Cubo Matemdtica Educacional
Vol. 3., N° 1, ENERO 2001

Resonances in the Euclidean Scattering
Georgi Vodev

Université de Nantes, Département de Mathématiques
UMR 6629 du CNRS, 2, rue de la Houssiniere, BP 92208,
44072 Nantes Cedex 03. France
e-mail: vodev@math.univ-nantes.fr

Table of contents

0. Introduction.

1. Distribution and density of the resonances.
1.1. Properties of the outgoing resolvent of the Laplace operator on R™.
1.2, Definition of the resonances.
1.3. Sharp upper bounds on the number of the resonances.
1.4, Poisson formulac for resonances.
L.5.
1.6. Relationship between quasimodes and resonances.
1.7, Asymptotics of the number of the resonances.
1.8.

Lower bounds on the number of the resonances.

Decay of the local energy and distribution of the resonances near the real
axis.

- Properties of the scattering phase.

©

| eme—



318 Georgi Vodev

. Nontrapping perturbations.
2.1. Distribution of the resonance:
2.2. A

and uniform decay of the local energy.
ymptotic expansion of the scattering phase.

. Scattering by several strictly convex bodies.
3.1. Distribution of the resonances for two strictly convex bodies.

(55

3.2. Distribution of the resonances for many strictly convex bodies.

4. The Neumann problem in linear elasticity.

4.1. Free of resonances regions.

4.2. Existence of Rayleigh resonances.

4.3. Behaviour of the local energy.

4.4. Asymptot:
. The transmission problem.

5.1. The case of interior totally reflected rays.

5.2. The case of exterior totally reflected rays.

5.3. Asymptotics of the number of the resonances near the real axis.

c behaviour of the scattering phase.

o

0 Introduction

The purpose of this article is to review the most significant results about the
resonances associated to selfadjoint second order differential operators (with ab-
solutely continuous spectrum only) which coincide with the Euclidean Lapla-
cian outside a compact domain. Typical examples of such operators are the
Schrédinger operator with a compactly supported potential, or the Laplace oper-
ator in the exterior of a bounded domain (with Dirichlet or Neumann boundary
conditions). The latter describes the propagation of acoustic waves outside an
obstacle, which refle

from the boundary but do not enter inside. The resonances
s in the scattering theory of such oper: They are com-
plex numbers usually defined as the poles of the meromorphic continuation of the
resolvent (acting on suitable spaces) through the real axis. Physically, a resonance
A € C (with ReX > 0, Im A > 0) describes a nonstable quantum state oscilating
with a frequency Re A, whose life-time is proportional to 1/Im A. Therefore, the
closer a resonance is to the real axis (that is, the smaller its imaginary part is),
the longer it lives, and hence the more interesting it is from physical point of
view. In the physical experiments the real parts of the resonances are observed
as the points at which the first derivative, s'(A), of the phase s(A), A € R, of the
scattering matrix has peaks. Therefore, it is important to study the relationship
between the behaviour of s(A) (or of s'(X)) and the resonances. The knowledge
of the resonances near the real ¢

are important objec

to

s enables also to deduce important information
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abont the decay of the local energy of the solutions of the corresponding wave

cquation.,

In Section 1 I consider mainly the case of scattering by both an arbitrary
obstacle and a perturbed metric (not necessairily Riemannian). Among other
things, the problems of existence of resonances, lower and upper bounds on their
counting functions are discussed. In Section 2 I consider operators satisfying
the so-called generalized Huyghens principle (see (2.1.1)). Usually this principle
is satisfied in the cases when there are no trapped rays, and that is why such
perturbations are called nontrapping. Typical examples are the scattering by
a strictly convex obstacle or the Schrédinger operator with a smooth compactly
supported potential. In Section 3 I discuss the scattering by several strictly convex
obstacles, which is a typical example of trapping perturbations. One sees that in
this case the resonances near the real axis are distributed differently compared
with the case of nontrapping perturbations, namely, the existence of infinitely
many resonances in a strip is an indication of presence of trapped rays. In Section
| [ discuss the Neumann problem in linear elasticity. This problem is interesting
(and different from the problems discussed in the previous sections) because of the
existence of surface waves (called Rayleigh waves) moving on the boundary of the
obstacle. As a consequence, the generalized Huyghens principle is never fulfilled
in thi se. Note that there are no such surface waves in the Dirichlet problem
the transmission problem which
fion of acoustic waves which penetrate into the obstacle and
move inits interior with a different speed. Because of the existence of periodic
broken rays in the obstacle, the generalized Huyghens principle is not fulfilled for
this problem neither.

i linear elasticity. Finally, in Section 5 I discu

deseribes the propaga

[ am not going to discuss resonances for semi-classical problems nor for opera-
tors o spaces with negative curvature. For other review articles on the resonanc
[ refer the readers to Zworski's articles [92], [95].
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the Universidade Federal de Pernambuco (Recife-PE). in Febrnary-March 2000.
I would like to thank Professor Fernando Cardoso for his kind invitation and
hospitality, as well as for some usefull discussions.
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1 Distribution and density of the resonances

1.1 Properties of the outgoing resolvent of the Laplace operator
on R"

Let A = Y7, 07 be the Laplace operator in R", n > 2. Denote by Py the

self-adjoint realization of —A on the Hilbert space Ho = L*(R™). Denote by F

the Fourier transform, that is,

(Fu)(e) = (n) ™ [ e Oua)aa,
Clearly, F is an unitary operator on fy, and
Py = F~EPF. (1.1.1)

Hence Py is a positive self-adjoint operator with absolutely continuous spectrum
only with domain of definition, D(/%), which coincides with the Sobolev space
H?*(R™). The representation (1.1.1) allows to find an explicit formulae for the
kernel of the operator f(v/P) = F~' f(|¢])F in terms of oscilatory integrals:

[£( \/’ﬁ—»))(-ﬂ y) = (2m)™" / /N ATV lf(r)dr(lm, (1.1.2)
Jsn-1 Jo

where 8"~ ! denotes the unit sphere in R". Let h(s) = (s*=A?)"!, s e R, A € C,
Im A < 0. The outgoing resolvent, Ro(A\), of Py is defined as follows:

Ro(\) = (Py = N3)~" = h(\/Py) for ImA< 0.

By the spectral theorem we have

[0 (Nl 2110y < sup [(s)] < for ITmA < 0.
SER

1
= |Al|Tm A|
The kernel of Ro()) is given by
[Ro(MN)(w,y) = Ex(x —y),
where E, () is the outgoing fundamental solution of the operator —A — \?, that

15, (=A = M) Ey(x) = d(x), d(x) being the Dirac function. The function Ej(z)
can be expressed in terms of the Henkel functions of first type by the formulae

= AN
By(z) = il (m) HY(Nal), p=(n—2)/2

a0
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Theorem 1.1.1. For cvery p € CG°(R") the operator-valued function pRo(N)p :
Hy — H* admits an analytic extension on the complez plane C if n > 3 is odd,
and on the Riemann sunface of logz, A := {—co < argz < +oo}, if n > 2 is
even. Moreover,

pRo(N)p = A(N) + B(A)A" % log A, (1.0.3)
where A(X) and B(X) are entire operator-valued functions (B(X) = 0 if n is odd),
while log A takes its principal branch on —iR*, that is, log A = log || + i(arg A +
5). Moreover, the Jollowing estimate holds

[INeRo(N)pll iy £ € for TmA < 0. (1.1.4)

This theorem can be proved by using the formulae
100
O = / e cos (t Pg) dt for ImA<0, (1.1.5)
Jo
and the following

Proposition 1.1.2. There ewists a constant T > 0 (depending on supp p) so
that
peos (i Po) p=0 for t>T if n>3isodd, (1.1.6)

and peos (tv/Po) p is analytic in t for t > T if n is even, and has the following
epansion

o
£.C08 (/, P()) (1:2/'” Aok, = (. 1.7)
J=0
where Q, are finite rank operators.
The property (1.1.6) is known as Huyghens principle. This proposition can
be easily proved by using the formulae (1.1.2). Indeed. the kernel K (a,y,4) of

PLOS ('\/,’0) p is of the form

K (1) = (2m) " ",»(.;-1,/-("

where ‘
P(z) = p((z. w))dw,
e ./s,.,#“ w))du

with a function p(k) defined by the oscilatory integral

o
w(k) = / p"Neosre *Tdr = Foyk (m o(r) cos I')
Jo
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= (=i0)"™" Frig (g(r) cos ),

where g(r) = 1 forr > 0, g(r) = 0 for » < 0. It is clear from these representations
that to prove the above proposition it suffices to show that @(k) is analytic at
k =0 and

_ [ Xoak¥t i nis odd,
AL { Y20 bik¥ if n is even. iLe)

We write

1 o ~
Frosk (g(r) cost) = 5 lim (/ gir(t—ktie) gy +/ e"'(_l_"+")(lr)
0 0

=0+

thie b WAL ol
=0y e T e =G T

in a neighbourhood of k = 0, which clearly implies (1.1.8).
By (1.1.5)-(1.1.7) we can write

0
izk““
=0

T ) o 3
—i/\pRo(/\){’:/ e~ cos (t Pg) pdt+ZQ]/ =iy, (1.1.9)
0 = T
where @; = 0 if n is odd. Put A = —iz, z > 0 real, and set

fea .
G (2) :/ Rl e Xt T =1, O Wty
T
It is easy to check by induction in m that

(—1)m

m—1 f :
— log z + entire function
(m—1)! 5 ;

am(2) =
which clearly extends for all values of z € A. Thus (1.1.3) and (1.1.4) follow from
(1.1.9).

1.2 Definition of the resonances

Let O € R" be a compact domain with a C'"™-smooth boundary, I', and a con-
nected complement @ = R" \ @. Consider in  the Laplace-Beltrami operator
A, defined by
n
Ay =c(@)? Y O, (9i(2)0x,),

=1
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where ¢(x). gi;(x) € C*(92) are real-valued functions such that c(z) = 1, gij(z) =
o,y for 2] = po > 1. 4, being the Kronecker symbol. In other words, A, coincides
with the Euclidean Laplace operator A outside some compact. We suppose that

9(@,8) = c(2)® Y gij(2)6&; 20, V(z,6) €T'Q,

=1

where 70 denotes the cotangential bundle of . Note that A, is not necessarily
an elliptic operator. We suppose that —A, has a positive, self-adjoint Dirichlet
realization (which will be denoted by P) on the Hilbert space H = L*($; c(x)?dx)
with absolutely continuous spectrum only. Here “Dirichlet” means that the func-
tions belonging to the domain of definition, D(P), of P vanish on I'. We also
suppose that P is a subelliptic operator with loss of 2 — 2¢ derivatives, 0 < e < 1,
that is,

[lullfr2e () < € (1Pulle + llulle) . Yu€ D(P), (1.2.1)

where H*(2) denotes the usnal Sobolev space. Clearly, for elliptic operators
(1.2.1) holds with € = 1. In the same way as in the previous section we define
the outgoing resolvent of P by

R(\) := (P =)?)"':= h(VP) for ImA<0.

Fix a Ag € C, Im)g < 0 and let x € Ci°(R"), x = 1 for |z| < pgp + 1. The
estimate (1.2.1) guarantees that

the operator  xR(Xo) : H — H is compact. (1.2.2)
Under these assumptions we have the following
Theorem 1.2.1. The operator-valued function
Ry(\) :=xR(\)x:H - H
admits a meromorphic continuation to C if n > 3 is odd, and to the Riemann
surface A if n is even. Moreover, the cocfficients in the Laurent expansion at

cach pole are of finite rank.

This theorem follows from the Fredholn theory and the following representa-
tion (for example, sce [80]):

Ry(A)(1 = K(A) = K((A). (1.2.3)

323
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where K(A) and K, (A) are of the form
K(A\) = ([x1, A]Ro(N)n = [x1, A]Ro(Mo)n) A + (A% = A)x2Ry (Mo),

Ki(A) = (1= x1) (xRo(A)n — xRo(Ao)n) A + Ry (Ao)-

Here Ay € C, ImAg < 0, is fixed, 7, x; € Cg°(R"), j = 1,2, x1 = 1 for |z] <
po, X2 = 1 on suppyy, x = 1 on suppxz, 7 = 0 on suppy; and n = 1 on
supp x(1 = x2). A is a bounded operator independent of A. By Theorem 1.1.1,
the operator-valued functions [xi, A]Ro(A)n and xRg(A)n are analytic on C if
n is odd, and on A if n is even, with values in the compact operators on H.
Hence, so are K(A) and K;(X). On the other hand, since K(Ag) = 0, 1 — K(})
is invertible at A = Ag. Therefore, (1 — K()\))~" forms a meromorphic family on
C if nis odd, and on A if n is even, with finite rank coefficients in the Laurent
expansion at each pole, and by (1.2.3) so is true for R, ().

The resonances associated to the operator P are defined as being the poles
of the meromorphic continuation of 2\ (A) and they do not depend on the choice
of the cutoff function x provided x = 1 on the support of the perturbation. To
each resonance A # 0 we associate a multiplicity as follows:

mult(A) := rank /

2Ry (2)dz,
(A)

where y(A) = {z = A+ &(,( € C,[¢| = 1}, € > 0 being such that there are no
other resonances in the interior of y(A). Denote by R the set of all resonances
repeated according to their multiplicities. Clearly, R is a discrete set in C if n is
odd, and in A if n is even.

The resonances can be also defined (for example, see [26]) as being the set of
all complex numbers A for which the Helmholtz equation has a nontrivial solution
u€ HE (Q):

(By+X)u = 0 inQ,
@ — ) oyl (1.2.4)
u — A= outgoing.
Here “A-outgoing™ means that v satisfies the Sommerfeld radiation condition at
infinity, that is,

n=1 .
u(rf) =r="7 e M (w(0) +o(1)), Gu+iu=o(l)u, r— +o0,
uniformly in # € S"! with some function w € C (8" ). or what is equivalent,

Wiel>50 = Ro(A\)vljzis50
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for some gy > 1 and a compactly supported (in a compact independent of A)
function v

Note that one can define in the sane way the resonances associated to the
Neumann realization of =4, as well as to the Schrodinger operator —A + V(x)
on R” with a potential V' € L, (R"). Morcover, all the results concerning the
Dirichlet problem discussed in Section 1 are valid for the Newmann problem as
well.

1.3  Sharp upper bounds on the number of the resonances

An important quantity which gives a valuable information on the distribution
of the resonances on C (resp. A) is their counting function. The most natural
counting functions are the following:

N(r):=f{AeRCC:|\<r} ifnisodd,
N(r,a):={A€RCA: |\ <rargA| <a} ifniseven,
where r.a > 1. It turns out that the behavionr in r of these counting functions is
closely related with the behaviour of the counting function of the eigenvalues of
the so-called reference operator, P, obtained by restricting 72 in a neighbourhood
of the support of the perturbation. More preci P is the Dirichlet
realization of =A, on the Hilbe Y e(x)?dr), where Q :
Q¢ |e| < po}. Under (1.2.1), P is of compact resolvent and hence the spectrum
of P consists of cigenvalues only. Denote the set of these ecigenvalues, repeated

space H = L‘;

according to multiplicity, by R C (0, +00). and introduce the counting function
N(r):=f{z € R:2<r?).
Suppose that N(r) satisfies the bound
N(r) < p(r); r> 1. (1.3.1)

where @(r) € C™(1, +00) is an increasing function such that o(r) > Cr" with
some constant C > 0. Clearly, if P is elliptic, (1.3.1) is fulfilled with ¢(r) = C'r",
" > 0. More generally, under (1.2.1) we have (1.3.1) with o(r) = C"r"/, 0" > 0.
It is worth noticing that it might happend that for hypoelliptic operators satis-
fying (1.2.1) the bound (1.3.1) holds with a function ¢(r) < /5. foxamples of
such operators can be found in 40}, [41], {59)

Theorem 1.3.1. Under the assumption (1.3.1). there exists a constant C' > ()
so that the following bounds hold:

N(r) < Co(r). (1.3.2)
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N(r.a) < Ca(p(r) + (loga)™). (1.3.3)

In particular. if P is elliptic, we have

N(r) < C1™. (1.3.4)

N(r.a) < Ca(r" + (loga)™). (1.3.5)

Sharp bounds on the number of the resonances have been first obtained by
Melrose [34], where he proved (1.3.4) in the case when A, = A. Then Zworski
[91] proved (1.3.4) in the case of the Schrédinger operator —A +V(z) on R™ with
a compactly supported potential. Later on the bound (1.3.4) was proved in [79]
in the case when O = ) and A, is elliptic. In the greater generality, the bound
(1.3.2) was first proved by Sjostrand-Zworski [63] by using the so-called complex
scaling method. Another proof of (1.3.2) based on the approach originating from
Melrose's works [33], [34] is presented in [80]. In [82], [83] this approach was
adapted to the case of even dimensions in order to prove (1.3.3). Note that if
la] < 5 the bound (1.3.3) can be also obtained by the complex scaling method
developed by Sjostrand-Zworski [63].

Melrose’s method is based on the representation (1.2.3) and the observation
that, under (1.2.1), there exists an integer p > 1 so that the operator K(A)? is
trace class, so the following determinant is well defined:

h(A) = det (1 — K(A)P).

Then the following proposition allows to conclude that the poles of R, (A) (that
is, the resonances) are among the zeros of i(\), counting the multiplicity (for
example, see the appendix of [82]).

Proposition 1.3.2. Let © C C be an open neighbourhood of 0 and let K(z)
be analytic in © with values in the trace class operators on a Hilbert space H.
Suppose that there exists a function f holomorphic in ©, f(0) # 0, such that

det(l — K(2)) = 2 £(2).

Then for every B(z),C(z) € L(H, H), holomorphic in ©, we have
rank /l!(:)(l -K(z))"'C(2)dz < I, (1.3.6)
I

where 5 1s a circle centered at z = 0 of a sufficiently small radius.
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Thus the problem of obtaining upper bounds on the number of the resonances
is teduced to the problem of obtaining upper bounds on the number of the zeros
of entire functions (resp. functions holomorphic on A). In the first case this can
e done by using the well known Jensen's inequality, while in the second case one
can use the classical Carleman theorem. This latter theorem also alows to get
npper bounds on the number of the resonances outside a conic neighbourhood of
the real axis which does not depend on the behaviour of ¢(r). More precisely, we
have the following (see [81], [46), [47])

Theorem 1.3.3. Let n > 3 be odd. Then there exists a constant C' > 0 so
that

<ot (1.3.7)

In particular, Y6 > 03C5 > 0 so that
HAER: [N € r,ImA > 8|Re M|} < Csr". (1.3.8)

The bound (1.3.8) combined with the upper bounds on the number of the
resonances in small conic neighbourhoods of the real axis obtained by Sjostrand-
Zworski [64] lead to a more precise upper bound on the counting function N(r)
in the case when the function ¢(r) dominates r".

Theorem 1.3.4. Under the condition (1.3.1), for 0 < 0 < 1, we have
HAER: 0 <arg < 0;|A <7} < (r)(1+ () + Op(r"), (1.3.9)

where £(8) — 0 as 0 — 0 does not depend on r. In particular, if n > 3 is odd and

if (1.3.1) is fulfilled with a function p(r) satisfying
n
lim r— =1
r—+o0 (1)
then
N(r) < (2 + o(1))e(r). (1.3.10)

1.4 Poisson formulae for resonances

Let By be a ball containing the obstacle O and denote by yg its characteristic
function. Define the distribution u(t) as follows

(u,¢) = 2tr /(/:(I) (ms (I\/F) - (1 = xo) cos (I\[’;) (s \(,)):Il
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4,3”/'./»(/)\(,.-05 (/ n,) xodt, ¢ € CE(R),

where the first trace is taken on the Hilbert space H. while the second one is
taken on Ho. When O = 0 we take xo = 0. It is not hard to see that u(t)
is an even distribution belonging to the Schwartz class S'(R). Therefore, the
Fourier transform () of u(t) is again a distribution belonging to S'(R). In fact,
ii(\) is a polynomially bounded C* function which is nothing else but the first
derivative, s'(A). of the scattering phase, s(A), which in turn can be defined in
terms of the scattering matrix, S(A), as follows

s5(A) = (27ri)~| logdet S(A), s(0) =0, s(A) = —s(=X).

There is a close relationship between u(t) and the resonances of P, which is
expressed by the Poisson formulae (which is an analogue of the Poisson formulae
for eigenvalues). To simplify the exposition of the Poisson formulae we will make
the following assumption:

ARy (=iM)lleqny < +00 as A= 0, A > 0. (1.4.1)

This assummption guarantees that 0 is not neither an eigenvalue nor a resonance
of P. In fact, (1.4.1) is always fulfilled in the setting we discuss provided that
the operator A, is elliptic, that is, when g(x,&) > C[¢]* > 0, V(z,£) € T*Q (for
example, see Appendix B.2 of (3]).

Theorem 1.4.1. The following identities hold in sense of distributions for
t>0,
u(t) = > ™, if nis odd, (1.4.2)

AJER

r00
u(t) =2 » et +2/ P(AVA(N) cos(EN)AA + v, o (1), if n is cven,
A ERO<arg A; <p Jo

(1.4.3)
where 0 < p < 5, ¢ € CP(R), ¥ = 1 in a neighbourhood of 0, and v,y €
C™(0, +) salisfies

Fvpy(t) = 0(™N), VKN, t> 1.

The Possion formulae (1.4.2) was first obtained by Bardos-Guillot-Ralston (1]
for ¢ large enough, and then extended by Melrose [32] (see also [66]) for every
£ >0, using the Lax-Phillips theory (see [26]). A simpler proof has been later
found by Zworski (93] based on a previous work by Guillopé-Zworski [13]. His
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proof aveids the use of the Lax-Phillips theory and allows to treat more general
sitnations as well as the case of even dimension. The identity (1.4.3) can be
considered as an analogue of the Poisson formulae for even dimensional spaces
and was proved by Zworski [94]. Note that a local semi-classical trace formulae
involving the resonances, for a very large class of perturbations, has been obtained
by Sjostrand [60]. This formulae, however, does not imply (1.4.3).

Let © := [1/2,3/2] + i[0,1/2]. Tt follows easily from (1.4.2) and (1.4.3) that
for every ¢ € C§°(0, +00),

fuN = > FA-X)+0A ™), A +oo. (1.4.4)
AJER:A; /AEO

Note that (1.4.4) also follows from Sjostrand’s local trace formulae ([60]). This
identity is very useful for studying the relationship between the nonzero singu-
larities of u(t) and the resonances.

Given any v > 0 denote by u,(t) the distribution defined by the sum

U (t) := Z et
AjER,

where R, == {A € R : 0 < arg A < /2, ImA < ylog|A|}. As a consequence of
the above theorem we have the following (see [94])

Theorem 1.4.2. Let n > 3. Then for every integer k > 0, we have u(t) -
1ty (t) € C¥(tg, +00), tx = (n + k)/7, and for t > t;,

08t~ @0l < { g Tk e (1.45)

b2k i nis even.

Note that the polynomial decay in the even dimensional case comes from the
contribution of the integral in the RHS of (1.4.3). To compute this contribution
one needs to know the behaviour of @(A) as A = 0, that is, the behaviour of the
scattering matrix S(A) at zero. Since S(A) can be expressed in terms of Ry (}),
one needs to know the behaviour of Ry (A) at zero. The following proposition
gives the leading singularity of R, ()) at A = 0 (see [86]):

Proposition 1.4.3. Let (1.4.1) be fulfilled. If n > 3 is odd, we have
Ry(A) = APy + Ea(N), (1.4.6)

where E,(A) is analytic at A =0, and P, =0 f n > 5. rank Py < 1.
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If n > 2 is even, we have
R(A) = MuA" 2 log A+ Fu(A) + O(A* %), A= 0,|argA+7/2| < m, (1.4.7)
where rank M,, = 1 and Fu(X) is a polynomial of degree < n -3 if n > 4,
Fa(A) =0.
1.5 Lower bounds on the number of the resonances

It follows from Theorem 1.4.2 that if the distribution u(t) does not belong to
C™(0, +2¢). there exists a v > 0 so that the set R, contains infinitely many
resonances, that is, the nonzero singularities of u(t) produce infinitely many res-
onances in a logarithmic neighbourhood of the real axis. So, it is natural to
expect that the knoweledge of such a singularity would yield a lower bound for
the counting function

Ny(r):=H{Ae R, :|A| <7}

Indeed, such lower bounds were obtained by Sjostrand-Zworski [65):

Theorem 1.5.1. Suppose that there exists a d > 0 and a function ¢g €
Co(0.+20). ¢ = 1 in a neighbourhood of d, such that

Gau(A) > b(1 — o)A, A>1, b>0. (1.5.1)
Then there exists a 5y > 0 so that if k > 0 we have

b(1 — u(l))’_kvH

N, (r) > 7
(1) 2 it 1) r>1 (1.5.2)
while if k < 0, then ¥8 > 0, 3r9(6) > 1 so that
Ny(r) > '8 v > rg(d). (1.5.3)

Morcover, of (1.5.1) holds for a sequence d; — 400 (uniformly in d;), then the
above lower bounds hold for every v > 0.

Let TI(T) ¢ {(x,€) € T*Q : |¢|: = 1} be the union of all periodic
trajectories with period 7 # 0 and let di) be the Liouville measure on £. Us-
ing the above theorem Popov [50] proved the following sharp lower bound on
the number of the resonances (which generalizes a previous result obtained by
Sjostrand-Zworski [65)):
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Theorem 1.5.2. Suppose that O(11(Ty)) > 0 for some Ty > 0. Then for
crery y > 0, we have

D(I1(7p))

Ny(r) > En

————=(1-o(1))r", r>»1. (1.5.4)

Under the same assumptions as in the above theorem, Petkov-Zworski [47)
proved the existence of accumulation of resonances at a sequence of real numbers
(similar to the clustering properties of the eigenvalues). As a consequence, they
obtained a lower bound of the counting function of the resonances in the strip
I A < &, Ve > 0, of the form Cr"(1 = o.(1)) with a constant C' > 0 independent
of £, which however is smaller than the constant in (1.5.4). In particular, there
exists an infinite sequence of resonances j; € R such that Imp; — 0.

It is much more complicated to derive lower bounds on the number of the
resonances from the singularity of u(#) at zero. One of the reasons for this is that
the Poisson formulae is not valid at ¢ = 0. Nevertheless, some information about
the resonances has been recently obtained in the case of the Schrodinger operator
using the lower singularities of u(t) at t = 0.

Theorem 1.5.3. The resonances associated to the Schrodinger operator
~A + V(x) on R", V € C§°(R"), not identically zero, satisfy

limsup ——— =400, Vp>1, n>3odd, (1.5.5)
r+o00 T(logr)-P

3 ((togA)? + (arg A)?) ¥ = 400, n >4 even. (1.5.6)

AER

In particular,

Iimsupw - =400, Vp>1, n2>4even
Peb-400 log r(log log

(1.5.7)

The property (1.5.5) is proved by Christiansen [10], while (1.5.6) and (1.5.7)

are proved by Sa Barreto [56]. The existence of infinitely many resonances for

the Schrodinger operator with a nonidenti

potential was first established by Melros

ctly supported smooth
s of n = 3. Using Mel-
rose’s argument Sa Barreto-Zworski [58) extended this result to any n > 3 odd

y 2010 comy

37] in the cas

and to super-exponentially decaying potentials. In [57] they proved analogous
results for metric perturbations in R

For some perturbations in odd dimensional spaces it is possible to obtain
lower bounds on the counting function of the resonances lying on the imaginary
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axis

Ni(r) =f{N € R:ReA =0.ImA <r}.

Theorem 1.5.4. Let n > 3 be odd. Then for the resonances in the ob-
stacle scattering (which corresponds to A, = A) or for those associated to the
Schrodinger operator —A+V (x), V € C5°(R") being a nonidentically zero, real-
valued function which does not change the signe (that is, either V(z) > 0,Vz €
R", or V(x) < 0.¥z € R"), the following lower bound holds:

Ni(r) 2 ¢ w31, CS0 (1.5.8)

In the case of obstacle scattering this theorem was proved by Lax-Phillips [27).
They also showed that if the obstacle is star-shaped. there is an upper bound of
the same order, that is, N;(r) = O(r"~'). In the case of potential scattering
(1.5.8) is proved by Vasy [78].

1.6 Relationship between quasimodes and resonances

Finer lower bounds on the number of the resonances close to the real axis can be
obtained in the cases when one can construct quasimodes. Such a construction
is usually possible when there is a strong trapping, for example elliptic periodic
trajectories.

Suppose that there exist an infinite sequence of real numbers {k; }, k; = +00,
and functions u; € D(P), suppu; C K (K being a compact independent of j),
so that

P = k2wl < Fk). w6
Wi udn = 0l < Fky), o

where 8, denotes the Kronecker symbol and Fe C(1, +o0), f(i) — (el
t > 1. Then we have the following

Theorem 1.6.1. Under the above assumptions, there exists an infinile se-
quence {p;} € R such that Tmpu; < F(|uy)) with a function F € C(1,+00),
F(t) = Ot ™). Morcover, the following lower bound holds

Ne(r) :=#{A € R: |arg \| < @/2, Im A < F(|A]),|A] < r}

> Nouasi(r = 77%) = Ok(1), 7> 1,VE>1, (1.6.2)

where N,

si(r) = f§{k; : k; <r}.
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The fact that the existence of quasimodes implies existence of resonances close
to the real axis was first observed by Stefanov-Vodev where the first part
of the above theorem was proved in the case of odd dimensional spaces. This
has been later extended to even dimensional spaces and noncompactly supported
perturbations by Tang-Zworski [74]. The bound (1.6.2) has been proved by Ste-
fanov [68]. He also proved in [69] that the existence of infinitly many resonances
{n;} € R with Imp; = O(|p;| =) implies the existence of quasimodes (u;, k;)
satisfying (1.6.1).

As a consequence of (1.6.2) one gets a sharp lower bound on Np(r) if there
exists an elliptic periodic broken ray. Suppose that A, = A and let 7 be a
periodic broken ray in € with vertices p; € I', j = 0.1..... jo. Denote by P the
Poincaré map associated to . The periodic broken ray aid to be elliptic if
all eigenvalues of DP(pg) lie on the unit cercle and are different from 1. Let
e, o=l 0 < laj| <, j = 1,..,n =1, be these eigenvalues. We make the
following assumptions:

The Poincaré map P is 5-clementary, that is, myay + ..+ my 0,y # 0

for all integers my, ..., 7y~ such that 1 < [my| + ... 4 Jmy, | < 5. (1.6.3)
The Birkhofl normal form of P is nongenerate, (1.6.4)

Under these assumptions Popov (49] (see also [4]) constructed quasimodes (u;, k;)
satisfying (1.6.1) whose counting function satisfies the asymptotics

nu-s((::;'_)“ +o(1))r". (1.6.5)

Noailr) = 5 52

where G g is a Cantor set with nonzero measure associated with the invariant tori
of the Poincaré map P. Combining (1.6.2) and (1.6.5) leads to the following

Theoremn 1.6.2. Suppose that there erists an elliptic periodic broken ray
salisfying the above conditions. Then theve exists a function F(1) = O(t~ ™) such
that the counting function Ny of the resonances satisfies the lower bound

mes(G )

Np(r) = T(—!n—);.——(l o(1))r" (1.6.6)

It is quite possible that if the boundary I' is analytic at p;, j = 0,..., jo, one

ot

could construct quasimodes satisfying (1.6.1) with F(1) 3 , ¢p > 0, and
henee Theorem 1.6.2 would hold with F(#) e . ¢ > 0, in this case. In

what follows in this section we will consider an example of metric perturbations
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for which we have such a lower bound on the number of the resonances in an
exponentially small neighbourhood of the real axis.

Suppose that there exist 0 < py < pa < po such that O € {|z| < p;}, and in
| < po the operator A, is of the form c(|z|)1A with a positive function

m < |
¢(r) € C=(py,p2)- Set f(r) = r—("—l and suppose that there exists 7o € (py, p2)
such that

f(mo) =10, f"(ro) >0, (1.6.7)
where f" and " denote the first and the second derivative, respectively. We also
suppose that ¢(r) is analytic at 7 = rg.

Theorem 1.6.3. Under the above assumptions, there exist constants C, 3 > 0
so that
Nip(m)2 @ty n > 1 (1.6.8)
with a function F(t) = ¢=PL,

Note that the existence of infinitely many resonances converging to the real
axis exponentially fast for a class of operators of the form ¢(|z])*A on R" was
obtained by Ralston [54]. Ralston’s method however does not allow to get lower
bounds on the density of these resonances.

The above theorem can be derived from the standard quasimode construction
for the semiclassical Schrodinger operator with a positive potential having a stable
stationary point in the following way. The operator @ = —c(|z])?A can be written
in the polar coordinates (r,0) € Rt x §"~! as follows:

Q=—c(r)

where Age- denotes the Laplace-Beltrami operator on S"~1. Let wj, be an
cigenfunction of —Agu-1 with an cigenvalue p?, g > 0. Then Q(v(r)w,) =
(Q,v)w,, where

>c(r)

Q)i ==cn)Rbr = R
Introduce a new variable ¢ = #(r) defined by
r
!
= / it
ro €(0)
In the new coordinates the operator Q) takes the form

= —0F + p(t)dy + q(t),
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where g(t) = ﬂ'L(l'.”Ll satisfies
q(0) >0, ¢(0)=0, ¢"(0)>0. (1.6.9)

and p(t) and g(t) are analytic at ¢t = 0. Using the results of Helffer-Sjostrand
[15], [16] one can see that for every integer k > 0, there exists a C™ function v,
supported in a neighbourhood of ¢ = 0 such that

2 ; 1
110@u = v& ok ull 2qry + [0k s VR ) 2 (R) — O] < €70k,

where u = q(0)%1% + /q"(0)(2k + 1)+ O(1) and F > 0 is a constant indepen-
dent nfk and p. Then the I'uurtmm Uk = Uk 0y satisfy (1.6.1) with kj = Vi,
provided & = O(p), and a function F(t) = e~ B, > 0. Counting  with the
multiplicity (which is ~ Cpu™ 2, pu > 1), it is easy to see that

#{(k, pe) : k is an integer,

0< k < pu, p € specy/—Agn-1, IIA e e NSy 1,0 >0,

which implies (1.6.8) in view of the bound (1.6.2

1.7  Asymptotics of the number of the resonances

In contrast to the counting function of the eigenvalues, there are very few exam-
ples of perturbations for which the counting function of the resonances is known
to have an asymptotic behaviour. The most typical one is the case of degenerate
perturbations. that is, when the counting function N(r) admits asymptotics of
the form

N(r) = (r)(1 +o(1)) e
with a smooth increasing function ¢ satisfying

lin 0 (1.7.2)

o " ('i
Nawely, we have the following improvement of Theorem 1.3.4.
Theorem 1.7.1. Under the assumptions (1.7.1) and (1.7.2), for 0 < 0 < 1,
HAER: 0 <argX <0,|A\ <7} = olr)(1 +o(1)). (U5753)
In particular, if n > 3 is odd,

N(r) = 2p(r)(1 + o(1)) (1.7.4)
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['he asymptotics (1.7.3) are proved by Sjostrand [61). The asymptotics (L.7.4)
follow from (1.7.3) combinned with (1.3.8) and the fact that in the odd dimen-
sional case the resonances are symmetric with respect to the imaginary axis.
Note that (1.7.4) has been previously proved in [84] under a slightly stronger
assumption than (1.7.2) by using the Poisson formulae (1.4.2) and the bound
(1.3.7).

It is much more complicated to get asymptotics of the number of the reso-
nances for elliptic perturbations. Such asymptotics are known in the case of the
Schrodinger operator with radial potentials.

Theorem 1.7.2. Let V(z) be a real-valued function of the form V(z) =
q(lz]), where ¢ € C?*[0,a], q(a) # 0, q(t) = 0 for t > a. Ifn > 1 is odd,
the counting function of the resonances associated to the Schrédinger operator
—A + V(z) on R" satisfies

N(r) = Cpa"r"(1 + o(1)), (1.7.5)

where Cy, > 0 is a constant depending on n only, Cy = 2/=.

This theorem is established by Zworski [89], [90]. It is worth noticing that
Zworski's proof allows to get the same type of asymptotics in the case of scattering
by a sphere of radius a in odd dimensional spaces.

1.8  Decay of the local energy and distribution of the resonances
near the real axis
Throughout this section we will suppose that the operator A, is elliptic. Let
u(t, z) be the solution to the wave equation
(0} = Agu(t,a) = 0 nQ2xR,
u(t,z) = 0 onl'xR,
u(02)8 = @)
Ou(0,z) = fo(z).
The energy of u(t,z) in Qp, := QN {|z| < Ry}, Ro > po, is given by

(1.8.1)

E e
Egy(u) = = / Z 9i(2) 0y, udy, i + c(z) | Oul® | da.
- (),,-"

=1

Given am > 0, set

f Vaetlli2i,,) + 10wllLagy,,)

Pult) =sup{ — —
1 Ve hillim gy *+ 1 fallim (@)

:(0,0) # (fi, f2) € [C=())*,supp f; C ﬂn-}'
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Clearly. ¥m > 0,
Eq() € COm, R)pm(8)® (IV2/ilym ey + 1 felliimca) » (1.82)

for all functions (fy, f2) such that V.f, € H™(Q), f» € H™(Q), supp f; C
g, In other words, py,(t) measures the rate of decay of the local energy of the
solutions to (1.8.1) as ¢ = +oo. It turns out that there is a close relationship
between the behaviour of py,(t), ¢ > 1, and the behaviour of the norm of Ry (}),
|A| = 400, on the real axis. Suppose that

[IAR (Mllcry € CM(|A]), A€R, (1.8.3)

where €' > 0 is independent of A and M(t) € C™(R). The best possible bound
in (1.8.3) is that one we have for the free resolvent (see (1.1.4)), that is, when
M = 1. So, we may suppose that M > 1. Using the representation (1.2.3) it is
not hard to prove (for example, see (86]) the following

Proposition 1.8.1. Under the assumption (1.8.3), there exists a constant
€y > 0 so that R\ (\) extends holomorphically to the region Im A < Cy/M(|A]),
and satisfies there the bound (1.8.3) with possibly a new constant C' > 0.

Suppose that the function M(t), t > 1, is increasing and denote by f(t) its
inverse, that is, M(f(t)) = t. We suppose that f(t) = O(t*), ky > 0, and
that for every constant C' > 0 there exists a constant C= (i‘((,') > 0 such that
f(C) < Cf(1), ¥t 3 1. Using the above proposition one can prove (for example,
see Section 3 of [51]) the following

Theorem 1.8.2. For cvery m > 0 there exists a Cy, > 0 so thal
pm(t) € C (F(t/logt)™ +ent™), t>1, (1.8.4)
where €, = 0 if n is odd, €, = 1 if n is even.

It turns out that in the situation we discuss the norm of the cutoff resolvent
is always exponentially bounded on the real axis.

Theorem 1.8.3. There exist constants C,y > 0 so that
INRy (Ml ey € Ce™, A€ R (1.8.5)

.‘l.‘ a consequence,
P(t) < Cllogt)™, 31 (1.8.6)
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Clearly. (1.8.6) follows from combining (1.8.5) and (1.8.4). Note also that it
follows from (1.8.5) and Proposition 1.8.1 that there are no resonances in a region
of the form Im A < Cye " || > Oy, for some constants Cy, Ca > 0. The above
theorem is proved by Burq [3] using the Carleman estimates previously obtained
by Lebeau-Robbiano [30], [31]. Another proof of Burg’s result is presented in
[87). The method of [87] has been extended in [88] to prove an analogue of
(1.8.5) for a class of metrics which differ from the Euclidean one by functions of
order O(e=€1"), |z| > 1, where C' > 0 and p > 2.

Clearly, the estimates (1.8.4) and (1.8.6) are trivial if ra = 0. It turns out
that to be able to derive some information about py(#) from (1.8.3), one needs to
have this latter bound with M = 1. More precisely, we have the following

Theorem 1.8.4. The following three

tatements are equivalent:
LJJ}‘}E’O])U(A) =0. (1.8.7)
ARy My < C1y AER, A 2 Ca, (1.8.8)
with some constants Cy,Cy > 0.

Ce Pt n odd,
ro(t) = { Ct=", n even, (1.8:9)

with some constants C,[3 > 0.

Note that the implication (1.8.7)=+(1.8.9) was first proved by Morawetz [42]
[43]) in the case of odd dimension using the Lax-Phillips theory.
In lh- case of even dimension this implication is proved by Kawashita [23]. In
[86] a proof of the above theorem is presented based on Proposition 1.8.1 and the
following

Proposition 1.8.5. Suppose that Ry (\) admits analytic continuations in the
regions {A € C:0 <Im\ <Oy, £Re ) > 0}, Cy > 0, such that

ARy (Mleany < CalAF, ImA < Cy, A2 Cs, (1.8.10)

with some constants Cy, Cy > 0 and k > 0. Then there exist constants C,f > 0
so that

= Ce ", nodd,
pilt) < { P (1.8.11)
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1.9 Properties of the scattering phase

The scattering phase, s(A), can be considered as an analogue of the counting
function of the eigenvalues of the Lapalce-Beltrami operator on compact man-
ifolds. So, it is natural to expect that s(\) has an asymptotic behaviour as
A =+ +400. In contrast to the counting function of the eigenvalues, however, ob-
taining asymptotics for s(A) is much more complicated because in general s(\)
is not an increasing function and hence it is not possible to apply Tauberian
arguments to it. Nevertheless, such asymptotics have been proved in the most
interesting cases. Let us consider first the case when A, is elliptic. We have the
following

Theorem 1.9.1. The following asymptotics hold
3(A) = apA™ + O(A" ), (1.9.1)

where

ag = 1, Vol(O) + m, /n ((r[vl(c(r)"'y.,(:)))""/2 - l) da

T = (2m)~"Vol({z € R" : |z| < 1}).

In this generality, (1.9.1) has been first proved by Melrose [36] in the case of
odd dimensional spaces using the Poisson formulae (1.4.2) and the sharp upper
bound (1.3.4). His method consists of decomposing the scattering phase as a sum
of an increasing function and a symbol of order n, and then applying a Tauberian
that this approach works in the case of
even dimensional spaces as well using (1. instead of (1.4.2) and (1.3.5) instead
of (1.3.4). Melrose's approach is based on the following result of Ivrii [21] (see
also [35]) concerning the singularity of u(f) at ¢ = 0:

argument to the monotone part. It seem

Theorem 1.9.2. Ther s an g9 > 0 so that if ¢ € C°(R), ¢(t) = 1 for
|t| < €q, $(2) = 0 for |t| > 2¢g, then

e

Pu() ~ 3 oA, (1.9.2)

)0
where oy = nag.

If we assume that the set of the closed transversally reflected geodesics has

measure zero, then we have (1.9.1) with a second term of the form a; A" ' and a

remainder o{A" ') (see [21]).
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Robert [35] found another proof of Theorem 1.9.1 which does not exploit the
Poisson formulae and the resonances, and which works equally well in both cases
of odd and even dimensions. Note that this theorem also follows from the quite
general results obtained by Chri sen (9],

In the case of degencrate perturbations the scattering phase behaves very
much like the counting function of the resonances.

Theorem 1.9.3. Under the assumptions (1.7.1) and (1.7.2), as A = +00,
$(A) = p(A)(1 + o(1)). (1.9.3)

Let ¢ be as in Theorem 1.9.2 and define the function s so that s/,(A) = Er\u(,\),
54(0) = 0. It is not hard to see that under the assumptions (1.7.1) and (1.7.2), we
have sa(A) = @(A)(1 + o(1)) and sf/'(,\) = o(1)¢(A). Therefore, the asymptotics
(1.9.3) can be proved by using Melrose's approach (see [84] for more details).
Another proof is given by Christiansen [9].
tering phase, its first derivative s'(A) has a much more
complicated behaviour and is much more sensible to the distribution of the res-

In contrast to the s
onances near the real axis.

Theorem 1.9.4. Suppose that there exists a non-decreasing positive contin-
uous function M(t) satisfying M(t -+ 0) < CM(t) for 0 < § < 1, and such that
there are no resonances in the region {ImA < C'M(|A|)~'}. Then,

[s'(\)] < Col\""'M(IA), AER. (1.94)
In particular, s'(A) = O(e™N), 79 > 0.

This theorem is proved by Petkov-Zworski [47]. The exponential bound of
s'(\) follows from (1.9.4) combinned with Proposition 1.8.1 and Theorem 1.8.3.

2 Nontrapping perturbations

2.1

Distribution of the resonances and uniform decay of the local
energy

Ihe operator P will be said to be a nontrapping perturbation if the kernel
U(t,xz,y) of the operator cos (I\/F) satisfies the generalized Huyghens princi-
ple

Yx € C3°(R"), 3Ty > 0, so that x(z)U (t, ., y)x(y) € CZ({Tp, +0) x 0 x Q).
(2.1.1)
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According to the results of Melrose-Sjostrand [38], [39] on the propagation of the
('~ singularities, in the sitnation we discuss the above condition is fulfilled if
every generalized bicharacteristic (the definition being quite technical, we refer
to [38], [39] for the details) leaves every compact in a finite time. In other words,
the generalized Huyghens principle is fulfilled when there are no trapped rays.
A typical example of a nontrapping perturbation is the scattering by a strictly
convex obstacle, that is, when A, = A and O is strictly convex.

Theorem 2.1.1. Suppose (2.1.1) fulfilled. Then. ¥N > 0,3Cy > 0 so that
there are no resonances in the region ImA < Nlog|A| — Cy. Moreover, there
exists a constant C' > 0 so that

[IARy(Mley €C, AER. (2.1.2)
As a consequence,
Ce ™™ n odd, p
Po(t) < { Ct™™, n even, (2.1.3)

with some constants C,[3 > 0.

In this generality, the above theorem is proved by Vainberg [76], [77] (see also
[28]). It turns out that in some cases of nontrapping perturbations one can have
a better free of resonances region than that one given by the above theorem.
Suppose that A, = A and that the boundary I is analytic. Then according
to Lebeau’s result [29] on the propagation of the analytic
an analogue of (2.1.1) with C'™ replaced by the Gevr
every generalized bicharacteris
case Bardos-Lebeau-Rauch (2] proved the following

igularitios, we have
s G provided that
ic leaves every compact in a finite time. In this

Theorem 2.1.2. If O is a nontrapping obstacle with analytic boundary I',
A, = A, then there exist positive constants Cy and Cy such that there are no
resonances in the region Im A < C{|\|'* — €.

Another proof of this theorem, based on Lebeau's result [29] and Vainberg's
method (76, [77), is presented in [48]. Note that, if the obstacle is strictly con-
vex, the optimal value of the constant ) can be calenlated explicitly in terms
of the first zero of the Airy function and the second fundamental form of I' (see
[2]). It turns out that for strictly convex ob:
resonances region without assuming analyticity of the bounda
result is established by Hargé-Lebeau [14] using the complex scaling up to the

acles one can get a similar free of
. The following
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boundary I instead of the propagation of the analytic singularities (sec also [67]):

Theorem 2.1.3. If O is a strictly conver obstacle with C* boundary I',
A, = A, then there exist positive constants C} and C; such that there are no
resonances in the region Im A < C{|N'/® — C4.

The constant C| can be calculated explicitly, too, and in fact we have Cf < C).
In other words, the more regular the boundary is, the larger free of resonances
region we have.

2.2 Asymptotic expansion of the scattering phase

It follows from Theorem 2.1.1 and (1.9.4) that for nontrapping perturbations the
first derivative of the scattering phase satisfies the bound s'(A) = O(A""1). In
fact, much more is true.

Theorem 2.2.1. Under the assumption (2.1.1), the following asymptolics
hold:

©
(N~ Y A, (2.2.1)
J=0

where a; are the same as in Theorem 1.9.2.

This theorem is established by Petkov-Popov [45]. Clearly, to prove (2.2.1) it
suffices to show that under the condition (2.1.1),

SN = pu(A) + O(A). (2.2.2)

When n > 3.(2.2.2) can be derived from the free of resonances region established
in Theorem 2.1.1 combinned with Theorem 1.4.2. Indeed, by Theorem 2.1.1
the set R, contains finitely many resonances for any v, hence u, € C®(R),
I uy(t) = Ole=™Y), co > 0, Yk > 0. Thus, by Theorem 1.4.2 one concludes that
(1 Pu ¢ C™(R) and 9f((1 — ¢p)u) € L'(R) for every integer k > 0. Hence,
NE(1 = @)u(A) = O(1) for every integer k > 0, which implies (2.2.2).

3 Scattering by several strictly convex bodies

3.1 Distribution of the resonances for two strictly convex bodies

In this section we will discuss the Dirichlet problem in the case when A, = A
and @ = Oy U Oy, where O and O, are strictly convex bounded domains in
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R with C*-smooth boundaries I'y and I'y, I'y N2 = 0. Let d > 0 denote the
distance between I'y and I'y, and let a; € I';, 7 = 1,2 be the unique points such
that dist(ay,a2) = d. Then the ray connecting a; and as is the only periodic
(and hence trapped) ray in @ = R" \ O, so the generalized Huyghens principle
(2.1.1) is never fulfilled in this case. That is way one should expect a different
distribution of the resonances near the real axis.

Denote by P the Poincaré map associated to the periodic ray (a1, ap). It
follows from the strictly convexity that P is a hyperbolic ray, that is, the eigen-
values of DP(ay), which are real-valued in this case, are different from 1. Let
e, j = 1,...,n — 1, be the eigenvalues bigger than 1, i.e. u; > 0. Denote
2z = EIL‘%MI + %4, J = 1,2.... The following result is due to Tkawa (17), [18]:

Theorem 3.1.1. There exist positive constants Cy,Cy and jo such that the
only resonances, {\;}, in {ImA < C,Re) > Cy}, are of multiplicity one and
satisfy the expansion

el
A=+ Bt G =dodo+1,... (3.1.1)
k=1
In particular, the above theorem implies that in the case of two strictly convex
bodies there exists a strip of the form

ot et
I eeli e Dinsl
mA T

—& Red2C,>0,W0<ek],
free of resonances. The above theorem is extended by Gérard [11] who described
all resonances below some logarithmic curves. To state Gérard’s result, introduce
the pseudo-resonances (which were first introduced in [1])
o 0
o2, Ad '
To each =, ,,, associate a multiplicity mult(z; ;) which is the number of all # €
N1 such that

it %1. (,a) €N x N*-!,
7

Py + o+ pin-1Bp—1 = may + .. + pp—10n-1.
The following result is due to Gérard [11):
Theorem 3.1.2. For every C > 1 there exists a Cy = C,(C) > 0 so that in

a neighbourhood of each zj, € {ImA < C, ReX > Cy} there is a resonance \jq
of multsplicity mult(z;,), and these are all resonances in {Im X < C, Re A > C}.

Gérard also obtained an asymptotic expansion of A; , — 2,4 as a fractional
power series in z;_ ¢:
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3.2 Distribution of the resonances for many strictly convex bod-
ies

Lot O-= U}’_ 10,. J > 3, where each O is a strictly convex bounded domain in

R" with C*-smooth boundary. The obstacle O is a trapping one with infinitely
many periodic rays in @ = R" \ O, which makes the study of the resonances
senerated by these trapped rays much more complicated compared with the case
J= Nevertheless, there are some results in this direction essentially due to
Ikawa. Consider the Dirichlet problem in ©, A, = A, and suppose that n = 3.
Let v be a periodic ray in . Denote by d, the length of 5 and let 4,, 3 be
the eigenvalues of the linear Poincaré map P, = DP, (as above P, denotes the
Poincaré map associated to ) such that |3,],]8;] < 1. Set A, = |3,4|'/2. We
make the following assumptions:

The convex hull of every two connected components of @ does not have common
points
with any other connected component of O. (3.2.1)

There exists a constant a > 0 such that
- Aydye™ < oo, (322)
where the sum is taken over all primitive periodic rays v in .

Ikawa [19] proved the following

Theorem 3.2.1. Under the assumptions (3.2.1) and (3.2.2), there exists a
constant ¢y > 0 so that there are no resonances in ImA < ¢g. Moreover, the
Jollowing estimate holds

m(t) <e®, t»1, (3.2.3)

with some constant C > 0.

It seems that Ikawa’s proof works also in the case of Neumann boundary
conditions. It is also natural to expect that an analogue of the above theorem
still holds for any space dimension n > 2 (with bound O(t™™") in (3.2.3) if n is
even)

The class of obstacles satisfying the assumptions (3.2.1) and (3.2.2) provides
quite rich examples of trapping obstacles for which there are no infinitely many
resonances tending to the real axis. It is natural to ask, however, if for this class
of trapping obstacles there is a strip containing infinitely many resonances (which
15 the case if J = 2). It turns out that the answer is yes for the Neumann problem,

Y\
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while in the case of Dirichlet boundary conditions the problem is of a quite great
complexity and to my best knowledge it is still open. The following theorem is
due to Tkawa [20]:

Theorem 3.2.2. Under the assumption (3.2.1), there exists a constant C > 0
5o that there are infinitely many Neumann resonances in ImA < C.

Petkov [44] obtained a lower bound of the form Os(r'~%), V4 > 0, for the
counting function of these resonances under weaker assumptions than (3.2.1).
Tkawa proved the above theorem when the space dimension n > 3 is odd using
the Poisson formulae (1.4.2) (note that in the case of even space dimension the
proof goes in the same way using (1.4.3) instead of (1.4.2)) and the observation
that in the case of Neumann boundary conditions the leading singular part of the
distribution u(2) is of the form (see [12]):

STy [det(Id — Py)| "2 b(t - dy),

where T, denotes the primitive period of 7, and the sum is taken over all periodic
rays in £. Hence no cancelation of singularities is possible in this case. In the
case of Dirichlet boundary conditions the leading singular part of the distribution
u(t) is of the form

S (=0)MT |det(Id - B[V 8(t ~ d,),

where &, denotes the Maslov index of 4. Thus in this case the singularities may
cancel, and in particular Tkawa's argument does not work anymore.

4 The Neumann problem in linear elasticity

4.1 Free of resonances regions

In this section we are going to discuss the resonances for a class of matrix-valued
second order differential operators. Let O € R™, n > 2, be a compact domain
with C™*-smooth boundary I' and connected complement © = R" \ O. Denote
by &, the elasticity operator, which is a n x n matrix-valued differential operator
defined by

Agu = pgAu + (Ao + po)grad(div u),

where u =" (uy,...,u,). Here \g and pg are the Lamé constants which are sup-
posed to satisfy

po >0, nXo+2p >0 (4.1.1)
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The operator A, describes the propagation of two waves moving with speeds
¢y = o and ¢z = /Ao + 2p9. Denote by AY the selfadjoint realization of A,
in © with Newmann boundary conditions:

(Bu); := ZU,'J(u)lljlr =) e e
J=1

where ay;(u) = Aodijdivu + po(Or,ui + 9z,u;) is the stress tensor and v =
(¥4, ...y ) s the outer unit normal to I'. The resonances associated to Af’ are
defined in the same way as in Section 1.2, that is, as the poles of the meromorphic
continuation of the cutoff resolvent

Ry() = x(AN +2%)~'x : L} (@;C") = L2(; C™)

from Im A < 0 to the complex plane C if n is odd, and to the Riemann surface, A,
of the logarithme if n is even. At first glance the operator AY looks very much
like the operators discussed in the previous sections and has similar properties.
Indeed, most of the properties and the results discussed in Section 1 are valid
for AY as well. The only difference is that the Neumann boundary conditions
for A, do not satisfy the so-called Lopatinski-Shapiro condition, which has for
consequence that the generalized Huyghens principle (2.1.1) is never fulfilled for
this problem. In other words, every obstacle (even the ball) is a trapping obstacle
for the operator AY. The fact that the Lopatinski-Shapiro condition is violated is
expressed by the fact that the formal parametrix (which is a 7 x 7 matrix-valued
semiclassical pseudodifferential operator on I') of the Dirichlet-to-Neumann map
is not elliptic in the elliptic region & = {(z,£) € T*T : ¢|&|; > 1}. Explicit
caleulations show that its principal symbol has one eigenvalue which vanishes on
a variety £ = {(z,€) € T°T : cp|é|. = 1} C €, while the other n — 1 cigenvalues
are nonvanishing. The existence of such a characteristic variety is interpreted as
existence of surface waves moving on I' with a speed cg < ¢ (see [75]), called
Rayleigh waves after Lord Rayleigh who was first to study these waves in the
case of a half space (see [53]). Since in our case I' is compact, these surface waves
stay trapped in a compact set, and hence every compact obstacle is trapping
for this problem. It is worth no

cing that there are no such surface waves for
the Dirichlet realization of A,. For example, the strictly convex obstacles are
nontrapping (satisfy (2.1.1)) for the elasticity equation with Dirichlet boundary
conditions.

Since the generalized Huyghens principle (2.1.1) is not satisfied for AV %
is not natural to expect that the resonances of AY have a distribution like in
Theorem 2.1.1. However, the fact that the characteristic variety ¥ is included in
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the elliptic region & enables to obtain quite large regions free of resonances if O
is strictly convex. More precisely, we have the following

Theorem 4.1.1. Let O be a bounded strictly convex domain with C*™-smooth
boundary ['. Then for every M, N > 1 there exist constants Car, Oy > 0 so that
there are no resonances of AY in the region Cx|A|™Y < Im X < M log |A| — Cir.
Moreover, if I' is analytic, then the free of resonances region is of the form
Ce "W < ImA < Mlog|A| = Cpy, where C,y > 0.

In the C™ case this theorem is proved in [72], while the case of analytic
boundary is treated in [85]. Kawashita [24] obtained the same type of free of
resonances regions as in the ¢ case for more general obstacles having no trapped
rays in © (such obstacles are in fact nontrapping for A, in @ with Dirichlet
boundary conditions on I', and hence the only trapping in the case of Neumann
boundary conditions comes from the Rayleigh waves on I'). It is worth noticing
that in analogy with the Laplacian and in view of Theorem 2.1.3 it is natural to
expect that when O is strictly convex there should not be resonances of AY in a
region of the form {1 < Im A < C|A|'/? — €} with some positive constants C;
and €, certainly different from those in Theorem 2.1.3. This is proved in (71]
when O is a ball.

4.2 Existence of Rayleigh resonances

It is natural to expect that the Rayleigh waves generate infinitely many reso-
nances (which in view of Theorem 4.1.1 should be very close to the real axis) as
otherwise the distribution of the resonances of AY for strictly convex obstacles
would be the same as in the case of nontrapping perturbations. In fact, we have
the following

Theorem 4.2.1. For any obstacle O with C™-smooth boundary there exists
an infinite sequence {A;} of different resonances of AY such that

0<Im); <Cx|AI™Y, N> 1. (4.2.1)

Moreover, if at least one of the connected components of O is of analytic boundary,
then there exists an infinite sequence {\;} of different resonances of AV such that

0<Im)j < Ce N (4.2.2)

with some positive constants C and .
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In the €™ case this theorem is proved in (73] (see also [72]) , while the case of
analytic bonndary is treated in [85]. The proof is based on Theorem 1.6.1 and the
observation that the existence of Rayleigh waves in the elliptic region £ allows to
construct quasimodes supported in a neighbourhood of the boundary. Moreover,
if one has more information about the counting function of these quasimodes one
could obtain lower bounds of the counting function of the resonances near the
real axis. Such lower bounds are obtained by Stefanov [70]:

Theorem 4.2.2. For any obstacle O with C*-smooth boundary there exists
a function F € C(1,+), F(t) = O(t=*°), t > 1, such that

£{\, — resonance of AN :0< ImA; < F(|A50), 151 < 1}

> 1 Vol(D)r" ! — O(r"?), (42.3)

where the constant 7, is defined in Theorem 1.9.1 (with n replaced by n — 1).

For obstacles for which Theorem 4.1.1 holds there are near the real axis only
resonances generated by the Rayleigh waves, so it is natural to expect that these
resonances are close to the corresponding quasimodes and that their counting
function has the same behaviour as the counting function of the quasimodes. In
other words, one should expect asymptotic behaviour of the counting function
of the Rayleigh resonances. The following theorem is due to Sjostrand-Vodev [62]:

Theorem 4.2.3. Let O be a strictly conver obstacle with C™ -smooth bound-
ary I'. Then

Ng(r) = §{A; — resonance of AY :0<ImA; < 1L,|A;| < 1}

= TncR i Vol(B)risti=0 (7154): (4.2.4)

4.3  Behaviour of the local energy

In the same way as in the case of the Laplace operator one can define the quanti-
ties py, (1) (see Section 1.8) in the case of the Neumann problem in linear elasticity,
which measure the rate of decay of the local energy of the solutions to the cor-
responding mixed problem. Because of the existence of resonances close to the
real axis due to the Rayleigh surface waves, one should not expect that p,, (1)
would decay very fast to zero as t = -+oc. In the next theorem O is an arbitrary
bounded obstacle with C™-smooth boundary.
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Theorem 4.3.1. There exists a constant a > 0 such that
po(t) 2, t>1. (4.3.1)

For every m > 0 and every § > 0 we have

lim sup t*p,, () > 0. (4.3.2)
=400
Moreover, if at least one of the ted components of O is of analytic boundary,
then for every m > 0 we have
limsup(log t)™ p(t) > 0. (4.3.3)
trtoo

The inequality (4.3.1) is proved by Kawashita [22]. It also follows from the
fact that there exist infinitely many resonances converging to real axis (see The-
orem 4.2.1). The inequality (4.3.2) was first proved by Kawashita (24] for a
restricted class of obstacles, and then extended in [85] to an arbitrary obstacle.
The inequality (4.3.3) is proved in [85]. In particular, it shows that the bound
(1.8.6) obtained by Burq [3] is sharp.

4.4 Asymptotic behaviour of the scattering phase

The scattering phase, sy (A), associated to the operator AN can be defined in the
same way as in Section 1.4, Because of the existence of resonances exponentially
close to the real axis one can easily see that one may have bounds of the form
|8y (k)] = ™ A > 0, for an infinite sequence of real numbers kj = +00. So, as
one may expect, the asymptotics (2.2.1) are far from being true for siy(A). On
the other hand, we have an analogue of the asymptotics (1.9.1) for sy(A) (with
a different constant ag). It turns out that for strictly convex obstacles sy (A) has
two term asymptotics with a remainder of right order. The following theorem is
due to Carduso-Vodev [7):

Theorem 4.4.1. If O is strictly conver with C™-smooth boundary I', then
sn(A) = agA" + @ A" +r(A), (4.4.1)

where r(A) = O(A"?) ifn > 2, r(\) = aplogA + O(1) if n = 2, and ag =
Tal(n = 1)e;™ + ¢;™)Vol(0).

The constant a, is of the form b, Vol(I'), where b, depends on the Lamé con-
stants and the dimension. One could expect that the above asymptotics hold for
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every obstacle which is nontrapping for the Dirichlet realization of A,. Another
natural expectation is that (4.4.1) holds with r(X) = o(A" ') under the assump-
tion that the measure of the set of the periodic transversally reflected rays in 7°Q
is zero. Furthermore, if O is strictly convex such that the measure of the set of
the periodic geodesics in 7T is zero, one should expect that (4.4.1) holds with
r(A) = a A" +0(A" %) if n > 2. Such a behaviour is suggested by the following

Theorem 4.4.2. [f O is sirictly conver with C™-smooth boundary, then
there exists a function of the form

n-1
9(N) = > A" F + by log A,

k=0

where by = ag, such that for every p> 1, 0 < § < 1, we have
NR(A = A7) = 0p5(1) — O(X) < siv(A) — g(A) < Nr(A+ A7) + 0y (1), (4.4.2)

where Ng(A) is the counting function of the Rayleigh r es introduced in
Theorem 4.2.3.

This theorem is proved for odd n > 3 in [8] by using the Poisson formulae
(1.4.2) (in the case of even n one should nse (1.4.3) instead) and the free of res-
onances region established in Theorem 4.1.1. Note that the asymptotics (4.4.1)
also follow from combining (4.4.2) and (4.2.4). Moreover. obtaining a third term
in (4.4.1) is equivalent to obtaining second term asymptotics for Np(A), that is,
for the counting function of the quasimodes generated by the Rayleigh waves.

Sinee these latter objects can be viewed as eigenvalues of a pseudodifferential
operator on I', such two terms asymptotics quite probably hold under the as-
sumption mentioned just before Theorem 4.4.2.

5 The transmission problem

5.1 The case of interior totally reflected rays

Let O be a bounded strictly convex domain with C™-smooth boundary I' and
denote 2 = R"\ O. Let ¢ # 1 and a be two positive constants. The complex
number A will be said to be a resonance for the transmission problem associated
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1o the obstacle @ if the following problem has a nontrivial solution:

(A+X)u; = 0 inO,
(A+M)uz = 0 inQ,
uy-uz = 0 onT, (5.1.1)
Opuy +adu; = 0 onT,
uz — A -—outgoing,
where A = ZL, t)z" v denotes the outer unit normal to I’ and v/ = —v is
the inner one. The of the tr ission problem can be also defined

s the poles of the meromorphic continuation of the cutoff resolvent, Ry (}) :=
x(G + A*)~'x, of the operator

Gu = (*Auy, Aug), u= (u;,uz) € D(G),

on the Hilbert space H = L*(0;a~'c~*dr) @ L*(Q), where the domain of defini-
tion of G is given by

D(G) = {(uy,uz) € H,uy € H*(0),up € H*(Q), w1 |1 = wz|r, dyur|r = —adyuz|r}-

The problem (5.1.1) describes the propagation of acoustic waves moving in two
different media, with speed 1 in © and with speed ¢ in ©. When a wave mov-
ing in 2 (resp. in O) reaches the boundary I' there is one part which enters
in @ (resp. in ) and another part which reflects from the boundary. In other
words, there is a transmission of energy through the boundary. Consequently,
there is a propagation of C® singularities along the periodic broken rays in O,
and hence the generalized Huyghens principle (2.1.1) is not fulfilled for the trans-
mission problem. Morcover, if ¢ < 1, the broken rays in O close enough to
the glancing manifold £ = {(z,£) € T°T : ¢/¢|; = 1} lie in the elliptic region
&= {(x,£) € T°I: [¢]; > 1} for the exterior problem, so such rays stay trapped
in © for a long time. More precisely, if a broken ray 3(1) is £ close to K for t =0
(in a suitable metric) it remains 2¢ close to K for |t] < Cye ™, VN 3 1. This
property is known as “effective stability of the billiard flow in O near the glancing
manifold™ and such broken rays are called “interior totally reflected rays”. The
existence of such rays suggests that quite a lot of energy should stay ped in
the obstacle O for a long time, which could produce infinitely
converging to the real axis. This was proved by Popov-Vodey [52]:

y resonances

Theorem 5.1.1. Let @ be strictly conver with C™-smooth boundary. Then,
if € < |, there exists an infinite sequence of different resonances {A;} of G such
that

0<Im); < Cxl\I™Y, YN 21 (5.1.2)
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In view of Theorem 1.6.1, to prove the above theomm it suffices to construct
compactly supported quasimodes for the t i blem (1.5.1). Such
quasimodes, concentrated in a neighbourhood of the boun(lary I (microlocally
supported in K) are constructed in [52] using the fact that when ¢ < 1, the
glancing manifold X is included in the elliptic region £.

5.2 The case of exterior totally reflected rays

When ¢ > 1 the glancing manifold K is included in the hyperbolic region H =
{(x,&) € T*T : |€]; < 1} of the exterior problem. That is why there are no inte-
rior totally reflected rays in O and the construction of quasimodes like those in
the case discussed in Section 5.1 is no longer possible. Instead, there are exterior
totally reflected rays in 2 which do not enter into the obstacle. This suggests
that in the case when ¢ > 1 the distribution of the resonances near the real axis
should look much more like the distribution of the resonances for nontrapping
perturbations than like that one in the case ¢ < 1. The following theorem is
established in [5] (in a more general setting):

Theorem 5.2.1. Let O be strictly conver with C™-smooth boundary. Then,
if ¢ > 1, the cutoff resolvent satisfies the estimate

AR (Mley £C, AER. (5.2.1)

As a consequence, there are no resonances of G in a strip 0 < ImA < 5, v > 0,
and the following estimate holds, for t > 1,

e M, n odd, i
p(t) < { GHEns ) o (5.2.2)

with constants C', 3 > 0.

Note that (5.2.2) and the existence of a free of resonances strip follow from
(5.2.1) combinned with Theorem 1.8.4 and Proposition 1.8.1. The above theorem
shows in particular that for the transmission problem with ¢ > 1 we have the
same type of uniform decay of the local energy as in the case of nontrapping
perturbations although this problem does not satisfy the generalized Huyghens
principle (2.1.1). Moreover, when @ is a ball it is not hard to see that there is a
sequence of resonances {y;} such that u; = 55 > 0. Hence it is not possible to
have a better free of resonances region (as for example in Theorem 2.1.1) than a
strip
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5.4 Asymptotics of the number of the resonances near the real
axis

A% int the case of the Neumann problem in linear elasticity (see Theorem 4.1.1)
one conld expect that in the case of the transmission problem there should be
also large free of resonances regions far from the real axis and that the counting
function of the resonances lying below such regions admits an asymptotic be-
haviour. Indeed, such results are obtained in [6] under some natural assumptions
on the parameter a appearing in the boundary conditions:

Theorem 5.3.1. Let O be strictly convex with C>-smooth boundary and let
¢ < | Then there exists a constant ap > 0 so that if a < ay, there are no
resonances of G in a region of the form {Ca < Im\ < Cy|A|'/3 = Gy}, where
C.Cy and Cy are positive constants independent of a. Morcover, the following

asymptotics hold
#{A; = resonance of G :0 <Im)\; < Ca,|\j| <7}

= e Vol(O)nlt + Ox(n=43t%), Ve > 0! (5434

Theorem 5.8.2. Let O be strictly conver with C™-smooth boundary and let
¢ > L Then there emists a constant Ay > 0 so that if @ > Ay, there are no
resonances of G in a region of the form {Cla < ImA < C,|A|l/3 — Ca}, where
C.Cy and Cy are positive constants independent of cv. Moreover, the following
asymplotics hold

#{A; = resonance of G : 0 < Im Aj £ Cla, |\ <7}

= e "Vol(@)n™ + Op (r2=1348) . Ve > 0, (5.3.2)

Note that the constant Cy above can be taken the same as the constant (6]
in Theorem 2.1.3.
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