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Introduction

Many times, solutions of a given differential equation problem
Dlu] =0
can be found by variational techniques, in other words, by seeking points of Mini-
mum, Mazimum, or even Saddle-Points of an associated real-valued functional
¢: X —R.
Here, X is a suitable (huge) space or set of functions which includes the possible

solutions(s) of our differential equation problem. And the functional ®[u] is such

that its ‘derivative’ is equal to D[u], so that our given problem reads @'[u] = 0, or
Du®[u] = 0.

The basic idea is borrowed from Calculus, when one looks for ‘stationary’ or
‘critical points’ of a given function.




\

The functional ®[u] has often the meaning of an Energy, a Cost Functional, etc.
The classical example is the famous Dirichlet Principle [4]:

252 David G. Costa

“The solution of the Laplace equation Au(z) =0 on (say) a nice plane
domain Q, satisfying the condition u(z) = h(z) on the boundary of Q
(for a given nice h(z)), is precisely that function ug(z) which minimizes

the Energy Functional
8lu) = [ [Vu(a)f de
Q

in the admissible set X of all functions u(z) defined on Q that satisfy

the given boundary condition.”

Here, one could think of the given boundary function h(z) (or its graph) as giving
the shape of a fixed curved wire in space, and the graphs of the admissible functions
u(z) as the possible shapes of elastic membranes which may have the given wire as
contour. Then, Dirichlet’s Principle states that the shape of the elastic membrane
which will adjust to the given wire is given by the function ug(z) which minimizes the
energy functional above [The values of ®[u] represent the (elastic) potential energies
of the candidates to the various membrane configurations].

The goal of these notes is to introduce the reader to some of the modern tech-
niques of the Calculus of Variations. By means of simple, motivating examples of
ordinary differential equations, we will describe in a somewhat informal manner the
main ideas behind the so-called Variational Methods. Besides the Basic Minimiza-
tion Result of the Calculus of Variations, the reader will also encounter two other
basic results of a Minimaz nature. For those interested in further studying the
variational methods and their applications, we recommend the standard references
[6, 8, 10, 11], as well as the monograph [3] (in portuguese) by the present author.

We would like to thank to Prof. Claudio Cuevas and the Editorial Committee of
Cubo for the invitation to write these notes. We also thank Prof. Hossein Tehrani

for having read the manuscript and for his suggestions.
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1 Critical Points in Calculus

All of us who took the calculus series in college are familiar with the problem of
finding the stationary or critical points of a given nice function F : R* — R, that
is, of finding the solutions (if any) of the problem

VF(z)=0,

and of deciding whether a critical point is a point of (local) mimimum, a point of
(local) mazimum, or neither.

The following figure, in the one-dimensional case n = 1, illustrates a situation
with all three possibilities: a point z; of local maximum, a point z, of local minimum,
and a point z3 which is neither a point of local minimum nor local maximum (We
recall that, in this example, the point z3 is called a point of inflection since it gives
a local minimum from one side and a local maximum from the other).

Figure 1

Of course, critical points which are neither local minimum nor local maximum

can be more complicated than points of inflection, as the example F(z) = z?sin(1)
below shows:

Figure 2




Another typical example, in the two-dimensional case n = 2, is given by the
function F(z,y) = 2% — y?, which has (z,y) = (0,0) as its only critical point. We
recall that, in this example, (0.0) is called a saddle-point by virtue of the fact that
it is a local minimum along a certain direction (the z-axis, in this case) and a local
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maximum along another direction (the y-axis, in this case):

Figure 3

Finally, we would like to recall one of the basic results in the one-dimensional
situation (n = 1), which represents a special case of the Mean Value Theorem:
Rolle’s Theorem: Let F : [a,b] — R be a continuous function, which is differ-
entiable on the open interval (a,b) and is such that F(a) = F(b) = 0. Then, there
ezists some point o 1 (a,b) such that F'(zg) = 0.

Figure 4
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So, Rolle’s Theorem guarantees the existence of (at least) one critical point when
our nice function F is at same level (zero) at two different points (a and b). The
figure depicted above illustrates Rolle’s Theorem in a situation where the critical
point x; is a point of maximum. We now close this section with a natural question,
whose answer will be given later on.

Question 0: Is there an analogue of Rolle’s Theorem in dimension n > 17

2 The Classic and Modern Periods of the Calcu-
lus of Variations

The so called Classic Period of the Calculus of Variations is that period of time that
followed the introduction of Calculus by Newton and Leibniz, in which questions
of finding eztrema (maximum or minimum) of functionals were considered. Here,
the word functional is used as a name for a function that is defined on a given
(admassible) linear space or set of functions, rather than on a space or set with a
finite number of variables (as we are used to in calculus).

A typical example of a functional is the functional ‘length’, defined for nice
functions u : [a,b] — R by

b
L=f V1+u?dz .
a

Here, for each function u : [a, 5] — R having a continuous derivative, one considers
its length L=®[u] given by the above formula. Thus, we have a functional ®: X — R
defined on the (infinite dimensional) linear space of all continuously differentiable
functions u : [a,b] — R. Another typical example is the functional ‘area’, defined
for nice functions u : 2 — R (where  is a given nice bounded region of the

zy-plane) by the formula:
A= //n,/1+u3+u§ dzdy .

The reader is encouraged to look at some more examples in, for example, [4]
(Chapter IV) or [9] (Chapter 9). Our main purpose in this section is to explain how
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one goes about ‘finding’ maximum or minimum (or more general critical points)
of such functionals ®. For simplicity, we will assume that we are dealing with
functionals defined on a linear space X (so that linear combinations of functions in
X are again in X). The idea is to reduce the problem to a one-dimensional problem
by considering the function

6+ ®[u + 6h)

of one variable § € R, where u and h are fixed functions in the space X. Then, a
given wu is said to be a critical point of the functional @ if

d
2520 + 0h]ls=0 = 0 (21)
for all A in X.

Remark 2.1. We note that formula (2.1) says that the directional derivative of ®
at ug, in the direction of an arbitrary h, is equal to zero* :

Dlug + dh] — Duo)
)

DO[ug] - h:= %13(1} = (2.2)

Formula (2.2) leads to the so called Euler-Lagrange equation of ®. Let us see how
this is done for functionals of the form

Du) = /b F(z,u,v) dz , (2.3)

where the integrand F(z, y, 2) is a nice function and the admissible space X consists
of continuously differentiable functions u : [a,b] — R satisfying u(a) = u(b) = 0.
Indeed, if we ‘formally calculate’ the limit in (2.2) in this case, we will find that

b
D®[ug) - h= / {Fy(@,uo, up) h+ Failz, up,up) h'} d .

Therefore, since h satisfies h(a) = h(b) = 0, if u is a nice function (say twice
continuously differentiable) and we integrate by parts the second term of the integral

*Strictly speaking, this is less d ding than the requi that the “derivative” &'[ug]

vanish.
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above and factor out the common term h, we see that (2.2) reads
D®[ug) - h = [Ib{fy(z,uo,u'o) = %f}(x,uo,u(})}h dz =0
for all such h. From this, it can be shown' that uy must be a solution of the equation
Fulm,u,u') — %}'u/(z,u‘u') =), (2.4)

which is the so-called Euler-Lagrange equation of the functional (2.3). In other
words, any nice critical point of the functional (2.3) is necessarily a solution
of the Euler-Lagrange equation (2.4).

Example. Let us consider the functional length L = ®[u] (mentioned earlier)

defined on the admissible set of (nice) functions u : [a,b] — R satisfying the
boundary conditions u(a) = ¢ and u(b) = d, for some given ¢,d € R. In order to
have such functions forming a linear space X we will assume that c =d =0% In
this ezample we have F(z,u,u’) = (1 + u)'/? and, therefore, the Euler-Lagrange
equation reads

d
0-— —dz(l A u'2)"/2u’ =08
or, after simplifications,

Bl T8

Its solutions are the linear functions u(z) = Az + B and, after using the boundary
conditions u(a) = u(b) = 0, we obtain u(z) = 0. This confirms our obvious intuition
that the straight line joining the points (a,0) and (b,0) should give a minimum for
the functional length. Of course, in the case of the more general boundary conditions
u(a) = ¢, u(b) = d, we will find that the function l(z) = ¢+ :%;(z — a) yields the
minimum length.

It is clear that our approach so far has been an informal, non-rigorous one. After
all, we mentioned earlier that our main purpose in this section was to show how one
could ‘try to find’ critical points of functionals using calculus. As we just saw, one

This is a consequence of Du Bois-Reymond Lemma (see 4], pg. 200).
+We note that the general case can be reduced to this case by writing u(z) = v(z)+c+ H(z—a)
and considering instead the linear space of the corresponding functions v.

.




could go from a Variational Problem for the Functional ®[u] to a Differential
Equation Problem for u. This is precisely the approach that characterized the

Classic Period of the Calculus of Variations.
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On the other hand, we can say that the Modern Period of the Calculus of
Variations initiated with the famous Dirichlet Principle mentioned in the Introduc-
tion. During this period, which continues on to our present days, the approach goes
in the opposite direction. Namely, one starts from a given Differential Equation
Problem for u (which is to be solved) and considers the corresponding (if any)
Variational Problem for the Functional ®[u], of which the given differential
equation is the Euler-Lagrange equation. Then, the idea is to use solely Variational
Methods (for finding minima, maxima and other critical points) in order to ‘solve’
the given differential equation problem. Our main goal in this monograph is pre-
cisely to illustrate this latter approach by means of some typical differential equation

problems.
3 Five Ordinary Differential Equation Problems
Let us consider the following five boundary value problems:

(R) {u"+%u=sint, O<t<m
1

w(0) = w(r) =0

W+u=sint , 0<t<m
w(0) = w(r) =0

4+ =sint , 0<t<m

(Pr)

3
&
—— —~— —— —

e g
=

I

=
=L

I

=

(Ps)
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We would like to start by pointing out the following facts about these problems:
1) Problem (P;) has the solution ug(t) = —2 sin ¢ (unique);
2) Problem (P,) has no solution;
3) Problem (Ps) has the solution uy(t) = sin t (unique);
4) Problem (P;) has the solution uy(¢) = 0 (not unique);
5) Problem (Ps) has the solution ug(t) = 0 (unique).

Using our knowledge of second order linear differential equations, it is not hard to
verify statements 1) - 3), as well as the obvious fact that u,(t) = 0 is a solution of
problems (P;) and (Ps). The fact that (P5) has no other solution can be seen by
multiplying the equation by w and integrating by parts once. Indeed, we obtain

0= '/o" u"(t)u(t) dt — /07r u(t)! dt = — /ﬂ(u'(t))'l i /7r w()t db |

0 0
from which it clearly follows that w(¢) = 0. What is not so obvious, however (and

the reader should take my word for it), is that (P;) has many other solutions, in

fact, infinitely many of them.

Question 1. What do problems (P;) — (Ps) have in common?

Obviously, such a general question could prompt a general, trivial response in return
(such as, they all involve ordinary differential equations, they all have the same
boundary conditions, etc., etc.). However, one answer which we would like to provide
here is that these five problems are variational in the sense that each of them can
be seen as the Buler-Lagrange problem of some suitable functional.

In order to do that, let us denote by f: R — R any of the functions indicated
in the left-hand side of the equations, and by p : [0, 7] — R any of the right-hand
side functions.

o T
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In other words,

38 sint
s sint
f(s)= 5 o) = s
5 0
—s® 0

for problems (P,), (Py), (Ps), (Ps), (Ps), respectively. So, we write (P;) (j=1,...,5) as

'+ flu)=p(t) , O<t<m
" (

u(0) = u(m) =0

Next, given a solution ug of (P), if we multiply the equation by an arbitrary function
hin
Ci[0,7] :={h: [0,7] = R | his of class C', h(0) =0, h(m)=0},

we obtain, after an integration by parts:

i3 /u "R () dt + /D i) & /0 " p(h(t) dt .
In other words, we get

/0 "R () dt - /0 " F(uo(t))h(t) de + /0 ST
for all h € C}[0,7]. Now, it is not hard to check that the above says that the
directional derivative of ® at ug, in the direction of h, is equal to zero:

®lug + 6h] — @[ug] _
S g i

D®ug) - h:= ‘lfiné 0, (3:2)

(T
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where @ is the functional defined by
o] = / (W) dt — / Plult)) dt + / oy (33)
0

and F(s) = [; f(0)do is an antiderivative of f(s). We note that

for problems (Py), (Ps), (Ps), (Py), (P5), respectively.

We have ‘shown’ in (3.2) that a solution of (P) is a critical point of the functional
® : C§[0, 7] — R defined in (3.3) (whose Euler-Lagrange Problem is precisely prob-
lem (P)). Moreover, as we already pointed out in Section 2, it can also be ‘shown’
that any critical point of such a functional ® turns out to be a nice function which
is a solution of problem (P). Therefore, we have obtained the following answer to
Question 1:

Answer 1. Problems (Pi) — (Ps) are variational: its solutions are precisely the
critical points of the associated functional ®.

Remark 3.1. We should note that the first term in the definition of ®[u] can be

regarded as the ‘length squared’ or ‘morm squared’ of the function w, provided we
define the “nner-product’ of any two functions w,v in C3[0,) by the formula

o) = / () dt (3.4)
0
The first term in the r.h.s. of (3.3) can then be written as —HuH This definition of

‘norm’, 1
= ([ o ar) (35)

18 often called the ‘mean-square norm’. Such ‘norms’ are generalizations to the
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infinite-dimensional setting of the notion of ‘length’ of vectors, as defined in terms
of the ‘dot product’.*

Remark 3.2. The space C}[0, 7] is not ‘complete’ with respect to the ‘norm’ above.!
The ‘completion’ of C}[0, 7] with respect to the norm || - || is the ‘Hilbert space’ (=
‘complete inner-product space’) denoted by X := H (0, ), which is an ezample of a
so-called ‘Sobolev space’. The reader should not be overwhelmed by all the languag

and notation which we are bringing into play. It is enough to keep in mind that,
in order to be successful in this variational setting, it is necessary to work with a
space having an ‘inner-product’ (or a ‘morm’) that makes it ‘complete’. And, for
that, one needs to do some ‘sophistication’. For all practical purposes, the reader
may continue to think of all the gien functions in these notes as being as ‘nice’ as

he so wishes (or feels comfortable with).

Remark 3.3. Keeping Remarks 3.1 and 3.2 in mind, we can now write our func-
tional ® as 5
D] = llul - Yul , we X = HO,m),

where

b= /OFF(u(t)) = /0 p(t)ult) dt .

Question 2. What ‘type’ of critical point is each solution ug presented in the
beginning of this section? What is the ‘geometry’ of the functional ® in each of the
problems (P;) — (Ps)?

The rest of this monograph is devoted to ‘answering’ this question by analysing
each problem. At this point, however, we provide a ‘sneak preview’ of the answer
by means of the following ‘pictures’:

*Recall that a-b = Y1, a;b; and |laf| = (20, a?)!'/? for given vectors @ = (a,...,an),
b= (by,...,bn).

There are sequences {un} of functions in C} (0, 7] satisfying |[um — uk|| = 0 as m,k = oo
(the Cauchy Criterion), but which do not converge; in other words, for no v € C§[0,] one has

[lum = vl| = 0.




&
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Problem (P,) Problem (Py)

Problem (P;)

w0

Problem (Py) Problem (P;)
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4 Problems (P) and (P;)

The functional ® : X — R in each of these two problems belongs to the class of
the so-called coercive functionals.
Definition. ® : X — R is said to be coercive if ®[u] — +00 as [|u| = co.

Let us check that the functionals associated with problems (P;) and (Ps) are coercive:

®,[u] = %“u”z S her WA i/oﬂu(t)"’ b /o o(t)ult) dt ,

D5[u] = %Hu”? — Ws[u] , where Usu] = —% /0" u(t)t dt .

Since Ws[u] < 0, it is clear that ®s[u] is coercive, for @5[u] > %Ilu”2 — +00 as
|lul| = 0o. On the other hand, in order to show that ®;[u] is coercive we shall use
the following important lemma (which also has a higher dimensional version), whose

proof the reader may skip for now:

Lemma 4.1. (Poincaré’s Inequality) For any w € X one has

/0" u(t)? dt < /0" u'(t)? dt .

Proof. Let us consider the case in which v € C}[0,7]. We will need to use some
basic knowledge of Fourier Series, including the Parseval’s identity. Let us consider
the odd estension U(t) of u(t) to the interval [—, 7] (@(t) = —u(~t) for -7 < ¢ < 0).

It has the Fourier series
00

a(t) =ap+ Z[ancos(nt) + bsin(nt)]

n=1

where ag = 5 [* A(t)dt, an = L [T U(t)cos(nt)dt, by = L [* A(t)sin(nt)dt, (n =

1,2,...). Since u(t) is an odd function, we obtain that a, = 0, n = 0,1,2,... and,

50,

u(t) = ibnsin(nt) , t€[-mm].

(T




T
A FIRST ENCOUNTER WITH VARIATIONAL METHODS ...
From this, we conclude that the Fourier series of @'(t) is
a'(t) = inb,.cos(nt) , t€[-mm].*
n=1
Now, the corresponding Parseval’s identities for u(t) and @'(t) are

LR St el
27r/_wu(t) dt—§§bn, (4.1)

A g il
zw/_“u(t) dt = 2§n b2 . (4.2)
Therefore, it follows from (4.1) and (4.2) that
i/" e et SR b B teE = e St e 1 (£9)
or J . 244" T on ),

Finally, since |7 @(t)*dt = 2 [ u(t)?dt and [ @'(t)?dt = 2 [; w/(t)?dt, we conclude
from (4.3) that Poincaré’s inequality holds true for u € C}[0, 7], that is,

/0" u(t)? dt < /0" u'(t)* dt .

It can then be shown that Poincaré’s inequality also holds true for an arbitrary
ue Xt O

Next, we recall the well-known inequality of Cauchy-Schwarz (see [6] for a proof):

Lemma 4.2. (Cauchy-Schwarz’s Inequality) For any v,w € C[0,7] one has

\ﬁ°w0wu>m[s(Abwnﬂa)%(xbwmzm)%=\wmnﬂuﬁ

Finally, applying Lemmas 4.1 and 4.2 to ¥, [u] we obtain the estimate

W] < el + ol el

*We remark that the equality sign must be suitably interpreted in the ‘mean-square sense’.
tAs you may guess, the proof of this statement uses the fact that X is the completion of C§[0, 7).
Hn fact, the functions v,w can be more general than continuous functions.
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hence ; 3 4
@ufu] > Hfuf* - ZHHH" = llalla]lull = ZHUIV = llellallull

from which it is clear that ®;[u] — 400 as |lu|| — co. We can now state

Lemma 4.3. Each of the functionals ®,[u] and ®s[u] is coercive on the space X.

Remark 4.4. It is somewhat intuitive (and, in fact, true) that, by using the notio
of ‘prozimity’ given by our definition of norm in (3.5), each of the functionals ®[u
and ®5(u] is continuous. In other words, denoting either ®, or ®5 by ®, we have

O+ h) —> D] as [[Al] — 0 .

The proof of this fact is not very hard, but it’s not obvious either. It uses Lemma
4.1 and 4.2 together with the identity (A? — B?) = (A+ B)(A — B) and the fact tha
all the functions w in X turn out to be boundedS. The reader should not worry abou

it, if he feels comfortable in accepting it.

Remark 4.5. In case we were working with a finite-dimensional space like R, the
by having a coercive function F': R* — R which was also continuous, we would b

able to conclude the existence of a point o of global minimum for F(z):

F(z) > F(zo) for allz € R" . (44

Indeed, one first notices that, in view of the coercivity of the function F(z), it suffice
to look for such a point zy in a a suitable set which is ‘bounded’ and ‘closed’ (=
‘compact’), say a closed ball Br(0) of some appropriate radius R > 0 centered at th
origin © = 0 (The coercivity of F(z) allows one to pick R > 0 so that F(z) > F(0
for all ||z|| > R and this insures that a point of minimum (should it exist) mus

necessarily lie inside Bg(0)).

Next, we point out the following two facts which the reader may (or may not

know Y:

§See the proof of Lemma 5.1 (4).
YThese results are due to the mathematicians Bolzano and Weierstrass of the nineteenth century

(T
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Fact 1. A closed ball Br(0) C R* is a compact set, i.e., any sequence of points in
Br(0) possesses a subsequence converging to a point in Bg(0).

Fact 2. A continuous function F : K — R defined on a compact set K C R*
‘attains’ a minimum value,| i.e., there ezists z in K such that F(z) > F(x) for
allz in K.

Finally, using the above facts, we can readily conclude that (4.4) holds true. It
is important to point out that the key ingredients in the above arguments are
compactness of the closed ball Br(0) C R* and continuity of the restricted function
F : Bp(0) — R (the coercivity of F(z) in the whole space R" was used to reduce
the problem to the ball B(0)).

The unfortunate reality in our present situation is that we are no
longer able to reach a conclusion analogous to (4.4) for our functionals
®,[u] and ®5[u] so readily as we have done above, simply because our
underlying space X is infinite-dimensional! Indeed, in this infinite-
dimensional setting it turns out that the closed ball Bp(0) C X is
not a compact set!**

Therefore, since we can no longer rely on the fact that a bounded sequence
possesses a subsequence that converges (in the sense of the norm defined in (3.5)),
our next task is twofold:

(a) We must define a suitable ‘new notion of convergence’ (of sequences) under

which bounded sequences possess a convergent subsequence.

(b) We must define a suitable ‘new notion of continuity’ (for the functional ® :
X — R) which is ‘compatible’ with the new notion of convergence in the
sense that lim ®[u,] = ®[u] whenever u, ‘converges’ (in the new sense) to u:
wn fact, as we shall see, we will only need ® to be ‘lower-semicontinuous’ with

respect to the new notion of convergence.

Tt also attains a maximum value, but we are not concerned with that now.

**Intuitively, the infinitude of independent ‘axes’ in X allows one to pick an element of fixed
norm r < I in each of those ‘axes’ and form a sequence that goes ‘around’ and ‘around’ with no
convergent subsequence.




Definition A. A sequence (u,) in X converges weakly to u (which we write as
Uy — u) if we have (un, h) — (u, h) for all A in X, that is,

/, u, (K (t) dt — / (@K () dt VheX .
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Definition B. A functional ® : X — R is called weakly continuous if

®[u] = lim ®[u,] whenever u, — u .

In fact, ® is said to be weakly lower-semicontinuous (resp. weakly upper-
semicontinuous) if ®[u] < liminf ®[u,] (resp. ®[u] > limsup ®[u,]) whenever
up — w. Thus, ® is weakly continuous if and only if it is weakly lower-semicontinuous

and weakly upper-semicontinuous.t

These definitions indeed allow us to accomplish the tasks (), (b) we described above,

since it is possible to prove the following results:

Lemma 4.6. The closed ball Bg(0) C X is weakly compact, i.e., given any
sequence (u,) with |lu,|| < R there exists a subsequence (up,) and @ with ||ul| < R

such that up, — 1.
Lemma 4.7. The norm N[u] = ||u|| u € X is weakly lower-semicontinuous.*

Lemma 4.8. Given a continuous function f : R — R, the functional ¥[u] =
Jy f(u(t)) dt, u € X is weakly continuous.

We are now ready to state the main result of this section which guarantees the
existence of a global minimum for our functionals ®;[u] and ®s[u]. This result
summarizes the so called ‘Direct Method of the Calculus of Variations’ and is the
culmination of the efforts of many mathematicians of the second half of the nine-
teenth and first half of the twentieth centuries, notably, Hilbert, Lebesgue, Tonelli
and Weierstrass.

HThe reader should review/learn the definitions of liminf and limsup for sequences of real
numbers.
”]\'[u] is not weakly continuous, as it is not weakly upper-semicontinuous.

(T
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Theorem 4.9. (Basic Minimization Theorem) Let X be a Hilbert space® and
assume that a gwen functional ® : X — R s

(1) coercive,

(44) weakly lower-semicontinuous.

Then, ®(u] is bounded from below and there ezists ug € X such that

Du] > lug) for allu € X .

Proof. Using the coercivity of the functional ®, pick R > 0 such that ®[u] > ®[0] for
all ||u|| > R. Then, the we may restrict our attention to the closed ball Br(0) C X.
We start by claiming that the infimum m = infuex®[u] is finite. Indeed, if we
had lim ®[v,] = —oo for some sequence (v,) in Bg(0) then, by Lemma 4.6, there
would exist ¥ in Br(0) and a subsequence (v,,) such that v, — 9. But then, by
the weak lower-semicontinuity of ®{u], we would reach the absurd conclusion that
®[0] < liminf ®[v,,] = —oc. Therefore,

Du]>m>-00 YueX. (4.5)
Now, let u, € Bg(0) be a minimization sequence for ®:
lim ®fu,) =m .

Again, using the weak compactness of Bp(0) given by Lemma 4.6, there exists
uy € Bg(0) and a subsequence (un,) of u, such that un,, — ug. And, by the weak
lower-semicontinuity of ®, we conclude that

Bug] < lim inf Bfuy,] =m ,

hence ®[ug] = 7n and
Dlu) > Dluy) for all u € X,

in view of (4.5). This completes the proof. =]

*A Hilbert space is an ‘inner-product’ space which is ‘complete’.
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directional derivatives
®[@ + dh] — D[T]
D] b iy S = S ST S
550 )

at some U € X which is either a point of local minimum or of local maximum then
necessarily, D®[@] - h = 0 for all h € X. The proof of this fact is ezactly the sam
as the one we saw in Calculus. From this observation, it follows that the point ug o,
global minimum obtained in the Basic Minimization Theorem is a critical point o

the functional ® in case ® has directional derivatives at every point in X.

Finally, we turn our attention back to the functionals ®; [u] and ®;[u]. We recal

that all the functionals ®;[u], ..., ®s[u] are of the form

olu] = Qlu] = ¥[u],

where Q[u] = %“u”2 is weakly lower-semicontinuous (w.l.s.c.) by Lemma 4.7 anc
VU[u] is weakly continuous (w.c.) by Lemma 4.8. Therefore, it is not hard to see thal
®[u] is w.ls.c. And, since we have already seen in Lemma 4.3 that ®; [u] and ®5[u
are coercive, we may use our basic minimization result, Theorem 4.9, to conclude
that each of these functionals attains a global minimum uy. Moreover, in view of
Remark 4.10 above and our discussion in Section 3, any such uy is a solution of the
corresponding problem (P;) or (Ps). It is now clear that the corresponding (unique)
solutions ug(t) = —2 sin t and wuy(¢) = 0 pointed out in the beginning of section
are precisely the global minima given by Theorem 4.9.

5 Problem (F;)

In this section we will see that the functional &, : X — R corresponding to
problem (P;) is no longer a coercive functional. Moreover, we will describe some of
its ‘geometry’ (cf. picture in section 3).

First, we set some useful notation which will be used in this and in the next sections.

. T




T
A FIRST ENCOUNTER WITH VARIATIONAL METHODS ...

Let ¢n(t) == sin(nt), en(t) = \/:%_ﬁsin(nt), n=1,2,..., and observe that

S Y 25
/0 sin®(nt) dt —/0 cos®(nt) dt = 5 (5.1)
™ o
[lpall* =/0 n*cos®(nt) dt = ;—rn"’ s leall? = /0 ;cosQ(nt) =il (5.2)
(b $n) = 0if m #n . (5.3)

In particular, keeping in mind that a function u € X has the Fourier expansion
u(t) = Yoo, busin(nt) (cf. Lemma 4.1), we see that both the ¢,’s and the e,’s form
an ‘orthogonal basis’ for the space X (Note that the e,’s are ‘normalized’).

Now, we recall that the functional corresponding to problem (F;) is given by
ol / W di -t / w(t) dt = Qlu] — Ualu] . (5.4)
2 0 4 0

In this case, since W4[u] is homogeneous of degree four, we intuitively expect that the
quadratic term Q[u] will be the ‘dominant’ term for ||u| ‘small’ and, on the other
hand, it will be somehow ‘dominated’ by the negative term —W4[u] for |ju|| ‘large’.
In fact, as we shall see in the next lemma, the (trivial) solution ug(t) = 0 of problem
(Py) turns out to be a strict local minimum of the functional ®,[u] and, on the other
hand, along any ray 0 < 7+~ 7v (with v # 0), the functional ®,[u] tends to —oc.*

Lemma 5.1. (i) There ezists r > 0 and b, > 0 for p € (0,7] such that
D4fu] 2 b, >0 for [lull = p ;
(it) For each v # 0, we have that ®4[tv] — —oc0 as T — o0 ;

(¢ii) The functional ®4 is not bounded from above (i.e., for each M > 0, there exists
u € X such that ®4[u] > M).

Proof. (i) Let u € X be arbitrary (for simplicity, you may assume that u € C}[0, 7],

although the exact same argument works for u € X). In view of the Fundamental

*Note that, since the space X is infinite-dimensional, this does not mean that the functional
®4(u] is bounded from above! Indeed, Lemma 5.1 (iii) will show that it is not!

271



212 David G. Costa !

Theorem of Calculus we can write
t
= / ()
0

50 that Cauchy-Schwarz’s Inequality (Lemma 4.2) and Poincaré’s Lemma (Lemma
4.1) yield

L 1

ol < ([ v ds)% (/() as) st ([Tuoras)

[u@)[* < 7?||u||* forallue X .

hence

This estimate implies the conclusion stated in (z) since we get

o L el o 48
@afu] 2 Sl = Zllull® 2 Zlul® if flull < 772 =7

(#4) Let v € X be given with v # 0. Then, it is easy to see that
il
By[mv] = §AT2 - iBTd 5
where A = ["v/(t)%dt > 0 and B = [ v(t)*dt > 0. Therefore, we have that
®y(Tv] — —00 as T — o0.

(#11) Let M > 0 be given. Recalling the definition of ¢n(t), (5.1), and the fact that
sin'(nt) = (1 — cos(2nt))? we calculate

D4[pn] = %/0 n*cos®(nt) dt — j_l/(; sin'(nt) dt

5 1 7
LT 4/ [1 = 2cos(2nt) + cos®(2nt)] dt ,
4 16 J,
hence
T o5 3m
=L el

D4[¢] s 33 2 M,

if n > N for some N. This completes the proof of Lemma 5.1. 0

= N
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We are now ready to answer Question 0 which we posed in Section 2, namely, of
whether there was an analogue of Rolle’s Theorem in dimension n > 1. An affirma-

tive answer can be given by the celebrated Mountain-Pass Theorem of Ambrosetti
and Rabinowitz [2].

Theorem 5.2. (The Mountain-Pass Theorem) Let X be a Hilbert space and let
®: X — R be a ‘continuously differentiable functional’ ' such that ®[0]= 0. As-
sume that ®[u] satisfies the so-called Palais-Smale condition* and that the following
geometric conditions hold true:

(a) There exist b > 0 and r > 0 such that ®[u] > b> 0 for ||ul| =7 ;

(b) There exists e € X with ||e|| > r such that ®[e] < 0.
Then, ®[u] has a critical point @ € X with ®[@) = ¢ > b > 0, where c is the ‘minimax
value’

him b R E
¢:= inf max 2[y(s)] , (5.5)

and T := {7 :[0,1] = X | v is continuous,y(0) = 0, (1) = e} is the class of all
paths joining 0 and e.

Remark 5.3. Let us try to ‘visualize’ the Mountain-Pass Theorem when X = R?
(¢f. picture for problem (Py) in section 3) and the functional ®[u] represents the
‘topography’ of a certain terrain. Roughly speaking, in this situation the conditions
of the Mountain-Pass Theorem say that the origin u = (0,0) is at the ‘level zero’
and is surrounded by a ‘mountain-range’ located at a distance v > 0 with (possibly
varying) heights of at least b > 0. In addition, there is a point e on the terrain
‘outside the mountain-range’ which is at the ‘level zero’ (or less). Therefore, if
someone standing at the origin u = (0,0) wishes to ‘cross’ the ‘mountain-range’
and travel toward the point e, he/she may want to do so by choosing the ‘lowest
possible passage in the mountain-range’, the mountain-pass, which should be at
the ‘minimaz’ height ¢ > b defined in (5.5). The ‘tangent plane’ at a point (4, ®[a])
at such a level c-must then be ‘horizontal’, in other words, u must be a critical point
of the functional ®fu).

This means that all directional derivatives D®[u).-h exist and depend continuously onu, h € X.
#This is a ‘compactness condition’ meaning that any sequence (uy) such that |®[uy]| is bounded
and |D®[uy,) - h| € e,|lh]| Vh € X, with €, — 0, necessarily has a convergent subsequence.

o [
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Figure 5

Remark 5.4. In view of our discussion in Section 3, the functional ®4[u] (as well as
any of the other ®;[u]’s) is differentiable. It fact, it can be shown (but we will not do
it in these notes) that each functional ®;(u] is continuously differentiable. Moreover,
®4(u] can be shown to satisfy the above mentioned Palais-Smale condition [8].

Theorem 5.5. Problem (P;) has a nonzero solution @ .

Proof. We will use the Mountain-Pass Theorem to find @. It is clear that ®4[0] =0
and, according to Remark 5.4, ®,[u] is continuously differentiable and satisfies the
Palais-Smale condition . So, it remains to verify the ‘geometric’ assumptions (a)
and (b) of Theorem 5.2. Indeed, (a) follows immediately from Lemma 5.1 (i) by
(say) taking b = b, > 0. On the other hand, Lemma 5.1 (#z) shows that there are
many e € X satisfying assumption (b) (Indeed, given any ‘direction’ v # 0, we can
take e = 7v with 7 sufficiently large).

Therefore, the Mountain-Pass Theorem yields a critical point @ with ®4(u] =
¢ > b > 0. In particular, we have @ # 0 because ®,[0] = 0. And, according to our
discussion in Section 3, we conclude that @ is a solution of Problem (). 8]

.
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6 Problem (P;)

In this section we will see that the functional ®3: X — R corresponding to prob-
lem (Py),

Byu] = %/OW u'(t)? dt — /u"u(t)2 dt +/0, sin(t)u(t) dt , (6.1)

is also non-coercive. And, we will describe its ‘geometry’ (cf. picture in section 3).

Let us denote by V := span{¢;} the (one-dimensional) subspace spanned by ¢,
and by W := span{¢, | n > 2} the (closed, infinite-dimensional) subspace spanned
by ¢, @3, . ... Then, we can summarize some of geometric properties of ®3[u] through

the following
Lemma 6.1. We have the ‘direct sum decomposition’ X = V@&W (i.e., eachu € X
can be written uniquely as u = v+w withv € V and w € W) with the property that:
(i) ®3[v] — —o0 as ||v]| = 00, v €V (i.e., Py[rdr] — —00 as |T| = 0);
(i1) Py[w] — +00 as [|w|| = 00, w € W.
Proof. The ‘direct sum decomposition’ X = V @ W results from the fact an
arbitrary u € X has the (unique) Fourier expansion

u(t) = ibnsin(nt) = %/“ u(t)sin(nt) dt .
n=1 1y

In order to prove (i) we use (5.1), (5.2) to calculate
1

x n ’r
ylr1] = 5/ m2cos*(t) dt —/ 2sin’(t) dt+/ rsin’(t) dt = —%7'2 E ;r
0 0 0

and conclude that
Dy(rp)] — —o0 as |7| = oo,
in other words, ®s[v] = —oc0 as ||v]| = o0, v € V.
(1) Now, the Fourier expansion of an arbitrary w € W is given by

Wt ibnsin(nt) :

n=2




Therefore, the same Parseval-type arguments as in Lemma 4.1 give the estimates
(S el S 1 11 & 1/
= =-) <= 21;2=—/ '(2)? dt
= [ wer ar < gt =g [TWra

which imply the following Poincaré Inequality for w € W:

8 1 e
/0 w(t)”idtgz /0 w'(t)® dt . (6.2)
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Using the above inequality in the first two terms of (6.1) and the Cauchy-Schwarz’s
inequality (Lemma 4.2) in the third term, it follows that

B3w] > (% - %) /uﬁw’(t)2 dt — (/0, sin’(t) dt>% (/‘)Ww(t)2 dt)% ;

s0 that, by again using (5.1) and (6.2), we obtain

il Tl
ful 2 Jhl? - G5l

Therefore, ®3[w] — +00 as |Jw|| = oo, w € W, which completes the proof. 8]

Remark 6.2. We should observe that the arguments of the above proof can be used
to show the following more general Poincaré Inequalities for elements of the space
X, where Vi = span{¢, | n < k} [the finite-dimensional subspace spanned by
G1y. .o, k] and Wiy = Span{¢, | n > k + 1} [the closed, infinite-dimensional
subspace spanned by ¢pi1,. . .J:

/ U (8)? dt < Ic2/ u(t)? dt for allu € Vi, (6.3)
0 0

(k +1)? / Cu(t)? dt < / WU(8)? dt. for allaue Wiar s (64)
0 0

where k = 1,2,.... The coefficient k* appearing in the right-hand-side of (6.3) is

precisely the kt-eigenvalue Ny, of the problem

(o 0

w(0) =10, w(m) =0
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Next, we introduce our second minimax result, the Saddle-Point Theorem of Rabi-

nowitz (7].

Theorem 6.3. (The Saddle-Point Theorem) Let X be a Hilbert space having
the direct sum decomposition X =V @ W, with dimV < oo, and let ® : X — R
be a continuously differentiable functional satisfying the Palais-Smale condition and
the following geometric conditions:

(A) There ezists b > 0 such that

Dw]>b>0VweW ;

(B) There ezists a < b and R > 0 such that

) <a<bforveV, |pu|=R.

Then, ®[u] has a critical point & € X with ®[@] = ¢ > b > 0, where ¢ is the ‘minimax
value’

c:=inf max @h()], (6.6)
'L”ve\’-llvﬂsk[ i

and T := {h : BR(0)NV = X | h is continuous, h(v) =v if |jv|| = R} s the
class of all deformations of the closed ball BR NV in V which ‘fizes’ each point of
ats boundary.

R
R
R

R
SRRLILL
o e
N,
LRt
L

Figure 6
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Theorem 6.4. Problem (P;) has a nonzero solution @ .

Proof. We will use the Saddle-Point Theorem to find . According to Remark 5.4,
®;(u] is continuously differentiable. Also, since the quadratic part of ®3(u] in (6.1)
is of the form X (|[ul|*—Al|ul|3) where A = 2 s not an eigenvalue of the problem (6.5):
it is possible to show that ®3[u] satisfies the Palais-Smale condition. So, it remains
to verify the ‘geometric’ assumptions (A4) and (B) of Theorem 6.3. Indeed, Lemma
6.1 (ii) says that the functional ®3 restricted to the subspace W is coercive, so that
an application of the Basic Minimization Theorem 4.9 implies (A4). On the other
hand, if we pick any a < b, an application of Lemma 6.1 (i) shows that we can find
R > 0 satisfying assumption (B).

Therefore, the Saddle-Point Theorem yields a critical point @ with ®3(@] = ¢ >
b > 0. Again, we have @ # 0 because $3(0] = 0, and we conclude that @ is a nonzero
solution of Problem (P;). In fact, 4(t) is the unique solution ug(t) = sint pointed

out in the beginning of section 3 . u}

7 Problem (P)

In this last section, we consider problem (P,) and show that it has no solution by
analysing the geometry of its corresponding functional

ful = gl - 5 [ w2 de+ [ ptiute) ar,

where p(t) = ¢,(t) = sin(t). It should be noted that the quadratic part of ®,[u]
is given by %(‘}u"]? — Al|ulf3), where A, = 1 is the first eigenvalue of problem (6.5):
equivalently, the linear part of (P,) is u” + Aju . For this reason (P,) is called a
resonant problem.

Now, as in Section 6, let us consider the direct sum decomposition X = V& W,
where V = span{¢,} and W := span{¢, | n > 2}. So, an arbitrary u € X can be
uniquely written as u = 7¢; +w for some 7 € R and w € W. Then, observing that
(5.3) implies

/: @\ (Dw'(t) dt = /" i (t)w(t) dt =0,
0 0

-
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a simple calculation shows that

®ylu] = @571 +w] = —‘r + B[] . (7.1)

In particular, we infer from (7.1) that ®,[u] has no critical point. Indeed, given an
arbitrary u = 7¢; + w, we obtain

Dds[u] -6 = llm (@271 + w + 561 = [T + w])

}'_rféts( i )=§‘

Remark 7.1. Linear resonant problems such as problem (P,) do not always have o

solution. Using Fourier ezpansions, it is not very hard to show that problem
wWru=pE) , 0<t<m

(Po)y { w(0) = u(r) =0

has a solution if and only if
/ p(t)sin(t)dt =0 .
0

This is a special case of the so-called Fredholm Alternative. The case we considered
was precisely the one with p(t) = sin(t), which clearly violates the above orthogonal- A
ity condition.

Remark 7.2. To our knowledge, the first version of a nonlinear resonant problem
was studied by Landesman and Lazer in [5]. In its ODE version, the problem they
considered was
), {u”+u+g(u)=p(t) S 0<t<T

w(0) = u(r) =0
with g(s) being a continuous, increasing function having the limits g(+o0) =
limm 400 9(8), with (say) g(—oc) < 0 < g(+oc). Then they showed that (P), has o
solution provided that the given r.h.s. continvous function p(t) satisfies the condi-
tion

(LL) g(—00) /” sin(t) dt < /-w p(t)sin(t) dt < g(+o0) /ﬂ sin(t) dt .
0 0 0

B



An alternative proof of this result using the Saddle-Point Theorem and which works
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for the more general situation where
(i) (p(t) — g(u)) is replaced by a bounded continuous function g(t,w),
(#3) (LL) is replaced by limpy,e0 G(t,u) = +00,

was given by Rabinowitz [7] in 1978. In fact, Ahmad, Lazer and Paul [1] had studied
this more general resonant situation by a different method in 1976. But it was pre-
cisely this problem that motwated Rabinowitz to announce and prove his celebrated
Saddle-Point Theorem in [7] and apply it first-hand to the Ahmad-Lazer-Paul situ-

ation.

References

(1] Ahmad, S., Lazer, A.C. and Paul, J.L., Elementary Critical Point Theory
and Perturbations of Elliptic Boundary Value Problems at Resonance, Indiana
Univ. Math. J., 25, 933-944, 1976.

Ambrosetti, A. and Rabinowitz, P.H., Dual Variational Methods in Crit-
ical Point Theory and Applications, J. Funct. Anal., 14, 349-381, 1973.

2

Costa, D.G., Tdpicos em Andlise Nao-Linear e Aplicacies as Equages Difer-
enciais, VIII Escola Latino-Americana de Matematica, CNPg-IMPA, 1986.

3

[4] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Volume I,
Wiley-Interscience, New York, 1953 and 1970.

[5] Landesman, E.M. and Lazer, A.C., Nonlinear Perturbations of Linear
Blliptic Boundary Value Problems at Resonance, J. Math. Mech., 19, 609-623,
1970.

Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Sys-
tems, Applied Mathematical Sciences 74, Springer-Verlag, New York, 1989.

s

6



A FIRST ENCOUNTER WITH VARIATIONAL METHODS ... 281

[7) Rabinowitz, P.H., Some Minimaz Theorems and Applications to Nonlinear
Partial Differential Equations, in Nonlinear Analysis, Ed. Cesari, Kannan and
Weinberger, Academic Press, 161-177, 1978.

(8] Rabinowitz, P.H., Minimaz Methods in Critical Point Theory with Applica-
tions to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, AMS,
Providence, RI, 1986.

[9) Simmeons, G.F., Differential Equations with Applications and Historical
Notes, McGraw-Hill, New York, 1972.

(10) Struwe, M., Variational Methods and Applications to Nonlindear Partial Dif-
ferential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990.

[11] Willem, M., Minimaz Theorems, Progress in Nonlinear Differential Equations
and Their Applications, Birkhauser, 1996.




