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1 Introduction

Linear differential equations are used in a number of areas of science and
technology, in order to describe phenomena which are close to an equilibrium

state. If the coefficients in the differential equation are constant functions, then
the solution of the differential equation can be expr

d in terms of elementary
functions, for example exponential and trigonometric functions. However for
more general variable coefficients, the solution is written in terms of integrals,

t of

which may be difficult to compute. For a complete introduction to the subjc
ordinary differential equations, we refer to (1].

symptotic analysis allow one to find elementary formulas
which give an excellent approximation to the solution in cel

The methods of

ain limiting ca:
In this paper we consider the behavior of solutions when the independent variable
t approaches infinity. For lincar differential equations whose coeflicients approach

i solution

a constant, we show that the solution is well approximated by the exac
of the correponding equation with constant coefficients.

2 Asymptotic Solutions of First Order Linear Equa-
tions

We can solve a first-order linear equation in terms of two integrations. If these

integrals can be performed by calculus, then we have an explicit solution and no
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further analysis is nec ry. However in many cases these integrals do not result
in clementary functions, so that we must resort to other methods to study the

solution.

In this section we study the behavior of the solution of the first-order linear

cquation

' = p(t)y +q(t) y(to) = yo (1)
when t — ~c. where p(t) and ¢(t) tend to limits when t — o . We expect that
the solution will resemble that of the same equation when p(#). g(#) are constant:
p(t) = p. q(t) = q.

The method of integrating factors tells us that the general solution of (1) can
be obtained by first multiplication of both sides by a suitable chosen function.
This allows us to solve an equivalent equation in which p(t) is replaced by ze-
ro. Then the general solution can be obtained by a single integration. We will
illustrate this below for the case p(t) = p, ¢(t) = q.

In this case we multiply by e ”* and perform the integration. This leads to
the explicit elementary solution formula for p # 0:

y(t) = yoe’'=") 4 (q/p)[ePt 1) — 1) p#0,
[n case p = 0 we obtain y(t) = yo + q(t — tp).

The three cases (p > 0, p = 0, p < 0), present different intunitive pictures.
Iu case p > 0, the solution is proportional to an exponential function e, which
tends to infinity, plus an additional constant. We can express the asymptotic
behavior by dividing by ¢, to obtain a limit. In case p = 0 we have linear
growth, whereas in case p < 0 we have convergence to a steady state. The
mathematics is deseribed as follows:

i) p>0:  limp, ut _ (yo + "1’)(, Mo,

P

I e

¢ p = 0 the asymptotic form is even simpler, since the solution is a linear
funetion of ¢ and so

E g g U .
i) p=0: limy_, UT =
Finally. in case p < 0, the exponential function tends to zero. so that
i) p<0: limyynoy(t) = - ;1,

In other words, either we have exponential growth, linear growth or convergence
to a constant. In what follows we will show that the same conclusions apply in
the case that p(t).¢(f) are non-constant.

We will frequently use the notation f(t) = O(g(t)).t — ~c. whose precise
meaning is that there exist constants 7' > 0, M > 0 so that |f(#)] < M g(t) for
allt > T




Asymptotic Solution of Linear Differential Equations

2.1 First-level asymptotics for constant coefficient

I this subsection we obtain the first approximation to the solution for large
time in case p(t) is a constant. The results to be proved are stated as follows.
Theorem 1 Let y(t) be a solution of the first-order linear differential equation
y' = py + q(t) where the function q(t) is bounded: |q(t)] < M,t > ty. Then the
solution has the following asymptotic behavior:

i) p>0: limp, %‘Iy]‘ = (', a constant.
i) e 0 e limion @ = qo, provided that limy,~ q(t) = qo.

i) p<0:  limp,oy(t) = —% , provided that  limy, q(t) = qo.

Before giving the proof, we note that in every case the solution is obtained by
“Pt. When we multiply the equation by e Pt we

means of the integrating factor
obtain an equation which we can solve by one integration and write the solution

in the form

y(t) = y(to)e!=10) + [} ePl=g(s) ds. (2)

Proof. We consider separately the cases p > 0,p = 0.p < 0.

Case i: p > 0: Referring to the general formula (2). we see that the improper
integral l,“ o Pqls)ds is convergent, so that we can write

t 0 0
/ e Pg(s)ds = / e Py(s)ds — / e Pq(s) ds.
to St Ji

The second term is O(e "), 1 —» 00 and we have the asymptotic representation

1
v _ C+ 0(e M), (@

ont

x
= y(to)e ' */ e "g(s)ds.
to

Example 1 What is the first-level asymptotic approrimation of the solution

of the equation y' y + 4 + sin 2t with the initial condition y(0) = 3.
Solution. In this case we have fg = 0.p = 3 and the improper integral can
be computed explicitly as [

e W sin 2s ds

13. The first-level asymptotic
[(B+2/13) + O(e ).t 5 2 o

approximation is y(t) = ¢'

Case ii: p = 0: In this

ase the solution of (1) is written as the integral

1
y(t) = ylto) +/ q(s) ds.
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If ¢(t) has a limit go when & = oo, thew (1/#) I”" q(s)ds has the same limit and
we can write liny o ¢! ’::. q(s)ds = qo and we have the asymptotic formula
y(to) = tlgo + €(£) where €(t) = 0 when t = o0 and where we have incorporated
the initial condition into the term ¢(f).

Case iii: p < 0: In this case we wrile the solution formula (2) as
y(t) = y(to)eP="0) + I,i‘ P=g(s) — qo) ds + qo j,l" eP(t=9) s,
The first term tends to zero and the third term can be explicitly evaluated to

see that it tends to —gg/p. It remains to show that the second integral tends to

zero. Given e > 0. choose 7' so that |q(s) = qu| < €|p| for s > T and write

f‘f) "= [g(s) — qo] ds = ]“l) = g(s) = qo) ds + f,' =) [q(s) — qo) ds.

The first integral is over a fixed interval and the integrand is less than an
constant times e, which tends to zero; therefore the integral tends to zero when
t = co. For the other integral we have

Jre?=9la(s) — qol ds < elp| fe?!=ds = e(1 —e?=T)) < e,

This completes the proof that limy_,~ y(t) = —qo/p-
Example 2 Find the first-level asymptotic approzimation of the solution of the
cquation y' + 3y =4 + l—r”f
Solution. In this case ¢(t) = 4-+1/(1-+#?) so that ¢y = 4. Therefore the first-level
asymptotic approximation is limy_, y(t) = % .

In this sub-section we have given the first-order asymptotics of the solution
when ¢ = oc. If no further details ave known about g(t), there is little that can
be said about a more detailed asymptotic formula for the solution.

2.2 Higher-level asymptotic expansion

In case more details are available about the behavior of the function g(£).
we can obtain more details about the solution y(#) when # — 0o, Again we
consider sepacately the cases p < 0,p = 0.p > 0. In every case we asssume that
the function g(#) has the form

at) =qo+ L+ W+ O(ehr)  t—> o
For example. if g(2) = (4 4 1) /(2 -+ 1), then g(1) = 1+ 2/t + O(1)12),t — .
Asymptotic expansion in case p = 0:

es the

In case p = 0 we define V(1) = y(2) - qof — qiInt. Then ¥ satis
equation Y = g(t) — g — (@1 /t) = O(1/1?). 1 — ~. Hence the improper integral
oxists, call it I,: Y'(1)dt. We have proved that

ylt) = qof + qi Int -+ C + O(1/t), t — oc.
In order to obtain further terms in the asymptotic expansion we write
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) == [1% + - + B + O(=7)] ds.
Each of these integrals is elementary and we finally obtain the result.
y(t) = qot +quInt +C - % — &y — ... — ¥ £ O(), t — oo.
Example 3 Find the first three terms in an a pansion for the soluti
of the equation y' = l—-il-{"t — 0.

ymptotic
Solution. In this case we have qo = 0,q; = 0,g> = —1,q3 = 0,g4 = +1. Thus
(= fow q(8)ds = 5 and y(t) =% — % + 3—23 +O(;!;) .

Asymptotic expansion in case p > 0:
We now discuss the case p > 0. Following the analysis of the previous sub-
gaction, we must analyze the integral
ft‘o e7Piq(s)ds = [ e Piq(s)ds — [ e Piq(s)ds.
The first integral is a constant, mdcpendenc of t. To analyze the second integral
we use the hypothesis on q(f) and do each term separately. Thus

00 =Pt na T o0 ] =Pt
y ‘—,;——— i dd(”’, M= ;T,;e" 3 0l ;Ef;—;yds.

This can be repenbed tio obtain additional terms containing higher powers. In ge-

neral, the coefficient of t=" will contain terms involving the coefficients gy, ... ,qn.

The resulting expansion is written as

y(t) = Ae?* + Co + G + - + ¥ + O(75),
where the constants A,Cp,... ,Cy arve obtained from the above procedure. We
illustrate with an example.

Example 4 Find three non-zero terms in the asymptotic ezpansion of the solution

of the equation y' = 3y + mﬁ — %0,

Solution. From the above discussion, we must integrate by-parts:

00 =0 1 [ 1 e
/; mds = -_5/,. md(n )ds

i " 1 /' e .
e e e —_—ds
30+ 3), T+9)?2
The new integral can again be integrated-by-parts with the result

00 =04
li Ty 48 = (|+1) ifl "1"
Combining this and simplifying yields the eu«ymptotlr vxpnnslon
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S 1 1 1
u(t) = ¢"[yo + : ki
o ’

Eomip s .
PP bl v T

The remainder terms can be put in the standard form of ascending powers of 1/t
by expanding 1/(1+1) = 1/t = 1/t>+ O(1/t*). 1/(1 +)* = 1/£2+ O(1/t*),t = 00
with the final result

y(t) = ¢
Asymptotic expansion in case p < (:

It is also possible to obtain an asymplotic expansion in case p < 0. In order
to determine the form of the expansion, we first note that for any monomial term
1/s*, we have

Ji et kds = =L i Ld(ert=") = —oi + Oz)-
When we apply this to each of the terms in the assumed expansion of g(s), s = oo,
we find that the solution has the asymptotic expansion

y(t) = yo+ U 4+ B+ O(5r)-
The constants yo.yy.... can be found by substituting this into the differential
cquation and equating coefficients of ¢ .1 2, ete. This leads to the equations

Y =G0, PN =G, Y Epge =@ 2yt pys =as..
These equations can be solved for yy. 1, y2, . .. to obtain an asymptotic expansion
of the solution.
Example 5 Find an asymptotic cxpansion of the solution of the equation y'+3y =
|
= b — 00.
Lt

Solution. The right side of the equation has the asymptotic expansion

bbbtk () + ]

1 1
e e

This leads to the eq

ations 3yp = 4,3y; = —4, —y + 3y = —4. ~ya+ 33 =
and the asymptotic expansion

Y(t) =5 = 4+ o+ e +O(h) o
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2.3 First-level asymptotics for variable coefficient

In the previons sub-sections we have determined the asymptotic behavior of
the solution of the first-order linear equation (1) in case the coefficient function
p(t) is a constant. In order to formulate the results in the more general case of
variable p(t). we first introduce some notions regarding exponential growth.
Definition A function f(t),t > to is strongly erponential with exponent p if
Ili_u‘n e P f(t) exists and is non-zero.

Example 6 f(t) = 4e* + 7e* is strongly exponential with p = 3.
Definition A function f(t),t > to is weakly exponential with exponent p if
lim ¢~ 'log | f(t)] = p.
o0
Example 7 f(t) = t’¢” is weakly exponential with p = 5 (but not strongly
exponential).

We now formulate and prove a result which is valid for the general first-order
linear equation y' = p(t)y + q(t). The proof below can be omitted without loss
of continnity.

Theorem 2 Let y(t) be the solution of the first-order linear differential equation
y' = p(t)y + q(t) where the function q(t) is bounded: |q(t)| < M,t > to, and the
Junction p(t) has a limit: limy_, p(t) = p. Then the solution has the following
asymptotic behavior. .

)p<0: lim,oy(t) = q,:—',l)l'(lvidc(l that limy .~ q(t) = qo.

ita) p > 0: There exists a solution Yy(t) which is weakly exponential with expo
nent zero.

All other solutions are weakly exponential with exponent p: limy_, o0 ww =p.
ith) p > 0: If, in addition the improper integral f,“\(]n(l) — p)dt < oo is conver-
gent, then all other solutions y(t) are strongly exponential with exponent p.

i) p = 0 : Every solution y(t) is weakly exponential with exponent zero. If, in

addition the wmproper integral ',:u p(t)dt is convergent. and limo q(t) = qo,
then limy ., L‘,—') =qo.

Proofs: In case i), we can reduce to the case p(f) = —1 by a simple change of
independent variable. If we define 7 so that 7/(£) = —p(t), and Y(7) = y(t),
then the new function Y (7) satisfies Y’ = =Y + q(1)/p(t). Appealing to the

result in section 2.3.1, we conclude that limg ., y(t) = limy . q(t)/p(t) = qo/p,
as required.
In ease i), we appeal to the solution formula by integrating factors:

ulto)+ [, =(s)qls) ds
s [t .
y(t) = ~
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where 71(f) = ¢ 1" From the hypothesis. ¢~ " log 7 (t) = —p < 0. in parti-
cnlae 7(2) = 0. Let the solution Yy (#) be defined as

y N m(s)gls) ds
Yo(t) = —"_%(_‘

Clearly the integrals are convergent and the function Yg(2) satisfies the first-order
lincar equation. Given 0 < € < 2p, we can find tp > 0 so that e~ P ¢ p(4) <
e~ (P=</20 for t > ty. Thus for t > tg.

| [ w(s)als) ds| < M [° et/ ds = Q=2

p-c/2
Combining this with the lower bound for x(#), we have for t > tg,
[Falt)] < e,
which was to be proved. Now the general solution of the equation y' = p(t)y+q(t)
is written | . -
ylt) = 555 +Yo(t) = 5 (C+Yo(O)m(D)) (3)

where
C = ylta) + [ m(s)als)ds.
Note that € # 0 if and only if y(t) # Yo(t). The first term of (3) satisfies
limpeyoo t= " log ?(LIT =p.
The second factor has a nonzero limit, provided that € # 0. Therefore we
conclude that limg " log [y(t)| = p. as l(‘quiuwl
If. in addition the improper integral / (p(t) = p)dt is convergent, then we

cin write [,'] pl(t)dt = p(t — to) + L(1), wlwn' ling -~ L(#) exists. The solution is
written

e Py (1) = MO (1) + [} m(s)a(s)ds)

It " # 0, then the right side has a non-zero limit, which proves that y(t) is
strongly exponential with exponent p.

In case iii) p = 0 and we can apply all of the above steps to conclude
t "loglu(t)] = 0. thus weakly exponential with exponent zero. If, in addition
the improper integral [,: p(t) dt is convergent. then we have

(1) = e (y(t) + _{',f' m(s)q(s)ds)
Since #(s) = 1 when ¢ — oo, we see that t '»,” w(s)g(s)ds = qo Hence

limg 5= = qo, which was to be proved. e

Remark: In case p = 0 we cannot expeet in general that y(#) /¢ will also remain
bounded, as we had for the case p(t) = (

uple the equation
U = 5y which has the solution y(#) = ¢

ary real parameter.

s wll)
If a > 1 this satisfies “] ) 0.
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Summary of Techniques Introduced

The solution of a first order linear equation with constant coefficient is either
of exponential growth, of linear growth or convergent to a constant when the
vight side tends to a constant. If the right side has an asymptotic expansion in
powers of £, the solution has a corresponding asymptotic expansion. For linear
equations with a variable coefficient which tends to a constant, the solution has
a corresponding asymptotic behavior, the precise details of which depend upon
the speed of convergence to the constant.

Exercises

Find the first-level asymptotic approximation of the solution of the following
differential equations.
1.y — 3y = sin(t?) 4.y =5y - (0\(4' + 2)
9 of 4 3y — B 4 o8l
2y +3y=5+ w71

= TI
3._!1'=5+““l' 6.y — 7:;—ou)~3t

For each of the following differential equations, find the first three non-zero terms
in an asymptotic expansion when t — co.

2
Ty -3y=55 9.y -3y
8.y + -l%;y —ish 10.y'

(11) Suppose that p(t) — 0 so that j,: p(s)ds is convergent, and that qp =
limg . () is supposed to exist. Show that any solution of the equation
¥ = plt)y + q(t) satisfies limy_,o t~'y(t) = qo.

(12

Suppose that p < 0 and let y(¢) be any solution of the equation y' =
py + a + beoset, where b, ¢ are nonzero constants. Show that limy-e y(t)
does not exist, but that limy ¢ [ y(s)ds = —a/p.

(13) Suppose |lml p < 0 and that the function g(t) satisfies |q(t)] < M and
| (T f“ q(s)ds = qo. Prove that any solution y(t) of the cq\mtmn Y
pu+q(t) sa
'V""/"‘

isfies the corresponding limiting velation: limy . ¢ f() y(s)ds =

(14) Suppose that p > 0 and that the function ¢(¢) satisfies the condition that

,:’ 1 g (s) je™ds < co. Show that the solution y(f) of the equation

u' = py + q(t) satisfies lim; o :’#11 =

. A constant.
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(13) Under the conditions of the previous exercise. show that if €' # 0, then the
solution satisfies the limiting relation limy .« w = p . [Hint: Write
u(t) = ”(C +¢(t)), where ¢(t) = 0. Now take logarithms and divide by ¢].

Which of the following functions are a) strougly exponential, b) weakly exponen-

tial. ¢) both, d) neither? p
16. f(t) = 5e' + 2¢™ 19. f(2) = e
17. f(t) + t2e% 20, FE)="5 e (= 1) FertE

18. f(t) = t2e" + 2¢™

3 Asymptotic Solutions of Second-Order Equations

In the previous section we obtained asymptotic solutions for first order linear
equations, beginning with the explicit integral formula provided by the method
of integrating factors. When we pass to sccond-order linear equations, it is not in
general possible to write the solution in terms of integrals. However we can often
convert the differential equation into an integral equation, which can be analyzed
by the methods of asymptotic analysi

As a guiding principle in all problems of asymptotic ana we try to express
a complicated function in terms of a simpler function and a smaller function.
The detailed expression of this depends on the problem at hand. In the case
of differential equations, it is natural to look for the “simpler function™ as the
solution of a simpler differential equation.

As a practical guide to understanding the proofs below. we note that all of

the formulas are derived from the variation-of-par

meters representation of the
solution of the equation under discussion. In this representation, we will often

an integral over a finite intel

val by suitable improper integrals, whenever
asymptotic analysis. and will lead to
interesting asymptotic formulas for the solution.

3.1 Harmonic Oscillator with external force

Many electrical and mechanical systems can be modelled by the second-order
cquation
" +why = g(t) (4)

For example, y(f) could represent the displacement from equilibrinm of a spring,
under the influence of external forces. In general we suppose that g(t) is a con-

ro when 1 = o so that [[™ |g(t)|dt < oo for

timous function which tends to z

some fo.
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The general solution of equation (1) can be written as an integral, by the
wethod of variation of parameters; in detail

ult) = yltg) cosw(t — to) + y_'(‘#v‘) sinw(t — ty) +w™! f,'" sinw(t — s) g(s) ds.

In many cases the integral cannot be evaluated explicitly, but the asymptotic
form can be obtained. To do this, we write for ¢ > t;

f,'“ sinw(t = s)g(s)ds = {": sinw(t — s)g(s)ds — [ sinw(t — s)g(s)ds.
The convergence of the last two improper integrals follows from the hypothesis
that f,? lg(t)|dt < oo. The sine function is less than or equal to 1 in absolute
value. so that the second improper integrs isfies
[[;¥ sinw(t = s)g(s)ds| < [ |a(s)|ds
which tends to zero when t — oo, again from the convergence of the improper
integral of . The first improper integral can be expanded from the addition
fornmla for the sine function:
sinw(? = s) = sinw(t — ty) cosw(ty — &) + cosw(t — ty) sinw(ty — )

~ ~
/ sinw(t = $)g(s)ds = sinw(t - I..)/ cosw(ty — s) g(s) ds
to o
+ cosw(t - l..)/ sinw(ty — 8) g(s) ds.
to

This is a solution of the homogeneous equation ¢ + w?y = 0, while the other
inproper integral tends to zero when £ — ~c. The above computations can be

stmmarized in the following proposition.
Theorem 3 Suppose that w > 0 and the function g(t) is continuous with [I:o lg(t)]
dt < > for some ty. Then the solution of the mitial-value problem
Y+ Wty =gt), wulte) =w. ¥(t)=m
can be written
y(t) = Cycosw(t = tg) + Crw ' sinw(t - ty) + ¢(t)
where the constants C\,Cy are given by
Ci=yp+w' [,"‘ sinw(ty — s)g(s) ds,
Co=y + .;',"‘ cosw(ty — s)g(s)ds
and where the function €(t) — 0 when t — ~ so that ¢(t) < w™" [ |g(s)|ds.

Proof. It only remains to identify e(1) = ~w ' [* sinw(t-s)g(s)ds < w ™! [F|g
(8)|ds.

Example 8 Find the asymptotic form of the solution of 4" + y = ¢! when
&t —» oo.

Solution. In this case we can take f; 0: the integrals can be computed
explicitly with the results
’0‘4 e 'costdt = 1. ’"‘ ¢ 'sintdt =}
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so that the asymptotic form of the solution is
(y(0) + 5) cost+ (y(0) + 5) sint e
Exercises

Find a suitable asymptotic formula, containing two arbitrary constants, for the
solution of the following second-order equations when £ — oo

Ly +4y= ﬁv B u" + 25y = 100 + = ‘
2.y +dy =1+ i Ly +|z,_m~l+“,,

5. Suppose that we can choose the initial conditions at will. For what choice of
I.lu wn\(.ml\ Jo- Y1 is it true that the solution of the initial-value problem
y" 4y = e y(0) = yo,y'(0) =y has the asymptotic form y(t) = 5cos 20+
O(1/t).t = oc?

=

choi-
ce of the constants 3o,y is it true that the solution of the initial-value
problem ¢ + 4y = ¢ L y(0) = yo.y'(0) = y has the asymptotic form
y(t) = O(1/t),t = oco?

. Suppose that we can choose the initial conditions at will. For wha

Suppose that g(t) is a continuous function for which g(#) — 0 when £ = oo
and with a continuous derivative for which ’,: |g'()|dt < oo for some ty.
Find an
g(t) [Hint:
the solution]

ymptotic formula for the solution of the equation y” + w?y =

Integrate-by-parts in the variation-of-parameters formula for

§. Use the previous exerci

(' o find an asymptotic formula for the solution of

the equation y” + 4y = |u b= o

3.2 Oscillator with almost-constant frequency

We now consider the homogencons equation
Y b (w? W)y = 0
where A(t) — 0 when £ — o0 so Chat j,‘ \h(B)|dl < ~. This can be written in
syt qlt). \\hln g(t) = =h(t)y(t). *
apply the results developed there, we must show that g(#) satisfies the hvpnlIw\h
that [ |g(t)]dt < oc.
Lemma 1 Any solution of the homogencous cquation satisfics
[y < Ky |y (O] < Ky
Jor suitable constants Ky, K.

the form of the previons section
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Proof. If y(t) is identically zero. then the result is automatic. Otherwise, we

consider the expression E(t) = W'(1)* + wylt)* which is everywhere positive.
Computing the derivative by caleulus. we find that

E'(t) = 2y(y"(t) + 2 y(t)y' (1)
= 2/(0(=w’ult) = h(t)u(t)) + 2%y (L)y' ()
= =2h(t)y()y'(1).
If we now use the inequality 2ab < (a® +b%) with the values a = y'(t) /w, b = wy(t)
we find that

E'(t) < B E(®).

Forming the logarithmic derivative, we have

Slog B(t) = __.’I";([I’)’
- Inn]
= i)

logB(t) < logE(to) + [, "5 ds

IA

log E(ty) + [h‘ "f‘_‘r“(’.\ < 0.

This proves that E(t) < K for the constant K I'.'Ih.)vxp.j'/"w 2|h(s)| ds. But
E(t) > w?ylt)?, so that the corresponding inequality is inherited by the function
u(t): yl(t)? < "ﬁ‘ Using E(t) > y'(1)*. we see that we have the corresponding
estimate for y'(t) o

Now we can state the corresponding theorem for the homogeneous equation.
Theorem 4 Suppose that w > 0 and the function hit) s continuous with
I,: |h(t)|dt < c. Then the solution of the mitial-value problem

VW)Y =00 ylte) = m. () =
can be written
y(t) = Cy cosw(t — ty) + Chw ' sinw(t — 1)) + €(t),
where the function €(t) — 0 when t — X so that (1) < w 'Ky [ h(s)ds
and where the constants O, 'y sahsfy
Ci=yw+w ’f,:’sinw(l“ — s)h(s)y(s)ds < |yl + Kyw '[,:’ |h(s)|ds,
C m+ ”:‘ cosw(to — s) h(s)y(s)ds < |yl + K, ],; |l(s)|ds.

In contrast to the previous section. the constants €', (', which appear in the
asymptotic solution cannot be explicitly identified i terms of the initial data of
the problem. However their existence is without question.
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Proof of the theorem. It is immediate from lennna 2 that the function g(t) =
hit)y(t) satisfies the condition that f,”‘ lg(O]dt < ~. Therefore we can apply
the result of theorem 2 to conclude the asserted asymptotic formula. e

The above result will now be extended to certain equations for which the
function A(t) — 0 with ]':‘ |h(t)] dt = oc, for example h(t) = 1/t. In order to
deal with problems of this type, we d
whereby we introduce a suitable s;

rvelop the method of phase plane analysis,
:m of polar coordinates (r,#) in the plane
of (y,y') and re-write the second-order lincar differential equation as a sy

ystem of
two non-linear equations for 7/, 6. The appropriate polar coordinate formulas are

wy(t) = »(t) sind(t), y'(1) = r(t) cos O(t).

We perform the necessary derivatives and use the equation y” + (w? +h(t))y =
0. resulting in the system of equations
0'(t) = w+ " sin2 (1), (1) = —"Dh(r) sinB(1) cos O(t).
From the hypothesis A(t) = 0, we immediately conclude that 6'(1) = w and
henee 6(8)/t — w when £ = oo; in particular the solution y(1) is zero infinitely
often when £ = oc. In order to estimate the amplitude #(2). we note that if the
solution is not identically zero, then () > 0 for all £ and we can write

I !
logr(t) — logr(ly) = —- / I(s) sin 0(s) cos 0(s) ds
w Sy

1 [t h(s) S
=— d(sin® 0(s
o ./,, ”,(.\)I( in”0(s))

[ ' | h(s)
= - 0 sin” O(s <).
2w sin® 0 "“ i 2w _/y,. H )‘I(”l("))

In the final integral we write (h/0") = (0'h' — h6")/67 and use the differential
quation for #' to write

0" = gin? 0+ 2 Ginfcos 0.

From the differential equation for 0/ we sce that w/2 < @ < 2w for large ¢ and so
we can estimate the above second derivative by

0" < 1 4 21,
with the conclusion that \ ; .

(33| < QUtill . U (WAL g gy ()

It both &' and 4% are absolutely integrable. then the final integral is convergent,
leading us to the following result.
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Theorem 5 Suppose that w > 0 and the function h(t) is continuous with a
continnons derivative so that h(t) = 0 and for some 1y

22 ()2 + (D)) dt < .
Ihen the solution of the initial-value problem

Y+ @+ h(t)y =0, ulte) =wm. v'(t)=mn

can be written y(t) = w 'r(t)sind(t), y'(t) = r(t)cosO(t) where the function
0(t) — o0 when t — 00, and the function r(t) — r., a finite constant, when
t —+ oo. In particular the solution remains bounded and passes through zero
infinitely often for large t.

Exercises

Find a suitable asymptotic formula for the solution of the following second-order
cquations
2
Ly + fay =0, 2.y +

3.3 Equations with a first-order term

We now extend the discussion to second order equations of the form
y" -+ p(t)y + (@ + h(t)y =0
where w > 0, the function A(t) satisfics f’: () dt < oo for some £y and p(t)
satisfies some corresponding condition

In order to perfom the asymptotic analysis. we reduce to the previously stu-
diedd case by means of the substitution =(1) = p(#)y(t) where pu(t) satisfies the
equation 2u0(t) = p(t)p(t), hence p(f) vxp(},fp(l)rlr). Applying the second
derivative. we find 2" = py” + 2p"y' + 1"y and the new differential equation

2'(t) + [w? v b + %l:(n =0

. . n A
which is of the form studied in the previons subsection. provided that % has a

tinite improper integral. This can be expressed directly in terms of the function
pi) by writing

Al

Wo=dup, = Sp ) = o+

If these terms involving p(t) hav

the previous results to conclude
2(t) = 1g) + Cow " sinw(t = tg) + (1)
for suitable constants €', C; and where the function ¢(f) - 0 when ¢ = oo,
Returning to the original solution y(1). we can ize the above di
as follows:
Theorem 6 Suppose that w > 0, that y(t) is a solution of
v+ p)y + (@ + h(t)y =0

and that the continuous functions h(t). p(t) satisfy

al, then we can apply

afinite improper integr
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[ Ih(t)] dt < >, [,: [P ()] b < ~. j,:' p(t))* dt < oo,
Jor some I., Then we have the asymptotic formula
() = 5 L (Creosw(t = tg) + Cow ™' sinw(t = ko) + €(t)).  p(t) = l‘xp%f,‘»]l(x)l’.’l
for suitable constants Cy,Cy and where the function e(t) — 0 with
e(®) <w ' [ (1h(s)] + %|p'(s)] + 1p(s)?)ds.

Example 9 Find an asymptotic formula for the solution of Bessel's equation
0"+ 4y +u=0.
Solution. In this case we have p(t) = 1/t.w = 1,h(t) = 0. Taking ty = 1,
we have ,4[/) = 1 . The above discussion provides the asymptotic solution
y(t) =t 2[C, cost + Cysint + O(1/1)] for suitable constants Cy, Cy.

It should be noted that the asymptotic methods discussed here do not provide

the explicit values of the constants which oceur in the asymptotic formulas. These
must be obtained by other methods; for example they can often be estimated
numerically from computer-assisted graphics.

Exercises

Find a suitable asymptotic formula for the solution of the following second-order
cquations

Ly'+5/+4y=0
2.y + Ly + (1 = %)y = 0. where m is a constant.

oo+ (4 )0+ Ay = 0 [Hint: Apply the standard substitution to remove
the i term]

3.4 Oscillator with variable frequency

We now consider the homogencous equation

Y w(t)Py =0
where w(f) > 0 for ¢ > tg. For this equation. it is not immediately clear what
“simpler equation” can be used to make the asymptotie analysis. We will do
es, where we introduce a new
independent variable and then a suitable integrating factor.

For the first step of the reduction we consider a new independent variable s
which defines a new function [ so that y(t) f(s). Computing the snccessive
derivatives. we have by the chain rale

v(t) = f'(s) . 00 = ["(s) ()% + [ s
This leads to the «lmuv
Ix '
o =w(t), s() = [, wlr)dr

this by a two-step reduction to the previons
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and to the differential equation in the form

F1(s) + 28 1'(5) + f(5) = 0.
The middle term can be expressed directly in terms of the new variable s where
we write w(t) = W(s), so that w'(t) = W'(s)ds/dt = W'(s)w(t) which cancels
one factor of w and the yields the differential equation in the form

1"(s)

(

This completes the first step of the reduction.
Example 10 Find the first step of the reduction of Airy’s equation y" + ty = 0
with tg = 0.
Solution. In this case we have w(t) = v and s(£) = (2/3)t%2, so that ¢t =
(38/2)%/ and w(t) = W(s) = (3s/2)'/3, dW/ds = 1/2(3.V/2)’2/:’,\-{711W/ds -
1/3s and the new equation
SIS+ 5 1(s) + fls) =0

Returning to the theory, the second step of the reduction consists in remo-
ving the first derivative term, as we have done in the previous section. This is
accomplished by means of the func !inn

Ju(s) = uxp{ ,“ 1[» = /W(s)
iting the solution in terms of F'(s) == p(s) f(s) = /W (s)f(s). The second
derivative is computed as
F'(s) = VW " + Yo f' + VW
The differential equation for f allows us to replace the first two terms by —v/W (s) f
(5) and to rewrite the differential equation as
(1 - p =0

This completes the second stage of the n-chu tion.
Example 11 Complete the second stage of the reduction for Airy’s equation
Yy +ty=0.
Solution. We found in the previous example th.\l for this equation
W(s) = (35/2)'/3, so that VIV = (3s/2)'/5, ¥ “ = —(5/365%) and the equation
F'4 (14 59)F=0 o

and w

Having completed the second stage of the reduction, we can apply the theory
for the oscillator with almost constant frequency. If the function L-— tends to

zero with a convergent improper integral. we can apply the pn-vmns results to
obtain the following.
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Theorem 7 Supposc that w(t) > 0 is a continuous function defined for t > to
with a continuous second derivative. Define a new integration variable and a new
Junction by
I w(r)dr, W(s) = w(t)
-

Suppose that s(o00) = oo and that the improper integral _[ux |%(—%l|ds < oo.
Let y(t) be any solution of the second order equation y" + w(t)?y = 0 defined for
t > tg. Then we have the asymptotic /nrmulu when t — oo

y(t) = 2 -

s
For suitable constants R« and where the function ¢(s) — 0 when s — 0o s0

that €(s) < [ —‘T‘-"T—(lr
Example 12 Find an asymplotic formula for the solution of Airy’s equation
y" +ty=0.
Solution. Referring to the previous two examples, we have w(t) = V1, s(t) =
(2/3)%2 W (s) = (35/2)"/% and the asymptotic formula

alt) = Rcos(s ;:/)..mu) s ’MN.:’h‘;,,‘:)m(r‘%‘

Exercises

Find a suitable asymptotic formula for the solution of the following second-order
equations when £ — 0o,
Ly'+ty=0 294"+ Py=0

3.5 Damped Harmonic Oscillator with external force

In this section we extend the discussion of asymptotic solutions to the equation
my" + ey’ + ky — glh).
where m > 0,¢ > 0.k > 0 and g(t) is

a contimions function which tends to zero
when £ — o, Since all solntions of the corresponding homogeneous equation
te

1 to zero. we expect that the same will be trne of the given (nonhomogenous)
equation. This will be supplemented by an asvinptotic expansion. as deseribed
in the following theorem.

Theorem 6 Suppose that m > 0,¢ > 0.k > 0 and g(t) = 0 when t = oo, Then
any solution of the equation my" + cy' + ky = q(1) satisfies limy oo y(t) = 0. If
i addition g(t) has an asymplotic cxpansion

a(t) = Tps, % + Ot~V +1) b — o,

sk

then y(t) has a corresponding asymplotic expansion
y(0) = Tpisy e -h O (- NR1) t — 00,
where the coefficients yy, can be obtained by direct substitution
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1 be written in terms of the solu-

Proof. The general solution of this equation
tion of the homogencous equation and an inte
i detail

y(t) = Cun(t) + Ca

gral from the method of variation

of parameters;

(1) + " K(t—s)g(s)ds
where K (2) is the solution of the homogencous equation with K (0) = 0, K'(0) = 1.
The precise formula depends on whether wi in the overdamped, critically dam-
|u'd or underdamped uw- In detail: If ¢* > dmk, then y;(t) =e"'and K(t) =
=), where mr} 2 hcori +k=0.

dmk. then y|(l) = e ya(t) = te™ and K (1) = te™, wherer = —c/2m.
< dmk.then  yi(t) = ¢ Meospt, ya(t) = e Msinpt,and K(t) = c“““i—'l"‘-‘—‘,
where A = ¢/2m, = Vamk — ¢*/2m .

The first two terms are solutions of the homoge
tend to zero when £ — 00, To estimate the integ
large that |g(t)] < € when ¢ > T'. We write

i K (= s)g(s) ds = _4,’, K(t = s)g(s)ds + [; K(t — s)g(s)ds.
The first integral is over an interval of fixed length. independent of ¢. From the
form of the function K () in each of the three cases we see that K (#) — 0, hence
the integral tends to zero. For the second integral, we have |g(s)| < e throughout

neons equation and clearly
terms, we fix T = T'(e) so

the region of integration, while the integral of the function X is bounded by a
constant. independent of ¢. This proves that the second integral tends to zero

when £ =+ o, hence the entire solution tends to zero.
To prove the existence of an asymptotic expansion, we first note that, by a
single inte; v ion-by: p'\n\ we have for A

i As
\.‘r Tr’ " ds

ymptotic result Hml forany N =1,2
B et At kiky Ir .
Jr S ds = eM (e + ot + Sy + L4 Oerk)) (6)
the asymptotic expansion, first consider the overdamped case ¢ >

¢ we must analyze the integral
i cunrey {5
.Ir.. : T —g(s) ds

where g(s) is a sum of terms proportional to s * and another term which is

O~ N0yt 5 0o, From (6) it follows that

o MEtl) 3 LSS S =)

N ST )+('(,.+,\u)
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from which we obtain the existence of the asymptotic expansion. The remainder
term s estimated by application ol (H).

In the critically damped case ¢

Dink. we mnst analyze the integral
_j/' (t—s)e" Y g(s) ds. where g(2) is a sun of powers of ¢ ' and a remainder term.
Writing 7 = =\ a typical term can be integrated-by-parts in the following form:

Mt=9)) gy

/" Lod 14 Xt —
1o S ds A

-,
5 \‘7 + 'L\/ (0 A= )¢9 s 1 Ok, € = oo,
RPN

Repeated integration-by-parts gives the necessary asymptotic expansion. The
remainder term is again estimated by (5).

Finally. we consider the underdamped case ¢ < dmk. We note that the right
side consists of terms proportional (o ¢ * and another term whicl is less than a

constant multiplied by ¢t~V D Thus we |n||\l .|||.|lv/(' an integral of the form
’-I A(l—) 81
c
1o

—r ds.
From (5), any such integral is less than a constant times £%.¢ = oo, To obtain
the asymptotic expansion, we write

+0(e~),1 - co.

andd can be integrated-

by-parts again to obtain the tevms of ovder ’-.-' i . and to determine the
remainder term.
Having proved the cristence of the asymptotic expansion in each of the three

5. we now show how the coeflicients may be obtained in a more direct com-
putational fashion without dealing with integration. To do this, we look for a
formal expansion of the desived form and equate the corresponding cocfficients of

¢t 2 ete. This leads to the formal equality

— 21 + 2y,

" T =
my' +c +ky = e
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and to the chiain of equations
ki = g1k = e = go ks — 20+ 2myy

Kypnar — neyy +n(n = Dmy, | = guia n
Sinee & > 0 these can be solved uniquely to determine (|I(‘ nec vy coeffi-
Cients gy .- < Unsr. Inorder to prove that this expansion agrees with the ‘mlunon

to within ()(I 1410y we recall the first part of the proof. If Y(t) = Z &
denotes the .upprnxmmu' solution just obtained. then by construction we have
LlyY) = v, %+ O(t (N+1)y t 5 ~c. But the given solution y(t) also sa-
tisfies this same relation, by hypothesis; hence the difference y — Y satisfies
Lip=Y] =0t D)4 - 0o, Now y(#) = Y (£) is the sum of a homogencous solu-
1 the integral obtained from the method of variation of parameters, which
we break into two integrals as before. The homogeneons solution tends to zero ex-
ponentially fast, as does the first part of the integral of the variation-of-parameters
solution. In the second integral the integrand g(f) = O(t (1)) ¢ - 00, while
the sgral of K (1) is finite. This allows us to conclude that the second integral
O ")t s00 o

tion

Exercises

Find a suitable asymptotic formula for the solution of the following second-order
equistions when t — 0o,
Dy +4y +5y =1} 2) "+ 4y + 5y =20+ 3

4. Use repeated integration-by-parts to prove the asymptotic es
the text.

imate (6) in

Suppose that the function g(f) |I:I\ an n\mplnln expansion of the form
SN
alt) = e

Show how to obtain a (-nrr«-spumlin;, as

,A

vinptotic expansion of the solution.

Asymptotic behavior of nonoscillatory equations

In the previous sections we determined the asymptotic behavior of the solu-
tions of second-order linear equations based on the simple harmonic oscillator.
In these ca

s we found that all solutions have the same oscillatory behavior, In
this section we consider the case of equations which admit exponential growth or
decay. corresponding to the second-order equation " — (0% + h(1))y = 0. where
b 0and Al = 0 when t = 500 We expeet that the solution can be asymptoti-
cally approximated by a combination of ¢* - which are the solutions in
ease hi(t) = 0. We will prove the following precise resalt

b

181
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Theorem 9 Supposc that b > O and [* |h(t)|dt < > for some a > 0. Then
there is a fundamental set of solutions {yy.ya} of the differential equation
y" = (b* + h(t))y = 0 so that
(e =14 (). ya(t)e M =1+ et)

where limy— €(8) = 0, with ¢;(t) = O(e " + [ h(s)ds).i = 1,2.
Proof. For the first part, we define @ (t) = y(t)e™ . which solves the equation
a" = 2ba' = h{t)r. The general solution is obtained from the variation-of-
parameters formula as

2(t) = Cre® + Co + 5 [ (e*) = 1)n(s) h(s) ds.
Here tg is chosen so that Im\ |h(t)] dt < b. We need to choose the constants Cy, Cy
s0 that the solution satisfies limy_yoo #(#) = 1. This is done by solving the integral

cquation
z(t) = 1- ?'5 ],‘( (1"""“ S 1)a(s) h(s) ds (7)
by the method of successive approximations. by defining rq(f) = 1 and
Tasr(t) = 1= o [ (209 = 1), (5) h(s) ds.
We will show that |z, (1) — &, (t)] < 27" for n > 1 and £ > ty. Clearly
[z1(#) = xo(0)] < 5 [ 1(e2=9) = 1) h(s)lds < 35 [ h(s)lds < §.
Assuming the imequality for the value n, we have

1 e
|Ens1(t) = za(t)] = ?{,l/ (r'ﬂ'(' )5 I)(r“(a) - Ty |(s))h.(n)(l.v|
Ji
1

< g It =l

< .172 "/ [h(s)]ds
Jig

which was to be proved. Therefore the sequence (1) is uniformly convergent
to a limit function z(¢) which s

sties the desired integral equation and satisfies
le(t)] < 2 for all £ > 1g. To prove the required convergenee. we have
J(t) = 1] < 35 [ 1?9 — 1a(s)h(s)ds < § [ [h(s)]ds = 0.

To prove the existence of the solution ya(f). we define =(£) = y(t)e ™, which
satisfies the equation z” 4 20z’ = h(1)z. From the variation of parameters, the
general solution is written

2(t) = Cy + Cae™ + 5 i (1 = e 2 ) h(x)z(s)ds
where fg is again chosen so that [, [h(f)|dt < b. Because of the exponential
nerease of the integrand, we cannot simply replace all of the integrals by improper
tegrals in choosing the correct solution. This will he obtained as the unigue
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solution of the integral equation

() = 1= [ e MR (s)z(x) ds—f [ h(x)2(s) ds (8)

by setting 2o(f) = 1 and

v 1 ,,"-"'(' Dh(s)z dn — 1 \/ 5 ds

speit) = 1= 5 [ MMzt = gy [ hwza(w o

As above, we have
[21(2) = 20(8)] < 35 fit e~ M 9| h(s) s + 5 [ ()l ds < g5 [ [h(s)lds < §
and similarly one obtains |z,(t) = 2, ()] < 27" for all n > 1, > ty. Therefore
the sequence 2, () is uniformly convergent to a limit function 2(t) which satisfies
the desired integral equation and satisfies |z(£)] < 2 for all > ty. To prove the
I'('l|lli|'l'(l convergence, we |I1\Vl‘
|2(t) = 1] € EIM [,L e U= h(s)z(s)| ds + :,’7,"‘ |h(s)z(s)|ds

The second integral clearly tends to zero at the required rate when ¢ — oo, For
the first integral, we have for £ > 2t,,

ot [ 1
|/ 21 "’l(ﬂ):(.ﬁ):l.«| < /1' W9 | p(s)= ()]s + / 4 "’"“'""lh(ﬂ)z(n)lrln
o "

o
o
< e ”’/ |h(s)| ds +
Jiy

at the required rate, which completes the proof e

~
1h(s)|ds = 0

The above result can be used to determine the asymptotic behavior of the
solution of the Airy equation y” ~ fy - 0. when £ —» ~x. Following the discussion
in section 4 we define a new independent varable s and a new function f(s)
by s(t) = (2/3)Y2 and y(1) = f(s). resulting in the equation

S(s) + 5 L(5) = f(s) = 0.
The first-derivative term is removed by the further substitution /(s) = (3s/2)"/% f
(=), resulting in the equation
Fir (L — 2B )P =0,
Acvording to the above theorem, this equation has a fundamental set of solutions
Fi(5). Fa(s) with Fi(s) = e*(1 + O(s ")). Fa(s) = (1 + O(s71)),8 = oo.
Re-writing this in terms of the original notations, we have

. i 1 A2 40
iy = SLEDET) guecpPn
s\/e i
s Ns ! p Ve 3/2
ey e L SBOT1%)
bl nn
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in particular
logm(t) _ 2 B
= =5 lime =55

Ty e
The standard notations in the literature are yy(t) = Bi(t).ya(t) = Ai(t) for the
particular solutions with the indicated asymptotic behavior.

Returning to the theory, we now discuss the solutions when the function
h(t) = 0 more slowly. We can still assert the existence of solutions with suita-
ble exponential growth and decay, in a slightly weaker sense, according to the
following result. The main steps of the proof are outlined.

Theorem 10 Suppose that b > 0 and h(t) — 0 when t — oc. Then there is a
fundamental set of solutions {y1,y2} of the differential equation y" —(b*+h(t))y =
0 so that

Ty oo "—'U,M'— =0 litng -~ —’5-1”—“-
This is proved by factoring the differential (-qu.\lmn by writing D = d/dt and
the differential operator as

D? — (b + h(t)) = (D + k() (D = k(t)).
This is possible if and only if the function k(#) is a solution of the Ricatti cquation
K(E) 4 k(1)? = b% 4 h(1)

We first develop some information about the Ricatti equation
Lemma 2 Supposc that h(t) — 0 when t —s ~c. Then there are solutions
ky(t), ky(t) of the Ricatti equation for which

N —s oo 1 ()i = b, liny — o ka(t) = —=b.
Proof. By hypothesis, for any ¢ > 0 there is a 7, so that |h(1)] < € for t > T..
Let ky () be the solution for which ki (T)/2) = b. Tt follows that by/3/2 < k(1) <
bV5/2 for all £ > 15,5, otherwise we obtain a contradiction by the mean-value
theorem. since K'(1) < 0if k(t) > bV/5/2 (resp. K'(1) > 0 i k(#) < bv/3/2). Let
S be the set of acommnulation points of A (1), — ~. If § contains two aifferent
points a > 4 > b then by taking £ sufficiently large we can arrange that &'(¢) < 0
whenever & (8) € [o. 3], again a contvadiction.  Therefore. limy oo k(1) = ko
wxists. I A # b. then from the Riccati equation. we see that K(8) = b* k% # 0,
a contradiction. A corresponding analysis can be used to show that there exists
asolution  Ay(#) for which Timy ,~ k(1) b as required e

Proof of the theorem. Let gy (1) be defined by g () c-xlx(j;:k',(xjtl.«).
~ Ky = 0 and so D2 — (0 + b))y = (D + k(D = k) = 0. It is
immediate that

Wapn) - Lt g (8)els — b

Similarly y,(1) is defined as ya(1) = exp ( II: ka(x) dx) and satisfies

\.,w (1) /“M* TR T
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Summary of Techniques Introduced

The asymptotic behavior of the solution of wany second-order linear equa-
often be obtained by suitable application of the method of variation of
monic oscillator,

Fions ¢
parameters. In the case of equations modelled on the simple ha
s the asymptotic solution in the form of a suitable trigonome-

this method yielc
trie function together with a suitable remainder (error) term. Other second-order
oquations that can be reduced to this include equations with a first-order term
andd equations with a positive zero-order term, For equations that are modelled
on the damped oscillator, all solutions tend to zero and a suitable asymptotic ex-
s with a negative zero-order

pansion can be obtained. For homogeneous equation
tions  one of which exhibits ex-

term, one obtains two linearly independent sol

ponential increase, the other exponential decrease.
Exercises
1. Find the possible asymptotic behavior of the solutions of the equation 3" =
2y
2. Find the possible asymptotic behavior of the solutions of the equation " =
y
3. Show that if (1) is a solution of the integral equation (4), then a(1) is also a
solution of the differential equation #” = 2br = A(t)x and that (1) = a(t)e
solves the equation " = (b* + h(t))y
L. Show that if =(¢) is a solution of the integral equation (5), then z(#) is also a

solution of the differential equation ="+ 2b= = h(t)z and that y(t) = z(#)e b
solves the equation i = (b* + h(t))y

4 Asymptotic Solutions of Linear Systems

I the previous sections we studied the asymptotic behavior for single linear
equations of the first and second order. We now briefly consider the corresponding
questions for systems of linear equations

4.1 Nonhomogenous systems

In detaal, we will begin with a system of the form
x'(t) = Ax(1) + g(?)
where A s a fixed 7 x nomatrix and the vector function g(f) tends to zero when
t =+ ¢, In detail, we make the fc

lowing hypot heses:
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i) The matrix A has purcly imaginary eigenvalues » = ip with n linearly
independent eigenvectors

ii) g(t) satisfies the property that for some g > 0, f: |g(t)| dt < oo,

We can write the solution by the method of variation-of-parameters as
x(t) = ell=t0)xy 4 [if et=3)4g(s) ds.
By hypothesis A is diagonalizable with purely imaginary eigenvalues. Writing
A = UAU", we see that for any power m > 1, A™ = UA™U " and so the matrix
exponential can bP mmpu(ml :\.s e
= =0 T \" = Peo G = U=t
But the dmgona] matrix ¢/ contains the terms e along the diagonal, which
are bounded functions of . Therefore the terms of the matrix exponential are
bounded by a constant. In detail, if the terms of the matrices U, U~ satisfy
U] < M,|UZ'| < M, then
|(e')y;] < n M2 1<4,j<n—c0<t<oo.
Using this observation, we can re-write the solution for t > t; as

o £
x(2) = el*-10)4x, + / =904 (s5) ds — / el g(s) ds
! t

o

o S
=e" ‘(. ~toAxy +- / 4""“"3(.-4)11:4) - / el=g(s) ds.
Jiy t

The first term is solution of the homogeneous system corresponding to the initial
condition e~ xq + Joe “Ag(s) ds. The second term tends to zero, since by the
above estimations, we have

[ [;F elt=9g(s) ds| < nM? [ |g(s)|ds.
The above computations are xunnn,m/o(l as follows.
Theorem 11 Suppose that the n x n matriz A has purely smaginary eigenval-
ues with n linearly independent cigenvectors.  Suppose further that the vector
Junction g(t) satisfies the condition that for some ty > 0 L“‘ |g(s)|ds < co. Then
any solution of the system of differential equations x' = Ax + g(t), has the form
x(t) = "'y + ¢(t), for some vector y where e(£) — 0 when £ — 0o,

4.2 Homogenous systems with almost-constant coefficients

In this sub-section we use the results of the previous sub-section to treat a
system of the form
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x/(t) = (A + E(1))x(t)
where A is a fixed 7% 7 matrix and the matrix £(2) tends to zevo when ¢ — oo,
I eletail. we make the following hypotheses:

i) The matrix A las purely imaginary eigenvalues » = i with n linearly
mdependent cigenveetors;

i) The matrix elements £, (#) satisty the property that for some to > 0,
[ B, ()] dt < 00,1 i j S .

We can write the solution by the method of variation-of-parame
x(t) = elt=t) Ay, + Lt“.ur s) \g(_\)d.\.
where the nonhomogencous term is g(t) = E(f)x(#) Once we know that the
solution x(t) remains bounded, then we can apply the result of the previous
stthesovction and obtain the following result.

S as

Theorem 12 Suppose that the n x n matriz A has purely imaginary cigenvalues
with w binearly independent eigenvectors. Suppose further that the matria function
L(F) satisfies the condition that for some ty > (lL: {1Ey;(s)|ds < oo,1 < i,j < m.
[hen any solution of the system of differential equations x' = (A + BE(t))x, has
the form x(t) = e'Vy + ¢(t) for some vector y where e(t) = 0 when ¢ = co.

It remains to establish the boundedness of the solution x(#). This is casily
done by refering to a system of coordinates in which the matrix A is diagonal,
with diagonal elements /=T, 1 < j < n. Calling the new solution again a(t),
we have

(1) = /=Tpju;(8) + gy Bp(t)r(t) I
(1) we define (1) = 5577y, ()%, From the defining
differential equation we have
F'(t) r—:.Ef,',k 1 Ui () Bjpe(@) ey =)l (1)

But the inequality ab < (a® + %) /2 together with the assumptions on B(f) shows
that we have an inequality of the form |F'(£)] < «(£)F(1) where [,:o e(t)dt < oo

Henee log F(1) is bounded, tg < ¢ < ~ . thus also F(7). This completes the
proof that the solution x(#) remains bounded. 7y < £ <~ o

Letting
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