0,
where pre and qx ¢ denote the th partial sums of pr and gg.
Notice that the process of picking the m; s and n; ’s is such that
l=my=n<my<nya<mg<ng<..<Np_1<mp<ng<..

so that every index n > 2 is either in a bad = zone (when ng_; < n < mp—1
for some k) or a bad y zone (when my < n < ng — 1 for some k). Now fix
(z,y) with both z and y not zero. If n is sufficiently large, either it is in
[nk—1,mk — 1] or [mk,ny — 1] for a k with the property that both z and y
are in I;. In the former case, from equation (5.3) we have the estimate

|Tn(2,9)| = Ip1(2) + - +PE(@) @1 (¥) + - + gea (¥)]
< (m—l ihsup [px.e(2)] ) e

=o(1)+ (51;13 |Pr.£(2)] ) M1,

™
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while in the latter case from equation (5.4) we have the similar estimate

|Tan(2,9)| = Ipa(2) + ... + pe(@)| |a1(y) + - + G (@)]
< 7k (Wk—l e |gr.e()]

—o(1)+ (sgp IQk,t(y)l) .

From these two estimates it is immediate that if the conjecture can be
satisfied, then the double trigonometric series

bmCn Sinma sinny

gk
Nk

T(z,y) =

1 n=1

I

3
1

is everywhere on T? square convergent to zero. This would violate unique-
ness for square convergence. Unfortunately, both proofs of the FACT, while
potentially constructive, have so far only been carried out in a nonconstruc-
tive way, so that while it is clear what has to be done to test the conjecture,
I have not had the courage to try it.

One thing that can be stated in favor of this program is that it is not
ruled out by virtue of producing a counterexample to either the unrestricted
rectangular uniqueness Theorem 4 nor the iteratedly uniqueness Proposition
1 discussed above.

Indeed, we can show the following proposition.

Proposition 2. A double trigonometric series of the form T(z,y) =
P(z)Q(y) where P and Q are nontrivial trigonometric series is neither
iteratively nor unrestrictedly rectangularly convergent to zero everywhere.

Proof. Since P is nontrivial,
B = {z €1:{Pn(z)} does not tend to 0 at =}

is nonempty, for otherwise Cantor’s one dimensional nonuniqueness theorem
would be violated. Fix any z ¢ B. There is an extended real number s # 0
(s may be 400 or —oo ) and a sequence {yx} such that

(5.5) lim B, (z) = s.
jmo0

(T
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Similarly, let

C={yeT:{Qn(y)} does not tend to 0 at y},

fix a y € C, and find an extended real number t # 0 and a sequence {vi}

such that

(5.6) Jim Q,, (y) =1t
Then

(5.7) lim By (2)Qu, () = st.

jik—o0

For T(z,y) to be iteratively convergent to zero at the point (z,y), we must
have both

lim (lim P(z)@n(y)) =0,

Mm—00 n—00

and

lim ( lim P (2)@n(y)) = 0.

n—00 M—00

Actually, at the point (z,y) neither limit is 0. By symmetry, it is enough
to see that the first limit is not zero. Suppose it were zero. Then we would
have

0 = lim (lim Pn(2)@n())
= lim (Pn(x) lim Qn(v))
i 1 o )
(im Pa(@)) (lim @u(s))
Since subsequential limits must agree with limits, it would follow that
58) 0= (1im 2, (@) (Jim Q).

But,, by relation (5.6),

t= kll_.l'{.lc Qu ),

Y
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and by relation (5.5),

§= ,-ll.To B, (z),

which contradicts equation (5.8), since st # 0. Similarly, if 7' were unre-
strictedly rectangularly convergent to zero at («,¥), in particular we would
have

0= lim Ty limg) = Jim. P (7)Qu (),

which is contrary to relations (5.,5) and (5.6).
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