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ABSTRACT. In the following paper, we present a brief and easily
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1 Introduction

The paper gives an introduction to the most basic mathematical foundations
of neural network theory and is essentially organized as follows. In Section 2 we
introduce the general concept of formal neurons which lead - in case that they
are combined - to the definition of formal neural networks. In Section 3, we
focus our attention on special learning algorithms, which are techniques in order
to make a given formal network suitable for concrete applications. We finish this
survey paper with some concluding remarks in Section 4.

2 Neurons and Neural Networks

Of course, if we want to deal with a formalization of real neurons and real
neural structures we must have an idea of what is basically going on there. We
will sketch the most fundamental mechanism in this context quite briefly and
refer to [1, 5, 9, 12, 15, 17, 20, 21, 24] for more details. As it is well-known,
the basic parts of a real neuron are the cell body (or soma), the dendrites, the
synapses, and the axon. Signals (may be chemically or electrically) reach a fixed
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neuron through thousands of synapses located at the cell body or at dendrites
connected with it. These signals coming from other neurons in the neighborhood
are collected and, in case that they are sufficiently strong in total, the neuron
itself fires along its single axon. Around the axon again thousands of synapses
are located which collect the signal and hand it over to some other neurons, and
50 on. In the following, we will formalize these basic information processing steps
and come to formal neurons and formal neural networks.

2.1 Formal Neurons

We start with a quite abstract definition of formal neurons from a mathema-
tical point of view, which has first been done in a more special setting by Warren
McCulloch and Walter Pitts [13] in the carly forties of the last century. In the
most easiest case of discrete information processing a formal neuron is nothing
else but the composition of two quite special functions (comp. also Figure 1):

Definition 1 In the discrete case, a formal neuron is a function £ : R* — R™,
which is given by the composition of a so-called transfer function T : R — R with
a so-called activation function A : R* — R defined as

k: R* 5 R™,
z = (T(A(z)), T(A()), - .. ,T(A(x)))4

Commonly used transfer functions are sigmoidal transfer functions T', which are
bounded functions satisfying the limiting conditions

lim T(¢) =a and lim T(¢) =b
£-r00

£-—00

with a < b (example: T(€) := 1/(1 + exp(—¢€))), morcover bell-shaped transfer
functions T',which are also bounded but satisfy the limiting conditions

lim 7(¢) =0 and lim T(¢) =0
£o00

£5-00

(example: T(£) := exp(—¢?)) and, finally, the identity transfer function T,
T'(§) := &. Popular activation functions are ridge-type activation functions

n
Apo: T+ E wiz; — O ,

i=1

radial-type activation functions
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T(A@@) =y

Figura 1: Sketch of a general formal neuron

n
Agp: oo p Y (wi—di)?
i=1

hyperbolic-type activation functions

n

Agp: o p[[lai = d)

i=1

or, in general, multi-linear sigma-pi-type activation functions

At TN D Z ‘lURH:Ii,.
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For the parameters appearing in the above definitions the following names are
used in the literature: threshold ©; weight vector or weights w; dilatation or

scaling parameter p; translation vector or difference weights d.

Finally, let us mention that in the continuous case (in contrast to the
discrete case) simply the input vectors 2z € R" have to be substituted by vector-
valued input functions z : B* — R" (accordingly, the output consisting of m
identical values y € R with y := T(A(z)) has to be substituted by m identical

output functions y : R¥ — R with y(t) := T(A(z(t))), t € R¥) and, moreover,
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differential and integral operators may be allowed for generating appropriate
transfer and activation functions. Summing up, in the continuous case a formal

neuron is nothing else but a function &,

Kk: Map(RF,R") — Map(RF,R™)
T (T(A(.’E)), (A () ,T(A(:r))),
with exactly the same building blocks as in the discrete case; especially, the same
names are used as in the discrete setting.

2.2 Formal Neural Networks

In general, in neural network theory and its applications it is the aim to figure
out some basic mechanisms in real neural structures in order to work with them
in as different disciplines as biology, physics, computer science, mathematics, and
others. From a mathematical point of view, a formal neural network can most
easily be introduced in the framework of graph theory.

Definition 2 Let G := (X, H,v) be a loop-free and multi-edges-free directed graph
with a finite non-empty set of edges X, a finite set of nodes H with HNX = 0
and an incidence mapping v : H — X x X. Moreover, for all edges v € X let
0" (v) denote the out-degree and 6~ (v) the in-degree of v. If we now define the
XCX andHCH as

sets

X:=X\{veX|d(v) 0 (v) =0},
H:=H\{heH|yh)e(X\X)x(X)\X)}

and assume that X # 0, then N,
N := (X, X,H,H,~),

1s called (formal) neural network. Moreover, we have the following notations:

o All elements v € X are called knots of N.

o All elements h € H are called vectors of N.

o All knots v € X, for which we have w € X \ X and h € H with y(h) = (w,v)
are called input knots of N. In this case, the vector h € H is called input vector of
N. A neural network N without input knots and input vectors is called a network

without inputs. , i
e All knots v € X, for which we have w € X \ X and h € H with y(h) = (v, w)

are called output knots of N. In this case, the vector h € H is called output vector
of N. A neural network N without output knots and output vectors is called a
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network without outputs.
o In case that the directed graph G gemerating N doesn’t have any closed paths,
N is called a feed-forward neural network; otherwise, N is called a feed-back or
recursive neural network.

Some additional remarks in connection with the above definition: First of
all, it is clear that the set of knots X and vectors H can be generated by different
loop-free and multi-edges-free directed graphs G. However, in general there is a
near at hand inducing graph with a minimal number of nodes and edges which
is usually assumed to be the canonical generator. The set of knots X precisely
consists of those nodes of G which are simultaneously start nodes and end nodes
of some edges of G. Roughly speaking, they are nodes which — due to the loop-
freeness of G - can be reached and can be left. All nodes v € X, which are
only start nodes, only end nodes or even only isolated nodes have been removed.
Going on, also all edges are taken away which only join pure start nodes with
pure end nodes and, therefore, would not have any connection with the remaining
knots in X. This process leads to the set of so-called vectors H.

) )

%
/

Figura 2: Topology of a general neural network

In the following, we will motivate why some nodes and edges of the given
graph G are dropped in order to come to the concept of formal neural networks.
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To do this, we take a look at a fixed knot v in N. Since 6% (v)-d~ (v) # 0, we may
assume that in v we have n vectors ending and m vectors starting. Making the

assumption that it is possible to carry some information over the given vectors
we can think of incoming information over the n vectors ending on v, some
information processing in v and, finally, sending the processed information over
the 1 vectors starting on v. Obviously, this is precisely identical with the general
definition of a formal neuron given in Subsection 2.1. Therefore, it should be no
surprise that the step from the pure topology of a neural network N to a dynamic
information processing tool consists in placing formal neurons in each knot v. At
this point, it also becomes clear why we assumed the directed graph G to be
free of loops and multi-edges: free of loops because a formal neuron only has free
inputs and outputs; free of multi-edges because a formal neuron only produces m
identical output signals and it therefore doesn’t make any sense to connect two
formal neurons with more than one connection vector in each direction. Summing
up, the complete dynamic behavior of such a neural network can be described as
follows: At the beginning, only the input vectors of N hand over some information
to the input knots of N (from now on also called input neurons), where the
information may be discrete or continuous. The input neurons process the given
information in the sense of formal neurons as defined in Subsection 2.1 and feed
the processed information across their starting vectors to the next neurons in
the network (or directly to the output). In this context, connecting vectors are
also called links or (formal) synapses. Of course, for this kind of processing it
sary to enumerate the neurons in the network in order to define when a
ing and generate its output.

is nece
neuron should take a look at its input, start proce
This so-called scheduling process can also be used to allow some neurons to work
in parallel in case that they don’t produce information which is needed by any
other neuron of the same update cycle. Moreover, in general each neuron i
allowed to access a small local memory where it can put in some information
which may be used in some later update step. This is essentially useful in case of
ch neuron is updated several times. Summing

recursive neural networks where
up, in case that a detailed scheduling has been defined in advance, after some time
the network sends output information across its output knots resp. output vectors.
Taking into account all these technical details (scheduling, local memory), from
a mathematical point of view a neural network N with formal neurons in each
on N,

knot is nothing else but a special realization of a func

R:R* - R",

in the discrete case, respectively,
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R: Map(RF,R") — Map(R*,R™),

in the continuous case, which again is simply called the neural network. In view of
the above definition we assume that the network N has precisely n input vectors
and m output vectors and that the network function R depends on the parameters
of each neuron and the scheduling process in a quite complicated form. Let us
emphasize that in the literature often no difference is made between the topology
N of a neural network and its final applicable realization in the sense of the
mapping R. Both are called neural network or shortly network and the context
has to be taken into account in order to figure out in which sense the term is used.
Moreover, in many cases it is quite difficult to give a compact closed form of the
mapping R; in these cases, the output behavior of the network is calculated step
by step following the given scheduling details. Finally, let us note that in contrast
to the deterministic dynamics sketched above also so-called probabilistic neural
networks are discussed in the literature. For networks of this kind, the update
rules described above are modified or even completely substituted by probabilistic
components, and, of course, the whole analysis of such a network has to be done
in a probabilistic framework.

Up to now, we only have sketched the so-called recall mode of a neural
network. However, such a mode only makes sense in case that the network has
been designed in order to give reasonable outputs for given inputs. Strategies
which make a network useful for concrete recall applications are called learning
modes. The learning mode of a neural network sets the parameters of each neu-

ron (and may even modify the topology and scheduling process) in such a way
that a specific behavior of the network is guaranteed for special input informa-
tion. In general, we distinguish between two different types of learning emes:
supervised learning and unsupervised learning. Supervised learning means that
a set of discrete or continuous so-called training elements

@,y e R xR™ , 1<s<t,
respectively,
(29, y9)) € Map(R*,R") x Map(R¥,R™), 1<s<t,

with correct input-output behavior are known and ma

v be used to configure the
network. In detail, in case of supervised learning the parameters determinating
the network function X should be set in such a way that the errors

Y =R@E@), 1<s<t,
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become as small as possible with respect to some given norm. Concrete realiza-
tions of supervised learning are - for example - the Hebb learning rule, the delta
learning rule, the perceptron learning rule, the backpropagation learning rule, the
hyperbolic learning rule, and, finally, the so-called learning vector quantization.
All these rules are discussed in more detail in Subsections 3.1-3.6.

In contrast to supervised learning a so-called unsupervised' learning scheme
only has access to some discrete or continuous input training elements

e R S

respectively,
() € Map(RF,R?), 1<s<t,

without any information in view of proper corresponding outputs. Therefore, a
reasonable strategy to adapt the network parameters is to make the network pro-
duce similar outputs for similar inputs (whatever that means in detail). Roughly
speaking, after unsupervised learning the network should act on inputs like

or even

Popular examples of unsupervised learning schemes are the Kohonen le-
arning scheme, adaptive resonance theory and the Oja learning scheme. These
learning schemes are discussed in some detail in Subsections 3.7-3.9.

Let us finally mention that for both, supervised and unsupervised learning,
again also probabilistic variants are discussed in the literature and should be

treated from a probabilistic point of view.

3 Special Learning Algorithms

In this section, we take a brief look at some very popular and intensively
studied learning rules in neural network theory. We start with some examples
of supervised learning (Subsections 3.1-3.6) and end up with some unsupervised
learning schemes (Subsections 3.7-3.9). Of course, we don’t claim any complete-

ness and refer to the literature for further learning schemes and extensions.
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3.1 Supervised Learning: Hebb Learning Rule

The Hebb learning rule is based on a neuro-biological proposition for the
s of learning formulated by Donald Hebb [4] in 1949, which now is the basis
ge number of similar learning schemes in neural network theory. Roughly
speaking, Hebb’s idea of how learning takes place may be formulated as follows:
In case that two neurons which are coupled by a synaptic link are often active
simultaneously, then the pre-synaptic neuron will get a stronger and stronger
influence on the behavior of the post-synaptic neuron. In other words, during
learning ptic links of simult ly active neurons are getting stronger.

In the following, we will give a formalization and a concrete implementa-
tion of the general idea of Hebb in connection with discrete two layer feed-forward
neural networks with ridge-type activation and identical transfer function in the
output neurons (comp. Figure 3 in view of the general topology of such a net-
work): In case that we present ¢ training pairs (z(*),y9)) e R* x R, 1 < s < ¢,
we set ©; := 0, 1 <j <m, and define

for 1 <i <nand 1 < j < m. For pairwise orthonormal training inputs z(),
1 < s < t, the neural network now performs perfectly on the training set, which
means

n
> wijel) = 4

1=1

for 1 <5 < mand 1 < s <t A neural network of this kind is called lincar
associator (trained by Hebb) and it reflects Hebb’s original idea of learning in
the following sense: Since in recall mode for given = = (x),... ,x,) € R" the

network calculates the corresponding output vector y = (yy,... ,y,) € R™ via

n
Y= Zw.,x. a1l S !y

=1

the weight w,; determines how strong z; can affect the output y;. In case that for

the s-th training pair (z(*),y*)) the so-called simultancous activity :r:ES)ys” in the
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Figura 3: Topology of a two layer feed-forward neural network

sense of a product is large, then the synaptic coupling w;; should increase appro-
priately; in case of being small the weight should be modified only moderately.
In this sense, the formalized Hebb learning rule basically reflects the original idea
of Hebb.

3.2 Supervised Learning: Delta Learning Rule

The delta learning rule (also called Widrow-Hoff learning rule) has been in-
troduced by Bernard Widrow and Marcian Hoff (23] in the late fifties of the last
century and may be seen as a special case of backpropagation learning for two
layer feed-forward neural networks with identical transfer function. In the fo-
llowing, we will sketch the general idea of delta learning in context of discrete
two layer feed-forward neural networks with ridge-type activation and identical
transfer function in the output neurons:

In case that we present ¢ training pairs (2, () € R? x R™, 1 < 5 < t,
the weights w;; € R, 1 <4 < n, 1 < j < m, and the thresholds ©; € R,
1 < j <, should be fixed in such a way that for all j € {1,... ,m} and for all
s € {1,... .t} the squared errors

s
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become as small as possible. Defining ¢ partial differentiable error functions
FO R g RM SR, 1<s<t,

by

2
m n
F(‘)(..Amu...‘@)j, = Z (q] - (Zw.,ffs) - @ﬂ) .
i=1
a gradient search algorithm for ﬁmling a local (or, fortunately, even a global)
minimm leads to the following update steps, where A > 0 is still a free learning
parameter to be set appropriately:
1. weights wy;, 1 <i<n, 1 <j<m:

wg.m) 1= wij — )\1“ ( <y Wiy -y O, ) TESP.
(nem) ek 22 ( Z m”,rk J)) .7?55)‘
k=1

2. thresholds ©;, 1 < j < m:

@Emvw) =0, — )\F(Qj)(,,,w,j, 8, O RN resp:

n
= (y?) - (Z“‘ki-"lk” i ("),)) ;
k=1

Of course, F,(Av:‘ and Fg’ denote the par
¥, )

(new) |
CH :

ial derivatives of F8) with respect to wj
and ©;. Applying the above strategy for all error functions F("), 1<s<t and
iterating this procedure is called delta learning rule or Widrow-Hoff learning rule.
In more detail, the above strategy is called on-line delta learning rule since each
error function £, 1 < s < ¢, is tried to be minimized, separately. In contrast,
we could also sumn over all error functions to come to a kind of total error function,
Fhi= Zi:l F)and try to minimize this function by means of a gradient descent;
method. In the literature, this approach is called off-line or batch-mode delta
learning rule. The on-line mode has the advantage that no weight or threshold
corrections have to be stored and that a non-deterministic presentation of the
training pairs is possible (stochastic learning). Its disadvantage is that after one
complete learning cycle with all £ training pairs it can not be guaranteed that the
total error F did really decrease (even for small A): in cach step, F®) in general
becomes smaller but the other errors FU)| 7 £ 5. may increase. Although, this
is a serious problem, on-line learning has proved to be quite successful and is
usually preferred to avoid the heavy computation and storage costs of off-line
learning.

(A
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3.3 Supervised Learning: Perceptron Learning Rule

The perceptron learning rule has been introduced by Frank Rosenblatt (18,
19] in the late fifties of the last century to improve some shortcomings of the
Hebb learning rule (see also [14] for a serious critical analysis of perceptron-type
strategies). Roughly speaking, the perceptron learning rule may be interpreted
as a kind of delta learning rule for non-differentiable transfer functions. In the
following, we sketch the general idea of the perceptron learning rule in connection
with discrete two layer feed-forward neural networks with ridge-type activation
and non-differentiable sigmoidal transfer functions in the output neurons:

Let T : R — {0,1} with T(¢) := 0 for £ < 0 and T'(€) := 1 for & > 0
be the transfer function for the output neurons. In case that ¢ training pairs
(2®),y®)) € B x {0,1}™, 1 < s < t, are presented to the network, the weights
wij € R, 1 <4< n, 1< 5 < m, and the thresholds ©; € R, 1 < j < m, should
be fixed in such a way that for all j € {1,... ,m} and for all s € {1,... ,t} the
S(lll}\l‘l}ll €errors

2
0
<y§s) - 7Y wigal? - Qi))
i=1

become as small as possible. To reach this goal, the perceptron learning rule
is defined as follows, where A > 0 is still a free learning parameter to be fixed
appropriately (sometimes set to 1 in the literature):

L. weights w;;, 1 <i<n, 1 <j<me

n
wf}"“” = wij + A (1/](3\) - T(Z uu.jx:_s) - G)J)) 15")‘
k=1

2. thresholds ©;, 1 < j < m:

,.
Ol ol =) <;uj" ~ (S wpgy) — (—)J)) .

k=1

Applying the above procedure for all s € {1,... ,t} and iterating as usual
is called perceptron learning rule. It can be shown that after a finite number of
iterations the above algorithm yields a neural network which performs perfectly
on the training set in case that for all j € {1,... ,2n} the two subsets
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Aj = {29 1<s<t A !/5") =IO}
Bji={a®|1<s<t A gi¥ =1},

of R" can be strongly separated by an affine hyperplane (convergence theorem
of perceptron learning). Of course, for practical purpose it is quite difficult to
figure out in advance whether a set of training pairs is strongly linear separable
or not. Therefore, this result is mainly of theoretical interest.

3.4 Supervised Learning: Backpropagation Learning Rule

Backpropagation learning is a learning rule based on the gradient descent
method and has first been used in connection with neural networks by Paul Wer-
bos [22] in 1974. In the following, we sketch the general idea of backpropagation
learning in context of discrete three layer feed-forward neural networks with rid-
ge type activation in the hidden neurons (comp. Figure 4 in view of the general
topology of such a network):

q=4

Figura 4: Topology of a three layer feed-forward neural network
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In case that a set of £ training pairs (), y8)) € R* xR™ 1 < s < t, should
be represented by the network, the weights gp; € R, 1 <p < g, 1 < j < m, and
wp€R, 1<i<n, 1<p<q, and, moreover, the thresholds ©, e R, 1 < p < ¢,
should be fixed in such a way that for all j € {1,... ;m} and for all s € {1.... ,t}
the squared errors

2
q n
y}s) — ngjT(Z w,',,:t:g") - 6y)
p=1

i=1

become as small as possible. In case that the transfer function T is continuously
differentiable and ¢ partial differentiable error functions
FO L RM™ xR xR — R, 1<s<t,

are defined as

m

2
q n
F("(--‘»’lw--~“‘w---~(')w") = Z .1/;"' = ngJT(Z“’ih'I:SS) -6 |,
J=1 p=1 i=1

then the classical gradient descent method for finding a local or even a global
minimum for each F)is given by the following algorithm, where A > 0 is still a
free learning parameter to be fixed appropriately:

1. weights g,;, 1<p<q, 1 Sj<m:

(new) | _ :
9pj = ’\F_rs;:)(--,y,,,, coy Wipy oy ©

bk

2. weights wy,, 1 <i<n, 1 p<q

1ew) |

u'f;v = Wiy — AR

Wiy

1 Opjis vy Wip,y -+

3. thresholds ©,. 1 <p< ¢

Qnew) . _
B RNISN  o  nh

Of course, the abbreviations [«';"J)y 1,.'5:’)’ el Fg’) denote the partial derivatives
A 'y e B o
of FI* with respect to gpj, ), ang ©,. Applying the above steps to all crror
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functions F*), 1 < s < t, and iterating in cycles is called backpropagation
learning or backpropagation algorithm (the name is motivated by the fact that
the errors F*), 1 < s < t, are propagated back through the network and are used
in order to update the network parameters appropriately). The algorithm and its
various modifications is one of the most popular and successful training tools in
neural network design. Of course, in view of on-line and off-line implementations
the same remarks hold as in case of the delta learning rule.

3.5 Supervised Learning: Hyperbolic Learning Rule

Hyperbolic learning applies to three layer feed-forward neural networks which
possess hidden neurons with hyperbolic activation functions and can be used in
case that the given training set comes from a multi-dimensional regular grid.
After training the network is able to interpolate or at least approximate the given
information on the respective grid. The learning scheme has been introduced
about 1990 by the author (cf. [11]; also [12], for more details). In the following,
we sketch the general idea in the most easiest two-dimensional case:

Let a three layer feed-forward neural network with hyperbolic transfer
functions in the hidden neurons be given and assume that a set of P? (P € N,
P > 2) two-dimensional gridded training pairs (x50, %) ¢ 0,12 xR, 1 <
k.l < P, is presented to the network with

KO (Kt Blig e
PCORRCORMCOY

(@ P-1T'P-1"

Then, the weights gy € R, 0 < k,l < P, the difference weights dy, dog € R,
0 <kl <P, and the (l_ila.t,ion parameters py € R, 0 < k,l < P, should be fixed
in such a way that for k,l € {1,... , P} the squared errors

Pw'P 2

ykb — Z Z T (prr H(fi“) = djkt)
i=1

k=0 1=0

become as small as possible. Here, T may be an arbitrary sigmoidal transfer
function. Now, if we y* =0, fork=0,k=P+1,l=00rl =P +1,
then the hyperbolic learning rule determines the parameters of the network for
all k,1 € {0,...,P} as follows:

» k
“am 2
Pl = (lf’—l) y dig = 2 doy = )
g =" gty _ (ki) o glertiry)

PN
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y. this learning rule is not iterative, which means that it is a
so-called one-shot learning scheme (real-time-processing). Moreover, in case of
a sigmoidal transfer function 7' : R — R satisfying T(§) = 0 for £ < -1/4
and T(€) = 1 for € > 1/4 the hyperbolic learning scheme fixes the network
parameters in such a way that the errors on the training set vanish (interpolation).
For general sigmoidal transfer functions satisfying only limg,_o T'(€) = 0 and
limg .o T'(§) = 1 we cannot guarantee interpolation any longer but only get an
approximation of the given data set by the induced neural network.

Obvious

3.6 Supervised Learning: Learning Vector Quantization

Learning vector quantization (for short: LVQ) has been introduced in the
literature by different authors about the late seventies of the last century (comp.
[17, 21, 24] for more detailed historical information) and is now used in a huge
number of quite different variants. By nature, it is intimately connected with
Kohonen learning (cf. Subsection 3.7) where the essential difference is that Ko-
honen learning is an unsupervised learning scheme while LVQ is supervised. In
the following, we explain the basic idea of LVQ by considering a simple example
(discrete case):

Let us assume that we have given a finite set of ¢ vectors z(*) € R*,
1 < s < t, a finite set of j cluster vectors w”) € R", 1 < i < j, and, finally,
a classification function f : {1,...,t} — {1,...,j}, which maps each vector
) identified by its index s on a cluster vector w!/) identified by its index
f(s). Here, in general j is significantly smaller than t and. obviously, f is used
to identify for each vector 2(*) a class which it belongs to, where the class itself
is represented by a cluster vector. During learning the cluster vectors are now
modified depending on the given vectors to be classified. In the simplest case, we
have the following update steps, where A € (0, 1) is still a frec learning parameter
to be set appropriately: In learning step s (1 < s < t) used to update w/() a
measure of the distances of 2(*) from all cluster vectors w®, 1< < j, has to be
calculated (for example, by means of angles, Euclidean distances, or something
else). In case that w/©) belongs to the set of cluster vectors with minimal
distance from z*) (consistent classification), substitute w(/(*)) by

W) g A — ) |

All other cluster vectors are not modified. In case that w/¢) does not belong
to the set of cluster vectors with minimal distance from %) (incons
fication), substitute w(/(5)) by

stent classi-
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W) — \(@l) = UGy |

Again, all other cluster vectors are not modified. Iterate this procedure several
times, make A smaller and smaller step by step, and terminate the algorithm, for
wse that the maximal distance between each vector to be classified
ve cluster vector is less than some given limit or a predefined

example, in c:
and its respec
number of iterations have been performed.

The LVQ-prototype sketched above has been improved and modified in
We only mention canceling of old or ge-

several ways during the last decades.
tion of new cluster vectors or a cluster-dependent non-global adaption of A.
Finally, let us note that it is obviously no problem to implement the above algo-
rithm in a neural network context. The main problem. which has to be solved,
is to calculate the given distance measure by means of appropriate formal neu-
rons. Of course, for the measurement of angles ridge-type activation functions
together with sigmoidal transfer functions are proper choices (remember that
angles between vectors are essentially determined by the scalar product of their
normalizations) while for dealing with Euclidean distances radial-type activation
functions together with bell-shaped transfer functions should be used. We omit
the technical details of a complete definition of networks of such type and leave
their concrete design to the reader.

3.7 Unsupervised Learning: Kohonen Learning Rule

Kohonen learning has been intensively studied by Teuvo Kohonen [9] in the
late seventies of the last century, but had been present in literature even earlier in
qui nilar formulations. As already mentioned, Kohonen learning is intimately
connected with learning vector quantization (see the remarks in Subsection 3.6).
Moreover, there
latter is
plast

1 connection to adaptive resonance theory in the sense that the
an extension of Kohonen learning in order to solve the so-called stability-
ity dilemma (cf. Subsection 3.8 for details). In the following, we sketch
the basie idea of Kohonen learning by considering an easy discrete class
problem:

cation

A finite set of ¢ vectors 2(¥) € R", 1 < s < ¢, should be classified, which
means that the

should be put into one of j so-called cluster sets, where j is
usually significantly smaller than £. For this purpose, first of all a set of cluster
vectors w'*)

€R

. 1< 4 < j,is randomly generated with each cluster vector
representing one specific cluster. Now, the modification of the clus
depending on the vectors to be ¢

sketch the most easie

ler vectors
sified is done in the following way, where we
ststrategy with A € (0.1) a free learning parameter to be
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set appropriately: Instep s (1 < s < t) to classify %) a measure for the distance
of #%) from all cluster vectors w(®, 1 < 4 < j, is calculated, for example, by
weans of an angle or by means of Buclidean distance. Put 2 into the cluster
which is represented by a cluster vector with minimal distance from ), In
I Ve
the cluster with minimal index. In case that the cluster vector representing the
proper cluster in the above sense has index 4, substitute it by
w® + A(@®) —w®) |

i.c., by a convex combination of the old cluster vector and the new vector assigned
to the cluster; all other cluster vectors are not modified. Iterate this procedure
several times, make A smaller and smaller step by step, and terminate the al-

case that there are several clus ors with minimal distance to (%), choose

gorithm, for example, in case that the maximal distance between each vector to
be classified and its respective cluster vector is less than some given limit or a
predefined number of iterations have been performed.

The above strategy is only the most simplest prototype of Kohonen lear-
ning and has been modified during the time in several ways. We only mention
the idea to modify more cluster vectors in each step depending on a so-called
neighboring function and the idea of not always updating a cluster vector in case
that it quite often realizes minimal distance (Kohonen learning with conscience).

3.8 Unsupervised Learning: Adaptive Resonance Theory

Adaptive resonance techniques have first been studied - among others - by
Stephen Grossberg and Gail Carpenter [3, 2] in the late seventies of the last
century. In this theory, which is shortly called ART, the neural networks should
be constructed in such a way that they are able to classify given input information
by its own. ART-strategics are intimately connected with Kohonen learning with
the most essential difference that Kohonen learning is set up using a fixed number
of clusters chosen in advance while ART is able to adapt the number of clusters
according to the given classification problem. This special feature of ART makes
a neural network solve the so-called stability-plasticity problem: The network
puts new vectors to be classified into proper clusters in case that they exist
(stability feature) and it generates new clusters in case that the given ones are
not sufficiently suited (plasticity feature). In detail, we sketch the ART-idea in
context of a most easy application (discrete variant):

A finite set of £ vectors #(*) € R", 1 < s < t, should be classified in
the sense already discussed in Subscctions 3.6 and 3.7. Therefore, step by step
so-called cluster vectors w) € R", i € R, are generated in some clever way. For
example, in case of given ¢ > 0 and A € (0, 1) this may be done as follows: In the
first step (s = 1) define w(") := 2 and j := 1. In step s (1 < s < 1) to classify
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9 4 measure of the distance of #) to all already defined cluster vectors w®,
1 < i < j. has to be calculated (for example. via angle or Euclidean distance).
e that the smallest distance calculated in this way is smaller than e then
sective cluster. In case that there a several cluster vectors

In
£*) is put into the re
with minimal distance take the one with minimal index. In case that the index

of the cluster vector fixed in this way is 7, substitute it by

w® 4+ A\(z®) — w®) |
i.., by a convex combination of the old cluster vector and the new vector assigned
to this cluster; all other cluster vectors are not modified (stability effect). On
the other hand, in case that the distance of the vector to be classified is larger or
equal than ¢ for all cluster vectors, then add a new cluster vector wl D) = () to

the set of cluster vectors and increase the index j by 1 (plasticity effect). Iterate
this procedure several times, make € and/or A smaller and smaller step by step,
and terminate the algorithm, for example, in case that the maximal distance
between each vector to be classified and its respective cluster vector is less than
some given limit or a predefined number of iterations have been performed.

Of course, during the years several modifications and improvement have
been introduced similar to those for LVQ and Kohonen learning. We omit the
details.

3.9 Unsupervised Learning: Oja learning Rule

This learning rule has been introduced by Erkki Oja [16] in the early cighties
of the last century. Roughly speaking, Oja learning is a special case of Kohonen
learning where only one cluster vector, the so-called principal component vector,
has to be calenlated and, moreover, a gradient descent method is used instead of
simple convex combinations. In the following, the general idea of Oja learning is
sketched in context of a simple discrete classification problem:

() € R"\ {0}, 1 <5 < t, a vector w € R*\ {0}
alenlated with minimal averaged distance from all given vectors. Here,
the distance should be given by the non-orientated angle between the straight
lines induced by w and @) going through the origin. This means, that the
vectar w € B\ {0} has to be chosen in such a way that for all s € {1,... ,t} the

For a finite set of ¢ vectors

should be

ratios

2

(w - a2 ; (;"'”5”)

(w - m)(.r(“T- .l'(“i &

[ER———
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become as large as possible. Defining ¢ partial differentiable functions
QW :R*"\ {0} — R, 1<s<t,

via

. s (w - x'®
QW (w) := o)

(w - w) (x(®) :

a gradient search for a (local) maximum of the functions Q") leads to the follo-
wing iteration, where A > 0 is a so-called learning parameter which can be set
appropriately:

wm®) = + X grad Q) (w)

with grad Q) (w) given by

2(w - ,E(")) (

2w 58 08 1 i R Gl
] (w29 (w - w) w)A

Applying the above update steps to all functions Q") 1< s < t, and doing this
iteratively is called Oja learning rule. Moreover, in case that w is normalized to
Euclidean length 1 after each iteration step, which implies (w - w) = 1, and in
case that the factor 2(x) . z())~! is ignored and thought to be covered by means
of the learning parameter A, then a simple form of Oja learning is obtained
which is often discussed in the literature. Finally, since Oja learning again is
based on a gradient descent method the remarks concerning on-line and off-line
implementations hold in the same sense as already discussed in connection with
the delta rule or backpropagation learning.

4 Concluding Remarks

In this survey paper, a brief overview has been given concerning the mat-
hematical foundations and the most classical strategies in the theory of neural
networks. Of course, being limited by about twenty pages does not allow to cover
all relevant and interesting topics. For example, Hopfield and Kosko networks
[6, 7. 10] (see also [h] for a more detailed treatment of networks of this kind) as
most popular rea ions of recursive neural networks could not be discussed.
Moreover, all recent studies in view of radial basis function networks and the
most interesting, but quite technical implementations of continuous information
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processing neural networks could not be included. In view of this and other mis-
sing topics the reader may take a look at one of the special and more complete
text and research books included in the reference list given below.
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