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Introduction 

Many times, solutions of a given dilfcrential equataon problem 

V[tt] =0 

can be found by variational tedmiques, in other words1 by seeking points of Mini­

umm, Marunum, or cven Saddle-Points of an assocrated real-valued Junctional 

<Ll : X. --+R . 

llere, X i a uitable (huge) space or set o/ /unrhon.s whirh inc\udcs Lhe possible 

:mlutions(s) of our diffcre11Lia\ cquation problem. And t lie fu11clio11al <l)[u] is such 

Lhal its ·derivativ 1 is cqual to V[uJ, so that ur giveu problern reads ~>' [uj = O, or 

D.<l>[u] =0. 

The basic idea is borrowed from Calculus, when onc looks íor 'statio11ary1 or 

·critiral po111ts' of a givcn function. 
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T he functional <l>[uJ has often the meaning of an Energy, a Cost Functional, etc. 

The classical example is the famous Dir ichlet Principie [4J : 

"The solut ion of the Laplace equation L'>u(x) =O on (say) a nice plane 

domain n, satisfying the condition u(x) = h(x) on the boundary of n 
(for a given nice h(x)), is precise/y that function uo(x) which minimizes 

the Energy Functional 

<l>[u) = j
0 

[Vu(x) [2 dx 

in the admissible set X of all functions u(x) defined on \1 that satisfy 

the given boundary condition.n 

Here, one could think ofthe given boundary function h(x) (or its graph) as giving 

the shape of a fixed curved wire in space1 and the graphs of the admissi ble functions 

'U(x) as the possible shapes of elastic membranes which may have the given wire as 

contour. Then, Dirichlet's Principle states that the shape of the elastic membrane 

which will adjust to the given wire is given by the fu nction u0 (x) which minimizes the 

energy funct ional above [The values of <l>[uJ represent the (elastic) potential energies 

of the candidates to the various membrane configurations]. 

The goal of these notes is to introduce the reader to sorne of the modern tech­

niques of the Calculus of Variations. By means of simple, motivating examples of 

ordinary differential equations, we will describe in a somewhat informal manner the 

main ideas behind the so-called Variational Methods. Besides the Basic Minimiza­

tion Result of the Calculus of Variations, the reader will also encounter two other 

basic results of a Minimax nature. For those interested in further studying the 

variational methods and their applications, we recommend the standard references 
[6, 8, 10, 11), as well as the monograph [3J (in portuguese) by the present author. 

We would Jike to thank to Prof. Clau<lio Cuevas and the Editorial Committee of 

Cubo for the invitation to write these notes. We also thank Prof. Hossein Tehrani 

for having read the manuscript and for his suggestions. 
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1 Critica! Points in Calculus 

All of us who took the calculus series in college are familiar with the problem of 

finding the stationary or critica[ points of a given nice function F : JR.n ----7 IR, that 

is, of finding the solutions (if any) of the problem 

'VF(x) =O, 

and of deciding whether a critica! point is a point of {local) mimimum, a point of 

{local) maximum, or neither. 

The following figure, in the ene-dimensional casen = 1, illustrates a situation 

with all three possibilities: a point x1 of local maximum, a point x2 of local minimum, 

and a point x 3 which is neither a point of local minimum nor local maximum (We 

recall that, in this example, the point x3 is called a point of infiection since it gives 

a local mínimum from one si de and a local maximum from the other). 

Figure 1 

Of course, critical points which are nei ther local minirnum nor local max.imum 

can be more complicated than points of inftection, as the example F(x) = x2sin ( ; ) 

below shows: 

Figure 2 
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Another typical example, in the two-dirnensi0'1al case n = 2, is given by !he 

PuoNction F(x, y) = x 2 - y2 , wh•ich has (x, y) = (©,O) as its 0n.Iy cri•tical p0int. We 

recaill that, in this example, (O.©) is c"lled a saddle-point fuy virtue 01 the fact that 

it is a l'ocal mlnimum along a certain diorection (the x-axis, i•n tliis case) anda 10cal 

maximum along aiwther ©irectim1 (tNe y-axis, in tJ;iis case): 

Figu>e 3 

Fina1ly, we woulcl liike t© r.ecaill eme of the basic FesN1rlis i1I'l the ©m.e-dimensi0nail 

situ~tion (n = 1), which re~Fesen•IS a s~ec>al case 01 the Mea.n Value Theorem: 

Rolle's Thearem: Let F : [a, b] ---> IR be a wntinuous function, which is di:ffer­

entiable on the open interval (a, bj and is su.ch that F(a) = F(b) = ©. Then, there 

exists some point Xo in (a, b) such that F' (xo) =O. 

Figure 4 
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So, Rolle's Theorem guarantees the ex.istence of (at least) one critica] point when 

our nice function F is at same leve! (zero) at two different points (a and b). The 

figure depicted above illustrates Rolle's Theorem in a situation where the critica! 

point x0 is a point of max.imum. We now clase this section with a natural question, 

whose answer will be given later on. 

Question O: Is there an analogue of Rolle's Theorem in dimension n > 1? 

2 The Classic and Modern Periods of the Calcu­
lus of Variations 

The so called Classic Period of the Calculus of Variations is that period of time that 

followed the introduction of Calculus by Newton and Leibniz, in which questions 

of finding extrema (maximum or minirnum) of functionals were considered. Here, 

the word functional is used as a name far a function that is defined on a given 

(admissible) linear space or set of functions, rather than on a space or set with a 

finite number of variables (as we are used to in calculus). 

A typical example of a functional is the functional 'length ', defined far nice 

functions u : [a, b] ---; IR by 

L = J.' v'l + u" dx . 

Here, for each function u : [a, b] ~ IR having a continuous derivative1 one considers 

its length L=<I>[u] given by the above formula. Thus, we have a functional <I>:X --;IR 

defined on the ( infinite dimensionaQ linear space of all continuously differentiable 

functions u : [a , b] ---+ IR. Another typical example is the functional 'area', defined 

far nice functions u n ---; IR (where n is a given nice bounded region of the 

xy-plane) by the formula: 

The reader is encouraged to look at sorne more examples in, far example, [4] 

(Chapter IV) or [9] (Chapter 9). Our main purpose in this section is to explain how 
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one goes about 'fi nding1 maximum or minimum (or more general critical points) 

of such functionals <l> . For simplicity, we will assume that we are dealing with 

functionals defined on a linear space X (so that linear combinations of functions in 

X are again in X). The idea is to reduce the problem to a one-dimensional problem 

by considering the function 

o>--+ <l>[u+ oh] 

of one variable ó E IR, where u and h are fixed functions in the space X . Then, a 

given u0 is said to be a critical point of \he functional <!> if 

(2.1) 

for fil! h in X. 

Rem ark 2.1. We note that formula (2.1) says that the directional derivative of <Ji 

at u0 , in the direction of an arbitrary h, is equal to zero• 

D<I>[ ] · h __ !" <l>[uo + oh] - <l>[uo] _ O 
uo .- 6~Ó ó - . (2.2) 

Formula (2.2) leads to the so called Euler-Lagrange equation of <!>. Let us see how 

this is done for functionals of the form 

<!>[u] = [" F (x, u , u') dx , (2.3) 

where \he integrand F (x, y , z ) is a nice funct ion and the admissible space X consists 

of continuously differentiable functions u : [a, b] ---¡ IR satisfying u(a) = u(b) =O. 

Indeed, if we ' formally calculate' \he limit in (2.2) in this case, we will find that 

D<l>[u0] · h = [ {F,(x, u0 , u~) h + F,(x, u0 , u~) h'} dx 

Therefore, since h satisfies h(a) = h(b) = O, if u0 is a nice function (say twice 

continuously differentiable) and we integrate by parts the second term of the integral 

•Strictly speaking, this is less demanding than the requirement that the "derivative" 4i'[u0] 

vanish. 
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above and factor out the common term h, we see that (2.2) reads 

D<I>[uo] · h = [ (F,(x , uo,u~) -fx.r,(x ,u0 , umh dx =O 

for ª11 such h. From this, it can be shownl that u0 mus\ be a solution of the equation 

.r.(x,u,u') - fx .r •• (x, u ,u' ) =O , (2.4) 

which is the so-called Euler-Lagrange equation of t he functional (2.3). In other 

words, a ny nice critica! point of the functiona l (2.3) is necessarily a solution 

of the E uler-Lagr ange equation (2.4) . 

Example . Let us consider the functional length L = <I> [u] (mentioned earlier) 

defined on the admissible set of (nice) functions u [a, b] ----) IR satisfying the 

boundary conditions u(a) = e and u (b) = d, for sorne given e, d E IR. fn arder to 

have such functions forming a linear space X we will assume that e = d = O i . Jn 

this example we have F(x, u, u') = (1 + u'2 ) 1i 2 and, therefore, the Euler-Lagrange 

equation reads 

O - 1;;(1 + u"t''2u' =O , 

or, after simplifications, 

u" = O. 

Its solutions are the linear functions u (x) = Ax+ B and, after using the boundary 

conditions u(a) = u(b) =O, we obtain u(x) = O. This confirms our obvious intuition 

that the straight line joining the points (a, O) and (b, O) should give a minimum for 

the functional length. Of course, in the case of the more general boundary conditions 

u(a) =e, u (b) = d, we will find that the function l(x) =e+ i!=;¡(x - a) yields the 

minimum length. 

lt is clear that our approach so far has bee11 an informal 1 11011-rigorous one. After 

all , we mentioned earlier that our main purpose in this section was to show how one 

could 'try to find 1 critica\ points of functionals using calculus. As we just saw, one 

'This is a consequence of Du Bois-Reymond Lemma (see [4], pg. 200) . 
IWe note that the general ca.se can be reduced to this case by writing u(x) = v(x)+c+ ~(x-a) 

ami considering instead the linear space of the correspunding functions v. 
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cou1ld go from a Variational F'roblem for the Functional 4>[uj to a DiffeDential 

Equation Problem for u. Th·is is preoisely the ¡¡,ppuoach that characterized the 

Classic Period of the Calcuilus 0f Variatk:ms. 

On the other hand, we cam say t·hat t ire Mofilern F'eri"fil .,f the Calculus of 

Variations in.Jtiatecd with tfue famm1s Dirichlet Principie meNti0ne6.l in the fo.tr.0t!iuc­

ti0n. During this period, which c©Htionues ON to ©1.:11r pr.eseait days, the aJllproach g:0es 

in the op]!>osite directi0n. Narne~ly, ORe starts from a giveN Differential Equatfom 

Problem for u (which is to iDe solved) a,ncl considers the correspoading (i.f •no/) 

Variational Problem für the Functional 4>[u], of whoich the givea oli.fferenlial 

eql.1.ation is the Euler-Lagrair.i.ge eql.'1.ation. T1Ien, the i©ea is to tise s0lely Variational 

Methods (for finding mi•nima, maxiima aRd other crittical J'>©i•nts) i•:rn. Grder to (s01·ve' 

the given ©i·fferentiaJl equaition problem. Ü1il·r wiaá•N goail i•n tf.J.is m.on0graph is pr.e­

cise'ly to illMstrate this latter rupproach by meaas of some typicatl oJ.i!ferential eqution 

problems. 

3 Five Ordinary Differential Equation Problems 

Let us consider tRe followi•FJ.g E.ve bmn'Idairy vailiiJ.e pr.o©Iems: 

(P, ) 

(P2) 

(Ps) 

{ u11 + !u= s~nt 1 O < t < 1f 

u(O~ = u(1í) = O 

{ u/' + u = sint 
w(©) = u(1í) =O 

{ u" + Zu = sint, 0 < t <7r 
u(O) = u(7r) =O 

{ 
U 11 + u3 = Ü 1 Ü < t < 7r 

,;(O)= u(") =O 

{ u" - u3 = O , O < t < 1f 

u(O) = u(7r) =O 
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We would like to start by pointing out the following facts about these problems: 

1) Problem (Pi) has the solution uo(t) = -2 sin t (unique); 

2) Problem (P2 ) has !!Q solution; 

3) Problem (P3 ) has the solution u0 (t) =sin t (unique); 

4) Problem (P1) has the solution u0 (t) =O (no\ unique) ; 

5) Problem (P5 ) has the solution u0 (t) =O (unique). 

Using our knowledge of second arder linear differential equations, it is not hard to 

verify statements 1) - 3), as well as the obvious fact tbat u0 (t) =O is a solution of 

problems (P1 ) and (P5 ). The fact that (P5 ) has no otber solution can be seen by 

multiplying the equation by u and integrating by parts once. lndeed, we obtain 

O= J.' u"(t)u(t) dt - [ u(t)' dt = - [ (u'(t))' dt - J.' u(t)' dt , 

from which it clearly follows that u(t) =O. What is not so obvious, however (and 

the reader should take my word for it), is that (P1 ) has many other solutions, in 

fact, infinitely many of them. 

Question l. What do problems (P,) - (P5 ) have in common? 

Obviously> such a general question could prompt a general> trivial response in return 

(such as, they ali involve ordinary differential equations, they ali have the same 

boundary conditions, etc., etc.). However, one answer which we would like to provide 

here is that these five problems are variational in the sense that each of them can 

be seen as the Euler-Lagrange problem of sorne suitable functional. 

In arder to do that, let us denote by f : R ----7 IR any of the functions indicated 

in the left-hand side of the equations, and by p: [O, ir] --> IR any of the right-hand 

side functions. 
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In other words , 

/ (•) = ¡ ~s 2s 
83 

-s' 
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sint 
sint 
sint 
o 
o 

for problems (Pi), (P2) , (P3), (P,), (P5), respectively. So, we write (P;) (j = 1, .. ,5) ai 

(P) { 
u"+ f(u) = p(t) , O< t < rr 

u(O) = u(rr) =O 

Next, given a solution u0 of (P), if we multiply the equat ion by an arbitrary fu nction 

hin 

Có [0,7r] := {h: [0,7r] --+ IR 1 h is ofclass C', h(O) =O, h(rr) = O}, 

we obtain, after an integration by parts: 

- [ u;(t)h'(t) dt + [ f(u0(t))h(t) dt = [ p(t)h(t) dt . 

In other words, we get 

[ u;(t)h' (t) dt - [ J(uu(t))h(t) dt + [ p(t)h(t) dt =O (3 .1) 

for ali h E G¿ [O, 7r]. Now, it is not hard to check that the above says that the 

directional derivative of <b at u0 , in the direction of h, is equal to zero: 

D<l> [uo] h := lim <l> [uo +oh) - <l> [uo] = O 
6-+0 ó l 

(3.2) 
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where if> is the functi0n!lll definea by 

if>[u) := - (u'(t))2 dt - F(u(t)) dt + p(t)u(t) dt 1 
/.' 1' 1' 2 o o o 

(3.3) 

ana F(s) = J; f(a)da is an amtiderivative of f(s ). We note thait 

for problems (Pi), (P2) , (P3), (P,), (P5), respectively. 

We have 'shown' in (3.2) that a solution of (P) is a critica! point 0f the fm1ctional 

if>: Có [ü, rr) --+ lR definea in (3.3) (whose Euler-Lagrange Problem is precisely prob­

lem (P)). Moreover1 as we aJlready pointed out in Section 2, it can a:lso be 'shown1 

that any critical point of such a fi.rnctional ~ turns out t0 be a nice f.unction which 

is a sol0ution o! problem (P). Therefore, we have obtained the fomowing answer to 

Question 1: 

Answer l. Problems (P1) - (P5 ) are variational: its solutions a;re precise'ly the 

critica! points of the ass0cia>te'1 functioRatl if>. 

Remark 3.1. We should note that the first term in the definition of if>[u] can be 

r.egarded as the 1length squared 1 or 'norm squared' of the function u 1 provided we 

define the 'inner-product' of any two functions u,v in Có[O,rr] by the formula 

(u, v) := 1' u'(t)v'(t) dt (3.4) 

The first term in the r.h.s. of (3.3) can then be written as ~ l[u[[2 . This definition of 

(1, )'/' llwl[ := 
0 

(u'(t))2 dt , (3.5) 

is often called the 1mean-SCi}uare norm'. Such 'nonns' are generalizations to the 
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infinite-dimensional setting aj the notion aj 'length' aj vectors, as defined in terms 

of the 'dot produ.ct ': 

Remark 3.2. The space CJ [O, 7r] is not 'complete' with respect to the 'norm' above.1 

The 'completion' aj CJ [O, 7r] with respect to the norm 11 · 11 is the 'Hilbert space' (=. 

'complete inner-product space') denoted by X := HJ (O,"), which is an example oj a 

so-called 'Sobolev space ' The r-eader should not be overwhelmed by ali the language 

and notation which we are bringing into play. Jt is enough to keep in mind that, 

in arder to be successful in this variational setting, it is necessary to work with a 

space having an 1inner-product 1 (ora 'norm') that makes it 'complete '. And, for 

that, one needs to do some 'sophistication' For all practica[ purposes, the reader 

may continue to think of all the given f unctions in these notes as being as 'nice 1 as 

he so wishes (or jeels cornjortable with). 

Remark 3.3. Keeping Remarks 3.1 and 3.2 in mind, we can now write our func­

tional <1> as 
1 :.! 1 <I>[u] = 2llull - w[u] , u E X = H0 (0 , 7r) , 

where 

w[u] := [ F(u(t)) dt - [ p(t)u(t) dt . 

Question 2. What ' type1 of critica! point is each solution u0 presented in the 

beginning of this section" What is the 'geometry' of the functionaJ <I> in eoch of the 

problems (P1) - (P5)? 

The rest of this monograph is devoted to :answering' this question by analysing 

each problem. At this point, however, we provide a 'sneak preview' of the answer 

by means of the following 'pictures': 

·necall t hat a· b = ¿:;~ 1 a;b; and Uall = <L:;~ 1 an 112 for given vectors a = (a 1, . .,a,.), 
b= (b,, ... , b" ). 

tThere are sequefü:es {u 111 } of functions in CJ [ü, 7í] satisfying lfu,,. - uk JI -t O as m,k -+ 00 
(the Caucliy Criterion), but which do not converge; in other wurds, for UQ v E CJ[O, 11'] one has 
llu,,, - vil -> O. 
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• Problem (Pi) Problem (P2) 

Problem (P3) 

... . , ' Problem (P1) Problem (P5 ) 
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4 Problems (P1) and (P5) 

The functional <lí : X ---+ IR in each of these two problems belongs to the class of 

the so-called coercive functionals. 

Definition. <lí : X ---+ IR is said to be coercive if <!í[u] ---+ +oo as llull --+ oo. 

Let us check that the functionals associated with problems (P.) and (P5 ) are coercive: 

<lí ,[u] = - llull' - w,[u], where w,[u] = - u(t)' dt - p(t)u(t) dt, 1 l/." /." 
2 4 o o 

i ir <lí,[u] = :¡llull' - w,[u], where w,[u] =-;¡ lo u(t)' dt. 

Since w5[u] :S O, it is clear that <lí5[u] is coercive, for <lí5 [u] 2: ~llull' ---+ +oo as 

llull --+ oo. On the other hand, in order to show that <1> 1 [u] is coercive we shall use 

the following importa.nt lemma (which also has a higher dimensional version) , whose 

proof the reader may skip for now: 

Lemma 4.1. (Poincaré 's Jnequality) Far any u E X one has 

J." u(t)' dt :S /." u'(t)2 dt . 

Proof. Let us consider the case in which u E Có[O, 7r]. We will need to use sorne 

basic knowledge of Fourier Series, including the Parseval's identity. Let us consider 

the odd extensionu(t) of u(t) to the interval [- 7r, 7r] (u(t) = -u(-t) for -7r :S t :SO). 
It has the Fourier series 

u(t) = ªº + :Lia.cos(nt) + b.sin(nt)) 
n= I 

where ªº = f,; J:. u(t)dt, ª• = ~ J~. u(t)cos(nt)dt, bn = ~f. u(t)sin(nt)dt, (n = 
11 21 •. • ). Since U(t) is an odd function , we obtain that an = Oi n =O, 1, 2, .. and, 

so, 

u(t) = L b.sin(nt) , t E [-7r, 7r] . 
n= I 
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From this, we conclude that the Fourier series of U'(t) is 

U'(t) = L:nbncos(nt), t E [-n,n] 
n = l 

Now, the corresponding Parseval's identities for u(t) and u'(t) are 

1 f' 1 00 2,; _ u(t)2 dt = 2 ¿;b~ , 
11' n= l 

(4.1 ) 

1 f' 1 00 - U'(t)2 dt = - " n 2b2 
27r 2 ¿_, .,. 

- 11' n = I 

(4.2) 

Therefore, it follows from (4.1) and (4.2) that 

-21 f' u(t)2 dt = ~ f b~ $ ~ f n2b~ = ~ f' U'(t)2 dt. (4.3) 
1r -11' 2 n = l 2 n = l 2tr - 11' 

Finally, since J::, u(t)2dt = 2 J; u(t)'dt and r, u' (t) 2dt = 2 J; u'(t)2dt, we conclude 

from (4.3) that Poincaré's inequality holds true for u E CJ [ü,n], that is, 

1' u(t)' dt $ 1' u'(t)2 dt . 

It can then be shown that Poincaré's inequality also holds true for an arbitrary 

u E X.t O 

Next, we recall the well-known iuequality of Cauchy-Schwarz (see [6] for a proof): 

Lemma 4.2. (Cauchy-Schwarz 's Inequality) Far any v , w E C[O, n] one has 

\t v(t)w(t) dt l $ (t v(t)' dt ) l ([ w(t)' dt) l := llvll,llwll2 .1 

Finally, applyiug Lernmas 4.1 aud 4.2 to wi[u] we obtaiu the estimate 

1 2 '1i1[u] $ ;¡ llull + llPll, l[ul[ , 

•we remark that the equality sign must be suitably interpreted in the ' mean~square sense'. 
1 As you may guess1 t.he proof of this statement. uses the fact that X is the completion of CJ [O, 7r). 
IJn fact , the functions v,w can be more genernl than continuous functiom1. 
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hence 
1 2 1 2 1 ' <l> i[u] ~ 2llull - ;¡llull - llpll,llull = ;¡llull - llPll2llull' 

from which it is clear that <!> i[u] ---> +oo as llull --> oo. We can now state 

Lemma 4.3. Each o/ the functionals <!>i[u] and <1>5 [u] is coercive on the space X. 

Remark 4.4. l t is somewhat intuitive (and, in fact, true) that, by using the notio· 

o/ 'proximity' given by our definition o/ norm in (3.5), each o/ the functionals <lid• 
and <1>5[u) is continuous. In other words, denoting either <1> 1 or <I>5 by <I>, we have 

<l>[u + h] ---> <!>[u] as llhll ---> O 

The proof of this fact is not very hard, but it 's not obvious either. l t uses Lemrna 

4.1 and 4-2 together with the identity (A' - 8 2 ) = (A+ B)(A - B ) and the fact tlrn 

all the functions u in X turn out to be bounde<ÍJ. The reader should not worry aboti 

it, if he f eels comfortable in accepting it. 

Remark 4.5. in case we wern working with a finite·dirnensional space like IRn 1 the 

by having a coercive function F : IR:11 ----7 IR. which was also continuous, we would b 

able to conclude the existence of a point x 0 of global mínimum for F (x) : 

F(x) ~ F(xo) Jor ali x E IRn . (4.4 

lndeed, one first notices that, in view o/ the coercivity o/ the function F(x) , it suffia 

to look Jor such a point Xo in a a suitable set which is 'bounded 1 and 1closed1 (: 

'compact'), saya closed ball Bn(O) o/ sorne appropriate radius R > O center·ed at th 

or'igin x =O {The coercivity o/ F(:c) allows one to pick R >O so that F(x) > F(O 

Jor ali llxll > R and this insures that a point o/ minimum {should it exist) mtU 
necessar'ily lie inside Bn(O)) . 

ext, we point out the following two facts which the reader may (or rnay not 

know 

§See the proof oí Lemma 5. I (i}. 
1These result.s are dueto the mathematidan::; Bolzano and Weierstrass of the ninetel!nth centur¡ 
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Fact l. A closed ball Bn(O) e IR" is a compact set, i.e., any sequence of points in 

Bn(O) possesses a subsequence converging to a point in Bn(O). 

Fact 2. A continuous function F : K -; IR defined on a compact set K e IR" 

'attains' a minimum value,11 i. e., there exists x0 in J< such that F(x) 2: F(x0 ) f or 

all x in K . 

Finally, using the above facts, we can readily conclude that ( 4.4) holds true. lt 

is important to point out tha t the key ingredients in the above arguments are 

cornpactness of t he closecl ball Bn(O) C IR" ancl continuity of the restrictecl function 

F : Bn(O) -; IR (the coercivity of F(x) in the whole space IR" was used to reduce 

the problem to the ball Bn(O)). 

T he unfortunate reality in our present situation is that we are no 

longer able to reach a conclusion analogous to (4.4) for our fu nct ionals 

<!> 1 [u] a nd <1>5 [u] so readily as we have done above, simply because our 

underlying space X is infinite-dime nsional! lndeed, in this infinite­

dirnensional setting it turns out that the closed ball Bn(O) e X is 

not a compact set ! .. 

T herefore, since we can no longer rely on the fact tha t a bounded sequence 

possesses a subsequence that converges (in the sense of the norm defined in (3.5)), 

our next task is twofold : 

(a) We must define a suitable 'new notion of convergence ' (of sequences) under 

which bounded sequences possess a conver:qent subsequence. 

{b) We must define a suitable 'new notion of cor1ti1mity' (for the fun ctional <!> : 

X -----+ IR.) which is 1compatible' with the nt::w notion of conver:qence in the 

sense that lim <P[un] = <P[u] whenever Un 1conve1~qes' (in the new sense) to u: 

in fact, as we shall see, we will only need <T) to be 'lowff-semicontinuous' with 

respect to the uew notion of convergence. 

llJt abo au.ains a maximum value, but we are not concerned with t hat now. 
ººlntuit ively, t he inlinitude of independent 'axes' in X allows one to pi<.:k an element of fixed 

norm r ::; R in each of t hose 'axes' and form a sequence that goes 'arouud ' and 'around' with no 
convergent subsequence. 
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Deflnition A . A sequence (un) in X converges weakly to u (which we write as 

u.,~ u) if we have (un ,h)----> (u,h) for ali hin X, t hat is, 

[ u~(t)h' (t) dt----> !.' u'(t)h'(t) dt V h E X. 

Definition B. A functional <f> : X ----7 IR is called weakly continuous if 

1>[u] = lim 1>[un] whenever Un ~ u . 

In fact, <I> is said to be weakly lower-semicontinuous ( resp. weakly upper­

semicontinuous) if 1>[u] :S lim inf 1>[un] (resp. 1>[u] 2: lim sup 1>[un]) whenever 

Un _.i. u. Thus, 4> is weakly continuous if and only if it is weakly lower-semicontinuous 

and weakly upper-semicontinuous.tt 

T hese definitions indeed allow us to accomplish the tasks (a), (b) we described above, 

since it is possible to prove the following results: 

Lemma 4.6. The closed hall Bn(O) e X is weakly compact, i.e., given any 

sequence (un) with llunll :S R there exists a subsequence (un,) and u with llüll :S R 

such that Uni. --.1. ü. 

Lemma 4.7. The norm N[u] = llull u E X is weakly lower-semicontinuous.11 

Le mma 4 .8. Given a continuous function f : IR ----> IR, the functional lll [u] = 

J; f(u (t )) dt, u E X is weakly continuous. 

We are now ready to state the main result of this section which guarantees the 

existence of a global minirnum for our functionals 1>1 [u] and 1>5 [u]. This resull 

summarizes the so called 'Direct Method of the Calcul us of Variations' and is the 

culmination of the efforts of many mathematicians of the second half of the nine­

teenth and first half of the twentieth centuries, notably, Hilbert, Lebesgue, Tonelli 

and VVeierstrass. 

ltThe reader should review /learn the definitions of liminf and limsup for sequences of real 
numbers. 

llN[u] is not. weakly continuous, as it is not weakly upper-semicontinuous. 
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Theerem 4.9. (Basic Minimization Theorem) Let X be a Hilbert space' and 

assu-me that a given functional <I> : X ....---+ IR is 

( i) coercive, 

(ii) weakly lower-semicontinuous. 

Then, <I>[u] is bounded from below and there exists u0 E X such that 

<!>["'] 2 <I>[uo] far all u E X . 

Proof. Using the c0ercivity 0fthe Du•ncti0nal <!>, pick R >O such that <!>[u]> <I>[O] for 

rull l]ul[ >R. Then, the we rnay restrict 0ur attention to the close© ball Bn(O) C X. 

We start by claiming that the infimum m := inf.EX<I>[u] is fünoite. Indeed, if we 

had lim <I>[vn] = -oo for s0me sequence (v,.) in Bn(O) then, by Lenwna 4.6, ti.ere 

would exist ii in Bn(O) and a si;ibsequence (vn,) such that v,., ~ ii. But then, by 

tNe weak lower-semiconti1nwi.ity o-f <I>[uL we would reach the abSl!l•rd condl!lsim1 that 

<I>[ii] S lim inf <I>[vn,] = - oo. 'Fherefore, 

<I>[u] 2 m > -oo V u E X . (4.5) 

Nowi let u.11 E Bn(O) be a ni~·rümi.zation sequence far <l>: 

l0ino<l>[un] = m. 

Ag&in, using the weak c01"1pac\Hess of Bn(O) given by Lernrna 4.6, tllere exists 

u0 E Bn(O) and a subsequer01ce (u,.,) of un such that Un, ~ uo. And, by the weak 

lower-semicontinuity of cW 1 we conclucle that 

CJ\[uo] S fon inf<I> [u,.,] = m, 

hence <I>[u0] = m and 

<!>[u] ;;. <J>[uo] for ali u E X , 

iH view of (4.5). ·T his c0mpletes the proof. 

•A Hilbert. spat:e is an 'inner-pr.oduct' space whkh is 'complete'. 

o 
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Remark 4.10. We should observe that if a given functional 4> X ---; IR ha. 

directional derivatives 

M [u] · h = I·im 4>[u + 6~1 - 4>[UJ , v h E x , 
'~º 

at sorne U E X which is either a point of locail mü1ünum or of l0ca;l maximurn then 

necessarily, D4>[u] · h = O for ali h E X . The proof of this fact is exactly the sam. 

as the one we saw in Calcufos. From this observation, it Jollows that the point uo o. 

globaJ minimurn obtained in the Basic Minimiz(l¡tion Theorem is a critica} point o. 

the functional <I> in case <I> has directional derivatives at every¡ point in X . 

Finally, we turn our attention oack to the fhl•nctionails 4> 1 [u] and 4.>5[u]. We recaI: 

tkat &11 the functionals 4.>,[u],.. , <1\[u] are of t loe form 

4.>[u] = Q[u] - w[u] ' 

where Q[u] = t llu[[2 is weakiy iower-semicontinuous (w.l.s.c.) by Lemma 4.7 and 

w[u] is weakly continuous (w.c.) by Lemma 4.8. The1•efore, it is not hard to see thal 

iii[u] is w. l.s.c. A.lid, since we have wkeady seen in Lemma 4.3 that 4.> ,[u] and i!i5[u: 

are coercive, we may use our basic minirni.zation resulrti Theorem 4.9, to conclud( 

that each of these functionals aittaiiRS a global minirm!lm u0 . Moreover, in view al 

Remark 4.10 above and our discw.ssion in Section 3, arny such u0 is a solution of thE 

corresponding problem (P,) or (P5). lt is now clear th8Jt the corresponding (unique) 

solutions u0 (t) = -2 sin t and u0(t) = O poinned out in the IDeginning of secnion J 

are precisely the global minima given by Tl~eo1:em 4.ID. 

5 P roblem (?4) 

In t his section we will see that the functional <1?1 X ----4 IR corresponding to 

problem (P.1) is no longer a coen.:ive functional. Moreover, we will describe sorne oJ 

its 1geometry ' (cf. picture in sectioFJ 3) . 

First , we set sorne useful notation which will be used in this aud in the next sectio11s. 
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Let 4>n( t ) := sin (nt), en(t) := /'[;~sin(nt) , n = 1, 2, ... , and observe that 

1, ' 1· 7r sin2(nt) dt = cos2(nt) dt = - , 
o o 2 

Jl4>n ll2 = n'cos2(nt) dt = - n2 , ll•nll2 = - cos2 (nt) dt = 1 , 1. 7r 1'2 
o 2 o 7r 

(4>m, 4>n) = O if m ;ó n , 

(5.1) 

(5.2) 

(5.3) 

In particular, keeping in mind that a function u E X has the Fourier expansion 

u(t) = 2::;:'=1 bnsin(nt) (cf. Lernma 4.1), we see that both the q,,, 's and the en's form 

an 'orthogonal basis 1 for the space X (Note that the en's are 'normalized'). 

Now, we recall that the functional corresponding to problem (P4 ) is given by 

1 !.' l 1' <l>,iu] = 2 
0 

u'(t)' dt - ¡ 
0 

u(t)' dt = Qlu] - w,¡u] . (5.4) 

In this case, since w, ¡u] is homogeneous of degree four, we intuitively expect that the 

quadrat ic term Qlu] will be the 'dominant' term for llull 'small' and, on the other 

hand, it wi ll be somehow 'dominated' by the negative term - w, ¡u] for ll u ll 'large' 

In fact , as we shall see in the next lemrna, the (trivial) solution u0 (t ) ;o O of problem 

( P, ) turns out to be a strict local minimum of the functional <l>.du] and, on the other 

hand, along any ray O::; T _, TV (with v ;ó O) , the functional <l>4 iu] tends to -oo.' 

Lemma 5 .1. (i) There exists r > O and bp >O for p E (O, r ] such that 

<1>, ¡u] 2 b, > O for llull = p ; 

(ii) For eac/1 v ;ó O, we have that <l>.drv] ---+ -oo as T --> oo ; 

(iii) The functional<l>4 is not boundedfrom above (i.e., for each M > O, there exists 

u E X such that <1>,¡u) 2 M ) . 

P roof. (i) Let u E X be arbitrary (for sirnplicity, you may assume that u E CJ [O, ir], 
although the exact sarne argument works for u E X). In view oí the Ftrndamental 

• Note that, since the space X is infinite-dirnensional , this does !!ill mean that the functional 
<11 ~ [t,J is bounded from above! lndecd, Lcmma 5.1 (iii) will show t.hat. it. h¡ not.! 



272 David G. Costa 

Theorem of Cale u l us we can wri te 

u(t) = l u'(s) ds , 

so that Cauchy-Schwarz's lnequality (Lemma 4.2) and Poincaré's Lemma (Lemma 

4.1) yield 

hence 

lu(t) I' :". ir2 llull' for ali u E X . 

This estimate implies the conclusion stated in (i) since we get 

1 2 7r3 ., 1 2 3 
<I>, [u] e: ;¡: llull - 4 llull e: ;¡ llull if llull :". ir-, := r . 

(ii) Let v E X be given with v ¡<O. Then, it is easy to see that 

1 2 1 ' <J?, [rv] =:¡Ar - ¡Br , 

where A = J; v'(t)2dt > O and B = J;' v(t)'dt > O. Therefore, we have that 

<T>,[rv] --+ -oo as T -t oo. 

(iii) Let M > O be given. Recalling the definition of <Pn(t), (5.1), and the fact that 

sin'' (nt) = t(l - cos(2nt))' we calculate 

- n2cos2 (nt) dt - - sin'(nt) dt 1 ¡· 1 ¡· 
2 o 4 o 

- n 2 - - [l - 2cos(2nt) + cos2 (2nt)] dt , 1f 1 ¡· 
4 16 o 

hence 

1 1 1f 2 3ir , 
~h <Pn ;;::; ¡n - 32 2: fl,1 1 

if n;::: N for sorne N. This completes the proof of Lemma 5.1. o 
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We are now ready to answer Question O which we posed in Sect ion 2, namely1 of 

whether t here was an a.na logue of Rolle1s T heorem in dirnension n > l. An affirma­

tive answer can be given by the celebrated Mou.n tain-Pass Theorern of Ambroset ti 

and Rabinowitz [2]. 

Theorem 5.2. (I'he Mountain-Pass Theorem) Let X be a Hilbert space and Jet 

<li : X --+ IR be a 'continuously differeritiable functional' t such that <!i[OJ = O. As­

surne that <li[u] satisfies the so-called Pala is-Smale conditionl and that the following 

geometric condit ions hold true: 

{a) There exist b > O and r > O such that <li[u] 2 b > O f or llull = r ; 

{b) There exists e E X with 11•11 > r such that <li[e] s; O. 
Then , <li[uJ has a critica/ point ¡¡ E X with <li[il] = e 2 b > O, where e is the ' minima' 

value' 

e = ~~~o~~'i <I>[-y(t)] , {5.5) 

and r :=('Y: [O, l ] --+ X 1 "I is contirmous,-y(O) =O , -y{ l ) =e} is the class of ali 

paths joiníng O and e. 

R e mark 5 .3. Let us try to 'visualize' the Mountain- Pass Theorern when X = IR2 

(ej. picture for prnblern (P,1) in section 3) and the ftmctional <li[u] r·epresents the 

'topo,qmphy 1 of a certain terrain. Roughly speaking, in this situation the conditions 

of the Mountain-Pass Theorem say that the origin u= (0, 0) is at the 'level zero ' 

and is surrounded by a 'mountain· range ' located at a distance r > O with (possibly 

varying) heights of at least b > O. In addition, there is a point e on the terrain 

'outside the mountain· ranqe ' which is at the 'level zero' (or less). Therefore, if 
someone standing at the oriqin u = (O, O) wishes to 'cross' the 'm ountain-range' 

and travel toward the point e, he/she may want to do so by choosing the 'lowest 

possible passage in the mountain -range '1 the mountain-pass, which should be at 

the 'minimax' height e 2 b defined in {5.5). The 'tangent piune' at a point (u, <!i[il]) 
at such a level c·must then be 1horizontal 1, in other words, U m ust be a critica[ point 

of the funchona/ <l>{u]. 

IThi:s means that ali dircctional dcrivativcs D<fJ(uJ.·h exisL and depend cont.inuously on u, h E X . 
1T his is a 'compact.nt.>ss condition ' meaning Lhat. a ny sequence (un) s uch t ha t. l(l1[unJI is bounded 

und \D<IJ[tt"J · 111 ~ t:n\lh ll Vh E X , wit.h t:,. -+ O, necessarily ha:¡ a convergent. subsec¡uence. 
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Figure 5 

Remark 5.4. fo view of our discussion in Section 3, the functional <P1 iu] (as well M 

any of the other <Pdu] 's} is differentiable. It Jact, it can be shown {but we will not do 

il in these notes) that each functional cJ>¡[u] is continuously differentiable. Moreover1 

<1>,, ¡u] can be slwwn to satis/y the above mentioned Palais-Smale condi tion {8]. 

Theorem 5.5. Problem (P,) has a nonzero solution u 
Proof. We will use tbe Mountain-Pass T heorem to find u. It is clear that <1>110] =O 

a.nd, according to Remark 5.4, <P1[u] is continuously differentiable and satisfies the 

Palais-Sma1e condition . So, it rernains to verify the 1geometric1 assumptions (a) 

a.nd (b) of T heorem 5.2. Indeed, (a) follows immediately from Lemma 5.1 (i) by 

(say) taking b = b, > O. On the other hand, Lemma 5.1 (ii) shows that there are 

mauy e E X satisfy ing assumption (b) (Imieed, given any 'direction' v =f O, we can 

take e = TU with T sufficiently large). 

Therefore, the Mountain-Pass Theorern yields a critica! point u with <P.díl] = 

e?. b > O. In particular, we have u i' O beca.use <1>, ¡o] =O. And, according to our 

discussion in Section 3, we conclude that u is a solution of Problem (P1). O 
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6 Problem (?3) 

Jn this section we will see that the functional <I>3 : X-----+ JR corresponding to prob­

lem (P3), 

1 /.' ¡· ¡· <!i3[u) = 2 0 u'(t)' dt - 0 u(t)2 dt + 0 sin(t)u(t) dt , (6.1) 

is also non-coercive. And, we will describe its 'geometry' (cf. picture in section 3) . 

Let us denote by \f := span{</>1) the (one-dimensional) subspace spanned by </>1, 
a11C! by W := span{<Pn 1n ::>: 2) the (closed , infinite-dimensional) subspace spanned 

by ,P1 , </>3 , . .. T hen, we can summarize sorne oí geometric prope1'tiesof <P3[u] Uuough 

the following 

Lemma 6.1. We have the 'direct sum decornposition' X = \f (!) W (i.e., each u E X 

can be written uniquely as u = v + w with v E \! and w E W ) with the property that: 

(i) <li3[v) --> - oo as llvll-+ oo, v E \f (i. e., <li3[r</>1) --> - oo as lr l -+ oo); 

(ii) <li3[w) --> + oo as llwll -+ oo, w E W. 

Proof. The 1direct sum decornposition' X = V Ea W results from the fact an 

arbitrary u E X has the (unique) Fourier expansion 

00 

2 J.' u(t) = L b., sin(nt) , b., = ;;: u(t)sin(nt) dt . 
n= I 0 

In order to prove (i) we use (5.1) , (5.2) to calculate 

<[13[r</>,j =~ J.' T2cos2(t) dt - r T2 sin2 (t) dt + (' TSin2 (t) dt = _::::T2 + '.'.:T 
2 0 } 0 } 0 4 2 

and concluc.le Lhat 

<!>3 [r\01 ) --> -oo as lrl -+ 

in other words, q>3[v) -+ -oo as llv ll -+ oo, v E \f . 

(ii) Now, the F'ourier expa11sioll of au arbitrary w E MI is t:,iiveu by 

w(t) = L b.,sin (nt) . 
ri= 2 
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Therefore1 the same Parseval-type argaments as in Lemma 4.1 give the estirnates 

1 ¡· 1 "" 11 "" 1 ¡· ; w(t)2 dt = 2 I)~ '.". 24 ¿:_>2b~ = ;¡; w'(t)2 dt , 
O n =2 n = 2 O 

which imply the following Poincaré Inequality far w E W: 

(' w(t)2 cU '.". ~ (' w'(t)' dt . 
lo . 4 } , 

(6.2) 

Using the above inequality in the first two terms of (6.1) amd t,he Cauchy-Schwarz's 

inequality (Lemma 4.2) in the third term, it follows that 

iP,[wJ 2 G-D [ w'(t)2 dt- ([ sin2 (t) dt) l ([ w(t)' dt) l 

so that, by again using (5.1} and (6.2}, we obtain 

1 1 1 2 {if 1 
iP, w 2 ;¡llwll - y 2211wll · 

Therefore, il!3[w] -> +oo as llwll -> oo, w E W, which completes the proof. O 

Remark 6.2. We should observe that the arguments of the above proof can be used 

to show the Jollowing more general Poincairé InequaJities Jor elements of the space 

X, where V, := span{ cf>n 1 n '.". k} {the finite-dimensional subspace spanned by 

</> 1, ••• , </>,] and Wk+ , := span{ <l>n 1 n 2 k + 1} {the closed, infinite-dimensional 

subspace spanned by</>•+" .. .}: 

1' u'(t)' dt '.". k' 1' u(t)' dt far ali u E V. , (6.3) 

(k + 1)2 1" u(t)' dt '.". 1' u'(t}2 dt far all u E Wk+, , (6.4} 

where k = 11 2,. The coefficient k2 appearing in the ri_qht-hand-side of (6.3) is 

precisely the kth-eigen.value Al.' of the prnblem 

{ -·u"= AU 
¡;(Q) =O , u(ir) =O 

(6.5} 
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Next, we introduce our seconcl mi•nimax resulti the Saddle-Point Theorem of Rabi­
nowitz [7]. 

Theorem 6.3. (I'he Saddle-Peint Theorem) Let X be a Hilbert space having 

the direct sum decomposition X = V EB W, with dim V < oo, and let <!i : X -) IR 

be a continuously dijferentiable Junctional satisfying the Palais-Smate condition and 

the following geometric condJitions: 

(A) There exists b > O su ch that 

<!i[w] <'. b >O V w E W ; 

(B) There exists a < b and R > O such that 

<!i[v] :S a< b for v E V, llvll = R . 

Then, <!i[u] has a critica/ point ¡¡E X with <!i[íl] = e<: b >O, where e is the 'miHimax 

vailue' 

e:= inf max <ll [h(v)] , 
hEr ,Ev,¡¡,Jjsn 

(6.6) 

and r := {h: Bn(O) n V -> X 1 h is continuous, h(v) = v if llvll = R} is the 

class of ali deformations of the closed ball Bn n V in V which 'fixes' each point of 

its boundary. 

Figure 6 



278 David G. Costa 

Theor em 6.4. Problem (P3) has a nonzero solution ¡¡ . 

Proof. We will use the Saddle-Point Theorem to find u. According to Remark 5.4, 

<1>3 /u) is continuously differentiable. Also, since t he quadratic part of <1>3 /u) in (6.1) 

is of t he form 4(11ull2 -,\llull;) where ,\ = 2 is notan eigenvalue of the problem (6.5). 

it is possible to show that <1>3 /u) satisfies the Pala is-Smale condition. So, it remaim 

to verify the 'geometric' assumptions (A) and (B) of Theorem 6.3. lndeed, Lemma 

6.1 ( ii) says that t he functional <!>3 restricted to the su bspace W is coercive, so that 

an a pplication of the Basic Minimization Theorem 4.9 implies (A). On the other 

hand, if we pick any a < b, an application of Lemma 6.1 (i) shows tha t we can fi11d 

R > O satisfying assumption (B). 

Therefore, the Saddle-Point T heorern yields a crit ica! point u with il>3/u) =e 2: 
b > O. Again, we have ¡¡ i' O because <1>3/0) = O, and we conclude that ¡¡is a nonzero 

solution of Problem (P3 ) . In fact , u(t) is the unique solut ion uo(t) = sint poi11ted 

out in the begiuning of section 3 . O 

7 Problem (P2) 

In t his last section, we consider problem (P2) and show that it has no solution by 

analysing the geometry of its corresponding functional 

<J>, /u) = - llull' - - u(t)2 dt + p(t)u(t) dt , 1 i¡· ¡· 
2 2 o o 

where p(t) = </>1(t) = sin(t). H should be noted that t he quadratic part of <1>2/u) 
is given by Hllull' - ,\dlull;), where ,\1 = 1 is t he first eigenvalue of problem (6.5): 

equiva lently, the linear part of (P2 ) is u" + ,\1u . For t his reason (P2 ) is called a 

resonant problem. 

Now1 as in Section 6, Jet us consider the direct sum decomposition X= V €9 W 1 

where \1 = s¡xm{.Pi) and W := span{<f>,, 1n2 2}. So, an arbi t rary u E X ca11 be 

uniquely written as u= í</J1 + w for some TE IR and w E W. T hen, observing that 

(5.3) implies 

J.' </>'1 (t )w'(t) dt =J.' </>1 (t)w(t) dt =O , 
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a si·mjlle calculation shows tha,t 

(7.1) 

In pa,rticular, we infer kom (7.1) thrut <J\2[u) has !lQ crit ica! point. lndeed, given an 

arbitrary u = r</11 + w 1 we obtai•n 

D<J\,[u)·r/!1 li·m ~ (<J\2 [T<P1 + w + órj¡ ,) - <I>2[rr/!1 + w)) 
6-1>0u 

. 1 (" 7í ) 7f hm:¡ - (r+ó) --r = - . 
ó->Ov2 2 2 

Remark 7.1. Linear resonant problems such as problem (P2) do not always have a 

solution. Using Fourier expansions1 it is not very hard to show that problem 

(P2), { u"+ u= p(t) , O < t < " 
u(O) = u(rr) =O 

has a solution if and only if 

1' p(t )sin(t)dt = O . 

This is a special case of the so· calted Fredholm AlternaUve. The case we considered 

was precisely the one with p(t) = sin(t), which clearly violates the above orthogonal· 

ity condition. 

Remark 7 .2. To our knowled9e1 the first version of a nonlinear resonaint problem 

was studied by Landesman and Lazer in {5}. In its ODE version, the problem they 

considered was 

(P), { u" + u + g(u) = p(t) , O < t < 7r 
u(0) = u(7r) =O 

with 9(s ) being a continuows1 increasin.<J function having the lirnits g(± oo) = 

l<irn,_,±00 ,r¡(s), with {say) g( - oc) < O < g( +oc). Then they showed lhat (P),, has a 

sol'ul·ion provided that the given Lh.1;;. contimwus J1mction p(l) wtisfie.s the t ondi­

tion 

(LL) ,r¡(-oo) 1' sin(t) dt < }~' p(t)sin(t) dt. < g( +oo) ;,·• sin(t) dt . 



280 David C. Costa 

An altemative proof of tliis result using the Saddle-Point Theorem and which works 

Jo1· the mo1·e general situati on where 

(i) (p(t) - g(u)) is rep/aced by a bounded continuous function g(t, u), 

(ii) (LL) is replaced by lim¡.¡~00 G(t, u ) = +oo, 

was given by Rabinowitz (7} in 1978. In fact, Ahmad, Lazer and Pau/ {1} had studied 

this mor·e general resonant situation by a different method in 1976. But it was pre­

cisely this problem that motivated Rabinowitz to announce and prove his celebroted 

Saddle-Point Theorem in (7} 1.md apply it first-hand to the Ahmad-Lazer-Paul situ­

ation. 
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