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1 Introduction

Reliable storage and transmission of information is one of the fundamental
requirements of modern society. When a patient’s medical data are recorded in
a hospital’s database, it is vitally important that a doctor prescribing medicine
or performing surgery recovers the data from the database exactly as they were
written in. When a bank transfers funds electronically from one account to anot-
her, the figures recording the amount being transferred must not be subject to
change during the transmission. A compact disk is expected to provide perfect
quality of reproduction, even when the disk is scratched or dusty. At the heart of
the technology guaranteeing the reliability of information transmission through
space or time lies the mathematical discipline of algebraic coding theory. Tradi-
tionally, this discipline has relied on relatively elaborate mathematical machinery
such as Galois theory or algebraic geometry. This article shows how much simpler
mathematical structures-loops and quasigroups-may be used to construct codes
for the correction of errors in information transmission.

2 Quasigroups and Loops

A quasigroup @ or (Q,-) is a set @ equipped with a binary multiplication,
denoted by - or juxtaposition, such that in the equation

(2.1) o=
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knowledge of any two of z,y, z specifies the third uniquely. Thus for each
clement g of Q, the right multiplication

(2.2) R(g) : @2 Q; z+ xq
and left multiplication
(2.3) L(g) : Q> Q; z+qz

are elements of the group Q! of bijections or permutations of the set Q. A
quasigroup may be redefined equivalently as a set (@ with three binary operations,
namely the multiplication, right division

(2.4) z/y = xR(y)~"

and left division

(2:5) z\y=yL(x)".

These three operations are required to satisfy the identity

(2-6) (zy)/y ==

zR(y)/y = z'R(y)/y =

showing that R(y) injects (i.e. zR(y) = 2'(y) = u
2'), the identity

(2.7) (z/y)y ==

showing that R(y) surjects (i.e. z € Q = = = (z/y)R(y)), the identity

(2.8) y\(yz) =

showing that L(y) injects, and the identity

(2.9) yly\z) =x

showing that L(y) surjects.

Example 2.1 Any group G forms a quasigroup (G, -, /,\) with z/y = zy~" and

z\y=z"ly.
A group is required to satisfy the associative identity
(2.10) (xy)z = a(yz)

for its multiplication. In a general quasigroup, this requirement is dropped. For
this reason, quasigroups are sometimes considered as “non-associative groups”.

Example 2.2 The set Z of integers forms a quasigroup using the non-associative

Y Y
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operation of subtraction as the “multiplication”. Certainly, in the equation z —
y = z, knowledge of any two of z,y, z specifies the third uniquely.

Example 2.3 A Latin square on an n-element set is an m X n square array in
which each column and each row contains each element of the set exactly once.
For example,

IR | 15 6l d
BN (SR
@.11) 208 4B 6
B O L 28
BG4 28 1
G N

is a Latin square on the set @ = {1,2,3,4,5,6}. Given a Latin square on a set,
one may make the set into a quasigroup by labelling the rows and columns of
the Latin square with the elements of the set in some order, thus obtaining the
multiplication table for the quasigroup. For instance, the Latin square (2.11)
yields a quasigroup @ with multiplication table

@i 28 4k s
[ Ti 92602
DI oM e
(2.12) 31213}456
T X566 [ 125
B e a g
G 6 4 & |8 i

Thus in @, one has 4 -2 = 5, ete. Conversely, note that the multiplication
table of any finite quasigroup will yield a Latin square by deleting the left and
upper borders.

A quasigroup @ or (@, -, /,\) is said to be a loop if it has a special element,
usually denoted by 1 and known as the identity element, such that @ satisfies the
laws

(2:13) ol = o= lla

Note that groups are loops. On the other hand, the quasigroups of Examples 2.2
and 2.3 do not contain identity elements. The multiplication table
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exhibits a non-associative loop of order 5.

3 Right loops and loop transversals

In §2, a quasigroup @ was specified as a set-with-structure (@, -, /,\) satisfying
(2.6-9). This specification breaks up naturally into left- and right-handed parts
that share the multiplication. Taking the right-hand part alone, a right quasigroup
(Q,+,/) is a set equipped with a binary multiplication - and right division / such
that (2.6) and (2.7) are satisfied. Recall that (2.6) yields the injectivity of each
right multiplication, while (2.7) yields its surjectivity. The right division z/y is
then expressed in the form zR(y)~! of (2.4).

Example 3.1 Let @ be a set. Define z/y for z,y in Q. Then (Q,-,/)
is a right quasigroup, with R(y) = 1 for all y in Q.

Restriction from right quasigroups to right loops eliminates trivialities such
as those inherent in Example 3.1. A right loop (Q, -, /,1) is a right quasigroup
(Q,, /) with an identity element 1 satisfying (2.13). A right quasigroup homo-
morphism is defined to be a set map f : @ — P;q > ¢/ between right quasigroups
(@, /) and (P.-, /) that preserves the multiplication and right division. In other
words, o/ - y/ = (o y)! and &/ /y/ = (x/y) for all z,y in Q. (Note the algebraic
convention of writing functions to the right of their arguments, as with the squa-
ring function @ = 2. This convention makes it much easier to read the action
of composite functions, and helps to reduce the number of brackets required.)

A right loop homomorphism is a right quasigroup homomorphism between right
loops mapping the identity of the domain to the identity of the codomain. A right
a bijective right loop homomorphism. Of course, one

loop isomorphism is ]
may also study oppositely-handed versions of the above, namely left quasigroups,

left loops, ete.

The primary sources of right loops are right transversals to subgroups of
groups. Let H be a subgroup of a group (G,-,/,\,1), and let T" be a right
transversal to H in G such that 1 represents H. (Transver

s having the identity
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as the representative for the subgroup are often described as normalized.) Thus
the group G is partitioned as G = (JH¢ into a disjoint union of cosets Ht of H,

teT
indexed by the elements ¢ of the transversal 7. Define a map ¢ : G — T;g — ¢°
by

(3.1) g € Hg",

so that g° or ge is the unique representative in T' for the right coset of H that
contains g. It is also convenient to define a map & : G — H; g — ¢° by

(3.2) 9=9"g"
Note that 1° = 1¢ = 1. Moreover h® = h and h® = 1 for h in H, while t* = 1

and t* = t for ¢ in T. Now define a binary multiplication * and a binary right
division || on T' by

(3.3) t+u = (tu)e, t|u= (t/u)e

for t,u in T, i.e. by tu € H(t * u) and t/u = tu=' € H(t|lu). Since H(t|u)u >
(t/u)ou =t € Ht and H(t * u)/u D (tu)/u = t € Ht, one has (t||u) x u = ¢t and
(t*u)|lu =t for all ¢,u in T'. Moreover 1%t = (1t)e =te =t = te = (tl)e =t 1.
Summarizing,

Proposition 3.2 Let T be a normalized right transversal from a group G to a
subgroup H. Then (T, *,||,1) is a right loop.

To within right loop isomorphism, every right loop may be obtained by the cons-
truction of Proposition 3.2. Note also that the set bijection T — H \ G; t — Ht
may be used to transfer the right loop structure from the normalized right trans-
versal T to the set H \ G of cosets of H.

In certain circumstances, the right loop of Proposition 3.2 will become a loop.
If this happens, the normalized right transversal T is called a loop transversal.
Thus T is a loop transversal if and only if, for each ordered pair (¢, u) of elements
of T, the equation

(3.4) LT =

has a unique solution. The solution z is the result of ¢ dividing u from the left
in the loop.

Example 3.3 Let N be a normal subgroup of the group G. Then a norma-
lized right transversal T' from G to N is a loop transversal. Indeed, the set
bijection T — N \ G;t — Nt becomes a right loop isomorphism (7' *, ||, 1) —
(N\G,-/.N) = (G/N,, [,N), since N(t +u) = Ntu= NNtu= Nt -t Ntu =

——
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Nt- Nu.

Proposition 3.4 Let T be a normalized right transversal from a group G to a
subgroup H. Then T is a loop transversal if and only if it is a right transversal
to each conjugate HY of H in G.

Proof Suppose first that T' is a loop transversal. Note HY = g~ 'Hg = (g%¢5)t
Hg®g® = H%. Then for  in T and @ in G, one has a € Hiz & a € H%z &
g°-a € Hg* -z (g°-a)e = (¢° - w)e & ¢° & = (¢9° - a)e. Since (T, *) is a loop,
there is a unique solution z to the latter equation. Thus T is a right transversal
to HY in G.

Conversely, suppose that 7' is a right transversal to each conjugate of H in G.
It must be shown that (3.4) has a unique solution z. But txz = u < (tz)e = u &
Hu = H(tz)® = Htz & u € Htw < t~'u € H'z. Since T is a right transversal to
H!, there is a unique « in 7" for which ¢t~'u € H'z, and thus for which ¢ * z = u.

4 Loop transversal codes

The concept of a loop transversal offers a quick and elementary introduction
to the subject of algebraic coding theory. Algebraic coding theory addresses cer-
tain aspects of the problem of transmitting information through channels that
are subject to interference. The effect of the interference is to corrupt the sig-
nals being transmitted. Nevertheless, algebraic coding theory offers methods of
encoding the original information into a signal for transmission, in such a way
that the original information may be recovered from a corrupt received signal, or
at least so that a signal may be recognized as being corrupt. The information
transmission may be taking place through space, sending a message from one
physical location to another. On the other hand, it may also be taking place
through time, recording a message in a memory, and then reading it back later.

The usual scheme of algebraic coding theory may be summarized as follows.
A finite set A is given, known as the alphabet. The elements of the alphabet
A are often described as the letters of the alphabet A. Typically, one uses the
binary alphabet {0,1} consisting of the two binary digits 0,1 or integers modulo
2. The information to be transmitted is mbled from words of fixed length k,
arily distinct) letters of the alphabet. This
ibed as the uniform code A¥. The information
channel carries words from the uniform code A", for some n > k. The integer n
is known as the length of the channel. A subset C' of A™ is chosen. This subset
C' is known as the code (or a block code to avoid confusion with the concept
of a uniform code). The encoding is an embedding Ak - A" with image C,

i.e. concatenations of k (not nec
set of words to be encoded is des
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restricting to a bijection ) : A¥ — €. Thus |C| = |A|¥. The integer k is known as
the dimension of the code. If a word ¢ from the code C is transmitted through the
channel without corruption, then it is received as the same word c. The original
encoded word from A* may then be recovered as ep~!. However, the emitted
codeword ¢ may have been subject to interference in the channel, being received
as a corrupted word z in A™. A decoding map

(4.1) 5: AP 5 C

assigns a codeword 0 to the received word z. Provided that the received word
@ was not corrupted excessively from the emitted codeword ¢, one should expect
that 2° = c. In particular, one should have ¢’ = ¢ for ¢ in C.

Example 4.1 (Repetition codes). Let A = {0,1} and k¥ = 1. Consider a
channel length of 3. Define Op = 000 and 1 = 111. Thus C' = {000, 111}.
Define the decoding (4.1) by 6~1{000} = {000, 001,010,100} and 6~'{111} =
{111,110,101,011} (“majority vote”). Provided that at most one letter of the
emitted codeword gets corrupted in the channel, the decoder is able to recover
the codeword. One may extend this scheme to channels of greater odd length.

For further analysis, it is convenient to put an abelian group structure (A4, +, 0)
on the alphabet A. Usually, for |[A| = [, one takes A to be the cyclic group
(Zy,+.0) of residues modulo /. The channel A" is the n-th direct power of A,
with componentwise operations. Thus the channel A™ becomes the abelian group
(A", +,0), or more pedantically (A™, +,00...0). This abelian group structure
may be used to describe the interference taking place in the channel. If an emit-
ted codeword c is received as the corrupted word z, one says that the error z — ¢
was added to ¢ during passage through the channel. The decoder 6 : z +— ¢ is
then said to correct the error z — ¢. To measure the seriousness of the error, one
may define the Hamming weigh of a channel word z in A™ to be the number
of non-zero letters in z. The Hamming distance between two words z,y is then
|z — y|. Note that the triangle inequality

(4.2) |z +y| < |z + Jyl

is satisfied. Indeed, |z + y| > |z| + |y is impossible, since & + y can only have a
ain slot if at least one of # and y has a non-zero letter in

non-zero letter in a cej
that slot. Moreover, |z| =0 & z = 0.
The decoding may be analyzed using the abelian group structure. An error

map

(4.3) e AT AT
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determines that a received word @ was the result of an error 2. Thus
(4.4) r=ad +2°

for each & in A”. The key idea behind loop transversal codes is the observation
that (4.4) may just be an instance of (3.2). Thus the code C is defined to be
linear if it is a subgroup of the channel A™. Since A™ is abelian, such a subgroup
C' is normal. As in Example 3.3, any normalized right transversal T' to C in A™

is then a loop transversal. Taking the error map ¢ as in (3.1), one obtains the
loop transversal T as the set of errors corrected by the code. Note that the loop
(T, +,0) defined by (3.3) is an abelian group, since the map T'— A" /C;it — C +t
of Example 3.3 is a right loop isomorphism of 7" with the abelian group A™/C.
Nevertheless, it is often convenient to continue to refer to the operation  as a
loop multiplication, in order to distinguish it from the abelian group operation
+ on A™.

Example 4.2 Consider the length 3 binary repetition code C' of Example 4.1.
Interpret A as Z,. Then C becomes linear, and the normalized right transversal
T = {000,001,010,100} is the set of errors corrected by C. The abelian group
multiplication * on T given by (3.3) has the table

* ‘ 000 001 010 100
000 000 001 010 100
001 001 000 100 010
010 010 100 000 001
100 100 010 001 000

Note that the table may be summarized by the specification that the map

s (T, %) = (A%, +);001 = 01,010 5 10,100 — 11

is an abelian group homomorphism.

If one knows a linear code €' in a channel A", one may determine a loop trans-
versal T to C by selecting representatives of the various cosets of C. Typically,
one picks coset leaders-representatives having minimal Hamming weight within
their cosets. On the other hand, one of the major problems of algebraic coding
theory is to determine a suitable code C' to begin with, for a given channel A™.
If the loop (7. #,0) is known, then the code C' may be obtained from 7' by the
so-called Principle of Local Duality. To formulate this principle, it is convenient
to establish some notation. For elements t;,#;.... of T. define 5™ inducti-

t
0 " m— . i
vely by 20\ i = 0 and 7%, ti = t, + Y7 #i. Define [T, t: inductively by
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T3, ti = 0'and [T, £ = tm * 12" ti. In compound expressions involving loop
operations =. || and abelian group operations +, —, the loop operations will bind
more strongly than the group operations. For example, t+u—t+u = t+u— (t*u).

Proposition 4.3 (Principle of Local Duality). Let T' be a loop transversal to a
linear code C in a channel A™, over a finite abelian group alphabet A. Suppose that
T is a set of generators for A™. Then C = {7 t;—[['2, ti ’(tl, R INC TR
Proof Recall that ¢ = ¢ for ¢ in 7. Induction on m using (3.3) then shows that
(XM, ti)e = [I%, ti for ty,...,tm in T. Since T generates A™ and A is finite,
each channel word x may be written in the form z = 3™, ¢; for some multisubset
(t1,.-ytm) of T. Then

G T}

C={zl|lzr e A"} = {z — 2|z € A"} = {f:l. = ﬁ ti
i=1 i=1

The full force of the Principle of Local Duality comes into play when it is
not even known in advance that there is some code C to which a loop (7', *,0)
in A" is transversal. For simplicity, the case A = Zy = {0,1} will be discussed
here. Given a channel A", one normally has a list of the errors one would like to
correct (e.g. the commonest errors), and this list usually includes the n-element
set B of errors of Hamming weight 1. Let 7' be a 2" *-element set of errors to
be corrected, with 7' O {0} U B. Suppose that 7" carries a loop structure (7', *, 0)
given by an isomorphism

(4.5) s: (T, %,0) = (A%, 3,0)

(e.g. as in Example 4.2). Let ¢1,...,t, be clements of 7. By the closure of (T, ),
the loop product [, ¢; always lies in 7. On the other hand, the sum Y% ¢;
may only lie in 7" for certain choices of t,,...,t,,. The isomorphism (4.5) is said
to be a partial homomorphism s : (T,+) — (A" *, +) if (
whenever " | t; € T'. Of course, this means that 7, t; = [T~ ¢; in such cases,
since the two sides of the equation have the same image under the isomorphism
(4.5).

Theorem 4.4 Let T be a 2™ *-element subset of the length n binary channel A",
such that T contains 0 and the n-element set B of errors of Hamming weight 1.
Suppose that T carries a loop structure (T, +,0) given by an isomorphism (4.5)
such that s : (T,+) — (A""* +) is a partial homomorphism. Then there is
a linear code C of dimension k in A™ to which (T,*,0) is a loop transversal.
Moreover, T' 15 precisely the set of errors corrected by C.

Proof. Note that each element @ of A™ has a unique expression & = Y {b;i € X}

145
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for a subset X of B. Define the syndrome

(4.6) L AM o An-k, z bi z b.

Since (4.5) is a partial homomorphism, it is the restriction of the syndrome to 7.

Now for z,y in A", withx = 3 b; and y = Y b;, one has
ieX €Y

@yt =) b+ Y b= {bili€ (XUY)— (XNY)} = (z+y)s.

1EX =N

Thus the syndrome is an abelian group homomorphism. Let C' = Ker (s) be
its group kernel s~'{0}. Note that |C| = |A[*. For z = Z b; in A, define
Zb—nbandz Hb Then 2 € C and a° €TW1”]L‘—.Z + zf.
EX
T])us A" = C + T. But |A” |CI.IT], so T is a loop transversal to C' in A™.
Moreover, & : A" = C;z > a0 and € : A" — T;z v af surject, indeed lr = 1r,
so T is precisely the set of errors corrected by C.

5 A code for hexadecimal digits

For the alphabet Zy = {0,1}, consider the set Z3 = {0 = 0000, 1 = 0001,2 =
0010,...,9 = 1001, A = 1010, B = 1011,...,F = 1111} of hexadecimal digits.
This set is to be encoded for transmission through a binary channel of length 7
in such a way that errors of single Hamming weight may be corrected. Let b;,
for 1 <4 < 7, denote the binary word of length 7 and Hamming weight 1 with
its unique non-zero letter in the 4-th slot. Thus b; = 1000000, ..., b3 = 0010000,
cte. Set B = {b;|1 <4 < 7} and T = {0000000} U B. Define s : T — Z§ = Z*
as a partial homomorphism by sending b; to the binary representation of i, e.g.
b§ = 011. This sets up an isomorphism (4.5), e.g. by * by = (b] + b)s™! =
(0014-011)s~" = 010s~! = by. By Theorem 4.4, the loop transversal (T, *, 1) then
determines a code C of dimension 4. The 2! hexadecimal digits may be encoded
by bijection with C. The elements of C' may be determined by the Principle of
Local Duality, e.g. by +bs—bj bz = 1000000+ 0010000 —0100000 = 1110000 € C.

Exercise

a) Using the Principle of Local Duality, and the fact that the code is a subgroup
of the channel, determine all 16 codewords. [Hint: along with 0000000,
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there should be seven codewords of Hamming weight 3, seven codewords of
Hamming weight 4, and one codeword of Hamming weight 7).

b) Set up an encoding bijection 7 : Z3 — C. [Hint: there is considerable choice
here].

¢) If the hexadecimal digit F is encoded, and subjected to the error by during
passage through the channel ZJ, show that it may be recovered.

d) If the hexadecimal digit F is encoded, and subjected to the error by + by, to
which hexadecimal digit is the received word decoded? [Hint: the answer
depends on your choice of 5 in (b)].

6 Further reading

For an elementary introduction to quasigroups and loops, one may consult [, 6,
8]. More advanced topics are covered in [3]. The fundamentals of the traditional
approach to coding theory are presented in [2, 9], while [10] describes the ap-
plication of algebraic geometry to coding theory. The loop transversal approach
discussed here was initiated in (7], and further theoretical aspects are treated in
[5]. In [4], the loop transversal method is applied to produce record-breaking
binary and ternary codes using a simple “greedy” algorithm to construct the
isomorphism (4.5).
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