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Abstract 
The solution of problema in the calculus of variations is obtained by us­

ing hybrid functions. The properties of the hybrid functions which consist 

of block-pulse functions plus Legendre polynomia1s and block-pulse functions 

plus Chebyshev polynornials are presented. Two exarnples are considered, in 

the first example the brachistochrone problem is formu1ated as a nonlinear 

optimal control problem, and in the second example an application to a heat 

conduction problem is given. T he operational matr ix of integration in each 

case is introduced and is utilized to reduce the calculus of variations prob­

lema to the solution of algebraic equations. The method is general, easy to 

implement and yields very accurate result.s. 

Keywords: Brachistochrone problem, Calculus of variations, Numerical methods, 

Hybrid functions. 
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1 INTRODUCTION 

There has been a considerable renewal of interest in the classical problems of the 

calculus of variations both from the point of view of mathematics and of applications 

in physics, engineering1 and applied mathematics. 

Finding the brachistochrone, or path of quickest decent, is a historica11y inter­

esting problem that is discussed in virtually ali textbooks dealing with the calculus 

of variations. In 1696, the brachistochrone problem was posed as a challenge to 

mathematicians by John Bernoulli. T he solution of the brachistochrone problem 

is often cited as the origin of the calculus of variations as suggested in [! ]. The 

classical brachistochrone problem deals with a mass moving along a smooth path in 

a uniform gravitational field. A mechanical analogy is the motion of a bead sliding 

down a frictionless wire. The solution to this problem has been obtained by various 

methods such as the gradient method [2], successive sweep algorithm in [3-4] , the 

classical Chebyshev method [5] and multistage Monte Cario method [6]. 

Orthogonal functions (OF's) have received considerable attention in dealing with 

various problems of dynamic systerns. The main characteristic of this technique is 

that it reduces these problems to those of solving a system of algebraic equations; 

thus greatly simplifying the problem . The approach is based on converting the 

underlying differential equations into an integral equation through integration, ap­

proximating various signals involved in the equation by truncated orthogonaJ series 

and using the operational matrix of integration P, to eliminate the integral opera­

tions. The form of P depends on the particular choice of the orthogonal functions. 

Special attention has been given to applications of Walsh functions [7], block-pulse 

functions [8], Laguerre series [9], Legendre polynomials [10] and Chebyshev polyno­

mials [11]. 

There are three classes of sets of OF's which are widely used. T he first includes 

sets of piecewise constant basis functions (PCBF'S) (e.g., Walsh, block-pulse, etc.). 

T he second consists of sets of orthogonal polynomials (OP's) ( e.g., Laguerre, Leg­

endre, Chebyshev, etc.). The third is the widely used sets of sine-cosine functions 
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(SCF's) in Fourier series. While OP's and SCF's together forma class of continu­

ous basis functions 1 PCBF's have inherent discontinuities or jumps. The inherent 

features(continuity or discontinuity) of a set of OF's largely determine their merit 

for application in a given situation. References [12] and [13] have demonstrated the 

advantages of PCBF spectral methods over Fourier spectral techniques. If a contin­

uous function is approximated by PCBF1s, the resulting approximation is piecewise 

constant. On the other hand if a discontinuous fuuction is approximated by continu­

ous basis functions the discontinuities are not properly modelled. Signals frequently 

have mixed features of continuity and jumps. These signals are continuous over cer­

tain segments of time, with discontinuities or jump occurring at the transitions of 

the segments. In such situations1 neither the CBF's nor PCBF's taken alone would 

form ru1 efficient basis in the representation of such signals. 

The direct method of Ritz and Galerkin in solving variational problems has been 

of considerable concern and is well covered in many textbooks [14], [15]. Chen 

and Hsiao [7] introduced the Walsh series method to variational problerns. Due to 

the nature of the Walsh functions, the solutions obtained were piecewise constant. 

Hwang and Shih [9], Chang and Wang [10] and Horng and Chou [ll], used Laguerre 

polynomials, Legendre polynomials and Chebyshev polynomials respectively to de­

rive continuous solutions for the first exarnple in [7]. Furthermore, R.azzaghi and 

R.azzaghi [16], [17] applied Fourier series and Taylor series respectively to derive 

continuous solution for the second exarnple in [7] which is an application to the heat 

conduction problem. It is shown in Razzaghi and Razzaghi [17] that, to obtain the 

Taylor series coefficient, an ill-conditioned matrix commonly known as the Hilbert 

matrix is used. Hence the Taylor series is not suitable for the solution of the second 

example in [7]. 

In the present paper we introduce a new direct computational method to salve 

problems of the calculus of variations. The method consists of reducing the varia­

tional problems into a set of algebraic equations by first expanding the candidate 

functions as hybrid functions with unknown coefficients. The hybrid functions1 
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which consists of block-pulse functions plus 

a) Legendre polynomials and 

b) Chebyshev polynomials 

are first introduced. The operational matrix of integrations in each case is given. 

T he operational matrix of integration is then used to evaluate the coefficients of 

hybrid functions in such a way that the necessary conditions for extremization are 

imposed. Two examples are considered. In example 1, the brachistochrone problem 

is f'ormu lated as an opt imal control problem and in the second example we will 

demonstrate the applica tion of operational matrix of integration for hybrid functions 

by considering the second example in [7]. It is shown that t he hybrid functions of 

block-pulse and Legendre polynomials approach produces an exact solution for the 

heat conduction problem. 

2 Properties of Hybrid Functions of Block-Pulse 

and Legendre Polynomials 

1-lybrid functions b(n, m, t), n = 1, 2, · · · , N , m =O, 1, · · · , M - 1, have three argu­

ments; n is the arder of block-pulse functions, m is the arder of Legendre polyno­

mials, and t is the normalized time. They are defined on the interval [O, t ¡) as 

{ 
Pm('fj-t-2n+ 1), t E [(",V1)t¡ , i\t¡) 

b(n,m, t ) = 
O, otherwise. 

(1) 

Here Pm(t) are the well-known Legendre polynomials of order m which are or­

thogonal with respect to the weight function w(t) = 1 and satisfy the following 

recurslve formula. 

Po(t) = l , P1(t)=t 

P,,,+1(t) ( 2m+ I) ( m ) m + 1 tP,,,(t) - rn + 1 P,,,_1 (t) m = 1, 2,3, ·· 
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Since b(n, m, t) consists ofblock-pulse functions and Legendre polynomials, which 

are both complete and orthogonal, the set of hybrid functions of block-Pulse and 

Legendre polynomials is a complete orthogonal set. 

2.1 Function Approximation 

A function f (t), defined over the interval O to t¡ may be expanded as 

f(t) = L L c(n, m)b(n, m , t) , (2) 
n= I m = O 

where 

c(n,m) = (J(t),b(n,m , t)) 

in which (. , .)denotes the inner product. If the infinite series in Eq. (2) is truncated, 

then Eq. (2) can be written as 

N M - 1 

J(t) "' L L c(n , m)b(n, m, t) = cr B(t) , (3) 
n= l m = O 

where 

C = [c(l ,O), · · · , c(l,M-l),c(2,0), · · · ,c(2, M-1 ), · · · , c(N, O) , · · · ,c(N, M -i)JT, 
(4) 

and 
B(t) = [b(l, O, t), · · · , b(I , M - 1, t) lb(2, O, t) , · · · , b(2, M - 1, t)I 

··· lb(N,0,t) , ··· ,b(N,M-1,t)JT. 
(5) 

2.2 The Operational Matrix of the Hybrid of Block-Pulse 

and Legendre Polynomials 

The integration of the vector B(t) defined in Eq. (5) can approximated by 

J.' B(t')dt'"' PB(t) (6) 
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where P is the N M x N M 0perati0Hal matrix fer i0Htegrati0n ancl is given by 
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Ln Eq. (7) 
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ai?il.d E is operational matrioc 0f ir.1.tegratim1 for LegeE.diFe f'©lyn0mials on the interval 
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2.3 The Approximation of B(t)BT(t)C 

-l 
2M-l 

l 
2M- 3 

o 

The following property of the pr0cl01ct 0f two Legend"e p0lynornial vect0rs will also 

be used. 

Let 
P(t) [Po.(t),P,(t), .. · ,PM- i(tW, 
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Then we have 

P(t)P'T(t)A = APT(t) , 

where A is an M x M matrix given in [18]. 
Let 

Bn(t) [b(n,0,t),b(n,l,t), ·· ,b(n,M-1,tW, n= 1,2,· ·· ,N, 

Cn [c(n,O),c(n,l), · · ,c(n, M-lW, n= 1,2,··· ,N . 

'I'hen using Eqs. (4) ancl (5) we get 

B(t) 

e 

By using Eqs. (9) and (10) we obt8'in 

(B1(t)~i(t)C1 

B (t)BT(t)C = . 

o 

B2 (t)Bi(t)C2 

Similarly to Eq. (8) we have 

Bn(t)B~(t)Gn = CnBn(t), n=l,2,··,N. 

Using Eqs. (11) and (12), we get 

B(t)BT(t)C = CB(t) , 

where (; is an N M x N 111 diagonail matrix given by 

(
e, 

_ o e, 
C= . 

o 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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2.4 Integration of B(t)BT(t) 

The integrat ion of the cross pm<i•uct of tw0 hyiDriol Legen<ire vect0rs can be obtained 

as 

['' 
D = Ío B(t)Br(t)d!. (14) 

wRere D is a diagonal matrix, given @y 

(15) 

wi·t li L the M x M diag0nal maitrix gi·veN IDy 

L = t r~ ~ 
ID O 

3 Properties of Hybrid Functions of Block-Pulse 

and Chebyshev Polynomials 

Hybrid functions b(n, m, t) , n = 1, 2, .. · , N, m = O, 1, · · · , M - 1, bave three ¡¡,rgu­

ments; n is the order of block-pu-lse ÍUNctions, m is the oroler of Chebyshev polyno­

mials, and t is the normalize<i t ime. T loey are defi-ned ©n the interval [O,t¡) as 

{ 
Tm (~t-2n + 1), t E [("f;1)t¡, '& t¡) 

b(n,m,t) = / 

O, otherwise. 

(16) 

Here T.,(t) are the well-kn©wn Chebyshev polynomiaJs of arder m which are orthog­

onal with respect to the weight fm1ction w(t) = ~ a,nd satisfy the following 
v l - t' 
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recursive formula. 

T.(t) 1, T,(t) =t 

2tTm(t)-Tm-l(t), m = 1, 2, 3,· 

Since b(n, m, t) consists of block-pulse functions and Chebyshev polynomials, 

which are both complete and orthogonal, the set of the hybrid functions of block­

pulse and Chebyshev polynomials is a complete orthogonal set. 

3.1 Function Approximation 

A function f (t) , defined over the interval O to t ¡ may be expanded as 

00 00 

f(t) = LLc(n, m )b(n,m,t), (17) 
n = I m= O 

where 

c(n,m) = (f(t),b(n,m, t)) 

in which (., .) denotes the inner product. If the infinite series in Eq. (17) is truncated 

then Eq. (17) can be written as 

N M - 1 

J(t) ""I: I: c(n,m)b(n,m, t) = crÍJ(t), (18) 
n= l m= O 

where 

C = [c(I ,0), · · · , c(l , M - l)lc(2,0), · · · ,c(2, M -1)1 · · · lc(N, 0) , · · ·, c(N, M - l Jr, 

ÍJ (t) = [b(l ,O,t),··· ,b(l , M - l ,t)lb(2, 0, t) , · , b(2,M-l ,t)1 

· · · lb(N, o, t), · · · , b(N, M - 1, tW. 
(19) 
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3.2 The Operational Matrix of the Hybrid of Block-Pulse 

and Chebyshev Polynomials 

The integration of tbe vector B(t) defined in Eq. (19) can a]!lproximated by 

l B(t')dt' o= Í'ÍJ(t) 

where Í' is the N M x N M O]!lerntional matrix for integration and is given by 

P~ (f 
f¡ f¡ 

i) 
F,· f¡ 

o E 

fo the above matrix 

o 

:J 
o [;-" ( ; © ' -N ' 

o 
~ o o © 2M(M -2) 

and E is operational matrix of integration for Chebyshev ]!l©lynomials on the interval 

/( ";¡1 )t¡ , N"t¡ ) given in /11) by 

E= f:L 
N 

1 
2 

- 1 
8 
-1 
6 

~ 
2(M - I)(M-3) 

~ 
Urf(M - 2) 

o 

- 1 1 
-;¡-- 12 

- 1 
1(M-3) 

o - 1 
<\(M- 2) 

o 

o 

l 
<l(M-1) 

o 
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4 Hybrid Functions Direct Method 

For now, we will use hybrid of block-pulse and Legendre polynomials, similar re­

sults can be obtained by using hybrid of block-pulse and Chebyshev polynomials. 

Consider the problem of find·ing the extremum of the functional 

J(x) = [ F [t ,x(t),:i:(t)Jdt. (20) 

T he necessary condition for x(t) to extremize J(x) is that it should satisfy the 

Euler-Lagrange equation 

&F _ !:._ (ºF) =O 
&x dt &i 

{21) 

with appropriate boundary conditions. However, tbe above differential equation 

cam be integrated easily only for simple cases. Thus numerical and direct methods 

such as the well-known Ritz and Galerkin methods have been developed to salve 

variational problems. Here we consider a Ritz direct method for solving Eq. (21) 

using the hybrid functions. 

Suppose, the rate variable :i:(t) can be expressed as 

:i:(t) =CTB(t). 

Using Eq. (6), x(t) can be represenned as 

x(t) = J.' :i:(t')dt' + x(O) 

= crPB(t) + [x(O), Q, · · ·, O,x(O),O, · ·· , O, ·· · ,x(O),O, · · ·, üJT B(t). 

We can also express t in terms of B(t ) as 

t= [2~·2~,o, ·º·2~·2~· . ,o, 
2N- l 1 l O,·· '---UV-' 2N,O,··· ,O B(t)=dTB(t) 

(22) 

(23) 

(24) 

Substituling Eqs. (22-24) in Eq. (20), the functional J(x) becomes a function of 
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c(n, m), n = 11 2, · · · , N, m = O, 11 21 • • • , M - l. Hence to find the extremum of 

J(x) we solve 

___!_!____ = o, 
8c(n,m) 

n= 1,2,. .. ,N, m =0, 1, · ·· ,M-1. 

The above procedure is now used to salve the following examples. 

5 Illustrative Examples 

(25) 

In this sedion two problerns of the calculus of variations are considered. Example 

1 is the classical brachistochrone problern, where as example 2 is an application to 

the heat conduction problem taken from {7]. 

5.1 Example 1: The Brachistochrone Problem 

5.1.1 T he Brachistochrone Problemas an Optima! Control Problem 

As an optima! control problem, the brachistochrone problem may be formulated as 

[5]. 
Minimize the performance index J, 

_ [' ¡1 + U2 (t) l l 
J - ) 0 1 - X (t) dt, (26) 

subject to 

X(t)=U(t), (27) 

wi th 

X(O) =O, X(l) = -0.5. (28) 

Eqs. (26), {27) and {28), describe the motion of a bead sliding down a friction­

less wire in a constant gravitational field. T he minimal time transfer expression is 

obtained from the law of conservation of energy. Here X and t are dimensionless 

and they represent respectively the vertical and horizontal coordinates of the sliding 

bead. 
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As is well known the exact solution to the brachistochrone problem is the cycloid 

defined by the parametric equations 

where 

x = 1- ~(l +cos2a), t = ~ + ~(2a +sin 2a), 

dX 
tana=--;¡¡=U. 

With the given bounda,ry coRditions, the integration constants are found to be 

/3 = 1.6184891, t0 = 2.7300631. 

5.1.2 The Numerical Method 

Sappose, the rate variable X(t) can be expressed approximately as 

X(t) = CTB(t). 

Using Eqs. (6) and (28), X(t) can be represented as 

X(t) ¡; X(t')dt' + X(O) 

crPB(t) , 

and by using Eqs. (27) ancl (30) we have 

U2 (t) = cT B (t)Br(t)C. 

(29) 

(30) 

(31) 

(32) 

Equation (32) can be simplHiecl by using the property of the j>roduct of two hybrid 

Legendre function vectors given in Eq. (13). 

5.1.3 The Performance Index Approximation 

Using Eqs. (26) , (31) and (32) the performance index J can be approximated as 

follows: 

_ ¡1 (1 + crCB (t ) ) l 
J - ) 0 1 - CTPB(t) dt. (33) 
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Divide the interval [O, l] into N equal subintervals, we have 

N ¡Pi (1 + C'1'CB(t)) l 
J = ~ j 'R' 1-CTPB(t) dt. (34) 

ln order to use the Gaussian integration formula we transform the t-interval ("Ñ', N) 
in to tbe r-interval ( -1 , 1) by means of the transformation 

t=~ (~r + 2n- l) 
2 N N . 

The optima! control problem in Eqs. (26-28) is then restated as follows: 

Minimize 

_ ~ [' ¡1+u2(r)] l 
J - 2}_, 1 -x(r) dr, 

subject to 
dx 1 
dr = :¡u(r) , 

with 

x(-1) =O, x(l) = -0.5. 

Using Eqs. (34) and (35) we get 

J-°"' 2N N dr N 1 / ' (1+ crcs(!(.lr + 2" - 1)))¡ 
- ~ 2N _1 1- C'1'PB{Htr + 2"N 1)) . 

Using the Gaussian integration formula, Eq.(39) can be approximated as 

N 1 k ( 1+ cT6B(! (1-r+ 2"-')) ) ¡ 
j ,...., "f\""' '"' 2Nl N W 

- L., 2N L., 1 - CTPB(~( .lr. + ~)) i• 
n= l 1= 0 2 N J N 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

where ri , j = 01 1, ... 1 k are the k + 1 zeros of Legendre polynomial Pk+ 1, and w; are 

the corresponding weights, given in [19[ . T he idea behind the above approximation 

is the exactness of the Gaussian integration formu la for polynomials of degree not 

exceeding 2k + l. 
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5.1.4 Evaluating the Vector C 

The optima] control problem has now been reduced to a parameter optimization 

problem which can be stated as follows. 

Find c(n, m), n = 1, 2, · · · , N, m = O, 1, ... , M - l that minimizes Eq.(40) 

subject to 

x(-1) = O, x(l) = -0.5. (41) 

We now minimize Eq. (40) subject to Eq. (41) using the Lagrange multiplier 

technique. Suppose 

J' = J + .A1x(-l) + .A2 lx(l) + 0.5). 

The necessary conditions for a minimum are 

{)]' 
oc(n,m) =0 n=l,2,···,N, m=O, l , ... , M - 1 (42) 

and 

{)]' 

a.x, =o, 
{)]' 

a.x, =o. (43) 

Eqs. (42) and (43) give (N M + 2) non-linear equations with (N M + 2) unknowns 

which can be solved for c(n, m), .A1 and >-2 using Newton's iterative method. The 

initial values required to start Newton's iterative method have been chosen by taking 

x(r) as a linear function between x(-1) = O and x(l) = - 0.5. 

ln Table l the results for hybrid Legendre approximation with N = 2, k = 5 

and M = 3, 4, 5 together with N = 2, k = 8 and M = 5 are listed, we compare the 

solution obtained using lhe proposecl method with other solutions in the li terature 

together wilh the exact solution. 
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Methods x(l) u(- 1) J 

Dynamic programming -0.5 -0.7832273 0.9984988 

gradient method[2] 

Oynamic programming -0.5 -0.7834292 0.9984989 

successive sweep method[3,4] 

Chebyshev solutions[5] 

M= 4 -0.5 -0.7844893 0.9984982 

M= 7 -0.5 -0.7864215 0.99849815 

M =lO -0.5 -0.7864406 o. 9984981483 

Hybrid Legendre, N = 2, k = 5 

M=3 -0.5 -0.7852418 0.9984989 

M =4 -0.5 -0.7864397 0.9984983 

M=5 -0.5 -0.7864402 0.9984981 

Hybrid Legendre -0.5 -0.7864408 0.99849814829 

N = 2, k = 8 and M = 5 

Exact Solution[4J -0.5 -0.7864408 0.99849814829 

Table l. The hybrid Legendre and other solutions in the literature. 

5.2 Example 2: Application to the Heat Conduction Prob­

lem 

Consider the e..xtremization of 

J = [ [~±2 - xg(t)] dt = [ F (t , x, ±)dt, (44) 

where g(t) is a known function satisfying 

[ g(t) dt = - 1, 

wilh the boundary conditions 

:i(O) = O ±(1) = O. (45) 
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Schechter {20] gave a ph~sicatl interpFetation for this problem by noting an &pplica­

t ion in heat conduction and Chen and Hsiao [7] considered the case where g(t) is 

given by 

{ 
- 1 

g(t) = ' 

3, 

~:::; t < 1, 
(46) 

and gave an approximate s0hitioH using Walsh functions. The exact solation is 

x(t)= l ~;;' + t - ~ , 
&t2 - t + ~' 

~ :s t < ~ 

~ :s t < l. 

Here of we solve the same problem using hybrid of Legendre ancl block-pulse func­

tions with M = 3 and N = 4. Filfst we assume 

x(t) = CrB(t). (47) 

In view of Eq. (46), we write Eq. (44) as 

1 1 l 1l 11 
J = - 1 x'(t )dt + 41 x(t)dt - 4 x(t)dt + x (t)dt, 

2 o o o o 

) r 

l = ~ ¡1 CrB(t)Br(t)Cdt+4CTP 1 ¡ B(t)dt-4cTP ¡ J B(t)dt+CrP11 B(t)dt. 
2 o o lo o 

Let 

w(t) = f.' B(t')dt', 

theu using Eq. (20) , we have 

J =~Gr De+ crp [4w 0) -4w G) + w( l)l (48) 

where 

D =f.' B(t)Br(t )dt. 
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The boundary conditions in Eq.(45) ca,n l>e ex~Fesseol in terms 0f hybrid of Legendre 

ano! block-pulse functions as 

c7"B(©~ = © , c7"B'(l) =O . (49) 

We now minimize Eq. (48) ml>ject to Eq. (4~) using the Lagrange multiplier 

technique. Suppose 

(50) 

where .>. , and .X2 are the two mu1ltip l•iers. Using Eo¡. (25) we 0btain 

~~ = DC + P [4w 0) -4w G) + w(l)] + .X1B(O) + .X2B(l) =O (51) 

We also have 

w(l) 

B(O) 

B(l) 

1 
;¡ [1, o, ©, 1, ©, o, 1, o, ©, 1, o, ©]". 

1 
;¡[l , 0, 0, 1, ©,0, 0, 0, ©, 0, 0, OjT, 

1 
;¡ [l , @, O, ©, 0, ©, ©,©, O, 0, ©, OjT, 

[1 , -1, 1, o, o, o, o, o, ©, o, ©, O]T, 

[O, ©, Q, O, O,©, ©, O, ©, 1, 1, 1]". 

Equations (49) and (51) define a set of 14 simultaneous linear algebraic equations 

¡rom which the coefficient vector C and tite multipliers .>. , and .>., can be found. The 

vector c7" P is 

CT p = 2- [~ 1 ~ 2 - 1 - 1 _.'..Q - 3 ~ -~ -1 ~i T {52) 
64 3' ' 3' ' ' ' 3 ' ' 3 ' 3 ' ' 3 

Furlher, to define x( l ) for t in toe in terval [o,¡] we ma,p [o,¡] inLo [- ! , l] by 
mapping t. in lo Bt- 1 and similarly for the other intervals. Using the above equation 
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and P0 = 11 P1 =t and P2 = ~t2 - ~ ' weget 

x(t) = 

~ rn+{8t- l )+ ~ rn (8t - l )'- m = ~f. 

_!__ [2 - (8t - 3) - [~(8t - 3)2 - ~11 = -~t2 + t - ~ 
64 2 2 2 8 ' 

_!__ [-~ - 3(8t - 5) + ~ [~(8t - 5)2 - ~1] = ~t2 - t + ~ -21 :5 t :5 ~ 64 3 3 2 2 2 8 ' ., 

- - - - (8t - 7) + - - (8t - 7) - - = - t - t + -l [ 22 1 [3 2 l l 1 1 2 3 
64 3 3 2 2 2 8' 

which is the exact solution. This exact solution can not be obtained either with 

CBF's or with PCBF's. 

6 Conclusion 

The aim oí present work is to develop an efficienl and accurale method for solving 

problems oí the calculus of variations. T he problem has been reduced to solving 

a system of a1gebraic equations. Illustrative examples are included to demonstrate 

the validity and applicability of the technique. The advantages of using the hybrid 

Legendre method are: 

(1) T he operational matrix P contains many zeros which plays an importanl role 

in simplifying the performance index. 

(2) T he Gaussian integration formula is exact for polynomials of degree nol ex­

ceeding 2k + l. 

(3) Only small values of k , N and M are needed lo ohtain very salisfaclory results 

for the brachistochrone problem. 

(t1) l-lybrid functions apµroach provides an exact solution for the heat conduction 

µrobl m. 
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