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Abstract

The basic concepts of Clifford analysis are introduced both in
euclidean space and over the sphere. Cauchy integral formulae and
links to conformal structure are described.

1 Introduction

Clifford analysis initially arose out of attempts to extend aspects of one variable com-

plex analysis to other algebras. Though generalizations of Cauchy-Riemann equations
can be described over arbitrary algebras one also needs an analogue of Cauchy’s inte-
gral formula. A number of authors noted that a suitable generalization of the Cauchy
integral formula can be introduced over the quaternion algebra. Fundamental use
appeared to be made of the fact that the quaternion algebra is a division algebra.
Early progress in this direction was made by A. C. Dixon [Di]. By the 1930’s more
consolidated attempts to develop quaternionic analysis were developed by the Swiss
mathematician Rudolph Fueter [F) and his students and also by the Romanian math-
ematicians Moisil and Teodorescu (MTh].

Later it was noted that the full structure of the quaternionic division algebra was
not being used to develop quaternionic analysis. In fact to set up the Cauchy integral
formula from quaternionic analysis one only relies on the fact that each non-zero
vector has a multiplicative inverse. In fact one only needed a subspace of the algebra
to poses the property that each non-zero vector in the subspace has a multiplicative
inverse in order to set up such an integral formula. This allowed one to open the door
a bit wider and note that one could introduce aspects of one variable complex analysis
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over R™ for arbitrary n using Clifford algebras. Ultimately it was understood that
almost every aspect of quaternionic analysis extended to all dimensions using Clifford
algebras. The earlier aspects of this study was developed by amongst others Richard
Delanghe (D], Viorel Iftimie (I] and David Hestenes [H]. The subject that has grown
from these works is now called Clifford analysis.

In more recent times Clifford analysis has found a wealth of unexpected applica-
tions in a number of branches of mathematical analysis particularly classical harmonic
analysis, see for instance the work of Alan McIntosh and his collaborators, for instance
[LMcQ, LMcS], Marius Mitrea (M1, M2] and papers in [R4]. Links to representation
theory and several complex variables may be found in [GiMu, R1-R3].

The purpose of this paper is to present a review of many of the basic aspects of
Clifford analysis. We begin by trying to motivate Clifford algebras via geometric con-
siderations. After developing these ideas we move on to introduce the Dirac operator,
which plays the role of a generalized Cauchy-Riemann operator, and to introduce the
Cauchy integral formula. We also introduce other analogues of basic results from one
variable complex analysis. We also describe the function associated to the equation
D*f = 0 where D is the Dirac operator. After this we go back to Clifford algebras
to introduce the so called Vahlen matrices. These matrices were introduced by K.
Th. Vahlen in 1902 in [V]. Except for an occasional reference they were promptly
forgotten until their properties were rediscovered and developed in a sequence of pa-
pers by Ahlfors [A] in the 1980’s. These matrices give an elegant way of describing
conformal transformations over R" U {oo}.

We move on to describe the link between Vahlen matrices and Clifford analysis.
We use them as a link to a suitable euclidean analogue of a cross ratio and Schwarzian
derivative. We describe the invariance of solutions to our generalized Cauchy Riemann
equations under Mobius transformations. Via a Cayley transformation we conclude
by introducing analogues of these results over domains on the sphere.

Alternative accounts of much of this work together with other related results can
be found in [BDSo, DSoSou, GSp, GiMu, KSh, O, R4].

2 Algebraic and Geometric Preliminaries

Consider the unit circle S* lying in the zy-plane and a point X lying on either the
positive or the negative z axis. If we draw the line connecting this point to the north
pole of S', namely the co-ordinate (0,1), then this line cuts the circle at precisely
one point. On drawing the line from the south pole, (0, —1), to this point the new
line cuts the z-axis at a second point X’. We would like to know the relationship
between the numbers X and X'. Simple arguments for triangles involving elementary
trigonometry tell us that X' = % (o) s

The lines that we drew in this calculation help describe stereographic projections
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of first S*\{(0,1)} and then S'\{(0, —1)} onto the = axis.

We may use similar eonstructions for two dimensional space. First consider the
unit sphere S? = {z € R®: ||a|| = 1} lying in R3. Let us consider the horizontal plane
to be the zy plane. The north pole of the sphere will be the co-ordinate (0,0, 1) while
the south pole is the co-ordinate (0,0, —1). Taking any non-zero vector (z,y) in the
zy-plane we may consider the plane containing this point and the north and south
poles of S2. We may identify S with the restriction of the sphere to this plane and
repeat the geometric construction we developed earlier. The point we end up with
will be the co-ordinate (;gi—v-;, ;ﬂ?) On identifying the zy plane with the complex
plane in the usual way, so that (z,y) is identified with x+iy = z, then the co-ordinate
(z :v 5 ;d-v-,) is identified with the complex number “ziug

The geometric argument we have developed in one and two dimensional space
using stereographic projections from a sphere in one higher dimension clearly can be
extended to all dimensions. If we consider a non-zero vector z = (y,...,2,) € R"
the analogous argument will give the point ﬁ, This vector is often called the Kelvin
inverse of the non-zero vector . The transformation Inv : R"\{0} — R™\{0} :
Inv(z) = ﬁ, will turn the interior of the closed unit disc in R™ into the complement.
of the same closed unit disc.

In the one and two dimensional settings we saw that Kelvin inversion is intimately
related to the algebra of the real and complex number systems. We would like to relate
Kelvin inversion in higher dimensions to some similar algebraic structure. We begin in
three dimensions. For each vector (¢,z,y) € R® we shall write this vector as ¢ +iz +jy
and denote it as g. The Kelvin inverse is "ﬁ;(t, + iz + jy). Following the complex
setting where the Kelvin inverse may be expressed as ﬁ’ We will write the Kelvin
inverse of ¢ as "—q‘lﬁ,. In the complex number system 2z = ||z]|>. We would like to
consider g as an element of an algebra H such that ¢gg = ||¢||*> where § = t — iz — jy.
In terms of the elements 1, 7 and j this means that i* = j> = —1 and ij = —ji.
It follows that (ij)*> = —1. On placing k = ij we get that k* = ijk = —1. These
identities are the usual identities for the generators of the quaternion algebra. So H
is the quaternion algebra. Let us now consider a general element ¢ = ¢ + iz + jy + kw
of H. We denote its conjugate by § where § =t — iz — jy — kw. Using the identities
governing the generators 1,4, j, k of H it may be seen that g7 = [|¢||>. Consequently H
is a division algebra with each non-zero element g of H having multiplicative inverse
g = MA;}I . It should be mentioned that this algebra was introduced by the Irish
mathematician William Hamilton in 18... Let us also observe that the relations the
generators of H satisfy show us that the quaternion algebra is non-commutative.

Let us move on to the general n-dimensional case. First in order to simplify
notation slightly let us note that if ¢ = iz + jy + kw then g = —q. If we write a vector
=T z,) € R"aswie +...+axe, where ey, . .., e, is the standard orthonormal
basis for R"™ then we might consider R" as embedded in an algebra C'l, in such a way
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that —zz = ||z||? or 2 = —||z|| for each © € R™. The algebra Cl,, so far has not been
properly introduced. It has'mearly been vaguely mentioned as an algebraic structure
that enables one to do a desirable algebraic manipulation. No attempt has so far been
made here to formally introduce this algebra. We shall now at least partially correct
that omission. We will set up the algebra in terms of generators. As we are interested
in the identity 22 = —||z||? in terms of the vectors ey, ... e, we get that e} = —1
for 1 < i < n and eje; = —eje; for i # j. As we need no other relations on the e;’s
the Clifford algebra Cl,, will be defined as the real algebra generated from R" via the
relationship
eie; + eje; = —26; ;.

C'l,, will have as basis the elements
ISETMERE, eierenin iy e ytat Crc i € i e xCianildl, Bl Ehi

where jy <...<jrand 1 <r < n.
As the collection of elements of the type e;, ... e; is in one to one correspondence

with the number of subsets of {ey, ..., e,} containing precisely r elements the binomial
theorem tells us there are precisely (:) elements of this type. So the dimension of C'l,,
is 2™

We have set up the Clifford algebra Cl, in a basis dependent way. A more general
approach can be found in [AtBS] and elsewhere.

One interesting feature of the algebra Cl,, is that each non-zero vector 2 € R" C
Cly has a multiplicative inverse o' = ﬁ, Up to the minus sign this inverse corres-
ponds to the Kelvin inverse of «. However Cl, is not a division algebra for n > 2.
When n = 3 the elements Ex = 5(1 & ejeqes) belong to Cls and E,E_ = 0.

Another point worth mentioning is that it is clear from the relationship on the
generators of Cl, that this algebra is non-commutative for n > 1.

When n = 1 the basis of the algebra is 1,e, and e} = —1. So Cl; is the complex
number system. When n = 2 a simple calculation shows that Cly is the quaternion
algebra.

Later we shall need an analogue of the conjugation operator we saw over the
complex number system and the quaternions. The conjugate operator is the linear
transform given by

=0l =n Clyieg . vaej. = i(—1)Tej... . 5.
It is easy to check in the cases n = 1 and n = 2 that this operator corresponds
to the operator of conjugation over the complex and quaternionic algebras. Instead
of writing —(X) we shall write X for each X € Cl,. Moreover the real part or
identity component of XX is equal to || X|[|? = 2§ + ...+ &} ,,. It is relatively easy
to note for each pair X,Y € Cl, that XY = ¥ X. So conjugation reverses the
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order of multiplication and so is an example of an anti-automorphism on Cl,. Closely
associated to conjugation-is the operator
~i Cly— Clnteg i85 =4 e €5

" 1

Again we will write X instead of ~ X and it may be deduced that XY = Y X.

3 Some Clifford Analysis

We start by replacing the vector @ = @ye;+...+ape, by the differential operator D =
T 1ej5- One basic but interesting property of D is that D? = — Ay, the Laplacian
5
Z;l:l%] in R". The differential operator D will be called a Dirac operator. This
5
is because the classical Dirac operator constructed over four dimensional Minkowski
space squares to give the wave operator.

Definition 1 Suppose that U is a domain in R™ and f and g are C* functions defined
on U and taking values in Cly,. Then f is called a left monogenic function if Df = 0 on
U while g is called a right monogenic function on U if gD = 0 where gD = )3;-‘=l§z‘;er

Examples of such functions include the gradients of real valued harmonic functions
on U. So if h is harmonic on U and it is also real valued then Dh is a vector valued
left monogenic function. It is also a right monogenic function. Such a function is
more commonly referred to as a conjugate harmonic function or a harmonic 1-form.
See for instance [StW]. An example of such a function is G(z) = ﬂ?:ll—"

To introduce other possible examples of left monogenic functions suppose that
p is a Cl, valued measure with compact support [x] in R”. Then the convolution
flu] G(z — y)dp(y) defines a left monogenic function on the maximal domain lying in
R™\[u].

Another way to construct examples of left monogenic functions was introduced
by Littlewood and Gay in [LiG] for the case n = 3 and independently re-introduced
for all n by Sommen [S2]. Suppose U’ is a domain in R™~!, the span of es, ..., en.
Suppose also that f’(z') is a Cl, valued function such that at each point 2’ € U’
there is a multiple series expansion in xy,...,z, that converges uniformly on some
neighbourhood of 2’ in U’ to f’. Such a function is called a real analytic function.
The series

(e , " gt
Soget(-eD'f'(a') = exp(-z1e1D)f' (&)

where D' = E;‘ﬂe,%, defines a left monogenic function f in some neighbourhood
U(f') in R" of U’. The left monogenic function f is the Cauchy-Kowalewska extension
of f'.
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It should be noted that if f is a left monogenic function then f and f are both
right monogenic functions.”

‘We now turn to analogues of Cauchy’s Theorem and Cauchy’s integral formula.
Theorem 1 (The Clifford-Cauchy Theorem): Suppose that f is a left monogenic
function on U and g is a right monogenic function on U. Suppose also that V is a
bounded subd in of U with pi ise differentiable boundary S lying in U. Then

Js@n@@)do(z) =0 M

where n(z) is the outward pointing normal vector to S at x and o 1is the Lebesque
measure on S.

The proof follows directly from Stokes’ Theorem. One important point to keep
in mind though is that as Cl, is not a commutative algebra then it is important to
place the vector n(z) between f and g. One then has that

fo@n (@) @dae) = [ (6D @) + o() (D (@)ds" = 0.

Suppose that g is the gradient of a real valued harmonic function and f = 1.
Then the real part of Equation 1 gives the following well known integral formula.

/ < gradg(z),n(z) > do(x) = 0.

We now turn to the analogue of a Cauchy integral formula.
Theorem 2 (Clifford-Cauchy Integral Formula): Suppose that U, V, S, f and
g are all as in Theorem 1 and thaty € V.. Then

1
1) = 7 .6 - yn@)/@do @)
wn Js
and n
90) = o [L9@)n(@)G(z - y)da(z)
wn JS
where w,, is the surface area of the unit sphere in R™.

Proof: The proof follows very similar lines to the argument in one variable complex
analysis. We shall establish the formula for f(y) the proof being similar for g(y). First
let us take a sphere S"~!(y,r) centered at y and of radius r. The radius r is chosen
sufficently small so that the closed disc with boundary S"~!(y,) lies in V. Then by
the Clifford-Cauchy theorem

[.6G - n@s@yatz) = [,

However on S"~!(y,r) the vector n(z) = =y So Gz = y)n(z) =

G(z — y)n(z)f(x)do ().

= (wr)

1
—=T. 90
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/;"_l(w)G(r — )n(@) (=)do(s) = /s"_‘( L (7(2) - fl))do(z)

Bk

f)
+/S" " rdo(z).

=1 (o) R

The right side of this previous expression reduces to

(f(z) - £())
/S"_,(m do(z) + ) [, o).

Pt

Now [gn-1do(z) = wy and by continuity limy—o [gn-1(y,r) SL(fr),‘;_ﬂﬂnnia(x) = 0. The
result follows. o

One important feature is to note that Kelvin inversion plays a fundamental role
in this proof. Moreover the proof is almost exactly the same as the proof of Cauchy’s
Integral Formula for piecewise C'' curves in one variable complex analysis.

Having obtained a Cauchy Integral Formula in R™ a number of basic results that
one might see in a first course in one variable complex analysis carry over more or
less automatically to the context described here. This includes a Liouville Theorem
and Weierstrass Convergence Theorem. We leave it as an exercise to the interested
reader to set up and establish the Clifford analysis analogues of these results. Their
statements and proofs can be found in [BDSo).

Theorems 1 and 2 show us that the individual components of the equations D f = 0
and gD = 0 comprise generalized Cauchy-Riemann equations. In the particular case
where f is just vector valued so f = X_, f;e; then the generalized Cauchy-Riemann
equations become gﬁ. = —‘z[\ whenever i # j and X7 le = 0. This system of
equations is often referred tclas the Riesz system.

Having obtained an analogue of Cauchy’s integral formula in euclidean space we
shall now exploit this result to show how many consequences of the classical Cauchy
integral carry over to the context described here. We begin with the Mean Value
Theorem.

Theorem 3 Suppose that D(y, R) is a closed disc centered at y, of radius R and lying
in U. Then for each monogenic function f on U

Iw) = ks / _SE@__jn

Ruwy Jo,r) ||z = ylI"="

Proof: We have already seen that for each r € (0, R)

=2 O,

-1y [l = ylin=t

Eama 0 =N
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where $"!(y,r) is the (n — 1)-dimensional sphere centered at y and of radius r.
We obtain the result by integrating both sides of this expression with respect to the
variable r and dividing throughout by R.

Let us now turn to explore the real analyticity properties of monogenic functions.
First it may be noted that when n is even G(z — y) = (-1)"(z — y)~"*L. Also
(@-9)" =2 1=y = (1= 27y e, and [a7ly] =yl = . Sofor
lull < li=Il

1

- =21ty gy )

=+ ly+...+zly..z7ly+.. )z

Hence these two sequences converge uniformly to (z — y)~" provided ||y|| < » < ||z||
and they converge pointwise to (¢ — )~ provided ||y|| < [|z||. One can now take
(~1)" times the (n — 1)-fold product of the series expansions of (z —y)~" with itself
to obtain a series expansion for G(z —y). In this process of multiplying series together
in order to maintain the same radius of convergence one needs to group together all
linear combinations of monomials in y, ..., y, that are of the same order. Thus we
have deduced that when n is even the multiple Taylor series expansion

v 9G(z)
“Jnl'oz ... 0z

)

converges uniformly to G(x — y) provided ||y|| < r < ||z|| and converges pointwise to
G(z ~ y) provided ||y|| < lo|.

A similar argument may be developed when n is odd.

Returning to Cauchy’s integral formula let us suppose that f is a left monogenic
function defined in a neighbourhood of the closure of some ball B(0, R). Then

1
1=/ s O~ (@) @do(z) =

Wn
1 / yi'...y 3G(z)
— ZR0(E e e ——— n(x) f(2)do(x
wy JaB(o,R) ol Sideiin=g 1) Gl az{‘...azir) (e)f(z)do(a)

provided ||yl < ||z||. As this series converges uniformly on each ball B(0,r) for each
r < R then this last integral can be re-written as

s iyl 96(z)
ok '-/ ) wdn | —————n(z) f{(2))d ().
O == oa(o.n)( WSS al 82 Bz (@)f(=))do (=)

As the summation within the parent} is a finite tion this last expression

easily reduces to

oy 3G (z)
0o n Un
720 do(z).
i (Ei|+'.f."4’ﬁ,=, A ./sB(o.R) 8z ... 8zl @)/ (@))da ()
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On placing ;
1 3G (x)
wn JoBO,R) Bz ... Bady (@) (@)do(z) = as,.n
it may be seen that on B(0, R) the series

2§l aln

B52(2 B jy...3n)

e e
converges pointwise to f(y). Convergence is uniform on each ball B(0,r) provided
T < Hi

Similarly if ¢ is a right monogenic function defined in a neighbourhood of the
closure of B(0, R) then the series

Ju Jn
i---Yn
e

=0l Fihdn o AN
converges pointwise on B(0, R) to g(y) and converges uniformly on B(0,r) for r < R,

where ; ¥6(z)
x
b= o f, s SN g o ).

By translating the ball B(0, R) to the ball B(w, R) where w = wye;+. ..+ wye, one
may readily observe that for any left monogenic function f defined in a neighbourhood
of the closure of B(w, R) the series

(= wi) . (yn — wa)™
:’:o(z g e T T e ’,l “;.,. ,,)
SrFkin=g Al dn!

converges pointwise on B(w, R) to f(y), where

7 1 &G (x — w)
Shse = o /BB(M) e QUOLICS
Again the series converges uniformly on B(w,r) for each r < R. A similar series may
be readily obtained for any right monogenic function defined in a neighbourhood of
the closure of B(w, R).

The types of power series that we have developed for left monogenic functions are
not entirely satisfactory. In particular, unlike their complex analogues the homoge-
neous polynomials

are not expressed as a linear bination of left poly: ials. To rectify
this situation let us first take a closer look at the Taylor expansion for the Cauchy
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kernel G(z — y) where all the Taylor coefficients are real. Let us first look at the first
order terms in the Taylor expansion. This is the expression

aG (x) 8G(z)

A, NI Ly~

e Oy & " 8z,
As G is a monogenic function then D—gf‘—) = —Xlqer e,—)— Therefore the first order
terms of the Taylor expansion for G(z — y) can be r&expressed as
9G(z)
1'

Sy — e 'esp)———

Moreover, for 2 < j < n the first order polynomial y; — e7'e;y, is a left monogenic

polynomial. Let us now go to second order terms. Again we will replace the ops'mtor
35— by the operator —E]_zel e,— whenever it arises. Let us con51der tho term Wy};l

where i # j # 1. We end up with the polynomial y,y; —vivier ‘e;—y;uner ‘ei = 5((vi—
wer e (y;—yier e;) + (i — et 'e;) (vi—vier 'es)). Similarly the polynomial utta.ched

to the term —5-&-1 is (yi — yiei'e;)®. Using the Clifford algebra anti- communmon

relationship ee; + e,e. = —26,J and on replacing the differential operator g‘ by

the operator —E7_ey’ lejz2- Bz it may be determined that the power series we previously

obtained for G (z—y) can be replaced by the series £%2,(2 5, 5, Pj,..j (v) 58,
¥ JatAdn=] MCE

where ||y|| < ||z|| and
1 =4 s
Prain®) = 53200 — w1 Yeo(n) - - - (Yats) — Y167 ea(s))-

Here o(i) € {2,...,n} and the previous summation is taken over all permutations
of the monomials (yo(:) — Y161 '€q(i)) Without repetition. The quaternionic mono-
genic analogues for these polynomials were introduced by Fueter [E] while the Cli-
ford analogues, P, ;,, described here were introduced by Delanghe in [D]. It should
be noted that each polynomial Pj, ; (y) takes its values in the space spanned by 1,
€1e3,. .. e1e,. Also each such polynomial is homogeneous of degree j. Similar argu-

ments to those just outlined give that G(z —y) = £32(E 5 o ;,’—;‘(;,);P,, .3n(¥))
2t 2

provided ||yl < [l[|.

Proposition 1 Fach of the polynomials P;, ; (v) is a left monogenic polynomial.

Proof: As DP;, ;,(y) = e:(ﬁ + el qe; gsz,, _sa(y)) then we shall consider the
expression (% + E};:ﬁ‘%%)}’n.._h(y). This term is equal to

(—+2_291 L )E(y,,m —eresmyn) - .-
Yj
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< (o1 = €1 "eoli-1)¥1) Wo () ~ €1 eayn) (Yolist) = €1 eatiry) .- -
< (vot) ~ 1 "eatipn)-

This is equal to

B(Ya) — €1 ea) - - - (Uoi=1) — €1 " Cati-1¥1) (€1 "€o(i)) Wali+1) — €1 eatir1yn)

<o (Ys) — e ea(z¥n) + Sei eo) (Wo) = e eouyyn) - - - (Yati=1) — €1 ‘ea(i-1yy1)

(Woti+1) — 7 eorn)¥1) - - (Yo ls) — €5 eoli)y1)-

If we multiply the previous term by ¥1 and add to it the following term, which is

equal to zero,
S(Yar) = €1 ea@yn) - - Woti-1) = €1 eai—1)¥1) Wo() = Yoli))

(Yo(i+1) — €1 earn)¥1) - - (Uo(s) — €1 ‘€oi)¥1)

we get, after regrouping terms,
S(Wo() = €1 "ea()y1) -+ Wai-1) — €1 eai=1)¥1) Wal) — €1 eaiyn)

(Wo+1) = €1 "ea(it¥) - .- (Yols) — €1 "ea(s)y1)
—Z(¥o() — €1 ea(iyy1) o) = €1 o) - - - Wa(i-1) — €1 ea(i-1yy1)
(Yot+1) — €1 ‘eatisn)¥1) - - - (o) — €1 €a(3)¥5)-
As summation is taken over all possible permutations without repetition this last term
vanishes. o
Using Proposition 1 and the results we previously obtained on series expansions
we can obtain the following generalization of Taylor expansions from one variable
complex analysis.

Theorem 4 (Taylor Series) Suppose that f is a left monogenic function defined in
an open neighbourhood of the closure of the ball B(w, R). Then
fy) = E;?—.U(E J _PJ:..,J’..(.'/ - w)aj..j,),
Jat. ]

2030
it dn=:

where aj,_j, = UL JoB(w,r) :;c: I;S" n(z)f(z)do(z) and ||y — w|| < R. Convergence is
3 W ol oy

uniform provided ||z — w|| <7 < R.

A simple application of Cauchy's theorem now tells us that the Taylor series that
we obtained for f in the previous theorem remains valid on the largest open ball on
which f is defined and the largest open ball on which g is defined. Also the previous
identities immediately yield the mutual linear independence of the collection of the
left monogenic polynomials {Pj, j, : ja+...+jn =j and 0 < j < o0}.

T\
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4 The Equation DFf =0

Here we will examine some of the basic properties of solutions to the equation DX f = 0
for an integer k > 1. We start with the case k = 2. In this case we get Laplace’s
equation A, f = —D*f =0, and the solutions are harmonic functions.

It is reasonably well known that if A is a real valued harmonic function defined
on a domain U C R™ then for each y € U and each compact, piecewise C'* surface S
lying in U such that S bounds a subdomain V of S and y € V, then

h(y) = ;l: /S(H(z —y) < n(z),grad h(z) > — < G(z — y),n(z) > h(x))do(z),

where H(z — y) = =5 ::—v +=7. This formula is Green's formula for a harmonic
function, and it heavily relies on the standard inner product on R". Introducing the
Clifford algebra Cl,, the right side of Green’s formula is the real part of

= (6t = (@) = H(x = y)nlx) Dh(e))o o)

Assuming that the function h is C* then on applying Stokes’ theorem the previous
integral becomes

)

—_ G(z — y)n(z)h(z) — H(z — y)n(z)Dh(z))do(z),

o forty iy (@ = V@) — H (& — () D))o )

where S"~'(y, r(y)) is a sphere centered at y, of radius r(y) and lying in V. On letting
the radius r(y) tend to zero the first term of the integral tends to h(y) while the second
term tends to zero. Consequently the Clifford analysis version of Green’s formula is

ho) = 3- [[(6a = @h(z) — H(z ~ Pn(a)DA()o ().

This formula was obtained under the assumption that h is real valued and €', The
fact that we have assumed h to be real valued can easily be observed to be irrelevant,
and so we can assume that h is Cl, valued. From now on we shall assume that all
harmonic functions take their values in Cl,,. If h is also a left monogenic function then
the Clifford analysis version of Green's formula becomes Cauchy's integral formula,

The assumption that h is C* can also be dropped as we shall see shortly. First
we establish the following result.

Proposition 2 Suppose that [ is a 9 function on some domain U. Then
zf(x) is harmonic.
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z
bz,

Proof: Dzf(x) = —nf(z) — E]"-=1.r,l—’ﬂ—2 -z ,*.knqe,%?. Now
¥

af(x) af(x)

T jx Thexe. =X T jskTrere; ———
; e kTkERE; —— -
b T 155# ] dz,

As f isleft monogenic this last expression simplifies to E";,zk%ﬂt?. Moreover
DE;':la:]%/gl = 0. Consequently D%z f(z) = 0.

The previous proof is a generalization of the statement- "if h(xz) is a real valued
harmonic function then so is < z, grad h(z) >".

In fact in the previous proof we determine that Dz f(x) = —nf(x)— ZE;‘=1I,2§)Q.
In the special case where f(z) = Pi(z), a left monogenic polynomial of order k,
this equation simplifies to DaPy(x) = —(n + 2k)Px(z). Suppose now that h(z) is
a harmonic function defined in a neighbourhood of the ball B(0, R). Now Dh is a
left monogenic function so we know that there is a series £f2( P () of left monogenic
polynomials with each P; homogeneous of degree [ and such that the series converges
locally uniformly on B(0, R) to Dh(z). Now consider the series £f2)-=1; Pi(x). As
ﬁ”ﬁ(r)" < ||Pi(z)]|| then this new series converges locally uniformly on B(0, R) to a
left monogenic function fy(z). Moreover, Dz fi(x) = Dh(z) on B(0, R). Consequently
h(z) — z fi(zx) is equal to a left monogenic function fy(z) on B(0, R). Thus we have
established:

Proposition 3 Suppose that h is a harmonic function defined in a neighbourhood of
B(0, R) then there are left monogenic functions fy and fy defined on B(0, R) such
that h(z) = z fi(x) + fo(z) for ecach x € B(0, R).

This result remains invariant under translation. As a consequence it shows us
that all harmonic functions are real analytic functions. So there is no need to specify
whether or not a harmonic function is C2. The result also provides an Almansi type
decomposition of harmonic functions in terms of monogenic functions over any ball
in R™.

It should be noted that Proposition 3 remains true if 4 is only real valued.

Proposition 3 gives rise to an alternative proof of the Mean Value Theorem for
harmonic functions.

Theorem 5 For any harmonic function h defined in a neighbourhood of a ball B(a, R)

1
h(a) = —-/;B"”) h(z)do(z)

Wn

for anyr < R.
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Proof: Proposition 3 tells us that there is a pair of left monogenic functions f, and
fa such that h(z) = (z —u)fi(z) + f2(z) on B(a, R). So h(a) = fy(a), and we have
previously shown that - [ f2(2)do () = fa(a). Now [op(0 (@ —a) fi(z)da(z) =
rj,m._,)n(x)fl(z)dﬂ(z) =0.p

The following is an immediate consequence of Proposition 3.

Proposition 4 If hy(x) is a harmonic polynomial homogeneous of degree | then

hi(z) = pi(z) + zpia(z)

where py is a left genic poly ial homog of degree | while p—y 1s a left
poly ial which is h 9 of degree | — 1.

It is well known that pairs of homogeneous harmonic polynomials of differing
degrees of homogeneity are orthogonal with respect to the usual inner product over
the unit sphere. Proposition 4 offers a further refinement to this. Suppose that f and
g are Cl, valued functions defined on S™~! and each component of f and g is square
integrable. If we define the Cl, inner product of f and g to be

<ho>=o [ T@ala)io(z)

then if f and g are both real valued this inner product is equal to

= [ S@(a)io@)

which is the usual inner product for real valued square integrable functions defined
on S™'. Now

<apa()n(@) >= -3 [ Pis(@am(a)io(o)

== [ F@n@p(ado() = 0.

The evaluation of the last integral is an application of Cauchy’s theorem.

Let us denote the space of C'l, valued functions defined on S™ ' and such that
each component is square integrable by L2(S"~!, €1,). Clearly the space of real valued
square integrable functions defined on S"~! is a subset of L*(S""!, Cl,-,). The space
L*(8™ Cl,) is a Cl, module.

We have shown that by introducing the module L*(S™~!, C'l,) Proposition 4 pro-
vides a further orthogonal decomposition of harmonic polynomials using left mono-
genic polynomials. We shall return to this theme later. This decomposition was
introduced for the case n = 4 by Sudbery [Su] and independently extended for all n
by Sommen [So2).
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Let us now consider higher order iterates of the Dirac operator D. In the same
way as we have that DH(z) = G(x) there is a function G3(z) defined on R™\{0}
such that DG3(z) = H(x). Specifically G3(z) = C(n,3)ﬁ,“Tg for some dimensional
constant C'(n,3). Continuing inductively we may find a function Gi(z) on R™\{0}
such that DGi(z) = Gi-1(a). Specifically

Gi(x) = C(n, L)WT”

when n is odd and so is k.
1
Tk(v) = k)e———
il o
when n is odd and k is even

T
Gi(a) = C("'k)"r"n——kﬂ

when n is even, k is odd and k < n

Gule) = Ol ) ey

when n is even, k is even and k < n
Gi(z) = C(n, k)(@*"log ||z|| + A(n, k)z*~™)

when n is even and k > n. In the last expression A(n, k) is a real constant dependent.
on n and k. C(n, k) is a constant dependent on n and k throughout.

It should be noted that G'y(x) = G(x) and Ga(z) = H(z). It should also be noted
that D*Gy(z) =

Here is a simple technique for constructing solutions to the equation D*g = 0
from left monogenic functions. The special case k = 2 was illustrated in Proposition
2

Proposition 5 Suppose that f is a left monogenic function on U then D*z*~' f(z) =
0.

Proof The proof is by induction. We have already seen the result to be true in the
case k = 2 in Proposition 2. If k is odd then Dz*~'f(z) = (k — 1)a**f(z). If k is

even then P
Dz*='f(z) = —n(k - 1)a*~2f(z) + zk'zE;'zlejz-——'a[Z(‘z).
J

By arguments presented in Proposition 5 this expression is equal to

f(=)
” ‘

—n(k = 1)t f(z) + 2* 28] 2 5o,
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The induction hypothesis tells us that the only term we need consider is 2*~27'_ 2, %‘—‘.
S

However E;‘_,:,Qﬂ? is a left monogenic function. So proof by induction is now com-
plete. o

In future we shall refer to a function g : U — Cl, which satisfies the equation
D*g = 0 as a left k-monogenic function. Similarly if A : U — C1,, satisfies the equation
hD* = 0 then h is a right k-monogenic function. In the case where k& = 1 we return
to the setting of left, or right, monogenic functions and when k = 2 we return to the
setting of harmonic functions, When k = 4 the equations D' = 0 and gD* = 0
correspond to the equations A2g = 0 and A2h = 0. So left or right 4-monogenic
functions are in fact biharmonic functions. In greater generality if k is even then a

X
left or right k-monogenic function f automatically satisfies the equation A f = 0.

Proposition 6 Suppose that p is a left k !/ Lh of de-

) poty

gree q then there are left monogenic polynomials fy, . .., fi—y such that

p(@) = fo(@) + ...+ fir (=)

and each poly al f; is h 1 of degree q — j whenever q — j > 0 and 1s
identically zero otherwise.

Proof: The proof is via induction on k. The case k = 2 is established immediately
after the proof of Proposmon 2. Let us now consider Dp(z). This is a left k — 1-
11 of degree ¢ — 1. So by the induction hypothesis
Dp(x) = g,(z) + ...+ a*%g,_;(x) where each g; is a left monogenic polynomial
homogeneous of degree g — j whenever ¢ — j > 0 and is equal to zero otherwise. Using
Euler's lemma and the observations made after the proof of Proposition 5 one may
now find left monogenic polynomials fy(z), ..., fi-1(z) such that D(xzfi(z) + ... +
#*!fi_s(x)) = Dp(z) and fi(w) = c;g5(x) for some ¢; € R and for 1 < j < k -1
It follows that p(z) — j,lz-’f,(x) is a left monogenic polynomial fo homogeneous of
degree ¢. o
One may now use Proposition 6 and the arguments used to establish Proposition
3 to deduce:

Theorem 6 Suppose that f is a left k-monogenic function defined in a neighbourhood
of the ball B(0,R) then there are left monogenic functions fo,. .., fi-1 defined on
B(0, R) such that f(z) = fo(x) + ...+ z*' fx_s(z) on B(0, R).

Theorem 6 establishes an Almansi decomposition for left k-monogenic functions
in terms of left monogenic functions over any open ball. It also follows from this
theorem that each left k-monogenic function is a real analytic function. It is also
reasonably well known that if 4 is a biharmonic function defined in a neighbourhood
of B(0, R) then there are harmonic functions hy and hy defined on B(0, R) and such
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that h(z) = hy(z) + ||o[|*h2(x). In the special case where k = 4 Theorem 6 both
establishes this result and refines it.

As each left k-monogenic function is a real analytic function then we can imme-
diately use Stokes’ theorem to deduce the following Cauchy-Green type formula.

Theorem 7 Suppose that f is a left k-monogenic function defined on some domain
U and suppose that S is a piccewisc C' compact surface lying in U and bounding a
bounded subdomain V of U. Then for cachy € V.

1®) = 3 [(E 106 = nE) D f(@)do)

5 Vahlen Matrices and Clifford Analysis

Here we will examine the role played by the conformal group within parts of Clifford
analysis. Our starting point is to ask what type of diffeomorphisms acting on subdo-
mains of R™ preserve monogenic functions. If a diffeomorphism ¢ can transform the
class of left monogenic functions on one domain U to a class of left monogenic func-
tions on the domain ¢(U) and do the same for the class of right monogenic functions
on U then it must preserve Cauchy’s theorem. So if f is left monogenic on U and g
is right monogenic on U and these functions are transformed to [ and g’ respectively
left and right monogenic functions on ¢(U) then

fo@m@@ao@ =0= [ o @nws @iow)

where S is a piecewise C'' compact surface lying in U and y = ¢(z). An important
point to note here is that we need to assume that ¢ preserves vectors orthogonal to
the tangent spaces at z and ¢(x). As the choice of x and S is arbitrary it follows that
the diffeomorphism ¢ is angle preserving. In other words ¢ is a conformal transfor-
mation. A theorem of Liouville [Lio] tells us that for dimensions 3 and greater the
only conformal transformations on domains are Mébius transformations.

In order to deal with Mébius transformations using Clifford algebras we need to
introduce some more algebra.

Consider the action ej@e;. This gives rise to a reflection along the line spanned
by e,. More specifically on placing @ = xje; + zpeg + ... + 2,6, and multiplying out
ey(x1ey + x2e0 + ...+ mye,)e; we get —xyey + x9ep + ... + Tneq, and this describes
the desired reflection. In greater generality we may take a vector y € S™~!, the unit
sphere in R", and consider the triple product yzy where as before z € R™. One may
rewrite r as A(z)y+y3, where A(z) € R and y} is a vector in B that is perpendicular
to y. In this case yzy = A(a)y® + yyty. This expression simplifies to —A(z)y + U
This shows that the triple product yay gives rise to a refiection in R" along the line
spanned by the vector y.
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One may now consider a finite sequence of vectors y;, ..., y, € S"~'. On placing
a =y .. yp and proceeding inductively we may observe that the triple product axa =
Ui UpTUp-- Y1 Bives rise to a sequence of consecutive reflections along the lines
spanned by the vectors y), ..., yp.

Definition 2 A linear transformation O : R™ — R™ is called an orthogonal transfor-
mation if for each pair of vectors x,y € R" the inner product < x,y > 1is equal to
<0(z),0(y) >.

It is a simple exercise to deduce that any reflection is an example of an orthogonal
transformation, and that the set, O(n), of all orthogonal transformations over R™
forms a group under composition. Therefore the triple product aza describes an
orthogonal transformation. Moreover the set {a € Cl, :a = y; ...y, with y; € S" C
R" and 1 € j < p for p an arbitrary positive integer} is a group lying inside the
Clifford algebra Cl,. Traditionally this group is called the pin group and is denoted
by Pin(n). For each a € Pin(n) as a = y; ...y, and each y; € S"~! then aa = 1.
Thus Pin(n) is a subset of the unit sphere in C1,,.

Our previous construction shows that there is a group homomorphism

6 : Pin(n) — O(n) : 8(a) = O,

where O,(z) = aza. We would like to show that the group homomorphism 6 is surjec-
tive. This follows automatically from the the fact that each orthogonal transformation
O € O(n) can be expressed as the composition of at most n reflections.
So we have seen that Clifford algebras are well equipped to describe orthogonal
transformations and inversion of vectors. Both of these types of functions can be
ded to h phisms over the one point compactification 2" U {oo} of R™.
These are special examples of Mobius transformations. Also for each v € R" the
translation map T, : R" — R": Ty(z) = z + v can be extended to a homeomorphism
over R™ U {o0} by setting T,,(c0) = co. Furthermore for A € R* we can extend the
dilation map Dy : R® — R™ : Dy(x) = Az to a homeomorphism over R" U {c0} by
setting Dy(00) = 0o. These are all examples of Mobius transformations.

Definition 3 A Mabius transformation is a function M : R™ U {oo} — R"U {o0}
which can be expressed as a finite position of translations, dilations, orth l
transformations and inversions.

Each Mobius transformation is a homeomorphism from R™ U {00} to itself. The
set of all Mobius transformations of R™ U {co} forms a group and we denote it by
M(n).

In general it is rather messy to write out an arbitrary Mébius transformations
as the definition is expressed in terms of generators of the group M(n). In two
dimensions one can identify R? with the complex plane (' in the usual way. Then on
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restricting to only using the special orthogonal group rather than the full orthogonal
group a Mabius transformation can be expressed as ‘:fg where a, b, c and d € C and
del(: ‘:) =3

Over the quaternion algebra we can write out Mébius transformations of the type
(aq + b)(cq + d)~" where a, b, ¢, d and ¢ € H and the matrix (: :) is invertible in the
algebra H(2) of 2 x 2 matrices with quaternionic coefficents. This certainly mimics
the two dimensional situation and is easier than working with generators of a group.
It would be nice to find conditions on the quaternionic coefficents a, b, ¢ and d such
that when ¢ = z € R® then (ax+b)(ca +d)~" is a Mobius transformation on R*U{co}
where R® is the span of i, j and k. We shall now try to determine such conditions.

Let us first assume that ¢ # 0. In this case (az+b)(cz +d)~" factors as (ac™* (cz +
d) + (b — ac™'d))(cx + d)~! which in turn factors to ac™! + (b — ac™'d)(cx +d) L. It
would be reasonable to assume that this expression represents a translation through
a vector ac™' € R® followed by a orthogonal transformation and dilation represented
by cxé and a further translation and one inversion. In order for czé to represent a
dilation and special orthogonal transformation we should consider ¢ to be a product
of non-zero vectors from R®. As we are assuming that ac™* € R® it would follow that
a € R Also we should place b — ac™'d = \é~', where A € R\{0}. It would then
follow that dé € R®, and so d is also a product of vectors from R®. As dé is assumed
to belong to R3 then dé = dé = cd and the equation b — ac™'d = A¢”! becomes
bé—ad = A.

Let us now turn to the case where ¢ = 0. In order to get a Mobius transformation
we must assume that d # 0. In order that the expression (az + b)d~' remains in
R*U {o0} we need to assume bd~' € R®. Consequently we need to assume that b is
also a product of vectors from R®. We also need to assume that d=! = \a for some
A € R\{0}.

In summary if the quaternions a, b, ¢ and d are all products of vectors from R*
and satisfy the following criteria:

(i) ac™!,dé € R®, provided ¢ # 0

(ii) ad — bé = +1

(iii) b4~ € R® when ¢ = 0

then the expression (az+b)(cz+d)~" describes a Mdbius transformation on R*U{co}.

One remarkable feature of the conditions that we worked out for the coefficents a,
b, c and d is that they readily extend to all dimensions. This extension was apparently
first worked out by Karl Theodor Vahlen (V] in 1902, and was re-introduced by Ahlfors
[A] over eighty years later.

The trick to extend to all Clifford algebras Cl,, which are no longer division
algebras, is to consider coefficents a, b, ¢ and d in Cl, that are all products of vectors
from R™ Then in this case each element a, b, ¢ and d is either invertible in Cl, or
the 0 vector. Let us also impose the following three conditions on a, b, ¢ and d.

(i) ac™',dé € R™ when ¢ # 0
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(if) a~d — b¢ = £1
(iii) bd~' € R".

It is now an easy exercise to repeat our earlier calculations over the quaternions in
the new context and see that when z € R™ the expression (az + b)(cz +d)~! factorizes
to equal ac™" & (cz& + dé) ™! when ¢ # 0 and it simplifies to +aza + bd~! when ¢ = 0.
In both cases these are examples of Mobius transformations.

Definition 4 A matriz (: :) with coefficents belonging to Cl,, is called a Vahlen ma-
triz if

(1) The coefficents a, b, ¢, and d are all products of vectors from R".

(i) aé, ed, db and da € R"

and

(1) ad - bé = 1.

The conditions (ii) and (iii) in the last definition are not quite as rigid as might
be first thought. For instance if aé € R™ then aé = a¢ = ca. Consequently dc € R".
Also éxc € R™ for each 2 € R™. In particular é(ac)ec € R". But éc is a scalar, and so
éa € R”. On letting ~ act on this vector we see that ac belongs to R" too. Similar
arguments may be made for the other vectors arising in condition (ii) of the previous
definition.

Similarly ad= b3 = E1,"S0'dd — cb = +1. Also consider @ d — bé)e. This is
equal to +cé. But é(ad — bé)e = éade — cbée. As éa = ac and de = éd then this last
expression simplifies to (ad — éb)(cé). So provided ¢ # 0 then ad — éb = +1. If ¢ = 0
then up to a sign a and d are inverses of each other. Similarly da — be = +1.

A main point to remember is that Cl, is not a commutative algebra. The lack of
commutativity necessitates all the calculations in the previous two paragraphs.

Let us now assume that we have a Vahlen matrix (: :) Let us suppose also that
¢ # 0. Then &(cxé + dé)~" is well defined provided cz¢ # —dc. But this expression
factors to (cz + d)~'. Hence the term (az + b)(cz + d)~" is well defined within the
algebra Cl, and for each & € R" provided czé # —dé. In this case the expression
(az + b)(cz + d)" is equal to ac™! + (czé + dé)™'. Asc! = é then ac™! € R"
and (ax + b)(cz + d)~! is a Mobius transformation over R™ U {oo}. When ¢ = 0 the
expression (az +b)(cz +d)~ is equal to = (azd -+ bd~") which again can be seen to be
& Mabius transformation over R" U {o0}. So each Vahlen matrix can easily be used
to describe a Mobius transformation.

Examples of Vahlen matrices include (:i_%) where A € R*, (0“;‘?,) where a €

Pin(n), (", :) where v € R and ((1] (‘,) These are the Vahlen matrices that correspond
to dilation by A, orthogonal transformation by @(a), translation by » and inversion.
So each generator of the Mobius group M (n) has a corresponding Vahlen matrix.
We can in fact easily combine dilation and orthogonal transformation by consi-
dering the group generated by R™\{0} within the algebra C1l,. We shall call this group
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the Clifford group and we denote it by I',. In fact I', = Pin(n) x R*. Hence (n - 2“8
the Vahlen matrix corresponding to the Mébius transformation aza whenever a €
Note that for each a € I', then ||a||* = a@, also if a = y; . .. y, with each y; € R"\{0}
for 1 < j < r then [lal| = [ga]l .. |yl
The Vahlen matrix (ol 01) corresponds to the Mabius transformation —z~* = (i
and this transformation gives what is commonly called the Kelvin inverse of a non-zero
vector x € R".

From the expression ac™" & (cvé + dé)~" it may be assumed that whenever ¢ # 0

the Vahlen matrix (: d) is equal to

()G o)6) () g

One can verify this assumption by multiplying out these matrices. Similarly one can

verify that
ab a0 1 a7
(o r'r‘) = (0 a-l)( 01 ) ®)

Consequently each Vahlen matrix can be expressed as a finite product of the Vahlen
matrices linked to the generators of the Mobius group acting over R™ U {co}. Let us
denote the set of all Vahlen matrices with coefficents in ', U {0} by V/(n).

z

Theorem 8 The set V(n) is a group under matriz multiplication.

Proof: The identity matrix (('] f) can easily be verified to be a Vahlen matrix. Let us
now consider an arbitrary Vahlen matrix A = (: 3) and its product with the following
special Vahlen matrices:

(i) (n; :) where v € R"

(ii) (a°691) where a € T'y,

(iii) (§ o)-

On multiplying A on the right by either the matrix appearing in (ii) or (iii) it is easy
to verify that the resulting matrix is indeed a Vahlen matrix.

It remains to show that
a b\ (1 v _f(a av+b
cd/\0 1) \ccv+d

is a Vahlen matrix. The main problem arises in verifying that (av + b)(cu: d) is an
element of R™. However, up to a scalar (nv+b)(clv: d) = (av+b)(cv+d)~" whenever
cvé # —dé. Consequently (av + h)(ru\+ d) € R™ whenever cvé # dé. When cvé = dé
then (av + b)(nv:- d) = 0. It now follows from expressions (1) and (2) that V(n) is a
group.
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From expressions (2) and (3) and the proof of lhe previous theorem it may be
observed that the matrices'q, ';) where v € R", ( ' ) where a € I'y,, and (° *‘) are
generators of the group V(n). Also our cnlculalions on Vahlen matrices and Mobius
transformations provide a surjective group homomorphism

9:V(n) = M(n): "((: d")) = (az + b)(cz + d)~".

It is easy to check that both (“) ) and ( ) belong to the kernel of ¥, One can
also see that the Vahlen matrices (o *;(““ ";l) ) belong to the kernel of 4. It is left as
an exercise to verify that these are the only matrices in the kernel of .

Having used Clifford algebras to describe Mobius transformations in such an
elegant way we can now use this approach to introduce some properties of Mobius
transformations that cannot be described without the use of Clifford algebras. These
are all generalizations of known properties of Mabius transformations in the complex
plane. Let us begin with the cross ratio.

For an ordered quadruple of points {wy, wy, wy, we} lying in R, no three of which
coincide, we define the cross ratio [wy, wa, ws, wy of these points to be

(wy = wa)(wy — wy) ™ (wa — we)(ws — wy) ™"

If (: :) € V(n) and ¥(z) = (az + b)(cx + d)~" then for each distinct pair z and
R"

W(e) = ¥(v) = (ey +d) "z ~ ) ez +d)"
This equality is easy to verify when ¢ = 0. When ¢ # 0 then ¢(z) — ¥(y) = (cxé¢ +
&)™ ~(eyé+dé)~". In turn this last expression is equal to (cxé+dc)~ Yeyé— (‘.’tc)((‘yl‘+
dé)™'. Asdé = cd then equation 3 follows. Thus it may be determined that

(), wo(wa), ¥ (ws), ¥ (wa)] = (cws + d) [y, wa, w, wa)(cws + d).

This formula is also the formula one would get in the complex plane setting. However,
in that context the algebra is commutative and so the terms (cws + d)~" and (cwg + d)
would cancel.

Closely related to the cross ratio is the Schwarzian derivative. Before introducing
& generalization of the Schwarzian derivative let us first look at %’1‘) When ¢ # 0
then ¢(x) = ac™! & ¢~}(z + ¢~'d)~'c~!. Before differentiating this expression let us
consider the special case ¥(z) = =~ On considering =5 — ’“ it is easy to verify that
%‘- = —x""e;z71. It follows that when ¢ # 0 then

u(x)

oz, =5 Yz + r"d)_'c,(x + o d) ™4l
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On noting that ¢~'d = dé~" this equation simplifies to
(v
B2

= F(ew + d)e;(ex + d)~L.
J

In greater generality, if y is a point on the unit sphere S™~! then the partial
derivative of ¢(x) along the y direction is

F(cw + d)~y(ex +d)

It follows that for each x, w € R" the derivative, Dv:-(w), of ¢ at z and acting
on wis —(cx +d)~ w(cw + d)~). Whenever = # c~'d the term cz + d belongs to
the Clifford group I',. So for fixed @ € R™\{c™'d} the derivative Dy (w) describes
an orthogonal transformation combined with a dilation. Consequently for each fixed
z the linear transformation Dy, preserves angles between vectors. A differentiable
function defined over a domain in R" taking values in R™ and whose derivative at each
point preserves the angle between vectors is called a conformal map. This definition
for a conformal map readily extends to the setting of manifolds.

Let ¢(x),, denote the second order partial derivative of ¢(z) in the direction of y.
So when y = e; then ¥(z),, = D—;‘%%ﬂ. Let also ¢(z),,, denote the third order partial
derivative of ¢/(z) in the y direction. Then

Y(2)yy = F267 (@ + c'd) y(a + ) My(z + gitd)=ia
while
V(@) = 265 (@ + ) (o + )y (e + )Nyl + ) e

A simple computation now reveals that
S v
‘/’(-":)ulnl‘w("’:)ul F 5(‘1’(1')111111"(1)“)2 =0

This is a direct analogue of the Schwarzian derivative arising in complex analysis.
For Q a domain in the complex plane and f(z) a non-constant holomorphic function
defined on Q the Schwarzian derivative of f is defined to be {S, f} = 17'; - %(I/L,')’,
where f', f” and " denote the first, second and third derivatives of f respectively.

Definition 5 Supposc that U is a domain in R", so U is an open, connected non-
empty subset of R, and suppose also that F : U — R™ is an invertible C* map. Then
the Schwarzian derivative of I' in the direction of y is defined to be

w18 =
{8, 1}y = Fyn Iy S E(FwFu R

where Fy, F,, and Fy, denote the first, second and third order partial derivatives of
F an the direction of y respectively.
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This Schwarzian derivative was introduced in [R6]

One main difference between this Schwarzian derivative and the classical one
arising in the complex plane is that the Schwarzian we have introduced in Euclidean
space depends on the direction y € S"~'. This problem is overcome by Wada [W].

As F is an invertible and differentiable map then F,*, the multiplicative inverse in
Cly, of Fy, exists everywhere on U. As F, Fy,, and F,,, all belong to R" then {S, F},
takes its values in the subspace of C'l, spanned by 1, e;e; where 1 < i < j < n and
eiejexe; where 1 < i < j < k < | < n. This last component of quadruple products
of the basis vectors e, ...e, only arises if n > 4, and then only arises in the second
half of the formula for {S, '},. We shall denote the identity component of {S, F'},
by {8, F},0. We shall denote the component of {5, F} spanned by the bivectors ee;
where 1 € i < j € n by {S, F},;; while we shall denote the last component of
{S,F}y by {S, F}yijki.

One main feature of the Schwarzian derivative in the complex plane is that
{8, f} = {S, M(f)} for any Mébius transformation 2. Let us now see what happens
in the Euclidean setting. On taking the composition ¢(F) a straightforward mimic of
previous arguments shows that the partial derivative of ¢/(F) in the direction of y is

F(F (@) + ) P (), (cF(z) + d) ™,
or alternatively when ¢ # 0
Fe U (F(a) + ¢ 'd) " Flz),(F(z) + ')~
One may now deduce that
{8,%(F)}y = (cF +d)~{S, F}y(cF + d).

As aey, ...e5a = taejda...aae;a for each a € Pin(n) and as the vectors
€1, . e, are an orthonormal basis for R™ the element ae;, ...e; a will be a linear
combination of r-fold products of orthonormal vectors from R". Hence

{8, ¥(B)}yo = (cF +d){S, F}yo(cF +d) = {8, F}yo
and
{S,9(F)}yig = (cF + d) (S, F}yiy(cF + d),
and
{S, 0 (F)}yigkt = (cF + d){S, F}y s ha(cF + d).

So the scalar part of the Schwarzian derivative is left invariant under Mébius trans-
formations while there is a simple and elegant formula to describe the conformal
covariance of the other two components.

We shall now proceed to show that each Mabius transformation preserves mono-

genicity. Sudbery [Su] and also Bojarski [B] have established this fact. We will need
the following two lemmata.
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Lemma 1 Suppose that ¢(2) = (ax + b)(ca + d)~" is a Mdbius transformation then
Glu=v)=J($,2)"'Glz = 1)J(6,0)""

where u = ¢(z), v = ¢(y) and J(p,a) = W‘;‘;%’;A
Proof The proof essentially follows from the fact that

=1

@t -y )=t -2)

Consequently [|z=! — y~![| = [|z|| |z ~ yllllyll~*. Also aza — aya = a(x - ¥)a.

If one breaks the transformation down into terms arising from the generators of
the Mébius group and use the previous set of equations then one will readily arrive
at the result.

Lemma 2 Suppose that y = ¢(x) = (ax + b)(cx + d)~" is a Mdbius transformation
and for domains U and V we have $(U) =V then
JoHwmeadot = [ 1), 2n@)I @ Do) (@)

where u = y¢(z), S is a orientable hypersurface lying in U and J(¢,z) = ﬁﬁfﬂ?-

Outline Proof On breaking ¢ up into the generators of the Mobius group the result
follows from noting that

QUi B v
8'1;]- = -2 EII . 0

It follows from Cauchy’s Theorem that if g(u) is a left monogenic function in the
variable u then J(v,z)f(4(x)) is left monogenic in the variable z.

When ¢(z) is the Cayley transformation y = (enz + 1)(z + e,)~' we can use
this transformation to establish a Cauchy-Kowalewska extension in a neighbourhood
of the sphere. If f(x) is a real analytic function defined on an open subset U of
S""\{e,} then I(y) = J(¢™", y)""f(#(y)) is a real analytic function on the open set
V = ¢~'(U). This function has a Cauchy-Kowalewsk ion to a left
function L(y) defined on an open neighbourhood V(g) € R™ of V. Consequently
F(z) = J(¢',z)L(¢7"(x)) is a left monogenic defined on an open neighbourhood
U(f)=¢""(V(g)) of U. Moreover Fiy = f. Combing with similar arguments for the
other Cayley transformation y = (—e,z + 1)(z — e,)~" one can deduce:

Theorem 9 (Cauchy-Kowalewska Theorem) Suppose that f s a Cl, valued real
analytic function defined on S"~'. Then there is a unigue left monogenic function F
defined on an open neighbourhood U(f) of S™~"' such that Fign-: = [.
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In fact if f(u) is defined on some domain and satisfies the equation D*f = 0 then
the function Ji(¢, z)f(¥(x)) satisfies the same equation, where Ji(¢, ) = W?ﬂt"im

Theorem 10 (Sce's Theorem) Suppose that f = u + iv 1s a holomorphic function
on a domain @ C C and that Q = Q and f(z) = f(z). Then the function F(z) =
u(zy, I2'l) +er 'ls-lu(:,. lIz’[l) is a unital left n — 1-monogenic function on the domain
{z: 2 +il|z'|| € Q} whenever n is even. Here z' = z3e3+ ... + zpep.

Proof: First let us note that z ', is left n — 1 monogenic whenever n is even. It

follows that 5‘:“‘21 = cxx~*"le, is n — 1 left monogenic for each positive integer k
Here ¢4 is some non-zero real number. Using Kelvin inversion it follows that a*e; is
left n ~ 1 monogenic for each positive integer k. By taking translations and Taylor
series expansions for the function f the result follows.

This result was first established for the case n = 4 by Fueter, [F], see also Sudbery
[Su]. It was ded to all even di ions by Sce [Sc], though the methods used do
not make use of the conformal group.

6 Dirac Operators on Spheres

We can use Vahlen matrices to describe a Cayley transformation from R" to the
punctured sphere lying in ™' and then set up a Dirac operator with a Cauchy
integral formula on the sphere. It should be mentioned that Dirac operators over
general manifolds have been utilised in a number of contexts, see for instance (GiMu,
LaMi, B-BW]. In [C, M2] attempts are made to draw Clifford analysis closer to this
more general setting.

While one can regard the sphere, minus one point, to be topologically equivalent
to euclidean space via a graphic projection, and in one variable complex analysis
one often interchanges domains in the complex plane for their stereographic images
on the 2-sphere, this does not agree with the setting described here. While the
stereographic projection does correspond to the Cayley transformation used here in
the m of the uphere, in order to set up a Dirac operator on the sphere and push

hrough the 1 fi ion theory we need to also use a multiplier operator from
the C'llﬂotd algebra,

Let us now consider the algebra Cl,,; and the Cayley transformation

Ci:R" = 8" iz — (z — ens1)(—ensaz +1)7},

where z = 2,6, +...+2,e, € R", and ey, is a unit vector in R"*! which is orthogonal
to R*. Now Cy(R") = 5"\{eqs1}-

For / a left monogenic function and g a right monogenic function defined on a
domain U C R we have that

0= [ o)/ wMo(s)
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= o1 9T @D T (€7 @I ) (CF )i ),

where S is a piecewise smooth surface lying in U and bounding a b ded sul
of U, and Cy(y) = z. Moreover, S™ has the Riemannian structure inherited ns a
submanifold of R"*'. So n(x) is a unit vector lying in the tangent space 7'S? and is
normal to TC7(S):. Also, 7 is the Lebesgue measure on the surface Cy(S).

On applying Stokes’ theorem to the integral

/c‘_,my(cf‘(m)) 7 (€7, o)n(@)I(CrY ) F(CF @))dn (=)
we obtain

S O(CT @) T (€T )05 (€5, 2 S(CF @intz)

+ C,,m)y(Cr‘(z)) J (O, 2)(Dsnd(CY,2) (C(2)))dn(x),

where R is the region bounded by S, Dgn is the Dirac operator on S™ arising from
the application of Stokes’ theorem, and 7 is the Lebesgue surface measure on S™.
As S is arbitrary it follows that
9(C7(x)) J (C7 2)Dsn =0
and

DgnJ(CT 2) f(CT () = 0.

Definition 6 Suppose that V is a domain on the sphere S™ then a pointwise diffe-

rentiable function f : V — Cl,yy is said to be spherical left monogenic if Dgnf = 0
onV.

A similar definition may be given for spherical right monogenic functions.
From the previous calculations it is relatively easy to deduce:
Theorem 11 A function h(y) is spherical left monogenic if and only if
J(C1,2)h(C(x))
is left monogenic, where Cy(z) = y.

A similar result may be deduced for right monogenicity.

It follows from theorem 11 and [R5] that any spherical left monogenic function is
also a real analytic function, and similarly any right spherical monogenic function is
a real analytic function,
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We would like a more explicit representation for the spherical Dirac operator
D¢~ We follow an argument presented by Cnops and Malonek in (CnM]. Suppose
first that f and g are continuously differentiable functions defined on a domain U/
lying on the sphere S and f and g are Cl,;, valued. We extend these functions to
functions F and Q defined on a domain in R™*' by placing F(z) = 7" f(n) and

Qz) = rL!’q(q) where = r and y € U. Now consider the domain V in R"*'
where V = {z =r:0<r <r <ryand n € U}. Stokes’ theorem tells us that if &
is & piecewise smooth surface lying in U and bounding a subdomain W then

[ F@n@R@Ma () = [ (Fx)D)Q() + F(z)(DQ())ds""

where here D is the Dirac operator in R* and W' = {rp:ry <y <r<ry<n

and n € W}
The integral over W' can be divided into three parts. First there is the integral
over the part where r = ry then there is the integral over the part where r = r4 and

last there is the integral over the part where n € S. The first two integrals cancel
each other. This is because the vectors n(z) are opposite on these surfaces and on
re-writing the integral to an integral over W the extensions of f and ¢ bine to
give the same values. The last integral can be rewritten as

Lf(n)vl’(n)Q(n)(/;‘ ™' ="dr)do(n)

where do here rep the volume el of S.

Before evaluating the integral over W’ let us express the Dirac operator D in
terms of spherical co-ordinates. Now D = —ynD and D = % + I' where I' is purely
a spherical operator. So D = —n(£ +T) and DQ(rn) = (0~ 2:)g(n). A
similar formula holds for F(rn)D. So

[, (F@D)IQ@) + F)DQ())dz"" =

“
rldr

| As § and W are arbitrary it now follows that Dg» = n( )
Now for any Mobius transformation y = v(z) = (az + b)(m: +d)~" we have that

G((2) - ¥(w) =T (¢,2)"'G(z — w)J (¥, u)™". (4)

This follows from the identity (z~' — u™') = u~(u — z)z~, see for instance [PQ)
Consequently, from theorems 2 and 3 we obtain:
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Theorem 12 Supposc that V' By domain in S™\{ens,} and R is a subdomain of U,
with cl(R) € U. Moreover, C'(S) is a piecewise smooth surface, where S = 90U, the
boundary of U. Then jur each y € R and each spherical left monogenic function f
defined on U we have:

16) = 5- [, 6le = (@) @in(z).
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