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1 Int roduction 

Our airu in tbis xpository article is to bring to the attention of thc grcater math­

rnatical community a. wea!Lh of cxamples of nonlinear dill re11 e equations having 

th property that every solution of each equation is per iodic wit b t hc samc pe­

riod, a wealth of other equations having the property that ali th ir soluti ns ar 

cvcntually pcr iodic wit h prescribed periods, and a larg numb r of quations 

having tbe property that a li of t heir solutions converge to per iodic solut ions 

wi t h the same period. 

We shall also ask sorne diflicult question and poo.e severa! thought provoking 

open problca1s ru1d conjectLLres which may require no parti •tilar specinl training 

i11 thí' area of dilt r uce e<1ualions other than a cJe,·er &J1alytical 111ind and a desire 

to understand the fascinuting world of periodi solutions of differe.nce equations. 

!\ d1ffrrrnu t:J¡uation of ordcr (k + 1) is an equation of the form 

Z'n-tl = /(zr1,En 11 · · • ,Xn k) , n = 01 l , .. (1) 
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where f is a íunction wbicl1 ma.ps sorne set Jk+' into /. I is usually an interval of real 

num bers, ora union of intervals1 bul it may even be a discret.e set such as t.he set 

of integers Z = ( ... , -1,0, J, ... ). 

A solutio11 of Eq.( l ) is a sequence {x,, }::"=-k which satisfies Eq.{I) for ali n 2'. O. 

If we prescribe a set of (k+ I) 1:nit.íal conditions x_,.,x_k+ti · . , x0 E 1 tben 

"'' f(xo, x_,, ... , x_.) 
X2 ! (xi l Xoi .. . ! X- k+I) 

and so the solmiou (:i:n}n=-• of Eq.(l) is uniquely delermined by the initial condi­

Lions. 

We say that the poilll :f E 1 is an equ il ibriurn poin t of Eq.(J) if 

x = J(:c, x, ... x). 

T hat is, th onstam sequence x,, = x for ali n ~ - k is a solution of Eq.(J). 

A solution {:rn)n=-• of Eq.( l ) is called pe1-iodic with period p if tbere ex.ists an 

i nt ger p ~ l su ch that 

Xn+p = X 11 for alJ n ~ -k. (2) 

We ·ay that the lution i periodic with p1-ime period p if pis t be sm a llest posit ive 

integer for which Eq.(2) holcls. In Lhis case, a p-luple (xn+li Xn+-z, ... 1 x,..+-p) of 

a ny 11 ·ons cuti e va lu s of (he solution is called a p-cycle of Eq.{2) . 

A solution {.i:n}n= • of Eq.( l) is called eventual/y periodic w11h period p if there 

xists n11 im ger S ~ -k uch that fx11},1=N is p riodic wilh p riod p; ihat is, 

I n-+ p = .rll ror ali n ~ N. 
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2 What do the following equations have in common? 

l 
{3) Xn+I = --- n=OJI , . . 

XuXn- 1 

1 
(4) Xn+ I = -- n=01 l , . 

X n- 1 

x,. 
n=O,l, ... . (5) Xu + l = --

X n- 1 

The answer is t.hat. every solution of each of the above equations is peri­

odic wit b tbe same period. 

Every soluLion of Eq.(3) is periodic witb p e.riod 3. 

Eve.ry soluLion of Eq.(4) is periodic wit b pe.riod 4. 

Every soluLion of Eq.(5) is periodic witb p e.riod 6. 

lndeed, if the initial conditions are nonzero real numbers denot.ed by 

x _, =a and x0 = fj 

then the soluLion of Eq.(3) is the 3-cycle 

T he soluLion of Eq.(4) is the 4-cycle 

e.nd the soluLion of Elq.(5) is Uie 6-cycle 

\ hat is it that makes every solution of a difference equation periodic 

witb l b sam e period? 
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Is t he re an easily veri.fiable test tha t we can apply to determine whetber 

or not this is true? 

3 What do t he following equations bave in common 

max{x,., 1) 
n = 0, 11 • (6) Ln+I =---- ' Xn- 1 

max{:c 11 , l} 
n = 0, 11. (7) X n+I = ---- ' X n Xn- 1 

rn ax{x,, , 1} 
n = 0, 11. (8) Zn+I =--2-- ' X 11 X 11 - I 

_ ma.x(x;,, l} 
11=0, 11. (9) Xn+1- ---- ' XnXn- 1 

max (x;. , l} 
n = 01 11 • (LO) Zn+I =--3-- ' X 11 X ri - 1 

The answ r is Lhat e ery positive solut ion of each of the above equations 
is period ic wi th the same perio cl . 

8vcry positi\"C solut ion of Eq.(6) is period ic witb perio d 5. 

8very positive solution of Eq.(7) is period ic witb period 7. 

8vc.ry positi\"C solution of &1.(8) is pe riodic wit h period 8. 

8very posi ti\" solut1on of Eq.(9) is pe riodic with period 9. 

8ver ' posith"C solution oí &1. (10) is period ic wit h per iod 12. 

Thc proor lhat O\"Cry posit ive solu tion of Ec1.(7) is per iodic witb period 7 is 

cvident from th íollo"<ing l8bl 
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Case 1 Case 2 Case 3 Case 4 
X - 1 = Q $ l .:c_ 1 = Q ;?: J X _ ¡ - O $ ) x_, = Ol ~ l 

"'º = fJ $ 1 Xo =fJ $ J Xo = {J ~ 1 Xu = fJ ~ l 
1 l 1 l 

x, = a8 x, = aB X1 = - X 1 = -
Q Ol 

1 x, = max { a,~ } 
1 Ol x.=n X2 = fj X2 = fj 

x3 = a{J X 3 = OifJ X3 = afJ X3 = max [a,fJ) 
l 1 

x.i = max { P1 ~ } "'' = [!_ :c .. =:. - x., = -
a " " J l 1 j 

"'•= a.n x. = 8 "'•= a8 x, = B 
%5 =O' Xa =O'. x6 =o X a = a 
X7 =fJ X¡ =fJ X7 = fJ X¡ = fJ 

Are t here any other values of k and 1 for which every positive solution 

of the diffe.rence equation 

JI =0, I , . 

is periodic with the same period? What are t hey? 

Is there an easily applicable test to determine t his'? What is it? 

4 Lyness' Equation 

T his is the equation 

.l +xn 
:1:11+1 = -­

X n- I 
"= 0, 1,. (11} 

which ll'llS inLroduced by Lyness in 19•12 (see [30]) while he was working on a problem 

in Number Theory. See also [13J, [l ], and [36j. 

Eve ry po ith•e solution of Eq.(11) is period ic with period 5. lndeed if 

x_, = Ol ancl ro = 8 
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are positive inilial conditions, lhen the solution {xn ln=-• is the 5-cycle 

( fJ !._±l l+a+ fJ ~) 
o, 1 Q J o:.(:J 1 fJ . (12) 

[,yness' equalion arises in fri eze palterns (see [9Jl. An exarnple of B fri 1.e pattern 

is the followiog. 

T he property wbich defines a frieze pattern is that e.xcept for p05Sible borders 

of zeros and 011es1 very four adjacent numbers forming a rhombu 

p 

are posiliv and sati fy the unirnodular equa.tion pr - qs = 1. 

x ter ( !IOIJ has hown thal every frieze pattern is periodic. For example, 

Lhe fri ez patt rn shown below is periodic with period five. 

lf X1 =o and zl = iJ are arbitmry positive numbers, then from Lhe definition of 

fri ez pnltern it follo". 1hat 

1- fJ 
.r3= -- , 

Q 

l +a+ll 
x., = ----¡;¡¡----1 and 

1 0' 
"'•=--¡-· 

Ther for l he abo\ paucrn is gcmerated by Lyn 1 qualion. 
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For a gi\len po itive number a, what are all positive periodic solutions that 

the difference equation 

possesses? 

a + X11 
Xn+ I = -­

X n- 1 

5 Todd's Equation 

Todd's equa~ion is the equation 

l + X 11 + X n- 1 
Xn+ l = 

Xn- 2 

n = O, l , . 

n =01 11 • • {13) 

Every positive solution of Eq.(13) is periodic with period 8. (See [l ¡.) 
lndeed if 

a.re given initial condiLions 1 then it follows by a simple compu tation that the olution 

(x.,}n=-• of Eq.(13) is the 8-cycle 

( l +P+1 l+a +,B +-y+ a-y 
a:, (3, 7, --<r--. et,B 

(1 +et+P)(l +P+ 1) 
a¡3-y 

Are there values of u, other tban a = 11 such that every positive solution 

oí tbe equation 

(l 

n = O, 1,. (14) 

is periodic? Does Eq.(14) possess a positi e nonperiodic solution? 
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Remark 5.1 Note that every solution of 

Xn+1=- , n= Ü,1,. 
Xn 

is periodic with period 2, every solutiofl of 

Xn+1=l+xn , n=O,l,. 
Xn- l 

is periodic with period 5, and every solutioN of 

1 + Xn + Xn- 1 
Xn+I = 

Xn-2 

is periodic with peried 8. Is there a patten1 here? 

Unfortunately, this pattern <loes not continue in any obvious way! For 

example, if {xn}:=-3 is tJ.ie solru.tim1 of the dif.fere1°1ce equation 

1 + Xn + Xn-1 + Xn- 2 
Xn + l = 

Xn-3 
n =O, 1, . . 

with initial conditions x_3 = x_2 = x _1 = 1, then the f.irst twelve terrns of {xn};:"=-J 
a:re 

49 31 4~ 23 
1, 1, !, !, 4, 7, 13, 28, 4' 4' 1:3' 26 

a11d so {xn}::"=- J is not periodic with period 11. 

Remark 5.2 It is interestiog to note the great sion1ilari,ties between Eq.{6) ~nd 

Eq.(11). The solution of Eq.{6) with initial conditions 

x _ 1 =a and xo=f3 

is the 5-cycle 

( max{l, f;i} rnax{I , a,f;i) max{l ,a}) 
'" {;i , " a{;i {;i . 
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Compare this with the 5-cycle in (12). 

What is it that these two equations have in common? Are there other 

pairs of equations with similar behavior? 

6 The Gingerbreadman difference equation 

The gingerbreadman difference equation is the piecewise linear difference equa­

tion 

n = 0,1,. (15) 

which was investigated by Devaney (see [12]) and was shown to be chaotic in certain 

regions and stable in others. The name of this equation is due to the fact that the 

orbits of certain points in the plane fill a region that looks like a Hgingerbreadman." 

If you use a computer to plot the orbit of the solution (xn}::'=- I of Eq. (15) with 

initial conditions 

(x-1, xo)= (-~, o) 
the computer may predict that after 100,000 iterations, the solution is still not 

periodic. Although a computer may be fooled due to round-off and truncation 

errors, one can show that the orbit of the solution of Eq.(15) with initial condition 

is periodic with p eriod 126. An easy way to see this is to make the substitution 

Then Eq. (15) is transforrned into the difference equation 

Yn+I = IYnl ~ Yn-1 + 10 J n = o) 1,. (16) 

an<l the initialconditions (x_ 1, x0 ) = (- ~, O) of the solution {xn};:"=- I ofEq.(15) 

203 
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are transformed into 

(y_,, Yo)= (- 1, O). 

Let {Yn}::"=-I be the solution of Eq.(16) with initial conditions (y_ 1, y0) = (-1 , O) 

Then the values of Yn for - 1 '.". n '.". 126 are given as follows: 

Y-1 = - 1 Yo= O 
Y1 =11 y,= 21 Y3 = 20 Y<= 9 Ys= -1 y,= 2 Y1 = 13 
Ys = 21 y,= 18 Y10 = 7 Yt1 = -1 Y12 = 4 y13 = 15 Y11=21 
Yl5 = 16 Y1• = 5 Y11 = - 1 Y1s = 6 y¡g = 17 Y20 = 21 Y21=14 
y,,= 3 Y23 = - 1 Y21 = 8 y,,= 19 y,.= 21 Y21 = 12 Y28 = 1 
y,.= -1 Y3o = 10 y31 = 21 y32 = 21 y,,= 10 YJ< = - 1 y35 = 1 
y,.= 12 y,,= 21 Y3s = 19 y,,= 8 Y<o = -1 Y41 = 3 y.,= 14 
y43 = 21 Y44 = 17 y45 = 6 Y<•= -1 Y41 = 5 Y48 = 16 y.,= 21 
Yso = 15 Ys1 = 4 Y52= - 1 Ys3 = 7 Y54 = 18 y.,= 21 Y56 = 13 
Y51 = 2 Yss = -1 y.,= 9 Y•o = 20 Y•1 = 21 Y•2 = 11 Y63 = O 
Y64 = -1 Y•s = 11 Y66 = 22 Y•1 = 21 Y•s = 9 Y••= - 2 Y10 = 3 
Y11= 15 Yn = 22 Y13 = 17 Y11 = 5 Y75 = -2 Y76 = 7 Y11 = 19 
Y78 = 22 y79 = 13 Yso= 1 Ys1 = -2 Ys2 = 11 Ys3 = 23 Y84 = 22 
Yss = 9 Ys• = -3 Ys1=4 Yss = 17 Ys9 = 23 y90 = 16 yg¡ = 3 
y,,= -3 y93 = 10 y94 = 23 y,,= 23 Y96 = 10 y,,= - 3 y,.= 3 
y,,= 16 Y100 = 23 Y101 =17 Y102 = 4 Y103 = -3 Y104 = 9 YIOS = 22 
Y100 = 23 Y101=11 Y10s = - 2 YI09= 1 Y110 = 13 Y111 = 22 Y112 = 19 
Y113 = 7 Y114 = -2 Y1l5 = 5 Y116= 17 Yll7 = 22 Y11s = 15 Y1t9 = 3 
Y120 = -2 Y121 = 9 Y122 = 21 y123 = 22 Y121=11 
Y12s = - 1 Y126 =o. 

Therefore the sequence {Yn}::"=-I (and hence also (xn};;"=_1) is periodic with 

period 126. 

It is interesting lo note that the gingerbreadman difference equation is a special 

case of the max difference e quation 

n =O, 1,. (17) 
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Indeed the change of variables (see [22]) ¡ A !.tp. 

Xn = e~ 

A~ 

if A> 1 

if A= 1 

if O< A< 1 

reduces Eq.(17) to the difference equation 

Yn+l = IYnl - Yn- 1 + J n = 0,1,. 

where 

6~ ¡ -1 if A> 1 

o if A = 1 

if A < l. 

Note that Eq.(17) with A E (O, 1) reduces to the gingerbreadman difference equation 

(15). 

When A= 1 Eq.(17) reduces to Eq.(9) which by the above change of variables 

is transformed into the difference equation 

Yn+l = IYnl-Yn- 1 ) n=O,l,. (18) 

Hence every solution of Eq.(18) is periodic with period 9. 

What is the set of initial conditions (x_1, x0 ) E (O, oo) x (O, oo) through 

which the solutions of Eq.(15) are periodic? 

Are there values of A, other than A = 1, for which every solution 

of Eq.(17) is periodic with the same period? What do the solutions of 

Eq.(17) do for values of A not equal to 1? 
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7 The (3x + 1) conjecture 

This is the well known and fa.mousi but still not conf.innectl, conjecture that every 

solution of the difference equation 

n = 0,1, (19) 

if x11 is even 

with init ial condition 

Xo E {1 , 2, ... } 

is eventually the two-cycle (1, 2). 

On the other hand, it is conjectured that every solution {xn)::c'~o of Eq. (19) with 

initial condition 

Xo E {O, -1 , - 2, . }, 

is eventually either the one-cycle (O), the one-cycle ( -1) , the three-cycle (- 5, - 7, 

or U.1e e leven-cycle 

(-17, -25, -37, -55, -82, -41 , - 61, -91, - 136, -68, -34). 

The (3x + 1) conjecture is also known as the Collatz Problem, the Syracuse 

Problem, Kakutani's Problem, Ulam's Problem, and Hasse's Algorithm. According 

to Paul Erdós, mathematics is not yet ready for such problems. 

See the interesting paper [26) by ,J .C. Lagarias for the history of the (3x + 1) 

conjecture, and for a survey on the literature of thois problem . In fact , the following 

beautiful excerpt comes from [26). 

"Is the (3x+l ) problern intractably hard" T he problem of set tling the (3x+ l) 

problem seems connected to the fact that it is a deterministic prncess that simulates 

"random" behavior. We face this dilemma: On the one hand 1 to the extent tl:iat 

the problem has structure, we can analyze it - yet it is precisely this structure that 

seems to prevent us from proving that it behaves "randomly'1 • On the other hancl , 

to the extent that the problem is structureless and urandom,, 1 we have nothing t0 



PERIODICITY IN NONLINEAR DIFFERENCE EQUATIONS 207 

analyze and consequently cannot rigorously prove anything. Of course there remains 

the possibility that someone will find sorne hidden regularity in the {3x+l) problem 

that allows sorne of the conjectures about it to be settled. 

If the {3x+ l) problem is intractable, why should one bother to study it? One 

answer is provided by the following aphorism: "No problem is so intractable that 

something interesting cannot be said about it." Study of the {3x+l) problem has 

uncovered a number of interesting phenomena; I believe further study of it may be 

rewarded by the discovery of other new phenomena.11 

8 Sorne conjectures in the spirit of the (3x + 1) 
conjecture 

In this section we give sorne known results, open problems, and conjectures 

about difference equations of the form 

Xn+ I = { 

axn + f3xn - l 
if Xn + Xn- 1 is even 

2 {20) n = 0,1,. 
{Xn + ÓXn- 1 if Xn + Xn- 1 is odd 

where 

a,¡'.i,")',óE{-1,1} andx_., x0 EZ={. ,-1,0,1, .. }. 

For sorne references about these problems, see {1], {8], {24], and {25]. 

Note that if {xn}::'=-I is a solution of Eq.{20) , then { - xn}::'=- I is also a solution 

of Eq. (20). The change of variables 

X2n- I = Y2n- 1 and X2n = - Y2n 

reduces the 16 possible cases of Eq.(20) to 8, because the study of the solutions of 

Eq. (20) in the case of a given set of parameters (a , fi, ")', ó) is similar to that of the 

case of (-a , ¡'.i, - ")', ó). 

Known Results, Open P roblems, And Conjectures. 
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Given integers p,q E Z, Jet gcod(p,q) denote the greatest common odd divisor 

of p and q. 

l. The case 
(a, (3, ¡, ó) = (1, 1, 1, 1). 

Theorem 8.1 (See [l ].) The following statements are true. 

(a) There exist solutions of Eq. (!!O) which are eventually constant, and there 

exist solutions of Eq. (!!O) which are not eventual/y constant. 

(b} Let {xn}::"=- l be a solution of Eq.(20) which is not eventually constant. 

Then either J~~ Xn = -oo or J~~ Xn = oo. 

Open Problem 8.1 Find ali points (x_ i, x0 ) E Z x Z through which the 

solution {xn}::'=- l of Eq.(20) is eventually constant. 

2. The case 

(a, (3, ¡ , ó) = (1, 1, 1, - !). 

Theorem 8.2 (D. Clark and J.T. Lewis (See [8].)) Let {xn}::'=-l be a solution 

of Eq.(!!0}. Suppose that x_1 i' x 0 and that gcod(x_ 1 , x 0 ) = l. Then {xn}::'=- I 
is either eventually the constant 11 the constant -l, or the six-cycle (1, 31 2, 

- 1, -3, -2). 

3. The case 

(a, (3 , ¡, ó) = (1, 1, -1, 1). 

Theorem 8.3 (See [! ].) Let {xn}::'=- I be a solution of Eq.(!!0}. Suppose 

that x_1 i' Xo and that gcod(x-i, x0) =l. Then {xn}::'=- I is either eventu­

ally the constant I , the constant -1, the Jour-cycle (!, 2, -1, 3), the Jour-cycle 

(- 1, -2, 1, -3), or the six-cycle (1, O,!, -1, O, - 1). 

4. The case 

(a , (3, ¡, ó) = (1, - 1, !, 1). 
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Conjecture 8.1 Let {xn}::"=- I be a solution of Eq.(20). Suppose that 

gcod(x-1, x0) = l. Then {xn}::"=- I is either eventually the three-cycle (O, 1, 1 ) , 

the three-cycle (O, -1, -1), or the ten-cycle (3, 2, 5, 7, 1, -3, -2, -5, -7, -1) . 

5. The case 

(a, (3, /,o)= (1, 1, -1 , - 1). 

Theorem 8.4 (See [1].) Let {xn)::"=- I be a solution of Eq.(20). Suppose that 

x_ 1 # xo and that gcod(x_ 1,x0 ) =l. Then {xn)::"=-I is either eventually the 

constant 1, the constant -1, the three-cycle (1, O, -1), or the three-cycle 

(-1, o, 1). 

6. The case 

(a, (3, ¡, o)= (1 , -1, 1, -1). 

Theorem 8.5 (See [1].) Let {xn)::"=-I be a solution of Eq.(20). Suppose that 

x_ 1 # x0 and thatgcod(x_1,x0 ) = l. Then {xn)::"=- I is eventually the six-cycle 

(1, 1, O, -1 , - 1, O). 

7. The case 

(a, (3, ¡, o)= (1, - \ , -1, 1). 

Theorem 8.6 (See [1].) Let {xn)::"=-I be a solution of Eq.(20) . Suppose 

that x _1 # x0 and that gcod(x- 1,xo) = 1 and X- 1 # xo. Then {xn)::"=- I is 

eventual/y the eight-cycle (1, 1, O, 1, - 1, - 1, O, - 1). 

8. The case 

(a, (3, ¡, o)= (1, -1, - 1, - 1). 

Conjecture 8.2 Let (xn)::"=- I be a solution of Eq.(20). Suppose that 

gcod(x_i,xo) = 1 andx_1 # x0. Then {xn)::"=- I is eventually either the three­

cycle (1, 2, - 3), the three cycle (- 1, -2, 3), the four-cycle (1, O, - 1, 1), 

or the four- cycle (-1, O, 1, - 1). 
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Similar problems are of interest for the equation 

Xn + Xn- 1 
if 3 di vides Xn + Xn-1 

n= 0,1, . . . . (21 

Xn + Xn- 1 0therwise 

where X- 1,Xo E Z. 

Conjecture 8.3 The following statements are true. 

(a) Every positive solution of Eq. (21) which is not eventual/y a three-cycle con 

verges to oo. 

{b) Eq. {21) has an unbounded soiution. 

9 The generalized Lozi 's equation 

Lozi 's map is the system of difference equations 

{ 
Xn+ l 

Yn+t 

1 - alxnl +Yn 
n=(i),l,. 

bxn 

introduced by Lozi (see [29]) in 1978 as a piecewise linear analogue of the Héno1 

map 

{ 
Xn+ 1 = 1 - ax~ + Yn 

Yn+I = bxn 
n = 0,1, 

The Hénon map was introduced by the theoretical astronomer Hénon (see [16]) 

in 1976 to illuminate the strange attractor which was observed by the meteorolo­

gist Lorenz (see [28]) in 1963 in the simple-looking nonlinear system of differential 



equations ¡ ~ = lO(y-x) 

dy di x(28-z)-y 

dz 8 
di xy- ;¡z 

which Lorenz used in bis research to model weather patterns. 

When Lorenz used Euler's method to integrate this system numerically in his 

Royal-McBee LGP-30 computer, the solutions of this system exhibited extremely 

complicated behavior. The solutions exhibited sensitive dependence upon 

initial conditions about which Lorenz coined the phrase butterfly effect. If 

a butterfly f::laps its wings in Temuco, Chile, this may cause it to rain in Kingston, 

R110de Island 4 days later. This is bad news for numerical rnethods, and means that 

we should be suspicious of what we "see in the computer" until we establish it by a 

'rigorous proof. 

The solutions oscillate irregularly, never exactly repeating but always remaining 

in a bounded region in the (x, y, z) space, and they settle onto a complicated set 

resembling an owl's mask ora pair of butterfty wings, which we now cal! a strange 
attractor, strange because its boundary is a fractal (with dimension between 2 and 

3). Ali solutions approach the attractor quite rapidly, and there are no periodic or 

asymptotically periodic solutions. The term strange attractor was coined by Ruelle 

and Takens (see [35]) in 1971. 

The Lozi map is the first system for which it was established (by Misiurewicz 

(see [31]) in 1980) that it possesses a strange attractor. For the Hénon map, the 

existence of a strange attractor was established by Benedicks and Carleson (see [4]) 

in 1991. The existence of a strange attractor for the Lorenz equations was recently 

announced by Warwick Tucker at the Berlin Equadiff last August, 1999 (see [38]) . 

Here is an excerpt from Warwick's homepage (http://www.math.uu.se/~warwick/). 

Warwick's Homepage 

1 have just completed my Ph.D. studies at the department of mathematics in 
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UpJDsala. !Ja my thesis, 1 prove tl1at the Lorenz attract©r >ea!lly is a strange attractor 

as coHjectured far more than 35 years ago. Duri·r.i.g my studiies I atlso spent sorne time 

at the Royal Institute of Technology i.n S,tockliolm. My field of i•nterest is clynamical 

systems, and 1 am curre¡;¡\]y deing a post -cloc rut IMPA, Rio de J a.neirn. 

By eliminating the variable Yni Lozi 's ma•J!) recl•l!lCes t© the sec©Hcl onder piecewise 

lii.near difference equati0n 

(22) 

wh.ere a and b are reail nl!ImIDer.s. 

5everal of t file equations whicfu we have recently investi:gate©, ancl which exhil'li't 

am inter.esting Jilerio©k d1ruracter1 aire of the form 

n= ©,1,. (23~ 

where 

k, l, m Ei Z and A, :z;_, , x0 E (©, oo). 

Some SJDecial cases ef this equati0n were investigrutecl ion [3], [17], [20], ancl [22] 

and were found to ha.ve very ü:iter-estiNg dyn:amics. 

When A= 1anclm=1, every soluti0n ©f E~.(23) is peri0dic with period 

if k = O arrd l = 1 
if k= © and l= © 
if k = 1 and l = © 
if k=O and l = -1 
if k = 1 a.Hd i=l 
i.f k = 1 and l = 2 
i.f k=2 and l = 2 

12 if k =2 and l = 3. 
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It follows easily that the change of variables (see [22]) ¡ A!c\.'"' if A> 1 

Xn = e"t if A= 1 

A=-'i"' if A< 1 

together with the observation that 

1 
max{a,¡J} = 2[(a + ¡J) + \<> - ¡J\] 

transforms Eq. (23) into the piecewise linear equation 

where 

•~ ¡ k - 1-l-m if A>l 

if A= 1 

-(k -1-l- m) if A< l. 

We call Eq.(24) the generalized Lozi's equation. See [22]. 

Are there other values of k and 1 for which every solution of Eq.(24) 

with m = 1 and ó = O is periodic with t he same period? 

10 
. . a+ /3Xn + /Xn- 1 

When lS every solution of Xn+l = A B e + Xn + Xn-1 
per iodic? 

Consider the nonlinear second arder rational difference equation 

O:+ f3xn + {Xn-1 

Xn+L = A+Bxn+ Cxn- 1 1 n=O,l>. (25) 
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where the parameters a, /3, /,A, B 1 e are n@IW•lega.-tive rea.!l numIDers with B +e > Ü¡ 

and where the initial c0nditions X- l and x0 are H01megative Feail numbers sucb that 

the right hand side of Eq. (25) is well defined for ali! n 2 O. 

The following four special ex&mples of Eq.(2ó) 

Xn+l 
Xn 

n= ©,l,. 

Xn+ I 
Xn-1 

n = 0,1, 

1 +xn 
n = ID,1, Xn+ l 

Xn- 1 

Xn 
n= 0, 1,. Xn+ I = 

Xn-1 

a.I'e remarkable in the fo!lowing se!lse. 

Every positive solution of Eq. (26) is periodic with period 2. 

Every positive solutioN of Eq. (27) is p er iodic with periocd 4. 

Every positive solution of Eq.(28) is periodic with p eriod 5. 

Every positive solution of Eq.(29) is periodic with period 6. 

(26) 

(27) 

(28~ 

(W) 

Tloe following result characterizes ali possib'le special cases of equations of the 

í@rm of Eq. (25) with the property tloat every solut ion of t he equation is peri­

e dic with the same period. 

T heorem 10.1 (See [19).) Let p 2 2 be a positive integer, and assume that every 

positive solution of Eq.(25} is periodic with period p. Then the following statements 

are true. 

l . Suppose that C > O. Then A = B ='Y = O. 

2. Suppose that C = O. Then ¡(a+ fJ) =O. 
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Proof: Consicler the s0l•uti0n {x.}::"=- l of Eq.(25) witb 

'Fhen clearly 

ancl so \Jy Eq.(25) 

Thus we see that 

x_1 = 1 and x0 € (O, oo). 

Xp-1=X- 1 =l and Xp=Xo 

C> + f3 + 'fXp- 2 

"'º = x, = A + B + Cx,_2 · 

(A+ B)x0 + (Cx0 - c)x,_, = "+ (3. 

(a) Assume e>©. 'Then we cla,jm th&t 

A= B =O. 

Otherwise, A + B > ©. S0 \Jy choosing 

{ a+f3 ?} 
x0 >max A+B'C 

(30) 

(31) 

we see th&t (3©) is i•m1>0ssifule. Hence Eq.(31) is trne. In adclüion to Eq.(31) , 

we now als0 daiom th.ait 

e= O. (32) 

lf not, then 1 > ©. So \Jy ch00sing 

. { a+ f3 ?} xo < mm -- -
A+B'C 

we see ag&in th&t (3Q~ is im•j>OSsih>te. Thus (32) als0 h01cl's. 

(b) Assume e= o and for the saike of contradiction, Shl•j>]D0Se thal 

1(0> + /3) >O. 

215 
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Then again by choosing x0 sufliciently small, we see that (30) is impossiole. 

o 

The following corollary of Theorem 10.1 states that Eqs.(26)-(29} are the only 

special cases of Eq.(25} with the property that every positive solution is periodic 

with the same period. 

Corollary 10.2 (See [19].) Let p E {2, 3, 4, 5, 6}. Assume that B + C > O, and that 

every positive solution of Eq. (25) is periodic with period p. Then up to a change of 

va1·iables of the form Xn = AYn Eq. (25} reduces to one of the equations (26)- (29). 

For the more general differeNce equation 

O'.+ f3xn + /Xn-1 + ÓXn- 2 

Xn+l = A+ Bxn + Cxn- 1 + Dxn-2 
n = 0,1, (33} 

with nonnegative initial conditions aNd nonnegative parametersi what are all spe­

cial equations with the property that every solution is periodic with the 

same period? In addition to Eqs.(26)-(29) and Todd's equation (13), are there 

any other surprises? 

11 Convergence of solutions of rational equations 
to period two solutions 

Consider the difference equation 

O'.+ f3xn + /Xn-1 

Xn+l = A + Bx11 

n = 0,1, . (34) 

with 

a, {J , -y, A, B E [O,oo) 

and with nonnegative initial conditions. This is Eq.(25) with C =O. 

The following result is known. See [19]. 
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Theerem 11.1 (See [r~].) Fivery positive solution of Eq. (34) converges to a period 

two solution if and only if ¡ = /3 + A. 

Open Problem 11.l Wh&t is the "limiting" period tw0 soluti<m 0f Eq.(34) 

corresponding to a given initial c0mdition (x- 1, x0 )? 

For the more general sec0nel order rational difference equati0n (25) with nonneg­

ative coefficients ancl p0si1tive ini1tial c0ncli·tions1 we offer the foll0wing c©Fljecture. 

Conjecture 11.1 Assu.me that 

C> O. 

Then every solution of Eq. (25) converges to the positive equilibrium x of Eq. (25), 

or else there exists a 2-cycle 

(<p, 1/J) 

of Eq.(25), and every solution of Eq.(25) converges either to x orto (<p, 1/J). 

12 Convergence of solutions of systems to period 
two solutions 

C0nsider the system 0f ©·ifference e<¡uations 

¡ Xn+i 

Yn+i 

where 

a b 
- +­
Xn Yn 

c d 
- + ­
Xn Yn 

n= 0,1, 

a, b, c, d E (O, oo). 

The following result was estrubJ.ished in [15]. See also [33] &ncl [34]. 

(35) 

Theorem 12.1 (See [15].) Every positive solution of Eq. (35) converges to a periodic 

solution with period 2. 
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Open Problem 12.1 Wbat is the "limitfog" periecl twe solutien 0f E~.~35~ 

c0rresponding to a given initirul c00di1tion (x_ 1, x0 )? 

Cenjecture 12.1 Assume that 

a;;E(ffi,oo) for i,jE{l,2,3}. 

Show that every positive solu-tion of the system 

a21 + a22 + °'23 , n = ©, l, . . ~ 
Xn Yn Zn 

converges to a period 2 solution. E1:tend and generalize this result to systems with 

real parameters and nonzero initial conditiens. 

13 On the difference equation 

Xn+I = max { Ao, --6_, · · · ~} 
X n Xn- 1 ' Xn-k 

Consider the difference equaiti0n 

Xn+I = max {~, X~ i} n =O,!, . . . (3~) 

where the parameter A and the ini•ti:a,1 c0nfilitions x_1 amd x0 are n0nze:m reaJ nurn­

bers. 

lt was shown in [2) that every s0lotion 0f Eq.(37) is eventually periodic with 

period 2, 3, or 4. ( Throughout this section, we are using the convention that a 
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solution which is eventua/ly constant is eventua/ly periodic with any period.) More 

precisely, the following statements are true. 

Theorem 13.1 (See [2].) 

{i) Assume that A < O. Then every solution of Eq. (S7) is eventua/ly periodic with 

period 2 and is of the form (p, ~) for sorne positive number p which depends 

upon A and the initial conditions x_1 and xo. 

{ii) Assume that A > O. Then every solution of Eq. (S7) is eventua/ly periodic with 

the following period. 

(a) 2 if A E (O,!) and the initial conditions are not both negative, or if 

A E (l,oo) and the initial conditions are both negative. 

(b) S if A= 1 

(e) 4 if A E (1, oo) and the initial conditions are not both negative, or if 

A E (O,!) and the initial conditions are both negative. 

Motivated by the above results, we pose sorne open problems and conjectures 

about the behavior of the solutions of the difference equation 

n = 0,1, ... (38) 

where the parameters A0 , A1, • • , A, are real numbers and where the initial condi­

tions are nonzero real numbers. See [23]. 

Conjecture 13.1 Assume that A0 , A 1 , •• , A,_1 E [O, oo) and A, E (O, oo). Show 

that every positive solution of Eq.(38) is eventua/ly periodic with period 

pE {2, 3, ... , 2(k+l)}. 

It is fascinating to observe how the period in the above conjecture is determined 

by the "dominant 11 parameter among A0 , A1, ... 1 Ak. Far example if for sorne j 0 
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E {O, 1, ... , k), A;, > max{A; : j # j 0), then every !'OSitive s0luti0n of Eq.(38) 

is eventually periodic with periocl 2(jo + 1). Also if some c0nsecutive string of the 

pa:rameters A0 , A1, . .. , Ak are equal and domfo'late the remainoing 0nes, then every 

positive solution of Eq.(38) is eventually periodic wi.th l'eri0d equal to the average of 

the periods of the "dominating difjerence eq.uations." In particular, it can be easily 

shown that every positive solution of the differ.ence equaiti©n 

X11+1 = max {2-, -1
-1 • .. ) -

1- } 
Xn X,l- 1 Xn - k 

n = 0,1,. (39) 

is eventually periodic with peri0d (k+2) Note that (k+2) is the average eventual 

period of the k + 1 difference equatiOFlS 

f0r j =0, 1, ... ,k. 

Yn+r = -­
Yn- i 

" =o, 1, 

Cenjecture 13.2 Assume that A0 , A 1, ••• , A, E R. Show that every bounded solu­

tion of Eq. {98} is eventually periodic. 

Open Problem 13.1 Assume th~t A0,A1, . ,A, E R. OOtai·n necessary and suf­

ficient conditions for every solution of Eq. (38) to be mnbounfiled. 

Open Problem 13.2 Assume that A0 , A1, ••. , A, E R. Investigate the periodic 

caaracter of the solutions 0f E~.(38). 

Conjecture 13.3 Consider the difference eq.uation 

where 

{ A B C } 
X n+I =ma.x -,--,-­

Xn Xn-L Xn-2 
n = 0,1, .. 

A,B,C,x_2 ,x_ ¡, x0 E (O,oo). 

(40) 

Show that every solution o/ Eq. (40) is eventually periodic with period p E {2, 3, 4, 5, 6). 
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More precise/y, show that every solution is eventual/y periodic with period 

(i) if A> max{B,C}; 
(ii) if A=B> C; 
(iii) 4 if either B > ma.x{A, C} or A=C> B ; 
(iv) 5 if B =C >A; 
(v) 6 if C > ma.x{A, B}. 

14 Max equations wit h periodic coefficients 

Recall from Section 13 that every positive solution of t he difference equation 

Xn+ I = max {2-, ~} 
Xn Xn- 1 

n = 0, 1,. 

where A E (O,oo), is eventually periodic with period 2 if A < 1, 3 if A= 1, 4 if 

A> l. 

The above result was extended in [6] to the difference equation with period 2 

coefficient 

where 

{ 1 An } 
Xn+ 1 = max - , -­

Xn Xn- 1 
n = 0, 1,. 

An = w1th Ao, A, E (O, oo) . { 
A0 if n is even . 

A0 if n is even 

(41) 

More precisely, it was shown in [6] that every positive solution of Eq.(41) is eventually 

periodic with period 2 if AoA1 < 1, 6 if AoA1 = 1 4 if AoA1 > l. 
In this section, we pose sorne open problems a nd conjectures about the 

solut ions of the nonautonomous Eq.(41) when {An}::"=o is a periodic sequence of 

positive real numbers. See [7] . 

Open Problem 14.1 Let {An}::"=o be a periodic sequence of positive real numbers 

with period k <". 3. Find necessary and suflicient conditions for each of the following 

statements to be true. 

(a) Every positive solution of Eq.(41) is bounded. 
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{b) Every positive solution of Eq.(41) is eventually periodic. In this case, deter­

mine ali possible such periods. 

Conjecture 14.1 Let {An}~=O be a periodic sequence of positive real numbers with 

period k 2 2. Assume that A. E (O, 1) for ali n 2 O. Then every positive solution o) 

Eq. ( 41) is eventually periodic with period 2. 

Far the cases k = 2 and 3, the above conjecture was shown to be true in [6] and 

[5], respectively. 

Conjecture 14.2 Let { A.};:;,0 be a periodic sequence of positive real numbers with 

prime period k 2 2. Assume that A,. E (1, oo) Jor ali n 2 O. Then every positive 

solution of Eq. (4 1) is eventually periodic with period 

2k if k is even 

4k if k is odd. 

Far the cases k = 2 and 3, the above conjecture was shown to be true in [6) and 

[14], respectively. 

Conjecture 14.3 Let { A.}:;"=0 be a periodic sequence of positive real numbers with 

prime period k 2 3. 

(a) Assume k is not a multiple of S. Then every positive solution of Eq. (41) is 

eventually constant or eventually periodic with prime period p E {2, k , 2k, 4k }, 

and p is independent o/ the initial conditions. 

{b) A ssume k is a multiple of S. Then one of the following statements is true. 

(i) Every positive solution of Eq.(41) is eventually constant or eventually 

periodic with prime period p E (2, k, 2k, 4k}, and pis independent o/ 

the initial conditions. 

(ii) Every positive solution of Eq.(41) is eventually constant or unbounded. 

In the case k = 3, the above conjectures were established in [14]. 
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A B 
15 Periodicity in Xn+ I = - - + - -

Xn-k Xn-l 

C0nsider tihe difference ec:ilia..ti0:ra 

A B 
Xn+l = -- + - 1 n = Ü1 11 • 

Xn-k Xn-l 
(42) 

where 

A,B E (O,oo) 

ancl 

k, l E {@, 1, ... } witb k <l. 

Note tbat Eq.(42) has the u•niq1'e equilibrium point 

x = vA+B. 

We have the foll0wir-1g c0njectN•re. 

Conjecture 15.1 

(a) Every positive solution of Eq .. (42) converges to the equilibrium v A+ B if and 

only if ali roots of the polynomial equation 

A'+' + _A_A,_, + _!!__ = O 
A+B A+B 

(43) 

lie ínside the unit disk 

IAI < L 

(b) Every positive solution of Eq. (42) converges to a periodic solution of prime 

period p > 1 if and only if Eq. (43) has a root >. with l>-1 = l. 

How is the number p in the above conjecture related to the roots of 

Eq.(43) which lie 0n the unit circle IAI = !? 

223 
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16 Sharkovsky's Theorem 

In this paper we have dealt almos\ exclusively with difference equations of order 

greater than or equal to 2. For a first order difference equation of tbe form 

Xn+ I = F(xn) , n = O, 1, .. (44) 

where 

F:l-41 

is a continuous function mapping sorne interval of real nurnbers 1 ~ R into itself, 

the most glorified result known about periodic solutions of Eq.(44) is known as 

Sharkovsky's Theorem. (See (37]) . For a good reference for this and other re­

lated theorems, read the historical remarks by M. Misiurewicz in (32]. 

Befare stating the theorem, we introduce the Sharkovsky orderin9 of the set of 

positive integers N = (1 , 2, ... } . 

3-< 5-< 7-< -<3·2-< 5· -< 7·2 -< .. ·-<3·22 -<5·22 -<7·22 -< 
-< ~ -< ~ -< ~-< -<l. 

Theorem 16.1 {Sharkovsky's theorem) Let J be an interval of real numbers, and let 

F : I -4 J be a continuous function. Assume that Eq. (44) has a periodic solution of 

prime period k. Then Eq. (44) has solutions of prime period 1 far ali positive integers 
J 

1 with k -< l in the Sharkovsky ordering. 

A special case of Sharkovsky 's theorern is the celebrated th~rem of Li and 

Yorke, Period Three lmplies Chaos (see (27]) , in which it was shown that if 

I is an interval of real numbers and F E C(/ , ! ), and if Eq.(44) possesses a periodic 

solution of prime period 3, then Eq. (44) possesses solutions of prime period p for 

every positive integer p. 
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17 The Riccati difFerence equation 

The Riccati Difference Equation is the difference equation 

a+ bxn 
Xn+l = c+dxn , n=Oil,. (45) 

where the parameters ai b, e, d aire given real numbers and the i·nitia:l cm1dition x0 

is an arbitrary real number. 

Note that when d = 0, Eq.(45) is a linear equation, while if 

d#O and bc-ad=O 

Eq.(45) reduces to the triviwl difference equation 

Also note that when 
e 

b +e= O and xo # -;¡ 

the solution {x.}::"=o of Eq.(45) is periodic with period two. 

In the remainder of this sectíon, we shall assume that 

d # ©, be - ad #O, and b + e # B. 

The change of varial>les 
b+c e 

Xn = - d -Wn - d, 

transforms Eq.(45) int0 the dofference equation with one parameter 

R 
Wn+1=1 - - , n =O, 1, 

Wn 

(46) 

(47) 

(48) 

where the parameter R, which we caU the Riccati number 0f Eq.(45), is the nonzero 
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real number 

When 

E.A. Grnve an<d C. Ladas 

be- ad 
R = (b+c)2 · 

R<~ - 4 

one can see that Eq.(45) has n0 peri0dic solutioBs ©f any )lrime )lerio<i p 2 2. 

When 

!et O E ( 0, i) be such that 

1 
R> ;¡ 

1 s;n e= v'4R-l 
cose = 2.,/R and 2v'R 

and define the set 

:F= {b~c - (b+c)~ cot(nB): n 21 an<i sin(nO) #0}. 

Then (see [15]) every solution { Xn}::"=o of Eq.( 45) with Xo ~ :F is )leriodic if and 

only if O is a rational mu/tiple of -rr, Mld no solution of Eq.( 45) is periodic otherwise. 

Furthermore if 
B= '!.-rr 

p 

wh.ere p and q are positive integers which are re'la.tively prime, then every solution 

{x,,}::"=o of Eq.(45) with x 0 ~ :F is periodic with prime period p. 
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