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Abstract
The solution of problems in the calculus of variations is obtained by us-
ing hybrid functions. The properties of the hybrid functions which consist
of block-pulse functions plus Legendre polynomials and block-pulse functions
plus Chebyshev polynoimials are presented. Two examples are considered, in
the first example the brachistochrone problem is formulated as a nonlinear
optimal control problem, and in the second example an application to a heat
conduction problem is given. The operational matrix of integration in each
case is introduced and is utilized to reduce the calculus of variations prob-
lems to the solution of algebraic equations. The method is general, easy to

implement and yields very accurate results.
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1 INTRODUCTION

There has been a considerable renewal of interest in the classical problems of the
calculus of variations both from the point of view of mathematics and of applications
in physics, engineering, and applied mathematics.

Finding the brachistochrone, or path of quickest decent, is a historically inter-
esting problem that is discussed in virtually all textbooks dealing with the calculus
of variations. In 1696, the brachistochrone problem was posed as a challenge to
mathematicians by John Bernoulli. The solution of the brachistochrone problem
is often cited as the origin of the calculus of variations as suggested in [1]. The
classical brachistochrone problem deals with a mass moving along a smooth path in
a uniform gravitational field. A mechanical analogy is the motion of a bead sliding
down a frictionless wire. The solution to this problem has been obtained by various
methods such as the gradient method [2], successive sweep algorithm in [3-4] , the
classical Chebyshev method [5] and multistage Monte Carlo method [6].

Orthogonal functions (OF’s) have received considerable attention in dealing with
various problems of dynamic systems. The main characteristic of this technique is
that it reduces these problems to those of solving a system of algebraic equations;
thus greatly simplifying the problem . The approach is based on converting the
underlying differential equations into an integral equation through integration, ap-
proximating various signals involved in the equation by truncated orthogonal series
and using the operational matrix of integration P, to eliminate the integral opera-
tions. The form of P depends on the particular choice of the orthogonal functions.
Special attention has been given to applications of Walsh functions [7], block-pulse
functions (8], Laguerre series [9], Legendre polynomials [10] and Chebyshev polyno-
mials [11].

There are three classes of sets of OF’s which are widely used. The first includes
sets of piecewise constant basis functions (PCBF’S) (e.g., Walsh, block-pulse, etc.).
The second consists of sets of orthogonal polynomials (OP’s) ( e.g., Laguerre, Leg-

endre, Chebyshev, etc.). The third is the widely used sets of sine-cosine functions
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(SCF’s) in Fourier series. While OP’s and SCF’s together form a class of continu-
ous basis functions , PCBF’s have inherent discontinuities or jumps. The inherent
features(continuity or discontinuity) of a set of OF’s largely determine their merit
for application in a given situation. References [12] and [13] have demonstrated the
advantages of PCBF spectral methods over Fourier spectral techniques. If a contin-
uous function is approximated by PCBF’s, the resulting approximation is piecewise
constant. On the other hand if a discontinuous function is approximated by continu-
ous basis functions the discontinuities are not properly modelled. Signals frequently
have mixed features of continuity and jumps. These signals are continuous over cer-
tain segments of time, with discontinuities or jump occurring at the transitions of
the segments. In such situations, neither the CBF’s nor PCBF’s taken alone would
form an efficient basis in the representation of such signals.

The direct method of Ritz and Galerkin in solving variational problems has been
of considerable concern and is well covered in many textbooks [14], [15]. Chen
and Hsiao (7] introduced the Walsh series method to variational problems. Due to
the nature of the Walsh functions, the solutions obtained were piecewise constant.
Hwang and Shih [9], Chang and Wang [10] and Horng and Chou [11], used Laguerre
polynomials, Legendre polynomials and Chebyshev polynomials respectively to de-
rive continuous solutions for the first example in [7]. Furthermore, Razzaghi and
Razzaghi [16], [17] applied Fourier series and Taylor series respectively to derive
continuous solution for the second example in [7] which is an application to the heat
conduction problem. It is shown in Razzaghi and Razzaghi [17] that, to obtain the
Taylor series coefficient, an ill-conditioned matrix commonly known as the Hilbert
matrix is used. Hence the Taylor series is not suitable for the solution of the second
example in [7].

In the present paper we introduce a new direct computational method to solve
problems of the calculus of variations. The method consists of reducing the varia-
tional problems into a set of algebraic equations by first expanding the candidate

functions as hybrid functions with unknown coefficients. The hybrid functions,
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which consists of block-pulse functions plus

a) Legendre polynomials and

b) Chebyshev polynomials

are first introduced. The operational matrix of integrations in each case is given.
The operational matrix of integration is then used to evaluate the coefficients of
hybrid functions in such a way that the necessary conditions for extremization are
imposed. Two examples are considered. In example 1, the brachistochrone problem
is formulated as an optimal control problem and in the second example we will
demonstrate the application of operational matrix of integration for hybrid functions
by considering the second example in [7]. It is shown that the hybrid functions of
block-pulse and Legendre polynomials approach produces an exact solution for the

heat conduction problem.

2 Properties of Hybrid Functions of Block-Pulse
and Legendre Polynomials

Hybrid functions b(n,m,t),n=1,2,--- ,N,m =0,1,--- ,M — 1, have three argu-
ments; n is the order of block-pulse functions, m is the order of Legendre polyno-
mials, and ¢ is the normalized time. They are defined on the interval [0, ;) as
2N n-1 n
b(n,m’t) 5 Pm( L,t 2n + 1), te [( N )t/, Nt/) (1)
0, otherwise.

Here Py,(t) are the well-known Legendre polynomials of order m which are or-
thogonal with respect to the weight function w(t) = 1 and satisfy the following

recursive formula.

Py (t)

Il

1, Pi(t)=t

2m + 1 m
Pra(t) = <m>lp’"(t)_<m) Pro(t) ;- mi=14235w%
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Since b(n, m, t) consists of block-pulse functions and Legendre polynomials, which
are both complete and orthogonal, the set of hybrid functions of block-Pulse and
Legendre polynomials is a complete orthogonal set.

2.1 Function Approximation

A function f(t), defined over the interval 0 to t; may be expanded as
ft) = Z Z ¢(n, m)b(n,m, ), (2)
n=1 m=0
where

e(n,m) = (f(2), b(n, m, t))

in which (.,.) denotes the inner product. If the infinite series in Eq. (2) is truncated,
then Eqg. (2) can be written as

N M-1
F@&) =YY c(n,m)b(n,m,t) = CTB(t), 3)
n=1 m=0
where
= [¢(1,0),- -+ , (1, M—1),¢(2,0), -+ ,¢(2, M=1),--- ,¢(N,0),--- ,¢(N,M=1)],
)
and
B(t) = [b(1,0,t),-+ ,b(1, M — 1,£)[b(2,0,t),- -~ ,b(2, M — 1, )|
(5)

<+ |b(N,0,¢),- -+ ,b(N, M — 1,2)]T.

2.2 The Operational Matrix of the Hybrid of Block-Pulse
and Legendre Polynomials

The integration of the vector B(t) defined in Eq. (5) can approximated by

/ 'B(t)dt ~ PB() (6)
0
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where P is the NM x NM operational matrix for integration and is given by

Bt WE G Hi Lo
08 e Bl e E
P= |0 (0 B ()
0 O o E
In Eq. (7)
1.0 0 0
; 0 00 0
=20 © 0 0
Het ; ;
0 OO s @

and E is operational matrix of integration for Legendre polynomials on the interval

[(%54)ts, 5] given in [18] by

16 00 0 ORS0
= 0 z O 0 0
LD = U E 0 0
2N | g ¢ g : 3
000D =S O =
0000 0" s 0

2.3 The Approximation of B(t)B%(t)C

The following property of the product of two Legendre polynomial vectors will also
be used.
Let

Il

P(t) (Po(2), Put), -+ - s Pr—a @],

o

A

I

(00,81, , am—a)"
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Then we have
P()PT(t)A = APT(t), (8)
where A is an M x M matrix given in [18].
Let
B,(t) = [b(n,0,t),b(n,1,1),--- ,b(n, M —1,t)]*, n=1,2,---,N,

Co = [e(m,0),¢(m, 1), ,c(n, M = 1)]", n=1,2,,N.

Then using Egs. (4) and (5) we get

B(t) = [Bi(t),Ba(t), -, B, )

@ = [0 % (10)

By using Eqgs. (9) and (10) we obtain

By ()BT (¢)Cy 0 e 0
o e 0y
6 6 5 BN(t)éf,(t)CN
Similarly to Eq. (8) we have
Bu(t)BE(t)Cn = CuB,(t), n=1,2-",N. (12)
Using Egs. (11) and (12), we get
B(t)BT(t)C = CB(t), (13)

where C is an NM x NM diagonal matrix given by

Gy @ o0 @
ORE (0
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2.4 Integration of B(t)BT(t)

The integration of the cross product of two hybrid Legendre vectors can be obtained

as
D= / t)BT (t)dt. (14)
where D is a diagonal matrix, given by
L 08 e (0
sl )
00 g

with L the M x M diagonal matrix given by

0 0

G (-)?l 0
vl :
00 21>l

3 Properties of Hybrid Functions of Block-Pulse
and Chebyshev Polynomials
Hybrid functions b(n,m, t),n = 1,2, -, Nym = 0,1, , M — 1, have three argu-

ments; n is the order of block-pulse functions, m is the order of Chebyshev polyno-
mials, and ¢ is the normalized time. They are defined on the interval [0,¢/) as

; Tn(3t =20+ 1), t € [(25)r, 7tr)
b(n,m,t) = (16)
0, otherwise.

Here T},(t) are the well-known Chebyshev polynomials of order m which are orthog-

onal with respect to the weight function w(f) = ——— and satisfy the following
VAT
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recursive formula.

T(t) = 1, Ti(t)=t
T (2) =2t (8) =T S (E) ) m=1,2,3; "

Since B(n, m,t) consists of block-pulse functions and Chebyshev polynomials,
which are both complete and orthogonal, the set of the hybrid functions of block-
pulse and Chebyshev polynomials is a complete orthogonal set.

3.1 Function Approximation

A function f(t), defined over the interval 0 to t; may be expanded as
00 00
£0) =D eln,m)b(n, m, 1), (17)
n=1 m=0

where
c(n,m) = (£(2), b(n, m, 1))

in which (.,.) denotes the inner product. If the infinite series in Eq. (17) is truncated
then Eq. (17) can be written as

N M-1

F® =3 cn,m)b(n, m,t) = CTB(1), (18)

n=1 m=0

where

C = [¢(1,0), -+ ,e(1, M =1)|¢(2,0), -+ ,¢(2, M —1)| - -+ |¢(N, 0),- -, e(N, M —1)]T,

B(t) = [b(1,0,t), -+ ,b(1, M — 1,8)[b(2,0,2),- - ,b(2, M — 1,1)|
(19)
<+ |B(N,0,8), -+ ,b(N, M —1,8)]T.

-
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3.2 The Operational Matrix of the Hybrid of Block-Pulse
and Chebyshev Polynomials

The integration of the vector B(t) defined in Eq. (19) can approximated by
t
/ B()dt ~ PB()
o

where P is the NM x NM operational matrix for integration and is given by

S
O E B e I
P=l0 0 3 - H
Y Sl B
In the above matrix
1 0 0 0
0 0 0 0
~ ) &
Hzﬁf 3+ o 0 0f,
o 0
_pyM=1
o=z 0 0 0

and E is operational matrix of integration for Chebyshev polynomials on the interval

(% )ts, mts]  given in [11] by

: 3 0 0 0 0

<+ 0 0 0 0

2 2 0 % 0 0
st
B —t=—
N

(M-t - 1

2(/«1-1[))(1«;1-3) 0 0 D)) 01 A(M=1)
2M(M—=2) 0 0 0 0 A(M—2) 0




HYBRID FUNCTIONS IN THE CALCULUS OF VARIATIONS 307

4 Hybrid Functions Direct Method

For now, we will use hybrid of block-pulse and Legendre polynomials, similar re-
sults can be obtained by using hybrid of block-pulse and Chebyshev polynomials.
Consider the problem of finding the extremum of the functional

Vo) = /0 " Pl 5(2), 6(6))dt (20)

The necessary condition for z(t) to extremize J(z) is that it should satisfy the

oF  d (OF
(%)~ (o)

Euler-Lagrange equation

with appropriate boundary conditions. However, the above differential equation
can be integrated easily only for simple cases. Thus numerical and direct methods
such as the well-known Ritz and Galerkin methods have been developed to solve
variational problems. Here we consider a Ritz direct method for solving Eq. (21)
using the hybrid functions.

Suppose, the rate variable z(t) can be expressed as

i(t) = CTB(t). (22)
Using Eq. (6), z() can be represented as
z(t) = /0 2(t")dt' + z(0) (23)
= CTPB(t) + [£(0),0, - ,0,z(0),0,--- ,0,- - ,(0),0, -, 0] B(2).

We can also express t in terms of B(t) as

11 Sl
—[mmo‘)mmo
2N =1 1 (24)
caee ___ e = T
0, S 0,2+, 0| Bt) = d"B(Y)

Substituting Egs. (22-24) in Eq. (20), the functional J(z) becomes a function of
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c(n,m), n=1,2---,N, m=0,1,2,---,M —1. Hence to find the extremum of
J(z) we solve

aJ

s U =1,2,--+, N, =0,1,~:,M—1. 25
dc(n,m) % & (a8

The above procedure is now used to solve the following examples.

5 Illustrative Examples

In this section two problems of the calculus of variations are considered. Example
1 is the classical brachistochrone problem, where as example 2 is an application to

the heat conduction problem taken from [7].

5.1 Example 1: The Brachistochrone Problem
5.1.1 The Brachistochrone Problem as an Optimal Control Problem

As an optimal control problem, the brachistochrone problem may be formulated as

[5]-

Minimize the performance index J,
1 2
= / [ 20 ] d, (26)

X () = U(®), (27)

subject to

with

X(0)=0, X(1)=-05. (28)
BEqs. (26), (27) and (28), describe the motion of a bead sliding down a friction-
less wire in a constant gravitational field. The minimal time transfer expression is
obtained from the law of conservation of energy. Here X and t are dimensionless

and they represent respectively the vertical and horizontal coordinates of the sliding

bead.
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As is well known the exact solution to the brachistochrone problem is the cycloid
defined by the parametric equations
g 1
:c=1—§(1+cos2a), t=§+§(2a+sin2a), (29)

where

ta.na:ﬁ=U
dt

With the given boundary conditions, the integration constants are found to be
B = 1.6184891, t, = 2.7300631.
5.1.2 The Numerical Method
Suppose, the rate variable X (t) can be expressed approximately as
X(t) = CTB(t). (30)
Using Eqgs. (6) and (28), X (t) can be represented as

X@) = [iX(@)dt + X(0)

|

(31)
= CEPB(®),
and by using Eqs. (27) and (30) we have
U%(t) = CTB(t)B” (¢)C. (32)

. Equation (32) can be simplified by using the property of the product of two hybrid
Legendre function vectors given in Eq. (13).

5.1.3 The Performance Index Approximation

Using Egs. (26), (31) and (32) the performance index J can be approximated as
follows:

i eIeB(t) -
J_/o <m> dt. (33)




310 Mohsen Razzaghi and Hamid-Reza Marzban
Divide the interval [0,1] into NV equal subintervals, we have
1
2L i (1 +c’Tc"B(t)) d
J= / — | dt. (34)
; w1 \ 1= CTPB(3)

In order to use the Gaussian integration formula we transform the t-interval ("T“, )

into the 7-interval (—1,1) by means of the transformation

/Al 2n—1
t—§<NT+ N ) (35)
The optimal control problem in Egs. (26-28) is then restated as follows:
Minimize
1 ' [1+u?(7) 2
=3[ g @
subject to
Gl
i Eu(r), (37)
with
z(-1) =0, =z(1)=-0.5. (38)

Using Eqgs. (34) and (35) we get
1
W/ 1 TAR(L(L 2n-1 2
1 b @003 G ar 2= )
J= E S B el I 39
= 2NL <1—CTPB(%(#T+—2",,;1)) 5 )

Using the Gaussian integration formula, Eq.(39) can be approximated as

1
N k TARL(L 2n—-l 2
1 1+ CTCB(3(xm + 21)
s 2\n"; I8 40
zﬂ N Z,:o (1 ~GTPB( (L, 1 BT ) Y )
where 7;, j =0,1,..., k are the k+1 zeros of Legendre polynomial Py, and w; are

the corresponding weights, given in [19]. The idea behind the above approximation
is the exactness of the Gaussian integration formula for polynomials of degree not

exceeding 2k + 1.
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5.1.4 Evaluating the Vector C

The optimal control problem has now been reduced to a parameter optimization
problem which can be stated as follows.

Find ¢(n,m), n = 1,2,---,N, m = 0,1,...,M — 1 that minimizes Eq.(40)
subject to

o(=1)=0, z(1)=-05. (41)

We now minimize Eq. (40) subject to Eq. (41) using the Lagrange multiplier
technique. Suppose

J* = J+ \az(=1) + Afz(1) +0.5].

The necessary conditions for a minimum are

aJ*
dc(n,m) n=1L2---,N, m=0,1,...,M-1 (42)
and
aJ* aJ*
AR or _ o 5
B et (43)

Eqgs. (42) and (43) give (NM + 2) non-linear equations with (NM + 2) unknowns
which can be solved for ¢(n,m), A; and A, using Newton’s iterative method. The
initial values required to start Newton’s iterative method have been chosen by taking
z(7) as a linear function between z(—1) = 0 and z(1) = —0.5.

In Table 1 the results for hybrid Legendre approximation with N = 2, k = 5
and M = 3, 4,5 together with N =2, k =8 and M = 5 are listed, we compare the
solution obtained using the proposed method with other solutions in the literature

together with the exact solution.

w. =
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Methods z(1) u(—-1) J
Dynamic programming -0.5 -0.7832273 | 0.9984988
gradient method(2]
Dynamic programming -0.5 -0.7834292 | 0.9984989

successive sweep method(3,4]
Chebyshev solutions(5]

M=4 -0.5 -0.7844893 | 0.9984982
M=1 -0.5 -0.7864215 | 0.99849815
M =10 -0.5 -0.7864406 | 0.9984981483
Hybrid Legendre, N =2,k =5
M=3 -0.5 -0.7852418 | 0.9984989
M=4 -0.5 -0.7864397 | 0.9984983
M=5 -0.5 -0.7864402 | 0.9984981
Hybrid Legendre -0.5 -0.7864408 | 0.99849814829
N=2k=8and M =5
Exact Solution[4] -0.5 -0.7864408 | 0.99849814829

Table 1. The hybrid Legendre and other solutions in the literature.

5.2 Example 2: Application to the Heat Conduction Prob-
lem

Consider the extremization of
1 1
J= / [%5:2 - zg(t)] di= / F(t,z,%)dt, (44)
0 0

where ¢(t) is a known function satisfying

with the boundary conditions

#0)=0 , o(1)=0. (45)
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Schechter [20] gave a physical interpretation for this problem by noting an applica-
tion in heat conduction and Chen and Hsiao (7] considered the case where g(t) is

given by
=iy i<y vl
o) = . (46)
3, A s
and gave an approximate solution using Walsh functions. The exact solution is
142 1
3t Ok < 3
= 342 1 1 1
o(t)={ -2+t -L, L<i<!
142 3 1
W—t+3, 5 =0l

Here of we solve the same problem using hybrid of Legendre and block-pulse func-
tions with M =3 and N = 4. First we assume

() = CTB(t). (47)
In view of Eq. (46), we write Eq. (44) as
1 1 3 1
i 1/ H(t)dt+4/ z(t)dt—4/ z(t)dt+/ s(t)at,
2 0 0 0 0
ar
1 4 3 1
i % f CTB(t)B™(t)Cdi+4CTP / B(t)dt—4CTP / B(t)dt+CTP / B(t)dt.
0 0 0 0

Let :
w(t):/ B(t")dt',

then using Eq. (20), we have

7= 26 n6 e [411) (i) 5 (%) +w(1)] ) (48)

where

- ; T
D_/O B(t)B"(t)dt.
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The boundary conditions in Eq.(45) can be expressed in terms of hybrid of Legendre
and block-pulse functions as

CEB() =10 , CEB(W)=I0" (49)

We now minimize Eq. (48) subject to Eq. (49) using the Lagrange multiplier
technique. Suppose

J* = J+ MCTB(0) + X:CTB(1), (50)

where A; and ), are the two multipliers. Using Eq. (25) we obtain

aJ* 1 1
30 = DC+ P [411; (Z) — 4w <5> + w‘(l)] + MB(0) + X2B(1) =0.  (51)
We also have

1
w(l) = 1[1,0,0,1,0,0,1,0,0,1,0,0]7',

NS
Il

30,0,0,1,0,0,0,0,0,0,0,017

1
) = 711,0,0,0,0,0,0,0,0,0,0,0]",
B(0) = [1,-1,1,0,0,0,0,0,0,0,0,0],
B(1) = [0,0,0,0,0,0,0,0,0,1,1,1)%.
Bquations (49) and (51) define a set of 14 simultaneous linear algebraic equations

from which the coefficient vector C' and the multipliers A; and A, can be found. The
vector CTP is

7
2 1 10 1 22 1] (52)

1
TP = jllEag = R ZNE | St oyt o
c e |3 bgah L 3 3,3, 30 L3

1
Further, to define z(t) for ¢ in the interval |0, 111] we map [0, Z] into [—1,1] by

mapping ¢ into 8¢ — 1 and similarly for the other intervals. Using the above equation

(T
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and Py =1,P, =t and P, = 3t — §, we get
112

i e LS :
7 [5 (8t 1)+3[2(8t 1) —EH_EF, 0<t< %
l Q) o g e 2_1 = 32 1 1 1
7 [2 (8t —3) [2(81: 3) §H_—§t S i<t<i
e e 103 i 3
ats| aem s o il S e | | P MR 3
64[ 3 3(8t 5)+3[2(8t 5) 2]]_21 t+8, 5l S

22 il {163 1 1 3
— = Bt-N+z (=Bt -7 -Z|| =22 —t+=, ¢
[3 ( )+3[2(8t 7) QH St gsusi

A=
In
In

which is the exact solution. This exact solution can not be obtained either with
CBF’s or with PCBF’s.

6 Conclusion

The aim of present work is to develop an efficient and accurate method for solving
problems of the calculus of variations. The problem has been reduced to solving
a system of algebraic equations. Illustrative examples are included to demonstrate

the validity and applicability of the technique. The advantages of using the hybrid
Legendre method are:

(1) The operational matrix P contains many zeros which plays an important role
in simplifying the performance index.

(2) The Gaussian integration formula is exact for polynomials of degree not ex-
ceeding 2k + 1.

(3) Only small values of k, N and M are needed to obtain very satisfactory results
for the brachistochrone problem.

(4) Hybrid functions approach provides an exact solution for the heat conduction
problem.
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