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Almost Periodic functions were invented by Harald Bohr, Writing about Ha-
rald Bohr, Ray Redhefler, (18], says “Bohr added to the theories of summability,
Dirichlet series and did important work on the zeta function; but his outstanding
creation was the theory of almost periodic functions. Although his proofs were
simplified by Weyl, Wiener and de la Vallee Poussin, practically all the results
were first obtained by Bolir himself. Bohl. sometimes names as predecessor did
al rarity-a

not formulate the main problems; and the theory is that mathematic
one man job™.

Harald Bohr was the younger brother of the physicist Niels Bohr. It was said
that you conld explain who Niels Bohr was to a Dane by saying he was Havald's
brother, and in the e

ol the world, one conld explain Harald Bohr by saying
he was Niels” brother. This was becanse Harald was a star forward on the 1908
Danish national soccer team which won the silver medal at the Olympic games.
(The best Denmark has ever done). When he defended his dissertation, there
were over 200 people present, most of them soceer fans. He was such an inspirving
lecturer that for his sixtieth birthday, his students composed a cantata in his

honor

» what are these almost periodic functions and why did Bohr invent them?
There are two motivations, the first was the Riemann zeta lunction
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is a Dirichlet series that for fixed > 1 is a convergent series in y which is a linear
combination of exponentials resembling a Fourier series but not with exponents
in the usual formn. It is an example of an almost periodic function. The hope that
the regularity exhibited by almost periodic functions might resolve the Riemann
Hypothesis has not materialized.

Another example is given in the Almagest of Ptolemy. It is a theory attributed
to Hipparchus and is called the method of epicycles. Let P be a planet or the
moon. The model of epicycles is shown in Figure 1.

Figure 1
The motion of P may be written as
r(t) = Tle‘“ i 7.261‘,11

7 are vectors, where p and X are real constants. When applied to the moon,
for example, this is not a very good approximation. Copernicus showed that by
adding a third circle one could get a better approximation to the observed data.
This suggests that if R(t) is the true motion of the moon then there exist vectors
7 and real numbers \; such that for all t € R,

(1) R(t) = > mjeht

J€J

The astronomer Bohl, mentioned above, began to investigate finite sums as
in (1). Unless the ); are rationally related (see the example below), the sum is
not a periodic function. It was Bohr who turned the question around. What
functions may be approximated in this way? What are the intrinsic properties of
such functions? For some history see the introduction to Bohr’s book (4].

To begin to see what such a characterization might look like consider the
function

P(t) = cost + cos V2t.
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Note that £(0) = 2 but F(t) < 2 for all other values of . So it is not
peviodic function. However, if € > 0 is given there ave many numbers 7 for which
F(7) > 2 —e. It is & number theory problem to construct them. It follows from
the uniform continuity of F and other considerations that if the graph of F is
translated by such a number, then the graphs will be close for all real numbers ¢.
For periodic functions, translating the graph by any multiple of a period results
in a match. For the above example this is almost true. This is basically the
definition of almost periodic functions. It extends this translation property of
periodic functions.

So now we begin with a complex valued function F which is continuous on
R. If € > 0 is given, consider the set of real numbers.

T(Fe)={r : |F(t+7)— F(t)] <e forall t € R}.

called the e-translation sct of F. We say that F' is an almost periodic
function if for every e > 0 this set is relatively dense in R, that is, there is an L
such that every interval of R of length at least L has one e-translation number
in it. L is called the inclusion length. For periodic functions T(F, €) contains all
multiples of the period so any L > period will work. So all periodic functions are
also almost periodic.

Using this definition, it is not particularly casy to show that the class of all
almost periodic functions, labeled AP is an algebra, that is it is closed under sums,
differences, products, scalar multiples and finally under quotients provided the
denominator has a positive lower bound to its modulus. One can consider vector
functions also in which case this class would be closed under scalar multiples and
sums. In both cases it is also closed under composition with functions that

This is

are

uniformly continuous on the appropriate closed domain.
The main results for AP are:

1. Bvery function in AP is bounded and uniformly continuous on R.

2. AP contains all finite sums (labeled as a trigonometric polynomial) of the
form

co

. The Approximation Theovem: If f is in AP and e > 0 is given, then there
is a trigonometric Polynomial p such that

[£(#) = p(t)] < e forall ¢ € R.
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4. For each f in AP there is a uniquely defined Fourier series

%
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Let us look for a moment at the Fourier series in 4. For ordinary Fourier
series

o
fre 3 e

j=-00
we know that the coefficients a; are given by the usual formula
o
aj =~ ft)e=tdt
—r

which comes from the orthogonal relations for the exponential functions.
In the AP case the orthogonal relation is given by the mean value. This is
given in property 5.

o

. For each f in AP there exists the mean value,
o il
Mif = Jim 7 [ pGo)as
1 fetT
As a matter of fact, M{f} = lim ~/ f(s)ds uniformly in a.
T-oo T [,
Now the formula for the coefficients of the ap function f is given by

a; = M{fe"™'} sothat the Fourier series for f looks like

s Z M{fe Ntehit,
!

6. The set of A; for which the mean value M{fe %'} 5 0 is countable, and
we have Parseval’s equation

MY =3 lajl*.

J
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The proof of these basic theorems may be found in a variety of places, see Bohr
Besicovitch (2], or Fink [I1]. The Approximation Theorem and Parseval’s
Squation are in a sense equivalent and the various approaches to the theory are
different. Sometimes the approximation theorem is proved first and some times
the Parserval relation is. The approximation theorem gives an easy proof for the
sums and products of ap functions being ap.

Since one of the applications of ap functions was to astronomy and generally
to differential equations, we might consider the simplest case.

Theorem 1. Consider the scalar differential equation
(2) y' = My + f(t)

where f is an ap function and M is @ nonzero constant. If Re(M) # 0 then there
is a bounded solution which is almost periodic.

Proof: 1t is easy to see that if Re(M) > 0. then the unique bounded solution of

(2) is given by

0
® w0 = [ Mg as

and that [y(t +7) — y(t)| < (1/Re(M)) sup |f(t +7) — f(t)].

Cousequently T'(y,€) D T'(f, Re(M)e). Since the latter is relatively dense, so
is T'(y,¢).
Thus y is ap. If Re(M) < 0, the integral in (3) is from ¢ to infinity.

If M = ia for a real, then the change of variable z = yei® reduces (2) to an
cquation of the form

(1) y' = F(t)
with F ap. The well know mathematician Kahane [5] gave the opinion that
Bolir’s most remarkable theorem was the following.

Theorem 2. If F is ap then any solution of (4) is ap if and only if it is bounded.

Bohr’s proof is lengthy and complicated. [ will give a proof below once we
have some more general theorems about ap functions.
The result of Theorem 1 can be extended to sy:

fems of differential equations.

Theorem 3. (Bohr-Neugebauer) Let M be a constant matriz and f be an almost
periodic function. Then all bounded solutions of (2) are almost periodic. If all the

Ve . oy
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eigenvalues of M have nonzero real part, then all solutions are almost periodic.

Sketch of Proof. The matrix M is similar to a triangular matrix T. If C-'MC =
T, then change variables by u = Cy. Then u satisfies a differential equation of
the form u' = Tu+ g with g almost periodic. Now one of the scalar equations
in this system is of the form (2) to which we can apply the above theorems. By
induction look at the next component.

There is a wide spread interest in almost periodic solutions to differential
equations since they tend to be the ones that are stable. For a long book on this
see Yoshizawa [19].

Solomon Bochner was able to find alternate proofs to the approximation the-
orem. These are used, for example, in the book by Besicovitch. In addition
Bochner [6] was the first to notice that there was another characterization of
almost periodicity that used concepts more usually associated with Analysis.

We would like to formulate this alternative definition to an ap function. Let
us introduce the notation f, for the translated function fs(¢) = f(t +s). So
that the number 7 is an ¢ translation number if || f — fs|| < € where || || is the
norm defined by ||f|| = sup]f t)|. We want to look at the family of functions

{fs|s € R}. I will prove that it is totally bounded. That is, given €, there are a
finite number of translates so that every translate is within € of one of them.

Proof If € is given and s is any real number than there is a number £(s) € T(f,¢)
in the interval [—s, —s + L], where L is the inclusion length of T(f,€). That is
|f(t+£(s)) — f(t)| < e for all ¢. Letting ¢ = u + s, we have that

|flu+s+1(s) — f(u+s) <e forallu.

This is the statement that fs, is within e of fs1¢(s) in the norm || ||. Furthermore,
0 < s+ £(s) < L. That is, every translate of f is e close to some translate from
the interval [0, L]. Since f is uniformly continuous, then there is a ¢ such that
|f(t+s)— f(t)| < e for all ¢ if |s| < &. So if z € [0, L] let nd be within & of z and
nd € [0, L]. Then sup|f(t+z) — f(t +nd)| = sup|f(u+z —nd) — f(u)| <e. So
every translate from [0, L] is within e from one of the finite number of translates of
the form nd. Now put the above two together and ones gets that every translate is
within 2 € of one of the translates nd. So the family { fs|s € R} is totally bounded.
In the complete metric sj of bounded functions on R with || || norm, total
boundedness of a set is equivalent to the closure being compact. Define H(f) to be
the closure of the family {f|s € R}. This is called the hull of f. This introduces
new functions. Let g be in H(f). Then there is a sequence t,, so that f(t+ t,)
converges uniformly to g(¢). Since sup |f(t + t,) — g(t)| = sup |f(2) — g(t — t,)|
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we see that f is the hull of g. In fact H(f) = H(g)-
We have proved half of Bochner’s Theorem, Bochner [6].

Theorem 4. A continuous function f is in AP if and only if H(f) is compact
in the topology of uniform convergence on R.

Proof. We need to argue that a function with H(f) totally bounded satisfies
Bohr's condition. Let € be given and pick a;,i =1,..., n for which f,; is an € net
for H(f). If 7 is a given real number, then for some () we have |f(t + ai(r)) —
f(t+7)| < e for all t. This is equivalent to |f(u+ T = air)) — f(u)| < € for all
w. S0 7 — a7y € T(f,€). If L = max|a;| then 7 — L < 7 —a;(r) <7+ L so 2L is
inclusion length for T'(f,€).

Corollary. AP is closed under uniform limits.
Proof We apply Bochner’s condition. If f, is in AP and converges uniformly to
g. then let || fy — g|| < e. Invoke an € net in H(fy). By the triangle inequality,
the same translates of g are a 3 € net in H(g).

One might ask if AP is closed under differentiation and integration. As abo-
ve we postpone the integration question but we can answer the differentiation
question now.

Theorem 5. The deriative of an ap function is ap if and only if it is uniformly
continuous.

Proof. If f'is in AP then it is uniformly continuous. For the converse, first

consider real f. Then f,(t) = n {f (I + ,l,) - f(l)} = f(t+4(t)) where |5(¢)] <

—. (A depends on 7 and ¢). By uniform continuity. this last function converges
llllnifurmly to f'(t) as n becomes infinite. But f,(#) is ap for cach n so by the
previous corollary, f' is ap. If f is complex. apply the real result to the real and
imaginary parts separately.

Let us return to Bochner’s condition of the previous theorem and formulate
it this way. The continuous function f is in AP if from every sequence t, we
can extract a subsequence #,, such that f(f + #) converges uniformly on R. For
purposes of typography for any sequence t = {t, : n = 1.2.... } we write Tyf = g
to mean that f(# +#,) converges to g. In cach case we will specify the type of

convergence.  So Bochner’s criteria means that from every

}quence £, we can

extract a subsequence t' so that Ty f exists uniformly.

As explained above, this compactness criteria is equivalent to the total boun-

dedness of the set of translates of f. Bochner and von Neumann [8], realized that
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this criteria would make sense for complex valued functions defined on arbitrary
groups. So there is a theory of almost periodic functions on groups where the
mean value can sometimes be given by a Haar integral. The almost periodic
functions on groups become important in representation theory. The elements of
a finite dimensional bounded representation become almost periodic functions.
See Maak [16] for details and a precise statement of the theorem. On a compact
group, the almost periodic functions are precisely the continuous functions. The
relationship between almost periodic functions and Fourier analysis on groups
may be found in Loomis [15].

Let us for the moment return to the notion of the Fourier series of an almost
periodic function as in 4. above. The coefficients in the fourier series are given
by the mean value formula and come from the othogonality of the exponentials
with respect to the mean value. The set {A\M{fe "'} # 0} is called the ex-
ponents of f. For periodic functions, this set is the additive group of numbers
generated by the exponential with smallest positive period. For general almost
periodic functions we consider the smallest additive group which contains all the
exponents. This object is called the module of f and is denoted by Mod(f).
This is a natural object. Thus, if we consider the product of two almost periodic
functions we might expect that the fourier series is the formal product of the two
fourier series. The exponents in the product become linear combinations of the
exponents of the individual functions. For example, in taking the powers of an
almost periodic function the exponents will be contained in the Mod(f) so we
expect that if we take a composition of f with a uniformly continuous function,
the smallest set where we will be sure that the exponents lie is Mod(f). The
following theorem is an important one in the theory of almost periodic solutions
to differential equations. (See [11, page 62].)

Theorem 6. The following statements are equivalent for f and g in AP:

. Mod(f) > Mod(g).
2. For every € > 0, there is a 6 > 0 such that T(f,8) C T(g,€).

3. Tif exists implies Tyg ewists (in any sense, pointwise or uniform on compact
sets or uniform on R).

For example it follows that for the differential equation (2), the statement
after (3) shows that the solution of the differential equation y has Mod(y) C
Mod(f). In particular, if f is periodic, then y is periodic of the same period.
are difficult to work

Both Bohr's and Bochner’s criteria for almost periodic
with. For example there are no theorems in Analysis which give the uniform
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convergence of functions on B Bochner (7] in a brilliant paper addressed: this
difficulty and showed that the following is an cquivalent definition of almost
periodicity.

Bochner’s second criteria. A bounded uniformly continuous function on R is
almost perviodic if and only if from cocry two sequences o and 3 we may cxtact
common subsequence o' and (3 such that

(5) Toraf = TaTsf
pointwise. Common sequences means the same choice function so that o + f3'
is a subscquence of o + 3.

Loosely speaking, sequences of real mumbers act on f by the 7" operation in
a group manner provided one takes the appropriate subsequences. In (5) the

left hand side is a single limit and the right hand side is an iterated limit. The
importance of the criteria is that it is pointwise. In fact. for almost periodic
functions the convergence is uniform on B, but as a sufficient condition it only
h
viewing the differential equation (2) again. Any bounded solution y (if any) would
antomatically have a bounded derivative. That means that if # is a sequenc
any inter:

to hold pointwise. For differential equations. the importance can be scen in

, for
al [=n,n] one can extract a subsequence t of ¢ so that Tyy exists
uniformly there (Arzela-Ascoli). By a diagonalization argument, one can obtain
a subsequence s of ¢ for which Ty converges uniformly on any compact subset of
. From this it would follow from the differential equation that the limit of this
function is a solution of the equation (2) with f replaced by 7. f.

With the above ¢ Wph we
are ready to prove the theorem on infegration. A proof that some call a swindle.

iteria_ and the observations of the previous para

Theorem 7. An indcfinite integral of an almost periodic function is almost
periodic if and only if it is bounded.

Proof. Recall we are talking about a hounded solution of the diffevential equation

(6).
(6) Y =

Fix one such solution calling it /. The gencral solution of the differential equation
is given by £ + ¢, ¢ a constant. We are assuming that £ is hbounded. We choose
¢ 50 that £+ ¢ has infimum —¢ and supremum o for some pos
solution i
and i

¢ a. Il this
ap then so is /. For veasons of typography we may assume that ¢ = ()
ssume that F' has this property. This means that among

all solutions of (6).
I has the least norm. Furthermore. no other solution has the

UNe Norn. i.c.

Ve oo\
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Fis the unique norm minimizer of the solutions of (4). Let this norm be a(f).
Now consider any equation in the null. Let g € H(f) by T, f = g (here this can
be uniformly on R). By the argument above there is a subsequence of ¢ called s
by which 2z = T, F exists and z is a solution to 2’ = g.

So first of all, each differential equation in the hull has a bounded solution.
Apply the above argument to get a solution z(g) with minimal norm as arranged
above for the original equation y' = f. Let the norm of this solution be a(g).
Now comes the fun part. Since each value of z is the limit of values of F, the
norm of z, [|z|| < a(f). By minimality, ||z|| > a(g), so a(f) > a(g). Since the
argument is symmetric and f is in H(g) we can argue the reverse inequality and
arrive at a(f) = a(g). So all the minimal norms of equations in the hull are the
same. Since ||z|| = a(g) it must be that z is the minimizer of the norms of the
equation 2’ = g. Minimal solutions go to minimal solutions.

Let o and 3 be arbitrary sequences, we take common subsequences o' and
B to get Ty f = g, and Tyy = z to exist, then further common sequences
" and " of o and ' to get T,ng = h and Tprz = w to exist, all of these |
uniformly on compact intervals so that z is a solution of 2’ = g and w' = h. We ‘
finally take another common sequence a* and 8* of o and " so that Ty- 4 f
and T,-45-y = z exist. But since f is almost periodic, we have by Bochner’s
criteria that Ty 3-f = h = Ta-Tp- f. Then it follows that w = T,-Tg-y and |
z are both solutions of the same equation y' = h and they were arrived at by |
translation. Since minimal solutions go to minimal solutions, both w and z are [
minimal solutions. By uniqueness they are the same, that is y satisfies Bochner’s ‘
criterion and is almost periodic. This completes the proof of Bohr’s theorem.

There are theorems which make the relationship between the ap function and .
its Fourier series more precise. We give several examples.

1
Theorem 8. If the Fourier czponents of an almost periodic f:mztion are linearly |
independent, then it is absolutely summable, that is, if f(t) Za] "™ then ‘

|

> lajl < .
J

Theorem 9. If the Fourier exponents of f all lie in the interval [—a,al, then
f may be extended into the complex plane as an entire function. Thus f' is an
almost periodic function and furthermore we have the estimate ||f'|| < allf||-

Theorem 10. If no Fourier exponents of f lie in the interval [—a,a] then
/ f(s)ds is in AP. There is an absolute constant D so that if g is the par-
ticular integral of f with mean value 0, then ||g|| < (D/a)l|fl|-

——
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The proof of Theorem 10 may be found in Bohr's book [4] and Theorems 8
and 9 appear in Fink [11] and elsewhere.

There are other classes of alinost periodic functions that are of interest. If the
Fourier exponents of f have a finite basis over the integers, then f is called quasi-
periodic. That is if there are numbers a;,7 = 1,2,..., n so that every exponent
A is a linear combination

n
A= E Ajaj, integer a;
1

then f is quasi-periodic. Quasi-periodic functions are important in the applica-
tions to mechanics. Loosely speaking, the dimension of the graph of a solution of
a system of autonomous differential equations is equal to the number n of number
of basis elements. See Cartwright [9] for this result. Formal integration of the
or series of a quasi-periodic function leads to the “small divisor problem”.
This is because when one tries to solve an equation with the Fourier series one
must (as explained above) look at the entire group generated by the ;. But these
numbers are dense in the real numbers except for the periodic case. These are the
numbers that appear in the denominators of the formal integral of the Fourier
series, so convergence of the resulting series is in doubt. A nice introduction is
given by Moser [17].

There is a corresponding concept of almost periodicity in topological dynamics
and symbolic systems, but we will not pursue that here.

For other expositions of Almost Periodic Functions, see Cordenanu [10] or
Zaidman [20] for functions in abstract spaces. Amerio and Prouse [1] deal with
almost periodicity in spaces used to solve partial differential equations. For anot-
her book on almost periodic differential equations see Levitan and Zhikov [14].
For a paper on the various definitions of almost periodicity see Fink [12]. For mo-
re historical perspective see the introduction to Bohr’s book [4] or the Collected
Works [5].
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