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1 Introduction 

The theory of Fourier integral operators, which arose at the end of the 1960's, is 

presently undergoing rapid growth. Dozens of works which have appeared in the 

world mathematical li terature expound, general ize and utilize the theory of Fourier 

integral operators. And this is natural. Aíter the fascination with the elliptic theory, 

which caused the theory of pseudodifferential operators to fiourish, there appeared 

at first a timid, a.nd then stronger a nd stronger interest in the non-elliptic theory 

equations with rea1 characteristics. However, the technique of pseudodifferential 

operators, which works well in the elliptic theory, turned out to be unsuitable far 

lhe solution oí t his new group oí problems. 

T he essential novelty in the theory of equations with real characteristics lies in 

the fact that, as opposed to the elliptic case, here the almost inverse operator is not 
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a pseudodifferential operator. At first there were attempts to corrector somehow to 

add on to the old techuiques, in such a way as to make them applicable to the new 

situation. Next, severa! generalizations of pseudodifferential operators appeared in 

a series of works. The linear phase in the Fourier integral was replaced by an arbi­

trary homogeneous function. This was the first step in the right direction. Gradually 

experience with this sort of operator accumulated. A whole series of problems re­

peatedly indicated the existence of sorne sort of general technical apparatus. The 

future Fourier integral operators appeared in seemingly very unexpected situations1 

for example in the study of the transformations of pseudodifferential operators in­

duced by a canonical diffeomorphism of phase space, etc. The general principies of 

the uew technique began to show through more and more clearly. Only one step 

remained to be taken. At this point, finally, in 1971 appeared the publication of 

the Swed ish mathematician L. HOrma.nder [3], in which the mathematical appara­

tus which made it possible to solve the necessary problems, and which he called the 

method of Fourier integral operators, was presented. The new technique developed 

rapidly, and soon Fourier integral operators won wide popularity among specialists. 

A stream of articles on the application and generalization of the method of Fourier 

integrals sprang fortb. For details and further studies, we recommend the book by 

l'. Tréves [6J, from which we have borrowed most of the ideas (and the style) to 

wri te this expository article. 

2 The Cauchy problem for hyperbolic equations 

We shall consider here differential operators in which one of the variables, called the 

time variable and usually denoted by t , plays a privileged role. Because of this this 

role, we shall assume t hat the dimension of t he space wi ll be equal to n + l. The 

n variables will be denoted by x = (x ' , ... , xn); we shall often refer to them as the 

space variables. That the time plays a privileged role is implicit in our assumption 

that the differential operator under study is of the form 

P(x, t, D,, él,) = IJ;" + L P; (x , t , D,)IJ;"-i. (2.1) 
j = I 



FOURIER INTEGRAL OPERATORS: ORIGI i\ND USEFULNESS 233 

We have used, a nd shall systematically use the notation 81 = 8/8t. For each 

j, Pi(x, t, Dz) is a differential operator of arder ~ j in the x-variables, whose coef­

ficients we assume to be C00 functions oí t in the closed interval [-T0 , T0], T0 > O, 

valued in C00(f2), n being an open subset of R". In other words, 

P;(x, t,D,) = L c0 .;(x, t)Dº, 
lol:'.Si 

where Dº :=: D~1 ·· · D~", D, = -v:::r8J8xi , i = 1, .. , n, a= (a¡, ... ,a0 ), D = 

(D,, .. ., Dn), l<>I = <>1 + .. · + <>,, and c0 .; E C00(rl x [-To, To]). 

We recall the statement of the Cauchy problem. We are given a íunction or a 

distribution f(x , t) in nx] - To, To[, and m functions or distributions of X alone, 

defined in n, uo(x),. 'Um - 1 (x). We seek a function or a distribution u(x, t) in 

nx] -T0 , T0 [ satisfying the following set of conditions: 

P(x, t, D,, 8,)u = f in rl x] - To, To[, (2.2) 

&fule=o=ui in fl,j=01 ••• 11n-l. (2.3) 

Oí course this is a purely formal statement: for instruice, the solution u(x, t) should 

be a distribution such that the traces on t he hyperplane t = O of its t-derivatives of 

order < m are well defined. In general, the Cauchy problem <loes not have solutions 

at ali: the classical example is provided by 

P(x, t, Dx. 8,) = 8, - D, (here n = 1), (2.4) 

with f (x, t) =O and u0 (x) nonanalytíc in n. 
ln order to get some íeeling about the problem (2.2)- (2.3), we shall consider a 

relatively simple case: that where n = R", the coeflicients of the operator (2.1) 

are constant (we shall then denote by P(Dx. 8,) the operator (2.1)) and where the 

right-hand side f and the Cauchy data u; are C"' functions with cornpact support 

(in rlx ] - T0 , To[ and in íl, respectively) . The natural idea is to perform a Fourier 

transformation with respect to x and thus transform t he problem (2.2)-(2.3) into: 

P(~,8,)ü = j, -T0 < t < To, (2.5) 
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(2.6) 

where the uhats11 denote the Fourier transforms with respect to the space variables 

( the variable on tbe si de of the Fourier transforms is denoted by O. 
Of course, Eq. (2.5) is an ordinary differential equation, linear and with constant 

coefficients which bappen to depend on the parameter (. Of course, tbe solution to 

(2.5)-(2.6) exists and is unique. Jt also depends smoothly on ( : more precisely, it 

can be extended to the complex values of (,in C 1 asan entire function of exponential 

type (of course, depending srnoothly on t, - To< t < T0 ). This means that , if u((, t) 
is the F'ourier transform with respect to x of a distribution, tbe latter must have 

compact support. But wbether u((, t) is such a Fourier transform depends on its 

behaviour for real (: by the Paley-Wiener-Schwartz theorem, we know that il((, t) 
is the Fourier transform with respect to x of an element of E:(R") (then denoted by 

u) if and only if it can be extended to C" asan entire function of exponential type 

and, rnoreover, its absolute value is bounded by a Polynomial w(() on R". 

That this might uot be the case is clear on inspection of the example (2.4). The 

corresponding transformed Cauchy Problem reads 

(2.7) 

1'lt=0 =u.. (2.8) 

Let us take j = O; tben the unique solution of (2.7)-(2.8) is given by 

which is never lempered with respect to real (, at least when the Cauchy datum 

u0 E C~(R") is not identically zero. lndeed, if it were of slow growth for 1(1-+ +oo 

for at least one positive value of t and one negative value oí t , we would conclude 

that, for sorne t > 01 

liio(()I S const. e-•l{I, V( E R" (2.10) 

which implies easily (by the Fourier inversion formula) that u0 (x) can be extended 

to the complex values of x, provided that llm xi remains < e, as a holomorphic 

function. 
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lt is clear that the trouble,when there is trouble, when there is trouble, lies with 
the roots of the polynornial P({, r) in the T variable. 

We wish to take a closer look at the behaviour of the solution u({, t) of (2.5)-(2.6) 
when ~ E nn. 1t is checked at once that we can write: 

u({, t) = 'f <;({, t)ft;({) + [ <rn- 1({, t - t')]({, t')dt', (2.11 ) 
j ; O O 

where, for each j = O, ... 1 m - 11 t:; (~ 1 l ) is the unique solution of the following 

problem: 

P({ , 81)<; = 0 (far ali t E R1), 

att:;lt=O = 1 if j = k, = Ü if j "'k. 

(2.12) 

(2.13) 

lf we want u({, t) to be ternpered far { E R" whatever the data f and u; it is 

necessary and suflicient that <;({, t) be tempered far {E R" whatever j = O, , m­

i. 

Let us fix { arbitrarily and denote by r11 . .. 1 Tm the m roots of the polynomial 
in r 1 P(~ , r). 'vVe observe that, far every k = l, . . 1 m, 

is the solution of Problern (2.5)-(2.6) where we take J - O and ft; = rf, 
j =O, .. . , m - l. By (2.11) we must therefare have: 

m - 1 

h,({, t) = L <;({ , t)r,(()i (2.15) 
j = O 

When the roots r, are distinct, it is easy to salve (2.15) in term of the <;. Let 

V(r1i .. 1 rm) denote the Vandermonde determinant in the r~s and V;(r¡,. 1 rm; t) 
the same bul where the row (r{ 1 • • 1 r/,1) has been replaced by {ér1 1 .•• 1 et'T"'). Then: 

<;({,t) = V; (r1, ... ,r; t )/\l(r,, ... ,T.,,). 

Out notice that the right-hand side can be regarded as an entirn funcLion of the 
variable {r11 ... , Trn) in C"' (<lepending analytically on the real variable t). It must 

t herefare represent <;({, t) even when the roots are not distincl. Note also that it 
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is a symmetric function of the Tk - and therefore an entire analytic function of the 

coefficients of P (( , T) , and by way of consequence also of ( - as we have already 

pointed out. 

Fl·om (2.15) it follows that if the t ; (C t) are tempered so are lhe h,(( , t). It 

should be underlined, bowever, tHait in general the latter cannot be regarded as 

fu0nctions of .;, because of possible ramifications. But one can say that 

m 

I:; lh.(C t)I s const.(1 + lrnJ, V( E R" , (2.17) 
k= l 

for sorne J , and therefore, far a suitable e> al 
m 

L !Re T.(OI se Iog(l + 1(1). V( E R" (2.18) 
k = I 

However, by virtue of the fact that the Tk are roots of a polynomial whose coef~ 

ficients are themselves polynomials of the variable(, and in view of the Seidenberg­

Tarski theorem1 we cannot have (2.18), unless we have, for another suitable constant 

C' > o, 
"' L !Re T•(OI s C', 1/( E R" (2.19) 

k= l 

One can theu also prove that, if (2.19) holds, the €;((, T) aire tempered, as functions 

of (, in Rn. T bus (2 .19) turns out to be the necessa:ry and sufficient condition for 

the Cauchy problem (2.2)-(2.3) to be well posed - when the coefficients of the 

differentiaJ operator are constant and when n = R". This is a classical theorern, 

due to L. Gárding. 

We shall restrict ourselves to a particular case of the one just described. We 

introduce tbe principal part P,,,(t;, T) of P(C T) : Pm(( , T) is a homogeneous poly­

nomia l of degree m wilb respect to ((, T) and P((, T) - P,,,((, T) is a polynomial of 

degree nol exceecli.ug m - l. 

D efin it ion 2.1 The dijjerential operator P(D,, 8,) is said to be strongly (or strickly} 

hyper·bolic if, given any ( E R" , ( "'O, tite roots of the polynomial in T, P,.((, T), 
are purely imaginary and di.stinct. 
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Our hypothesis in the remainder of this section is that P(D,, 8.) is strongly 

hyperbolic. Let us denote by i)q , ... , iAm (A; real) the roots of Pm((, r); since the 

Ai are distinct, we may order them so as to have A1 < · · · < Am. It is clear that each 

one of them is an analytic function of { in Rn\ {O} , homogeneous of degree one. 

Thus we have, for sorne Co > O, 

eol(I ~ IA;(() - A,(() I if j # k, V( e R". (2.20) 

As for the roots r, of P ((, r) they are distinct as soon as 1(1 is large enough. We 

may number thern in such a way as to have, for 1€1 "" +oo, 

+oo 

r, (() = iA, (() + L r, _,((), (2.21) 
l =O 

where, for each e, rk,t is homogeneous of degree -l with respect to f The series, at 

the right in (2.21), converges uniformly in sets of the kind 1(1 > M for M sufficiently 

clase to +oo. T he way to preve (2.21) is by subsliluling the right-hand side for T 

in P((, r) and determine each Tk,t in terms of Tk,• with l' < l, which is possible 

because of (2.20). 

Let us now return to (2.16) and take advantage of (2.20) and (2.21). For 1(1 > M 

we may write: 

<:;((, t) = L C;,>(()e'{r,(fr·iA,(I)) e••>.(()' (2.22) 
k= I 

where every c,,i. is a homogeneous function of { of degree di,k .::; O. But in view of 

(2.21) we rnay write 

+oo 

e•(r,(IJ-i>•C()) = L e"•.oCO¡¡¡•.t ((, t), 
l =O 

(2.23) 

where each Wk,t((, t) is a polynomial in t (of degree ~ l) whose coefficients are 

homogeneous functions of degree -l with respect to(. 

Finally we see that we may write, for 1(1 > M, 

m 

<=;((, t) = L a;,>((, t)e">•CO, (2.24) 
k= l 
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where each ªJ,k can be expressed as a series of the following kind 

+oo 
a;,•(E, t) = L a;,>,t(E, t) . (2.25) 

l=O 

Each a;,k,t(E, t) is a homogeneous fonction of degree - e wltb respect te E, and is 

an1>lytic with respect to (E, t) in (R"\ {O}) x R'. We set 

E;(t)u (x) = (27ít" J eü«é;(E, t)ü(E)dE, u E C~(R"). (2.26) 

We have just shown that 

E; (t)u(x) = f (27ít" Í, e*·(+tA, IWa;.•(E, t)ü(()d{ 
k= I l(l>M (2.27) 

+ (27í) - n r e'• (é;(E, t)ü(E)dE. 
}¡¡¡~ M 

In conclusion we see that, modulo a pseudodifferential operator of arder - oo 

(essentially represented by the integrail over the h>all !El S M in the right-band side 

of (2.27)), E;(t) is equal to a sum of m operators of tbe following kind: 

F(t)u(x) = (27ít" j e'•l•,•,()a(C t)ü({)dE, (2.28) 

where a(E, t) is a 0 00 function of (E, t) in R" x R1 which has a series representat ion 

of the kind (2.25), +oo 
a(E, t) = L a1(E, t), (2.29) 

l=O 

where the nc(E, t) are homogeneous of degree - f with respect to E for !El Jarge, say 

for !El > 2/3. We bave, moreover, 

</!(x,t,{) = X ·E + t>.({) , (2.30) 

where >.(E) is analyt ic and homogeneous al degree one in R" \ {O}. We know tbat 

i>.(() is a root of the polynomial in E. P,.(E, r), which means tbat tbe function q, is 

a solution oí the characteristic equation 

Pm ( 8,</!, i8,q,) = O, (2.31) 
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where éi,,P = grad,,P. F\Jrthermore,the functiou ,¡, satisfies the Cauchy condition: 

.PI·=•= X.{. (2.32) 

Eq. (2.31) is first-order but non!inear; it splits into the m equations: 

(2.33) 

for k = 1, .. . , m. Each problem (2.32)-(2.33) has a uuique smooth solution (which 

is rea l-valued), and (2.30) is the solution of one of these problems. 

It is not dif!icult to extend to differentia l operators with variable coef!icients 

sorne of the methods devised ahove. T hus we return to tbe operator (2.1) but we 

shall make right away the hypothesis that it is strongly hyperbolic: 

Definition 2.2 We say that the operator P(x, t , D,, él,) is strongly hyperbolic in 

nx] - To, To[ if, f01· every point (xo , to ) of this open set, the constant coejficient 

operato1· P(xo, to, D,, él,) is strongly hyperbolic in R"~ ' (Dej. 1.1). 

This mea.ns that the polynomial in r, Pm(x , t, ~,r) (+), has m distinct, purely 

imaginary roots whatever (x,t) in nx]- T0,To[ and ~E R"\{0}. We may denote 

them by i >.;(x, t , €), j = l, .. . , m, with the agrnement that >. 1 < < >.,.. It 

is easy to check that the >.1(x, t, O are C00 functions in n x] - To, T0 [ x (R"\ {O}) 

homogeneous of degree one with respect to ~ · Needless to say, they are ali real­

valued. 

In principie we should be able to express the solution u of Problem (2.2)-(2.3) 

(which is unique, by the general theory of hyperbolic equations), in the following 

form: 

u(x , t) = I: E;(t)u;(x) +J.' Em- I (t , t') f (x , t')dt'. (2.34) 
i =O O 

We shall continue to assume that f and the u; , are test-functions, in nx] - T0 , To[ 
and in n respectively. Our problem is to find a "good11 integral representation for 

the operators E1 (t)(O ~ j ~ m-1) and Em- i (t , t') generalizing (2.27) . Let us define 

(+) Pm (z, t , ~ , r) is not. quite the principal symbol of P(X,t , Dz, 81.) - the latter is equal to 

P,,, (x, t , ( , i r ). 
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E;(t , t') as the solution of the following problem: 

P (x, t , D,, 8e)E;(t, t') =O, -To < t <To, (2.35) 

at E;(t, t') l1=r =O if k # j, = I if k = j(k =O, .. , m - 1), (2.36) 

where I stands far the identity mapping OH functions and distributions in the 

space variables {define<l in ll). The problem (2.35) is to be understood in the 

operators sense: E;(t, t') is a smooth function of t in [-T0 , T0] (it also depends 

srnoothly on t' in [-T0, T0 ]) with values in the space of linear operators on1 say, tesL­

functions of x in ll. The coeflicients P;(x, t, D,) of P(x , t , Dx. Be) (see (2.1 )), which 

are also such operator-value<l functions of t, act on E;(t, t') by composit ion. Also 

E;(t) = E;(t, O), j =O, ... , m - 1, and since the problem (2.35)-(2.36) is not much 

different whether t' is equal to zero or not, we shall content ourselves with study­

ing the operators E;(t). A.Jso, we shall not overly worry about the ex:istence and 

uniqueness of the operators E;(t). T here are general results about hyperbolic equa­

tions which assert both properties under reasonable hypotheses on the coefficients 

of P (x, t , D,, D, ). 

In the present situation 1 however there is not much hope to get (in general) an 

e:vact representation, and we shall only seek an approxjmate one1 modulo regularizing 
operators. This is what is referred to as uparametrices far the Cauchy problem11 • 

We shall try to represen\ each operator E;(t ) as a sum of m operators of the kind 

F(t ) in (2.28). But we caonot expect that the symbol a will here also be independent 

of x. Thus we shall write 

E;(t)u(x) = t (21í¡-n J e"J>.(x,t,()a;k(x , t, E)ú(E)d( + R;(t)u(x) , (2.37) 
k : \ 

where R;(t) is regularizing (see, [2]) . Our task, of course, is to determine the symbols 

<J>, and ªi" translating the conditions (2.35) and (2.36) in terms of t hese symbols. 

ln analogy with (2.30) we shall take the functions q,,(x, t , O to be homogeneous 

of degree one with respect to ( (in fact, th is choice will soon be justifie<l) and in 

analogy with (2.29): 

a;, (x,t,()= l::U;ki(x , t, () , (2.38) 
t= O 
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where each lerm is homogeneous with respect lo { ; the homogeneity degree of a;kl 

with respect to { will be e<:¡ua1 to - j - l , as we are now going lo determine. lt should 
be said that when we speak of functions which are homogeneous with respect to{, 

this must as usually be understood for 1(1 large, say for 1(1 > 2/ 3; what happens 

near the origin can only contribute regularizing terms in the expression of E;(t) and 

can thereíore be neglected , from the viewpoint which we have adopted here. 

We must now write that the homogeneous terrns (homogeneous always means 

with respect to() in the lelt-hand side of (2.35) ali vanish. The term with max.imum 

homogeneity degree is Pm(x, t , Bx<Pk, i8t<l>k)a;ko(x 1 t , ~) a.nd we shall require 

(2.39) 

which is the generalization of (2.31). 

Because of our hypothesis of strong hyperbolicity, Eq. (2.39) splits into m equations 

of the type (2.33) provided that tite gradient of q,, have a sufficiently large norm . 

As we shall see lgrad </l•I will be of the order of 1(1 (at least for small ltl) , ami shall 

assume that 

(2.40) 

which in general is a nonlinear equation which always have local solutions (in (x , l) 

space) but not always global ones. We shall add to this equation the "initial" 

condition (which implies our contention about the growth of lgrad <PI with 1(1): 

(2.4 1) 

To be more precise, given any relatively cornpact open subset n1 of n, there is a 

n11111ber ó > O (which lends to zero as CT' expands to CT) such that (2.40)-(2.41) 

has a unique solution in the "cylinder" { (x, t); x E fl' , ltl < ó}; we may therefore 

use the representat ion (2.37) when x E (l' and lt l < ó. The deterrnination of 

lhe homogeneous terms ª i kl cau be made likewise (see {6]) adjoining appropriate 

condilions at time t = O in arder lo take into co11sideration (2.36). 

A r mark aboul the representation (2.37) is lhat the ";.(x , t , O in the right­

hand sidc should be given the meaning of syrnbols, as defined in [2]. T hus tite series 

representation (2.3 ) is formal (and in particular we are free lo regard its terms as 

homogeneous functions of (in /l" \ (O} , as in [2]. !J1 order to forrn a representative of 
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a;,(x, t , €) one cau multiply each homogeneous term a;,1(x, t, €) by a cut-off function 

x1(x, t, o in the fashion e.xplained in [2). 

In this way, we succeed in establishing the representation (2.37). lndeed, if we 

set 

F;(t)u(x) = f (2ir) - n J e"h(x,t,()a;, (x , t, 0ú(0d€, (2.42) 
k=I 

it is not difficult to check that we can ~rove the followi ng: 

P(x, t, D,, 8,)F;(t) = S(t), 

{ 
l+T;· 

8( F; [t=o = 
Tj' 

O :o;j::; m -1, 

if .i -1 j', 

(2.43) 

(2.44) 

where S(t ) is a regularizing operator (acti.ng on distribution in D with support 

contained in K and transforming tfuem into C00 functions in Sl'), depending smoothly 

on t1 Jtl < ó, and where the Ti', O ~ f ~ m - 1, a:re also regularizing operators, in 
the same sense as S(t). Here I< is sorne cornpact subset of D (independent oft) which 

contains the x-supports of the datta f(x , t) and u;(x) in (2.2)-(2.3). T hese bypothesis 

are aimed at preventi11g the difficulties which might &rise from tbe behaviour of the 
coefficients of P(x, t, D., D,) near the bounclary of D. But in view of (2.34) we may 

then wriLe: 

F;(t) - E;(t ) = I: E;•(t)T;· + [ Em- t (t, t')S(t')dt', (2.45) 
j'= O O 

allCI the right-haud side is obviously regularizing (i f we admit that the operators 

Ej(t, t1) transform C00 functions into C00 functions1 whicb they do according to the 

general tbeory of hyperbolic equations). 

\.Yhat is irnportant is that we have constructed a parametrix for the Cauchy 

problem (2.2)-(2.3) by means of operators of the kind 

(2.46) 

where <P and a are symbols (depending on the time t) in tbe open set n, as we 

have defined Lhem in [2). lt is well lrnown that rnany interesting properties of the 
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olution u(x, t) of (2.2)-(2.3) can be extracted from the study of the relevant q/ s and 

.'s for instance, informaiion about the propagation o/ singularities. This kind of 

nformation is useful in problem otlter than the Cauchy problern and for PDEs which 

Ie not necessarily hyperbolic. Integral operators given by formulas such as (2.46) 
.re a natural generalization of the pseudodifferential operators, given by formulas 

uch as (2.36), [2]. They enable us to construct panruetrices for certain non-elliptic 

mear PDEs and rnight give us new insight in the theory of such equations, in 

iarticular by allowing us to "liftn their study in lhe cota ngent bundle (as we have 

Jready done, to sorne extent, by means of pseudodifferential operators, [2]). 

Usefulness of Fourier Integral Operators in the 

Study of the Local Solvability of Linear Partial 

Differential Equations 

n [2], we have shown that tite theory of pseudodifferential operator enables us to 

educe the problem of local solvability of a linear partial differential (or pseudod­

fferential} equation with simple real characteristics, of arder rn > 01 in an open 

ubset n of RN, 

P(x,D)u = f (3.1) 

o that of the firstrorder pseudodifferential equation 

L(x, D)v = g(x, D)w, (3.2) 

vhere g(x, { ) is a certain C"" cut-off function in an open cone in T'(O), positively 

1omogeneous of degree zero, aud w is an apµroximate solution of sorne elliplic pseu­

locl ifferential equation of a rder m - 1. A further reduction 1 of crucial significance, 

Nill now be made possible by the tlteory of Fourier Integral Operators. 

lt is convenient1 and instructive to view equations such as (3.2) as evolution 

~quations. Let us change variables1 and set t = xN - xóv 1 yi = xi for .i :5 N - 1 = n 

:tite co"ariables {, , j < N , will be denoted by~, and {N by T). In this notation we 
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are d aling with equations of the general type 

D,u - ,\(y, t, D,)u - c(y, t, D,. D,)u = J, (3.3) 

where ,\(y, L, n) is homogeneous of degree 1 in r¡ ami c(y, t , 77, T) is a symbol of degree 

< O. Both these functions can be assumed to be C 00 with respect to ali argument! 

in IR"+' x (R"+'\(O)) (this tacitely assumes that we have extended them to the 

whole space ancl multiplied them by sui table cut-off functions; th is does not affect 

Lhe preceding argument1 it merely introduces here and there a few more error terms1 

expressed by pseudodifferential operators of arder -oo). We may even assume that 

the (y, t)-projections of the supports of ,\(y, t, 1¡) and c(y, t , 1), T) a re compact. Then 

we know that the pseudodiffere11tial operator c(y, t , D,. Dt) defines a bou11ded linear 

operator of each Sobolev space fl3 (JR11+ 1) in to itself1 and because of this can easily be 
eliminated from t.be piclure. \Ne may concentrate our attention upan the equation 

lu = D,u - ,\(y, t, D,)u = f. (3 .4) 

We shall wri te ,\ = a + Hb, where " ami b are real-valued C 00 functions of 

(y , t, 1¡), r¡ f O, homogeneous of degree one i11 77. Observe that the pseudodifferential 

operator a(y1 t, D11 ) is an operator on distributions in the y-variablesi depending 
smoothly 011 t. When so viewed, !et us denote it by A(t); similarly, denote b(y, t, D,) 

by B(L). lf we replace f by -AJ, the equation (3.4) reads: 

él,u - H A(t)u + B(t)u =f. (3.5) 

The theory oí Fourier integra! operators will now enable us to get rid of the therm 
;=TA(t). Observe that since both a ancl b are real, the operators A(t) and B(t), 

delined 011 the dense subset H' (R;; ) of H º(R;; ), a re equal to two self-adjoint (un­

bounded) linear operators 011 Hº(R;; ) , at least modulo bounded linear operators. 

Suppose íor a moment that A and B are independent oí t . The preceding observa­
lion allows us lo solve the operator equation: 

a,u ~iAU, (3.6) 
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with initial condition: 

Uli=O = 1, the identity operator. (3.7) 

As a matter of fact, the solution is well known: U(t) = exp(iAt) , t he group of 

unitary operators on L2 (1R11 ) with infinitesimal generalor A (when A is self-adjoint¡ 

when A is merely self-adjoint modulo bounded linear operators, U(t) is "almost 

unitary1' .) 

Set then u = U(t)v, f = U(t)g in Eq. (3.5), where A and B are independent of 

t. lt gels transformed into 

8,v + U(!t1 BU(t)v = g. (3.8) 

lt is checked at once that, up to a bounded linear operator (depending smoothly on 

t) , 

(3.9) 

is self-adjoint. lf we set, as usually done in Lie groups and Lie algebras theory, 

(Ad A)(B) =[A, B] = AB - BA, 

we see easily that 

+ 
B#(t) = e - "'Be;Ai = e-ü (Ad A) B = L ~(-it)í(Ad A)íB. 

1=• J. 

(3.10) 

(3.11) 

T hese formulae have a geometrical 11substratum11 , as we well know. Suppose for 

instance that both A and B are first-order differential operators with real coefficients 

(i.e., real vector fields) multiplied by -R. 

" n 

A = Lªk(y)D,., 8 = L b'(y) D, .. 
k= l k = I 

Consider lhen the solution z = z(y, t) of the system differential ec¡uations: 

dzk 
dt = - ak (:), l 5 k 5 n, (3. 12) 
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with initial conditions: 

(3.13) 

F'or small values oí lt!. 
z = z(y,t) (3. 14) 

defines a C00 change oí variables in the neighborhood oí any given point. Let 

y= Y(z ,t), (3.15) 

denote the inverse change of variables. We note that t ---> (Y (z, t), t) is the (piece 

oí) integral curve OÍ tbe vector field a, - i A through the point z. The change oí 

variables (y, t) ---> (z, t ) t ransforms that vector field into a,. An easy computation 

shows that 
n d l 

B#(t) = L b'(Y(z,t)J/,D,i. 
k,i= I y 

(3.16) 

Observe that lf (Y(z, t)) is the value oí b' at t he point reached at time t when we 

move along the curve to--> Y(z, t) (z is the point oí this curve obtained at t =O). 
Note also that the symbol oí B#(t) is 

(3.17) 

where ~ stands far Lbe Jacobian rnatrix of the z's with respect to the y's. The 

symbol (3.17) is nothing else but the transform oí the symbol b(y, ry) of B under the 

rnapping (z, ()o--> (y, ry), where 

y= Y(z ,t), r¡ = '(~) (y,t). (3.18) 

Now, (3.18) is the transformation in the cotangent bundle (over R" or over an open 

subsct of R") associated with the transfon nation (3.15) in the base. The curve 

t. >---> Y (z. t) in the base is the projection oí the curve t o--> (Y (z, t) , '(oz/ oy)() 
in the cotru1gent bundle, and the symbol oí B #(t) is obtained by displacing that oí 

B along the latter curve. This describes completely the transformation of B into 

JJ#(t)1 and shows that introducing Lhe cotangent bundle was not just a dressing-up 



247 

in rancy language or otherwise plain material , but had to do with really deep aspects 
of t he problem. 

ln the more general situation, when A and B are not vector fields on an open 

set of IR" , t hey can still be regarded as vector fields on an appropriate Lie group 

(they can be regarded as elements of its Lie algebra) and B#(t) can once more 

be interpreted as a Hdisplacement1' of B. However1 when, as it is the case in our 

problem, they are defined by pseudodifferential operators of arder one, a more con­

crete interprelation of the whole operaLion is possible1 thanks to Fourier integral 
operators. 

Let us therefore go back to the case where 

A(t ) = a(y, t , D,), B(t) = b(y, t , D,) 

are essentially self-adjoint pseudodi fferential operators of a rder one. Formally t he 

process is the sarne as t hat which lead us from Eq. (3.5) to Eq. (3.8) : we salve 

the Cauchy problem (3.6)-(3.7) a llCI introduce the t ra nsform B# (t) (note only that 

B = B(t ) now). lt is not difficult to prove that U(t) is essentially unitary (on 

l '( IR")) , and that B# (t), like B(t) , is essentially self-adjoint. But the question for 

us is whether B#(t) is also a pseudodifferential operator of arder one1 to which sorne 

appropriate analysis can be applied. The beauty of t he approach is that this is 

indeed so and tha t, moreover, B#(t) can be related to B(t) in a simple and elegant 

manner, genera1izing whaL happens when A and B are vecLor fields. T his is dueto 

the facl t hat U(t) can be approximaled, modulo regularizingoperators, by a Fourier 

integral operator: 

I< (t)u(y) = (27r) - " J e;•(y,1,, ¡k(y, t, 11)ü(11)d11 , (3.l9) 

wherc k(y, t, 11), the amplitude-furictiori, is a symbol of degree zero (depending 

smoothly on t) and lhe µhase-fuuction q, is C"' with resµect to (y , t , r¡), r¡ 1 O, 

homogeneou of degree one with resµect to 1]1 and real-valued. In fact 1 it is the 

unique solution of the following (nonlinear) first-order Caucby problern: 

q,, = a(y, t ,i/J,) , "''·=·= y· 1). 
(3.20) 
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Assuming that we have added a zero-order term to a(y, t, D,) so as to make it selí­

adjoint, we can obtaiu that U(t)- 1 be equal to the adjoint K(t)' oí K(t) modulo 

regularizing operators, and thus (again modulo regularizing operators) 

B#(t) = K(t)' B(t)K(t). (3.21) 

At this stage lhe imporlant Egorov's theorem comes to our rescue: it states that 

r<• 8 1< is a pseudodiffere.ntial operator of same arder as B 1 here one, and tbat 

modulo symbols oí order strictly less, its symbol can be computed out oí that oí 8 
by a formula similar, and generalizing the one which yielded (3.17). The relevant 

curves in the cotangent bundle are now the bicharacteristic strips of T-a(y 1 t1 11) , i.e. 1 

oí tite symbol oí t(8, - i.4). T hese strips are the integral curves oí the Hamiltonian 
vector field oí T - a(y, t , 1¡), which is the vector field 

11. =a, - a,(y, t, 1J). ª· + a,(y, t, 1J). a, 

They are the curves described by the point (z(y, t, 7J), t, ((y, t, 7J)), where 

dz di= -a,1(z, t, (), 
d( di= a,,(z, t, (), (3.22) 

z =y, ( = 1) at t =o. (3.23) 

Por small values oí JtJ, the mapping (y, 7J) >-+ (z(y, t , 7J), ((y, t, 1))) is a diffeomor­

phism; let us denote by 

y= Y(z, t, (), 1J = 7J(z,t,(), (3.24) 

tite inverse transfonnation. lí b# (y, t , 7J) denotes the symbol oí B# (t), we have: 

b#(z, t, () = b(Y (z, t, ( ), t, 1J(z, t, ()) modulo symbols oí degrne zero. (3.25) 

Tite reader will check witltout too much difficulty that this generalizes the for­

mula (3.16). 

l.n such a manner have we reduced our original problem to the solvability of the 
evolution equaLion: 

(3.26) 



where we ha ve t he right to as ume that the principal symbol b!(y, t , r¡) of b#(y, t , D,) 

is real (and is defi ned by property (3.25)). 

Wit h the pseudod ifferent ial equat ion (3.26) we associate the fo llowing ord in ary 

differcntial equatio11 1 clepending on the parameters (y, '1) 

8,w + b# (y, t, 7J)W = j(y, t, 1)). (3.27) 

Eq. (3.27) is first-order and linear. Ali solutions are known . T hey can be written 

in the form: },., w(y, t, 17) = e° C•.•hl j(y , t'. 11)dt', 
To 

(3.28) 

wher 

B(y, t , t', 17) =J.' b#(y, t'', 11)dt". (3.29) 

Wc shall con ider the right-hand sides j having compact support with respect to 

(y, t) , contained in a sma ll slab ltl < T , and tem pered with respect to 17. Titen we 

ask wheth r we can always (i.e., g·ivcn any such right-ha11d ide Í) find a solution w 

of (3.27) which is temperecL with respecl to 11 al infinity. A simple argurnent shows 

that this property is eq uivalcnt to tite following one: 

249 

(1/J) Tliere "' a number T0 , ITol $ T, suc/1 tliat, for cvery t, t' E] - T , T[ sttch tliat 

t1 lies in the segment joining t to T0 , for ali y.1}, 

B(y, t , t', 17) $ O (mod symbols of degree zero). (3.30) 

Th ex.istence of the number T0 is 1 in turn, equivalent to the followiug condi tion: 

(,P) whatever y, 17, if &t(y, l,1¡) < O for some t, !ti < T , thert &C (¡¡, l.', r¡) $ O for 

everyt', t < t' < T. 

VI/e may tran late (tb) in tenrn:; of b(y, t.11) (which, \\'e reca l\1 is lio111oge 11eous oí 

dcgr ·e one with respecl to 17): 

('11 ) along cuery btclraracteristic strip uf T - a (y, t , 11) (in a neighborhood of a poin t 

(yo101 r¡0 ,r0 )) , ifb(y, t , 17 ) is< O at some point, rt rernains $ O at every later 

pomt (b1characteristic strips are orienle<l cur\'es). 
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But suppose Lhal b(y, t, •1). restricted to a bicharacteristic strip r of T - a(y, t, ~). 

changes sign a t sorne point (y1, t1, r¡ 1, r 1) of r . If (w) holds, it must necessar­

ily chauge sign fTom + to -. If we now make the "symmetry" (y, t , r¡, r) -+ 
(y, t , - r¡, -r) and look at the behavior of b along the bicharacteristic strip of T -

a(y , l , 17) through (y1 t1 i -171, -r1 ), we see that b changes sign there from - to +, 
and therefore viola les (w)! T hus, dueto its homogeneity of degree one with respect 

to 7), we see that (w) is equivalen\ wi th: 

(P ) along euery bicharocteristic strip T- a(y0, t , r¡) , in a neighborhood of (yo, 0, r¡0, r0) 

b(y , t , r¡) does rwt diange sign. 

T his is in essence the solvability cond ition (P) which , as R. Beals and C. 
Feff rman have showu, implies the local solvability of the origina l equation (3.1 ) 
(of course1 for this it must be satisfied everywhere in the cotangent bundle over a 
neighborhood of W1e point x0 = (y0 , O) under consideration). We have seen that il 

means tha t the ordinary differential equa tion (3.27) has a tempered solution (tem­

pered wi th respect to r¡) whenever the right-hand side is tempered. 
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