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ABSTRACT. This paper deseribes mathematical models related (o
wave propagation.  The main goal is to motivate the reader towards
the mathematical theory related to applications and research in this

field. The starting point is very simple differential equations governing
wave propagation problems. Different wave applications are described.
More complicated and interesting w

¢ models and wave phenomena
follow. The presentation is done in a very deseriptive form, thus avoiding
technical details. Some current themes of research are discussed.

1 Introduction to modelling

It is very difficult to give a single precise definition for a wave (e.l. Whitham

31 pag. 3). Nevertlicless one can give examples. explain what is the physics
involved, express how the mather
how to solve it. If the analytical
problem mumerically.

Before we get started with waves, we define three levels of modelling: the
coneeptual (physical) model, the mathematical model and the numerical model.

wtical problem is formulated and possibly show

solution is hard to find, one can study the
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These are fundamental topics in Applied Mathematics. In particular in Scien-
tific Computing. In this paper we make a brief description about every one of
these levels of modelling, but we will focus on the “middle one”, that is, the

mathematical model.

We can find several different types of waves in Nature. As a few examples
we have surface water waves in the ocean or rivers [18, 31], acoustic waves [3,
8. 9] in the underground or underwater [5, 15]. biological waves [19], chemical
waves (19, 32], and even waves in football stadinms (“La Ola”). All these waves
are, of course, of different nature. In section 3 some specific applications are
presented. But note that they all have something in commom: some information
is being propagated (passed on). For example in “La Ola™ the information is
id up. raise your arms, and sit down”. By looking around one knows when
this information reaches them and therefore we see a very well defined wave
propagating at a very well defined speed. This is one the beantiful aspects of “La
Ola”. The information travels around a stadimmn in a pratically constant speed
and form. As we shall define below, this characterizes a travelling wave. This
does not happen for all waves. Note also that nothing is carried with the wave
but mformation. You do not have to hold on to your distracted friend to prevent
the wave from carrying him away!

Every hypothesis regarding the “real world version™ of a given type of wave
will be refered to as the conceptual model for the wave propagation problem.
Many times we refer to this as the physical model even when we are talking of
a biological or chemical problem. Commonly we abuse of the word physics.

This paper is structured as follows. We start in section 2 by defining what we
hematical model. In section 3 we present very simple equations
ruing wave propagation problems. This is specially motivated for readers
without a background in Partial Differential Equations (PDEs). As we move
along we try to present more complicated /interesting wave models and wave
propagating phenomena. We do this in a very descriptive manner in order to
achieve our main goal of motivating the reader towards mathematical aspects of

wave propagation. In the course of doing so we present some current themes of
research. We hope that our goals the references provided

are achieved and t
fill in the gaps of our presentation.

2 Mathematical modelling

model we can make choices regarding the mathematical
model to be used.  In other words, we select the mathematical object to be

Given a phy:

wmalyzed. As an extrememly simple example consider a physical model which
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tolls s that the velocity of an object is given by the function f(y, t) where y(t)

expresses position in time. The mathematical model (i.e. mathematical object
of interest) can be either the ordinary differential equation (ODE), together with
I condition,

d"(’) = f(y(t),t), ulto) = wo,

or the integral equation

ylt) = ylto) !~/ S(u(s). s)ds.

Note that in the integral equation formulation the initial condition has been
automatically imposed, since the integral vanishes at ¢ = fp. This equation is
obtained by integrating both sides of the ODE formulation. The same problem
has been “mathematically translated” in two different (but equivalent) ways (i.c.
two different mathematical objects). It is alwa
slation back to english. The back and forth Ir\nxl.mnn tends to enhance our
intuition regarding the model. For example the ODE model can be translated
a8 the velocity of a gwen particle (with its position represented by y(t)) varies

s very helpful to make the tran-

according to the particle's position and according to time. This means that if the
particle reaches the same position at different times, its velocity can be different.
This is clearly expressed (mathematically) by f(y(f). ). Note that the translation
of the ral equation would be different. Instead of velocity we have that the
posibion, i time, of the particle is updated by adding to ils initial position the

sum of all mstantancous velocities, up to the time of interest. This is what the
integral term tells us, iff we think of integration as summation,
We should point out that there are many numerical models that use the ODE

s methods

formulation. by approximating the derivative dy/dt. using Taylor
sueh as Euler's method, Runge Kutta, ... There are other numerical models that
wse the integral formulation and perform the mumerical integration by approxi-
wating fly(s), 5) by & polynomial in s (c.f. Trapezoidal rule, Adams Bashforth,
Admums Moulton,...). Details can be found in Burden & Faives [7). The inter-
pretation of the numerical integration method is that, ins
velocities, we use average velocities over small time intery
average distances travelled over each small time interval.

ad ol instanteanons

als, and add up the

o the next section we present some mathematical models for wave propaga-
tion and briefly describe some of their features and applications. Details of the
corresponding physical models will be omitted for brevity, but can be found in
the references given,
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3 Wave models and their applications
We start with the simplest of all mathematical wave models:

O e )

at
The initial condition (at time ¢ = 0) is the known function ug. The function
ug(x) represents the initial wave profile. The function u(z, ¢) represents the wave,
that is, the information being propagated. As mentioned earlier it can be water
clevation or the concentration of a pollutant ete...

In order to make our presentation simpler and quicker, we will “pull” solutions
out of nowhere and check that they indeed satisfy the problem of interest and/or
have the properties we are seeking. The techniques for constructing solutions can
be found in books containing partial differential equation (PDE) (4, 13, 14].

It is easy to verify that w(z, t) = ug(x — Ct) is the solution to the problem
above. First, at ¢ = 0, u(z,0) = ug(z —0). Finally by the chain rule, it is easy to
check that

du
uy = _u‘ where &(z,t) =z — Ct.
«
Take, for example, the Gaussian initial profile
ug(z) = e £

represented in figure 1. The formula for the solution shows that we have a tra-
velling Gaussian wave propagating with speed €. Note that at a later time
t = L/C. the wave has travelled over a distance equal to L without changing its
shape. Basically

_—/¥

S

Figure 1. Initial wave profile: ug(x) = ¢

the initial profile has been translated by this amount (ulz, L/C) = ug(x — L)).
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This is why it is called a travelling wave.
We can write another “one way” wave model, now for waves travelling to the
loft with speed €. The mathematical model is the wave equation
du Ci)u A
. dw
The travelling wave solution is of the form u(r, t) = ug(x + Ct).
Can these two “one way" models be used to construct a “two-way” wave
model? By two-way we mean a model that allows both right and leftgoing waves.
The answer is yes and is given by the second order PDE

0, u(z,0) = ug(x).

Ju

ot
d d dJ
CLTIT) (3’ -,v('s;) =0

I

u(x,0) = ug(x), (,0) = 0.

Figure 2. Initial water wave profile: mgu(r) = ~2re

Figura 3. Initial pressure wave profile: p{x.0) = tanh(~x/0.05).

For simplicity we have chosen that the second initial condition is zero. The
solution is of the form u(a, t) = 1/2(ug(x = Ct) + uglx + C1)). The initial profile
splits into half, with two identical travelling waves. one propagating to the left
amd another to the vight, both without changing their shapes.

The models presented above are called linear advection cquations. They are
also known as fransport models. The initial mformation uy is being transported
with velocity €. The mathematical models presented above describe several (very
sumple) physical models. We mention a few.

Lets change notation so that instead of u we write n(n,£) representing the
water elevation about the undisturbed level y = 0 of the ocean or of a river. In
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other words, the free surface of the ocean is described. in time and space, by the
expression y = n(x,t). In its
is

implest version, the evolution of this free surface
governed by the second order advection equation given above. Let the initial
condition be the wave profile given by ng(z). Then y = 79(z — Ct) represents a
travelling water wave moving to the right with speed C. In the example given in
figure 2 the wave has a depression ahead of it (where 7 < 0).

In another physical model the variable of interest is pressure and therefore we
change notation again and use p(xz,t), where py(z) decribes the initial pressure
profile. Pressure waves are of interest in Meteorology, where we commonly hear
about high/low pressure fronts and so on. An example of such a profile is given
in figure 3. Of course the true Weather models [12, 30] are far more complex
then the advection model presented here. Pressure waves are also of interest in
Geophysics, and are called acoustic waves. In this kind of application a pressure
pulse it sent into the crust of the earth (figure 4). The pressure pulse is similar
to the Gaussian presented in Figure 1. Through the properties of the reflected
waves geophysicists try to predict the existence of oil reservoirs in the subsurface.
The reflected waves, indicated in the figure by U(z,t), are generated because of
the changes in the properties of the earth’s crust. To incorporate this aspect
into the mathematical model one can use a variable propagation speed. In other
words, if z represents the depth into the earth’s crust, then we define C(z) as
the propagation speed depending on depth. Since we will have a downgoing wave
(the Gaussian pulse) and upgoing waves (the reflected waves) it is important to
use a “two-way” wave equation

Incoming
Wave

Stratified Medium py U

Figure 4. Acoutic pressure wave entering a layered earth crust.

(c.f. figure 4). The mathematical model, used in this kind of analysis, is presented
in the next section.
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To give another example, we mention one in environmental modelling. Sup-
pose that a factory has released a cloud of pollutant in the air. The concentration

given by and the initial configuration of the cloud is

of the pollutant i
¢olr). The cloud is “mathematically transcribed” as the function presented in
fignre 5. In this simple model we have a one-dimensional cloud of pollutant and
the pollutant concentration is (effectively) constant over the whole cloud. We say
cffectively because

R

Figure 5. Initial pollutant wave profile
co(x) = tanh((x — 1.0)/0.05) — tanh((x — 2.0)/0.05).

the change from zero to one is very fast. The three dimensional analogue of this
clond would be a rectangular block of pollutant floating in the air. Note that
in this one-dimensional model the cloud is at a fixed height. This height does
not show up in the model. This is an indication tha we are considering constant
winds over the vertical direction.

Now suppose that the worst wind observed in the area blows west-east with
constant speed C'. Again the simplest model is the advection equation

e e
= i Cgl_ =0, c(z,0)=co(z).

In this case the wind literally transports the pollutant and the solution is given
by e(z.t) = ¢o(x — Ct). In this model the shape of the cloud does not change as
it travels towards east.

Now let us contrast these lincar models with a nonlinear wave model:

o 0“: =0 (50)F =g (@)«

at

This important model is known as Burgers equation. It can be rewritten as

Ou  10u?
B () (1 0) =i (1)
9t " 2 0 (G0 tne)
The nonlinearity is clearly seen in the x-derivative term. The solution is given
implicitly r,t) = ug(z — u(z, t)t). 1t is easy to see that the initial condition
has been satisfied.

To check that ug(z — ut) satisfies Burgers equation. use the chain rule.

| —
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Figure 6. Linear (A) and nonlinear (B) waves.
The velocity at some points is indicated by the vectors.

This case is a little harder than for the linear equation. The nonlinear solution
is constructed by the method of characteristics [13] where we follow the orbit
x(t;z9) of a point located at x(0) = z¢ at time ¢ = 0. It can be shown that
indeed one should verify that wo(z — u(x(0),0)t) (or ug(z — ug(xo)t)) satisfies
Burgers equation. Observe that the propagation speed is given by the values of
the initial condition and therefore it varies from point to point. Lets us use the
water wave interpretation again, where the notation would be n(z, t) = no(z —nt)
representing the water elevation. In the linear case all points along the wave
profile move with speed C, and therefore the wave does not change its shape
(figure 6(A)). In the nonlinear case of Burgers equation the higher points of
the wave profile move faster than the lower points (figure 6(B)). Thercfore this
nonlinear wave is not a travelling wave. Moreover, for the example considered,
the wave will eventually break. When it breaks the derivative of our solution, at
‘al way. A numerical example
given in figure 7. We see a
seper and steeper. It

the breaking point, ceases to make sense in a cla
of a Burgers equation application to water waves i:
Gaussian pulse propagating to the right and becoming s
eventually breaks forming a discontinuity known as a hydraulic jump (bore). In
other applications, such as gas dynamics, this discontinuity is called a shock. The
oscillations along the wavecrest are due to the numerical method [21].

/
¢

ure 7. A nonlinear breaking wave propagation to the right.
The initial condition is given in the left, by the dotted-line Gaussian.

This is a typical behaviour of, for example, flood waves [25]. Two MATLAB
programs are presented in [25] modelling this situation. The model is such that it
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rains for 7 days at & point 500km upstream from a city. The x
shows a flood wave developing and breaking into a bore. Th

erical experiment
Burgers equation
model. and its related wave breaking behaviour, appears in other applications
such traffic flow [14], shock tube models [31] in oil recovery and so on.

Some wave models might come in the form of a system of PDEs. For example
the shallow water equations are

du a _
S 4igsl =0

o
a't’ hog “ - =0 @)

where g stands for the acceleration due to gravity, ho is the constant depth of
the region studied, w(z,t) is the horizontal velocity of fluid particles and n(z,t)
is the wave elevation as before. The solution will be a combination of right and
leftgoing waves of the form f(z + (gho)'/?t). The propagation speed depends on
the depth. If we differentiate the first equation with respect to ¢, the second with

spect to @, multiply it by g and subtr
equation in w(w,

ot them, we get a second order wave
t) as before, with G2 = ghy.

Now we might consider a wave in the presence of a diffusive mechanism.
Consider the linear, one-dimensional, advection- diffusion equation
de
=i c(@,0)F =co(®):
- (5,0) = cof2)
The diffusion coefficient is x. This type of equation is common in met
and environmental flows. It is uswally a prototypical equation for testing nu-

merical methods. The prototypical three-dimensional model is usually written
as

rological

de de
£ V; et =
ot U() My il Dz

4, 2,0) = col,y, 2)-

The wind velocity is given by the constant vector [U V, W], with U2+ V2 +W? =

O, and the transported scalar quantity ¢(z,y.z,t) can be, for example, the
concentration of a pollutant, or humidity. In Nachbin & Tabak (25] we have used
MATLAB to numerically solve the one-dimensional version of equation. We
consider a cloud of pollutant with concentration ¢(x,t). The initial cloud shape
is given by co(z). The wind blows the cloud to the right with speed C' and
the concentration of the pollutant decays

in time due to diffusion. The diffusion

Y i
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mechanism is similar to what happens when a drop of ink falls into the water. The
ink “cloud” starts spreading while its concentration decays. In the model above
the wind transports the pollutant cloud while it diffuses. Hence this physical
(mechanisms): transport and diffusion. The result of
a computational experiment is presented in figure 8. Note that the pollutant
concentration, in the cloud, decays as it is transported to the right by the wind.
Note also that the cloud is spreading due to the diffusion mechanism. This is
analogous to dropping some pollutant (e.g. oil) in a river, which flows downstream

model has two ingredients

with speed C.
As the square oil patch flows downstream, it slowly spreads while its concentration

Figure 8. A rightgoing wave in the presence of diffusion.
The initial condition is given by the “square pulse”.

VU e

Figure 9. A linear dispersive wave given by the Airy function.

goes down.

Another interesting mechanism related to wave propagation is called disper-
sion. This terminology is unfortunate since this type of dispersion has nothing
to do with the term dispersion of a pollutant, which is connected to diffusion.
This can be confusing at first. Hence it is very important to be aware in whick
context dispersion is being used. An example of a dispersive equation is the
(KdV) equation

inear

Korteweg-de Vries

As the wave propagates to the right it starts to develop an oscillatory tail behind
it. The solution resembles (and actually depends on) the Airy function shown
in figure 9. A more detailed description is given in Drazin & Johnson [11] (c.f.
exercise Q1.10 page 18) where the equation is rewritten with respect to a moving

frame of speed C' and turns out to be
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We have substituted in the original PDE the composite function w = w(x, 7) with
X = @ — Ct (the moving reference frame) and 7 = t. For initial profiles given by

7(x.0) = f(x) the solution is of the form

s -y

o 7)) = (37)~ AT === .

feainy= oy L G ((37)1/3) ./
sive wave equation (linear KdV) and the diffusive wave equation,
e, are not that different. Nevertheless the behaviour of their
solutions is quite different. One simple way to understand the difference between
the dispersive wave model and the diffusive wave model is by using Fourier modes,
that is, sinuseidal waves of the form

The disp
presented. e;

W@, 1) = T — gikla=c(k)D)

The time frequency is given by w = 2r/T, where T is the wave period. The
| spatial frequency is given by the wavenumber k. The wavenumber is defined as
k = 2m /A, where X is the wavelength. Hence & tell us how many waves fit in an
interval of length 27. The wave’s propagation speed is given by ¢(k) = w/k. If
we substitute this Fourier mode in the “one- way” wave equation we get

—iw(k) + Cik = 0.
We casily conclude that the propagation speed is independent of the wavenumber:
k
c(k) = NT) =C = constant.
If we perform the same substitution for the dispersive wave equation we get
w(k) = Ck — k?

and

(k) = C — k2.

The propagation speed depends on the spatial frequency of the wave. This is why
an oscillatory tail develops behind the propagating wave. Loosely speaking it is
like having slower components falling behind because they can not keep up with
the leading wavefront (c.f. Figure 9). Note that cach individual Fourier mode

WP N
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is a travelling wave. But any combination of 2 or more Fourier modes will not
generate a travelling wave since cach mode propagates at a different speed. They
will be out of phase.

For a diffusive model, the (mathematical) story is completely different. In
substituting a Fourier mode into the advection-diffusion equation we get that

w(k) = Ck — irk?.
Substituting back for the Fourier mode we have

—wt) _ e—nk2[ eik(@=Ct)

Now we clearly see the difference between a dispersive wave model and diffusive
wave model. For the diffusive model the propagation speed remains constant and
independent of wavenumber. But the wave-amplitude decays exponentially in
time. Again we do not have a travelling wave solution, but now for a different
reason. The rate of decay of the amplitude is given by the diffusion k. As we saw
before, the interpretation is that as a pollution wave (i.e. cloud) is transported by
the wind with speed C, its concentration decays exponentially. One hopes that
the decay of the pollutant’s concentration is fast enough so that when the cloud
reaches an urban area the level of pollution is not dangerous to public health.
We now make comments on a very famous wave model, namely the nonlinear
dispersive KdV equation:
an

Dt + 6n

This equation is a combination, to some extent. of Burg

equation and the dis-
persive wave model given above. To make this obvious it is sometimes convenient
to rewrite the KAV equation in the form

v p: 93

dn an %

i A e A B = ()

ot o Gl
When « is zero we have only dispersion. When /3 = 0 we recover Burgers equation.
In water waves the nonlincarity parameter o expres

cs the wave amplitude to
depth ratio. while the dispersion parameter /3 the depth to wavelength ratio.
Small values of # indicate that we either are in the regime of long waves or
(equivalently) of shallow channels. Thus we have seen that the KAV equation
can be written in different ways, depending on the choice of certain scales and
frame of reference. The first version above (Drazin & Johnson [11], page 21, with
u = —7)) gives place to a simpler integration process. The solution is of the form

Yai= &\
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and is depicted in figure 10. In this nonlinear dispersive model the travelling wave

R e o i T

Figure 10: A solitary wave 7)(x,0) = 1/2 sech? (x/2).

has a propagation speed that depends on
perfectly balanced by dispersion to give
ging its shape. Nonlinearity alone,

amplitude. Note that nonlinearity is
e to a wave that travels without chan-
een earlier, would lead to wavebreaking.
Dispersion alone would generate an oscillatory tail behind the wave. At the end,
the “dispute” between these two mechanisms (one “pushing” the wave forward
and the other “pulling” it from behind) leads to a coherent wave that retains its
initial shape.

Figure 11: An optical soliton v/

v,0) = sech(x) '®™*). The real part is present in
a dashed line and the imaginary part in a dotted line.The solid line
presents the amplitude envelope [t)].

This travelling wave solution was first observed by J. Scott Russel, while riding
his horse along the Edinburgh-Glasgow canal in 1834. He was impressed how a
“large solitary elevation” travelled forward with great velocity and “preserving
its original figure” (c.f. Drazin & Johnson [11] page 8). The Korteweg-de Vries
equation was then derived in 1895. This solitary wave is also known as a soliton.
Solitons are nonlinear travelling waves with special propertics. They appear in
different wave models. For example in nonlinear optics, modeled through the
nonlinear Schrodinger (NLS) equation. Let the amplitude envelope of an optical
wave be denoted by ¢)(z,t). The nonlinear Schrodinger equation is given by

o 0%
"ot

+2[|%p = 0,
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and the soliton solution by ([16, 27])

W(z,t) = a sech(a(w — 2bt)) lbrH@ =670,

Note that a and b determine the soliton’s amplitude and propagation speed
respectively. The meaning of amplitude envelope is clearly seen in figure 11.
This mathematical model is of current research interest, and therefore used to
study the transmission of signals at gigabit rates (10° bits (i.e. strings of ones
and zeros) per second) in fiber optics communications [6, 16]. The transmission
speed is determined by how closely the solitons can be spaced without risk of
overlaping at the end of the optical fiber.

a8’

0.6]

oaf

02!

% ) 40 3 00 100 120 140 160 180 200 280

Figure 12: An optical signal propagating to the left.
The information is sent in binary form: 11001001111000001101, left to right.

Overlap implies that the information in the received signal has deteriorated.
When this happens one can not distinguish between the zeros and ones repre-
sented by the solitons. An example of a short signal is given in Figure 12. The
fact that nonlinearity and dispersion are perfectly balanced allows the solitons
to travel for large distances without much of a deterioration of the signal. As
pointed out by Bronski & Kutz [6] experts in the field have been able to achieve
a remarkable 100-Gbit /s transmission over 6300km using 20 channels at 5Gbit/s

per channel.
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4 Wave models in inhomogeneous media

In the previous section we studied waves in homogeneous media. The me-
dinm’s properties did not change. As a result we had a constant coefficient
differential equation and also a constant propagation speed. In this section we
consider media with variable properties.

We start with a mathematical model for the propagation of acoustic waves in a
layered medium representing the earth’s crust (c.f. Figure 4). Let the velocity be
given by u(z,t) and the pressure by p(z, ), where the depth z points downwards.
The acoustic problem is governed by the system

Ju  Jdp
P(Z)E ar e
I Gl Gl

K)ot 0z
where p(z) is the density and K (z) the bulk modulus. The initial conditions
are

u(z,0) = up(z) and p(z,0) = po(2).

We express (mathemat

ally) that the inhomogeneous subsurface of the earth
is layered, by writing that its physical properties are (known) piecewise-constant
functions of the depth z. Namely

A= Py HOF iy = 2 A

B = iy s O | SRS

where z5 = 0 and the n-th layer is of thickness 2, — z,—1. The acoustic wave’s
propagation speed is given by ¢(z) = (K (2)/p(2))/2. In the c of a homoge-
neous medium p(z, ) = po and K (z,t) = Ko, both constants. It is easy to check
that the velocity and pressure travelling waves u(z,t) = f(z — (Ko/po)/?t) =
Pz )/ (poKo)'/? are solutions in this particular case. Note that this system of
differential equations is very similar to the one used for shallow water waves.

A very interesting phenomenon happens when the acoustic wave is pulse sha-
ped and broad, compared to the length of the layers. Most of the waves presented
i this paper are pulse shaped. For broad pulses different parts of the wave are
feeling different layers of the subsurface and therefore travelling at different spe-
eds. This problem is linear but very difficult to analyse mathematically. Several
research papers have been published in recent years, addressing this problem

| —
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L. 2. 10. 17. 29]. In some cases the thec involves the asymptotic analysis of

stochastic differential equations. This an s also has been carried out for wa-
ter waves [20. 22, 23, 24]. Without getting into details, we will describe one
interesting result.

Consider that, if needed, a layer can be subdivided into more layers in such
a way that the wave’s travel (or transit) time is the same over any layer. This
means that the time spent by any wave segment over any layer is constant. This
is called a Goupillaud medium. Now consider that, due to uncertainties in the
subsurface’s properties, we model p(z) and K~'(z) as a disordered function,
This means that their values are random. For example, we can take them to
be uniformly distributed in some interval. Hence for each layer we sample the
value of p, in the (pre-defined) interval [po — dp, po + d,] and the value of Ky
in [Ky! — 65, Ko + 0x). The study of the effect of fine scale layering on a
propagating pulse was initiated in 1971 by O’Doherty and Anstey [29]. They
gave a quantitative explanation of the pulse shaping in terms of the statistics of
the reflection coefficients for a Goupillaud medium. Pulse shaping takes place as
the wave interacts with the inhomogeneous medium and generates reflected waves.
These reflected waves also get reflected. This process is called multiple scattering.
The wave energy starts being spread over larger and larger regions due to the
multiple reflections. The mathematical theory shows that the multiple scattering
associated with the disordered microstruture, leads to the apparent attenuation
(or diffusion) of the propagating pulse. Hence the leading pulse is “shaped”,
by the microstructure, in a diffusive-like manner. The terminology apparent
diffusion is due to the fact that the mathematical model has no diffusion term.

%
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initial Gaussian pulse. Bottom figure: pulse under apparent

Figure 13: Top figur
diffusion. Multiply scattered reflection is seen behind the wavefront. The pulse has

I\
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travelled approximately (7100-250) * Az = 6850  0.01 = 68.5 units of length.

The acoustic wave model represents a conservative system of partial differen-
tial equations. One way of seeing that there is no diffusive term in the equations
is by eliminating the velocity from the system of differential equations. This gives
place to a variable coefficient wave equation for the pressure:

9 19} 1 ap\ _
- e 5 (5 ) =©

Notice that for a homogeneous medium (p and K constant) we recover the
second order wave equation as we know it. The surprising fact in the O’Doherty—
Anstey problem is that the pulse diffuses about its moving center due to the
disordered multiple scattering of the wave energy [1, 2, 10, 17, 26, 28]. O’Doherty
and Anstey’s motivation for studying pulse spreading was to explore whether the
scattering associated with fine scale layering in the earth could explain the ob-
served damping of seismic (acoustic) waves used in the oil-exploration industry.
A similar phenomenon occurs for water waves, when the topography is disorde-
red [26]. An example of this phenomenon is presented in Figure 13. Note, in
the bottom figure, that the pulse’s amplitude has decayed and that the pluse
is much broader than the original one (top figure). This is the apparent atte-
nuation geophysicists observed, connected to the pulse shaping described by the
mathematical theory.
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