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1 Introduction

Our aim in this expository article is to bring to the attention of the greater math-
ematical community a wealth of examples of nonlinear difference equations having
the property that every solution of each equation is periodic with the same pe-
riod, a wealth of other equations having the property that all their solutions are
eventually periodic with prescribed periods, and a large number of equations
having the property that all of their solutions converge to periodic solutions
with the same period.

We shall also ask some difficult questions and pose several thought provoking
open problems and conjectures which may require no particular special training
in the area of difference equations other than a clever analytical mind and a desire
to understand the fascinating world of periodic solutions of difference equations.

A difference equation of order (k + 1) is an equation of the form

Zoti= fi(@ny2n=1y-- -, Zn-x) , n=0,1,... (1)

. )
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where fis a function which maps some set /¥*! into I I'is usually an interval of real
numbers, or a union of intervals, but it may even be a discrete set such as the set
of integers Z = {...,-1,0,1,...}.
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A solution of Eq.(1) is a sequence {z,}?> _, which satisfies Eq.(1) for all n > 0.

If we prescribe a set of (k + 1) initial conditions T_g, & _j+1,...,Tg € I then
= f(@0y@-1y...,Tk)

23 = f(®1,30, s Tkt1)

and so the solution {z,}>= , of Eq.(1) is uniquely determined by the initial condi-

tions.

We say that the point z € [ is an equilibrium point of Eq.(1) if
zZ= fi(z,8,...8).

That is, the constant sequence z, =z for all n > —k is a solution of Eq.(1).

A solution {z,} , of Eq.(1) is called periodic with period p if there exists an
integer p > 1 such that

Tnyp =Ty, forall n> —k. (2)

We say that the solution is periodic with prime period p if p is the smallest positive
integer for which Eq.(2) holds. In this case, a p-tuple (Zpi1, Tpszy---s Tnyp) OF
any p consecutive values of the solution is called a p-cycle of Eq.(2).

A solution {z,}32 _, of Eq.(1) is called eventually periodic with period p if there
exists an integer V> —k such that {z,}% v is periodic with period p; that is,

Znsp=an forall n> N.
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2 What do the following equations have in common?

1
= =001 (3)
TpTp—y
Tl = —— =109 4
el i , n=0,1, (4)
T =
Tpp1 = —— , n=0,1,.... (5)
Tn-y

The answer is that every solution of each of the above equations is peri-
odic with the same period.

Every solution of Eq.(3) is periodic with period 3.

Every solution of Eq.(4) is periodic with period 4.

Every solution of Eq.(5) is periodic with period 6.

Indeed, if the initial conditions are nonzero real numbers denoted by

Toy =0 ‘andzg=
then the solution of Eq.(3) is the 3-cycle
1
(0, B, ;5) .
The solution of Eq.(4) is the 4-cycle
1t &l
(0, B, o 5)
and the solution of Eq.(5) is the 6-cycle
J5 PR B R
(a, G iy d)'

What is it that makes every solution of a difference equation periodic

with the same period?

. A




Is there an easily verifiable test that we can apply to determine whether
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or not this is true?
3 What do the following equations have in common

PO Lol D e e (6)
Tp—)

_ max{zy, 1}
TnTn-1

n=01,... (7)

Tn+l

1
,h,=% e o e ®)
TyTn-1

2
I,,.,=Ex~{'1:—"ﬂ SomE= 0,10 (9)
Lnln—)

_ max{z2,1}

a4l =

, n=0,1,.... (10)

@5 Tp i

The answer is that every positive solution of each of the above equations
is periodic with the same period.

Every positive solution of Eq.(6) is periodic with period 5.

Every positive solution of Eq.(7) is periodic with period 7.

Every positive solution of Eq.(8) is periodic with period 8.

Every positive solution of Eq.(9) is periodic with period 9.
1

(
Every positive solution of Eq.(10) is periodic with period 12.

The proof that every positive solution of Eq.(7) is periodic with period 7 is

(T

evident from the following table.
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Case 1 Case 2 Case 3 Case 4
siy=a sl sh=a>1 Th=—a<l I =il
Zp=8<1 7=f<1 Zp=F>1 T=p21

R | i I T

T = — T =— T =— T) = —

a aff a @
z,~l Ty = max al} z—l el
\ﬂ 2 ‘ﬂ 2 3 Z—ﬁ

z3 = aff z3 = aff 73 =aB 73 = max {a, f}
1 1 { 1} B
Ty= — Ty=— z4 = max<{ B, — Ty==
a a a @

z—j 1-1 Th— s z—l

i 5= 5 5 %8 8=73

Tg=a Tg = Ig=a Tg =

77=f o =f ;=8 m=p

Are there any other values of k and [ for which every positive solution
of the difference equation
max {zf, 1}

T S =00
TyTn-1

Tng) =
is periodic with the same period? What are they?
Is there an easily applicable test to determine this? What is it?

4 Lyness’ Equation

This is the equation

L
T e e 0,1, (11)
Tn-y

which was introduced by Lyness in 1942 (see [30]) while he was working on a problem
in Number Theory. See also [13], [18], and [36].
Every positive solution of Eq.(11) is periodic with period 5. Indeed if

T =a and 7 =48
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are positive initial conditions, then the solution {z,}32_, is the 5-cycle

(a, 8, 1+ l+a+p 1__"_’_"), (12)

R

Lyness' equation arises in frieze patterns (see [9]). An example of a frieze pattern
is the following.

3 1 3 1
The property which defines a frieze pattern is that except for possible borders
of zeros and ones, every four adjacent numbers forming a rhombus

q
P i

are positive and satisfy the unimodular equation pr — ¢gs = 1.

Coxeter (see [10]) has shown that every frieze pattern is periodic. For example,
the frieze pattern shown below is periodic with period five.

If 2, = a and z, = 3 are arbitrary positive numbers, then from the definition of
frieze patterns it follows that

Therefore the above pattern is generated by Lyness’ equation.



PERIODICITY IN NONLINEAR DIFFERENCE EQUATIONS 201

For a given positive number a, what are all positive periodic solutions that
the difference equation

a -+ on
Tpy) = o e n=0,1,"-
possesses?
5 Todd’s Equation
Todd’s equation is the equation
1 i e
R Eer i L ey (13)
Tn-2

Every positive solution of Eq.(13) is periodic with period 8. (See [18].)
Indeed if

Tg=q v, =4, and 7o =

are given initial conditions, then it follows by a simple computation that the solution
{&n}o2 5 of Eq.(13) is the 8-cycle

1+8+7 l+a+B8+y+a
(a,ﬁ,% — QBW 7,

(l+a+ﬂ)(l+ﬁ+7) l+a+8+v+ay 1+a+f
afy By ; B ;

Are there values of a, other than a = 1, such that every positive solution
of the equation

A== T+ Tat
et e SRR Cal R SR (14)
Tp-2

is periodic? Does Eq.(14) possess a positive nonperiodic solution?
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Remark 5.1 Note that every solution of

1
Tpp1=— , n=0,1,...
Tn

is periodic with period 2, every solution of

1z,
Tng1 = =0
Ln—1

is periodic with period 5, and every solution of

i 142, +Tpy
NS s e
Tn-2

=0 e

is periodic with period 8. Is there a pattern here?
Unfortunately, this pattern does not continue in any obvious way! For
example, if {z,}22 _, is the solution of the difference equation

1 Ty = Bl = Tpo
o =—————— o =0
Zn-3

with initial conditions z_3 = 2_, = ©_; = 1, then the first twelve terms of {z,}% _,
are
49 31 49 23

10,000, 4 7 1, 98, =, = = =
p B b G 2 S T e o

and so {z,}32 _; is not periodic with period 11.

Remark 5.2 It is interesting to note the great similarities between Eq.(6) and
Eq.(11). The solution of Eq.(6) with initial conditions

z =« and zp=4

is the 5-cycle

max {1,8} max{l,e, 8} max{l,a}
(o g, mexin), maxlio ) morllol),




Compare this with the 5-cycle in (12).
‘What is it that these two equations have in common? Are there other

pairs of equations with similar behavior?

6 The Gingerbreadman difference equation

The gingerbreadman difference equation is the piecewise linear difference equa-
tion

Gt = o — bl s T (15)
which was investigated by Devaney (see [12]) and was shown to be chaotic in certain
regions and stable in others. The name of this equation is due to the fact that the
orbits of certain points in the plane fill a region that looks like a “gingerbreadman.”

If you use a computer to plot the orbit of the solution {z,}3_, of Eq.(15) with

e (‘% o)

the computer may predict that after 100,000 iterations, the solution is still not
periodic. Although a computer may be fooled due to round-off and truncation
errors, one can show that the orbit of the solution of Eq.(15) with initial condition

(@1, ‘wo) = (—%, O)

is periodic with period 126. An easy way to see this is to make the substitution

initial conditions

1l
Tn = Eyw

Then Eq.(15) is transformed into the difference equation

Ot = el = == 10 =T (16)

and the initial conditions (z_,, o) = (—%, O) of the solution {z,}52 _, of Eq.(15)

203
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are transformed into
(Y-1, %) = (=1, 0).

Let {yn}3_, be the solution of Eq.(16) with initial conditions (y_;, yo) = (=1, 0)
Then the values of y, for —1 < n < 126 are given as follows:

yar=-1 3 =0

Y =11 Yo =21 yz = 20 ys =9 ==l =2 yr =13
yg=21 y=18 yi0=7 yu=-1 y2=4 y=15 yyu=21
Yyis=16 yig=35 yr=-1 yig=6 Y9 =17  yp =21 yy =14
yp=3 yu=-1 yu=8 yu=19 yu=21 yy=12 yyu=1
yoo=-1 y3=10 w3 =21 yp=21 yp=10 yu=-1 ys=1
Yy =12 ysr =21 y;=19 yp=8 wyw=-1 yu=3 yp=14
yi3=21 yu=17 ys=6 y=-1 yr=5 Yy =16 yu=21
Yso=15 ysi=4 ysn=-1 ys3=7 Ysa=18 ys5=21 y5=13
ysr=2 Yss=-1 ys9=9 Yeo=20 yer =21 ye2=11 g3 =0
Yoa =—1 yes=11 ys6=22 yer=21 yes=9 Yo9=-2 yp =3
yn=15 y2=22 yp=17 yu=5 ys=-2 yrs=7 yn=19
Y8 =22 yro=13 yso=1 Y =-2 yYso=11 Y3 =23 yg =22
Yss =9  Yss=-3 Ysr=4 yYss=17 Ysp=123 yo=16 g =3
Yoo=—3 Y3 =10 o1 =23 yo5=123 yos=10 yor=-3 yeg=3
Yoo =16 3100 =23 Y11 =17 g2 =4 Y13 =-3 yia =9 Y05 =22
Yis=23 yr=11 ys=-2 =1 Yuo=13 yn =22 yu2=19
yus =17 Yia=—-2 yus =95 yie =17 Y7 =22 yng=15 yue=3
Yi20==2 Y21 =9 Yz =21 Y13 =22 Y1 =11

Y125 = =1 126 = 0.

Therefore the sequence {y,}°2_; (and hence also {z,}32_,) is periodic with
period 126.

It is interesting to note that the gingerbreadman difference equation is a special
case of the max difference equation

_ max{z3, A}

TnTn-1

At LT (ORI




A2
reduces Eq.(17) to the difference equation
Yntt = [Un| = Yn-1 + 0

where

A=l

0<A<1

i = UL

A>1

A=1

A<

Note that Eq.(17) with A € (0, 1) reduces to the gingerbreadman difference equation

(15).

When A = 1 Eq.(17) reduces to Eq.(9) which by the above change of variables

is transformed into the difference equation

Yot1 = Yol = Y1

n=0,1,.... (18)

Hence every solution of Eq.(18) is periodic with period 9.

What is the set of initial conditions (z_,, z) € (0,00) x (0,00) through
which the solutions of Eq.(15) are periodic?

Are there values of A, other than A = 1, for which every solution
of Eq.(17) is periodic with the same period? What do the solutions of

Eq.(17) do for values of A not equal to 17
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7 The (3x + 1) conjecture

This is the well known and famous, but still not confirmed, conjecture that every

solution of the difference equation

Sz"%l if z, isodd
Tntl = S (19)
Tn : 5
o if =z, iseven
with initial condition
zo € {1,2,...}

is eventually the two-cycle (1, 2).
On the other hand, it is conjectured that every solution {z}3%, of Eq.(19) with
initial condition
e 0 1 =250,
is eventually either the one-cycle (0), the one-cycle (—1), the three-cycle (-5, -7,

or the eleven-cycle
(=17, —25, —37, —55, —82, —41, —61, —91, —136, —68, —34).

The (3z + 1) conjecture is also known as the Collatz Problem, the Syracuse
Problem, Kakutani’s Problem, Ulam’s Problem, and Hasse’s Algorithm. According
to Paul Erdés, mathematics is not yet ready for such problems.

See the interesting paper (26] by J.C. Lagarias for the history of the (3z + 1)
conjecture, and for a survey on the literature of this problem. In fact, the following
beautiful excerpt comes from [26].

“Is the (3x+1) problem intractably hard? The problem of settling the (3x+1)
problem seems connected to the fact that it is a deterministic process that simulates
“random” behavior. We face this dilemma: On the one hand, to the extent that
the problem has structure, we can analyze it—yet it is precisely this structure that
seems to prevent us from proving that it behaves “randomly”. On the other hand,
to the extent that the problem is structureless and “random”, we have nothing to
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analyze and consequently cannot rigorously prove anything. Of course there remains
the possibility that someone will find some hidden regularity in the (3x+1) problem
that allows some of the conjectures about it to be settled.

If the (3x+1) problem is intractable, why should one bother to study it? One
answer is provided by the following aphorism: “No problem is so intractable that
something interesting cannot be said about it.” Study of the (3x+1) problem has
uncovered a number of interesting phenomena; I believe further study of it may be
rewarded by the discovery of other new phenomena.”

8 Some conjectures in the spirit of the (3x+ 1)
conjecture

In this section we give some known results, open problems, and conjectures
about difference equations of the form
+ BTn-1 . ;
&Z—ﬁ"il if ,+T,_, iseven
Tny1 = B, - @)
YTn + 0Zn-1 if Tp+Tpo1 is odd

where
a,B,7,6€{-1,1} andz_,z0 € Z={...,-1,0,1,...}.
For some references about these problems, see [1], (8], [24], and [25].
Note that if {z,}%2_, is a solution of Eq.(20), then {—z,}3 _, is also a solution
of Eq.(20). The change of variables

Ton-1 = Yon—1 and  Ton = —Yon

reduces the 16 possible cases of Eq.(20) to 8, because the study of the solutions of
Eq.(20) in the case of a given set of parameters (e, f,7,d) is similar to that of the
case of (—a, B,—7,6).

Known Results, Open Problems, And Conjectures.




Given integers p,q € Z, let gcod(p,q) denote the greatest common odd divisor
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of p and ¢.

1. The case
(@ 8y 7 0) = (L; 1, 1y 1)

Theorem 8.1 (See [1].) The following statements are true.

(a) There ezist solutions of Eq.(20) which are eventually constant, and there
ezist solutions of Eq.(20) which are not eventually constant.
(b) Let {zn}n_, be a solution of Eq.(20) which is not eventually constant.

Then either lim z, = —o00 or lim z, = co.
n—o0o n—00

Open Problem 8.1 Find all points (z_;, z9) € Z X Z through which the
solution {z,}32_, of Eq.(20) is eventually constant.

2. The case
(@ 3 7 G)= (15 1, 1, =i,

Theorem 8.2 (D. Clark and J.T. Lewis (See [8].)) Let {z,}3>_, be a solution
of Eq.(20). Suppose that z_y # xq and that gcod(z_,,zo) = 1. Then {z,}3_,
is either eventually the constant 1, the constant —1, or the siz-cycle (1, 3, 2,
Ll R =)

3. The case
(& By 71, 0)=(1, 1, =1, 1).

Theorem 8.3 (See [1].) Let {z,}2_, be a solution of Egq.(20). Suppose
that ©_y # zy and that gcod(z_y,zp) = 1. Then {z,}32_, is either eventu-
ally the constant 1, the constant —1, the four-cycle (1,2, —1,3), the four-cycle
(—=1,-2,1,-3), or the siz-cycle (1,0,1,-1,0,-1).

4. The case
(ot 5 @)= (L, =il 1l ).

(T L,
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Conjecture 8.1 Let {z,}2_, be a solution of Eq.(20). Suppose that
geod(z_1,20) = 1. Then {z,} _, is either eventually the three-cycle (0, 1, 1),
the three-cycle (0,1, —1), or the ten-cycle (3,2,5,7,1, -3, -2, —5, =7, —1).

5. The case
(o B, 7, 0)=(1, 1, =L, =1).

Theorem 8.4 (See [1].) Let {z,}2 _, be a solution of Eq.(20). Suppose that
z_y # @ and that geod(z_y,m9) = 1. Then {z,}2_, is either eventually the
constant 1, the constant —1, the three-cycle (1, 0, —1), or the three-cycle

(=i, @, 1),

6. The case
(ear By ON=N (L =15 R )

Theorem 8.5 (See (1].) Let {z,}3_, be a solution of Eq.(20). Suppose that
z_y # o and that gcod(z_1, o) = 1. Then {z,} _, is eventually the siz-cycle
(@, 1L, 6 =ik, =il @),

7. The case
(e By 7 0)=(1, =1, =1, 1).

Theorem 8.6 (See [1].) Let {z.}2_, be a solution of Eg.(20). Suppose
that z_, # my and that gcod(z_y,z0) = 1 and z_, # zo. Then {z,}32_, is
eventually the eight-cycle (1, 1, 0, 1, =1, —1, 0, —1).

8. The case
(e B, 7 0)=(1, =1, =1, =1}.

Conjecture 8.2 Let {z,}2 | be a solution of Eq.(20). Suppose that
geod(z_1,0) = 1 and z_y # zo. Then {z,}3_, is eventually either the three-
cycle (1, 2, —3), the three cycle (-1, —2, 3), the four-cycle (1, 0, —1, 1),
or the four-cycle (-1, 0, 1, —1).
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Similar problems are of interest for the equation

z, Tp-
Zn gl i if 3 divides zp, + Tp_;

Tnt1 = =0
Zn + Tp-y otherwise

where z_,,7 € Z.
Conjecture 8.3 The following statements are true.

(a) Buery positwe solution of Eq.(21) which is not eventually a three-cycle con

verges to 0o.

(b) Eg.(21) has an unbounded solution.

9 The generalized Lozi’s equation

Lozi’s map is the system of difference equations

Tnpt = 1—alza|+yn
=05l s

Ynir = ban

introduced by Lozi (see [29]) in 1978 as a piecewise linear analogue of the Hénor

map
Topr = l=azl+y,

g =00

Yot1 = bz,

The Hénon map was introduced by the theoretical astronomer Hénon (see [16])
in 1976 to illuminate the strange attractor which was observed by the meteorolo-
gist Lorenz (see [28]) in 1963 in the simple-looking nonlinear system of differential

(T
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equations v
fi
% = -2
dy
- z(28—2) —y
AN 8
GriT i

which Lorenz used in his research to model weather patterns.

When Lorenz used Euler’s method to integrate this system numerically in his
Royal-McBee LGP-30 computer, the solutions of this system exhibited extremely
complicated behavior. The solutions exhibited sensitive dependence upon
initial conditions about which Lorenz coined the phrase butterfly effect. If
a butterfly flaps its wings in Temuco, Chile, this may cause it to rain in Kingston,
Rhode Island 4 days later. This is bad news for numerical methods, and means that
we should be suspicious of what we “see in the computer” until we establish it by a
Irigorous proof.

The solutions oscillate irregularly, never exactly repeating but always remaining
in a bounded region in the (z,y,z) space, and they settle onto a complicated set
resembling an owl’s mask or a pair of butterfly wings, which we now call a strange
attractor, strange because its boundary is a fractal (with dimension between 2 and
3). All solutions approach the attractor quite rapidly, and there are no periodic or
asymptotically periodic solutions. The term strange attractor was coined by Ruelle
and Takens (see [35]) in 1971.

The Lozi map is the first system for which it was established (by Misiurewicz
(see [31]) in 1980) that it possesses a strange attractor. For the Hénon map, the
existence of a strange attractor was established by Benedicks and Carleson (see [4])
in 1991. The existence of a strange attractor for the Lorenz equations was recently
announced by Warwick Tucker at the Berlin Equadiff last August, 1999 (see [38]).
Here is an excerpt from Warwick’s homepage (http://www.math.uu.se/~warwick/).

Warwick’s Homepage

I have just completed my Ph.D. studies at the department of mathematics in




Uppsala. In my thesis, I prove that the Lorenz attractor really is a strange attractor
as conjectured for more than 35 years ago. During my studies I also spent some time
at the Royal Institute of Technology in Stockholm. My field of interest is dynamical
systems, and I am currently doing a post-doc at IMPA, Rio de Janeiro.

312 BE.A. Grove and G. Ladas

By eliminating the variable y,, Lozi’s map reduces to the second order piecewise
linear difference equation

T = 1 = @zn| o bzpn! 50 =010 (22)

where @ and b are real numbers.

Several of the equations which we have recently investigated, and which exhibit
an interesting periodic character, are of the form

max {zf, A}

U pm
TnTn—1

. m=0,1,... (23)

Tnt1 =
where

k,l,m €Z and A, z_y1,z0 € (0,00).

Some special cases of this equation were investigated in [3], [17], [20], and [22]
and were found to have very interesting dynamics.

When A =1 and m = 1, every solution of Eq.(23) is periodic with period

if k=0 and =1
if k=0 and =0
if k=1 and [=0
i and U= -1
if k=1 and U=1
if k=1 and =2
if k=2 and l=2

="2/"and =3t

(oo SIIE (o> ) P -}
=
Il
=

—
15
=
e
(S}
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It follows easily that the change of variables (see [22])
AT A>T
gn=¢ ef ifA=1
A_—‘%m if A<1
together with the observation that
max{a, B} = 3((a + ) + | - B
transforms Eq.(23) into the piecewise linear equation
yn+1=§|yni+(g—l)yn—myn_ﬁé , n=0,1,... (24)
where
k—1-1l-m if A>1
0= 0 it A=
e e
We call Eq.(24) the generalized Lozi’s equation. See [22].

Are there other values of k and [ for which every solution of Eq.(24)
with m = 1 and § = 0 is periodic with the same period?

a + ffXn + YXn-1

10 When is every solution of x,,.; = RPBEL O,

periodic?
Consider the nonlinear second order rational difference equation

o+ Bzp + YTn1

=l 25
A+ Bz, + Cz,_y & 20l (25)

Tntl =




where the parameters e, 3,7, 4, B, C are nonnegative real numbers with B+C' > 0,
and where the initial conditions z_, and , are nonnegative real numbers such that
the right hand side of Eq.(25) is well defined for all n > 0.

The following four special examples of Eq.(25)
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= zin o = (0N (26)
ol = Z:ﬂ o =0 (27)
Topr = lzj:—j" =0 (28)
G = ;—_l . n=0,1, (29)

are remarkable in the following sense.
Every positive solution of Eq.(26) is periodic with period 2.
Every positive solution of Eq.(27) is periodic with period 4.
Every positive solution of Eq.(28) is periodic with period 5.
Every positive solution of Eq.(29) is periodic with period 6.

The following result characterizes all possible special cases of equations of the
form of Eq.(25) with the property that every solution of the equation is peri-

odic with the same period.

Theorem 10.1 (See (19).) Let p > 2 be a positive integer, and assume that every
positie solution of Eq.(25) is periodic with period p. Then the following statements

are true.
1. Suppose that C > 0. Then A= B =y =0.
2. Suppose that C = 0. Then y(a + ) = 0.
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Proof: Consider the solution {z,}3_; of Eq.(25) with

g3 =1 and z0€ (0,00).
Then clearly
Zp-1 =21 =1 and z,=13
and so by Eq.(25)

eril T a+ B+ 52
T A B G

Thus we see that
(A + B)zg + (Czo — €)Tp—y = @ + .

(a) Assume C > 0. Then we claim that

A=B=0.

Otherwise, A + B > 0. So by choosing

a+f 7}

(30)

we see that (30) is impossible. Hence Eq.(31) is true. In addition to Eq.(31),

we now also claim that
c =10

If not, then 7 > 0. So by choosing

(]

. =B
zo<m1n{A+B,E}

we see again that (30) is impossible. Thus (32) also holds.
(b) Assume C =0 and for the sake of contradiction, suppose that

Y(a+B) > 0.

(32)

ot
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Then again by choosing z, sufficiently small, we see that (30) is impossible.

o

The following corollary of Theorem 10.1 states that Eqgs.(26)-(29) are the only
special cases of Eq.(25) with the property that every positive solution is periodic
with the same period.

Corollary 10.2 (See [19].) Letp € {2,3,4,5,6}. Assume that B+ C > 0, and that
every positive solution of Eq.(25) is periodic with period p. Then up to a change of
variables of the form ©n, = Myn Eq.(25) reduces to one of the equations (26)-(29).

For the more general difference equation

a+ BTy + YTn_y + 0T,_o
A+ Bz, +Czp_y + Dy sy

Tn = = O (33)

with nonnegative initial conditions and nonnegative parameters, what are all spe-
cial equations with the property that every solution is periodic with the
same period? In addition to Egs.(26)-(29) and Todd’s equation (13), are there
any other surprises?

11 Convergence of solutions of rational equations
to period two solutions

Consider the difference equation

@+ Bzn + YZp-1

Ta £ S . =00 (34)

with
@, B,7, 4, B € [0,00)

and with nonnegative initial conditions. This is Eq.(25) with C = 0.
The following result is known. See [19].




PERIODICITY IN NONLINEAR DIFFERENCE EQUATIONS 217

Theorem 11.1 (See [19].) Bvery positive solution of Eq.(84) converges to a period
two solution if and only if v = B+ A.

Open Problem 11.1 What is the “limiting” period two solution of Eq.(34)
corresponding to a given initial condition (z_,, zo)?

For the more general second order rational difference equation (25) with nonneg-
ative coefficients and positive initial conditions, we offer the following conjecture.
Conjecture 11.1 Assume that

C>0.

Then every solution of Eq.(25) converges to the positive equilibrium T of Eq.(25),
or else there ezists a 2-cycle

(e, ¥)
of Eq.(25), and every solution of Eq.(25) converges either to T or to (¢, ).

12 Convergence of solutions of systems to period
two solutions

Consider the system of difference equations

a b
Tny1 = z_+y_
n n
, m=0,1,... (35)
@ d
Ynt1 = = y_
n n
where
a,b,c,d € (0,00).

The following result was established in [15]. See also [33] and [34].

Theorem 12.1 (See (15].) Every positive solution of Eq.(35) converges to a periodic
solution with period 2.
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Open Problem 12.1 What is the “limiting” period two solution of Eq.(35)
corresponding to a given initial condition (z_y, o)?

Conjecture 12.1 Assume that
ai; € (0,00) for 4,4 € {1,2,3}.

Show that every positive solution of the system

_ o G2 | Qg3
Tt = =
Tn Yn 2n

a @ a;
Yopr = =4+ 24 B =01, (36)
Tn Yn Zn
a3 azm @
Tl = e fR 299
Tn Yn Zn
conwerges to a period 2 solution. Eutend and generalize this result to systems with

real parameters and nonzero initial conditions.

13 On the difference equation

{Ao Ay Ak}
Zn_}—l:ma.;x —_— s ..

) 7 2
Zn Tp—1 Zn—k

Consider the difference equation

A
= =, : S0 o0 1
by .
where the parameter A and the initial conditions z_; and z, are nonzero real num-
bers.

It was shown in [2] that every solution of Eq.(37) is eventually periodic with
period 2, 3, or 4. (Throughout this section, we are using the convention that @
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lution which is tually constant is eventually periodic with any period.) More

precisely, the following statements are true.

Theorem 13.1 (See [2].)

(i) Assume that A < 0. Then every solution of Eq.(37) is eventually periodic with

period 2 and is of the form ( p, = | for some positi ber p which depends

upon A and the initial conditions z_, and zo.

(i) Assume that A > 0. Then every solution of Eq.(37) is eventually periodic with
the following period.

(a) 2 if A € (0,1) and the initial conditions are not both negative, or if
A € (1,00) and the initial conditions are both negative.

(b) $if A=1

(c) 4 if A € (1,00) and the initial conditions are not both negative, or if
A € (0,1) and the initial conditions are both negative.

Motivated by the above results, we pose some open problems and conjectures
about the behavior of the solutions of the difference equation

A A A
z,H,l:ma.x{—o, 1,...,__*} , n=0,1,... (38)
Tn Tn-1 Tn—k
where the parameters Ay, 4y, ..., Ay are real numbers and where the initial condi-

tions are nonzero real numbers. See [23].

Conjecture 13.1 Assume that Ay, Ay, ..., Ax_, € [0,00) and A; € (0,00). Show
that every positive solution of Eq.(38) is eventually periodic with period

pe{2 3,..., 2(k+1)}.

It is fascinating to observe how the period in the above conjecture is determined

by the “dominant” parameter among Ao, A, ..., Ax. For example if for some jo




€{0,1,...,k}, Aj, > max{4; : j # jo}, then every positive solution of Eq.(38)
is eventually periodic with period 2(jo + 1). Also if some consecutive string of the
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parameters Ao, Ay, ..., Ay are equal and dominate the remaining ones, then every
positive solution of Eq.(38) is eventually periodic with period equal to the average of
the periods of the “dominating difference equations.” In particular, it can be easily

shown that every positive solution of the difference equation

1 .1 1
b = : ol : = @il o 39
Tnt1 ma.x{zyl o zn_k} n s (39)

is eventually periodic with period (k+2). Note that (k+2) is the average eventual
period of the k + 1 difference equations

il
y"“:y_n—j IO

for j=0,1,...,k

Conjecture 13.2 Assume that Ay, Ay, ..., Ax € R. Show that every bounded solu-
tion of Bq.(38) is eventually periodic.

Open Problem 13.1 Assume that Ay, 4, ..., Ay € R. Obtain necessary and suf-
ficient conditions for every solution of Eq.(38) to be unbounded.

Open Problem 13.2 Assume that Ag, A;,...,4x € R. Investigate the periodic
character of the solutions of Eq.(38).

Conjecture 13.3 Consider the difference equation

z,,+1=ma.)({i g C} =0 e (40)

» )
Tn Tpn-1 Tn-2

where
A,B,C,z_9,z_1,79 € (0,00).

Show that every solution of Bq.(40) is eventually periodic with periodp € {2,3,4,5,6}.
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More precisely, show that every solution is eventually periodic with period

(#) 2 if A>max{B,C}

(i) 3 if A=B>C;

(i) 4 if either B> max{A,C} or A=C > B;
(D) WS AR VG =t A

(v) 6 if C > max{4,B}.

14 Max equations with periodic coefficients

Recall from Section 13 that every positive solution of the difference equation

zn+1=max{l, A} , n=0,1,...

Tn Tn-1

where A € (0,00), is eventually periodic with period 2 if A < 1, 3if A = 1, 4 if
Al

The above result was extended in [6] to the difference equation with period 2
coefficient

i
x,.+1=ma.x{— —"} =0, (41)

)
Tn Tn-1

where

A, =

Ay if niseven
with A, 4, € (0,00).

Ay if nis even
More precisely, it was shown in [6] that every positive solution of Eq.(41) is eventually
periodic with period 2 if AgA; < 1, 6 if AgA, = 1 4 if AgA; > 1.
In this section, we pose some open problems and conjectures about the
solutions of the nonautonomous Eq.(41) when {A,}32, is a periodic sequence of
positive real numbers. See [7].

Open Problem 14.1 Let {A,}32, be a periodic sequence of positive real numbers
with period k > 3. Find necessary and sufficient conditions for each of the following
statements to be true.

(a) Every positive solution of Eq.(41) is bounded.

-~
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(b) Every positive solution of Eq.(41) is eventually periodic. In this case, deter-
mine all possible such periods.
Conjecture 14.1 Let {A,}32, be a periodic sequence of positive real numbers with
period k > 2. Assume that A, € (0,1) for allmn > 0. Then every positive solution o)
Eq.(41) is eventually periodic with period 2.
For the cases k = 2 and 3, the above conjecture was shown to be true in (6] and
[5], respectively.

e of positive real bers with

Conjecture 14.2 Let {A,}32, be a periodic seg
prime period k > 2. Assume that A, € (1,00) for all m > 0. Then every positive

solution of Eq.(41) is eventually periodic with period
2k if k is even

4k if k is odd.

For the cases k = 2 and 3, the above conjecture was shown to be true in [6] and

[14], respectively.

Conjecture 14.3 Let {A,}52, be a periodic sequence of positive real bers with
prime period k > 3.

(a) Assume k is not a multiple of 3. Then every positive solution of Eq.(41) is

eventually constant or eventually periodic with prime periodp € {2, k, 2k, 4k},

and p is independent of the initial conditions.

(b) Assume k is a multiple of 8. Then one of the following statements is true.

(i) Every positive solution of Eq.(41) is eventually constant or eventually
periodic with prime period p € {2, k, 2k, 4k}, and p is independent of
the initial conditions.

(ii) Every positive solution of Eq.(41) is eventually constant or unbounded.

In the case k = 3, the above conjectures were established in [14].

. "
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B
15 Periodicity in 2,41 = +
Tn—k Tn—i
Consider the difference equation
B
Tyl = A T y =000,
Zn—k  Tn-l
where
A, B € (0,00)
and

kle{0,1,..} with k<L
Note that Eq.(42) has the unique equilibrium point

Z=+A+B.

We have the following conjecture.

Conjecture 15.1
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(42)

(a) Every positive solution of Eq.(42) converges to the equilibrivm /A + B if and

only if all roots of the polynomial equation

A B
gy ik
A A /\ +A+B 0

lie inside the unit disk
[AE<T

(43)

(b) Buery positive solution of Bg.(42) conwerges to a periodic solution of prime

period p > 1 if and only if Bq.(43) has a root A with |A| = 1.

How is the number p in the above conjecture related to the roots of

Eq.(43) which lie on the unit circle || = 1?7




16 Sharkovsky’s Theorem

In this paper we have dealt almost exclusively with difference equations of order
greater than or equal to 2. For a first order difference equation of the form

Tl — o) SR S (44)

where
F:I-1

is a continuous function mapping some interval of real numbers I C R into itself,
the most glorified result known about periodic solutions of Eq.(44) is known as
Sharkovsky’s Theorem. (See [37]). For a good reference for this and other re-
lated theorems, read the historical remarks by M. Misiurewicz in [32].

Before stating the theorem, we introduce the Sharkovsky ordering of the set of
positive integers N = {1,2,...}.

BB T4 = <3:2 < 5.2 =72 =i 80980 522 08 G
P R D

Theorem 16.1 (Sharkovsky’s theorem) Let I be an interval of real numbers, and let
F: 11 be a continuous function. Assume that Eq.(44) has a periodic solution of
prime period k. Then Eq.(44) has solutions of prime period [ for all pysitive integers
L with k < U in the Sharkovsky ordering. ;

A special case of Sharkovsky’s theorem is the celebrated theo‘rem of Li and
Yorke, Period Three Implies Chaos (see [27]), in which it was shown that if
I'is an interval of real numbers and F € C[I, I], and if Eq.(44) possesses a periodic
solution of prime period 3, then Eq.(44) possesses solutions of prime period p for
every positive integer p.
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17 The Riccati difference equation

The Riccati Difference Equation is the difference equation

a+ bzy,
¢+ dz,

. n=0,1,... (45)

Tntl =

where the parameters a, b, ¢, d are given real numbers and the initial condition zo
is an arbitrary real number.

Note that when d = 0, Eq.(45) is a linear equation, while if
d#0 and bc—ad=0

Eq.(45) reduces to the trivial difference equation

e | by,
g oo bletds,) b =0k
c+dz, dlctds,) d

Tnt+1 =

Also note that when
b+c=0 and z[,;e—g (46)
the solution {z,}22, of Eq.(45) is periodic with period two.

In the remainder of this section, we shall assume that
d#0, bc—ad#0, and b+c#0. (47)

The change of variables
£l S
= ] Wr 7

transforms Eq.(45) into the difference equation with one parameter

R
wn+1=1—w—" y =01, (48)

where the parameter R, which we call the Riccati number of Eq.(45), is the nonzero




real number
_bc—ad

T e

When .
R<y
one can see that Eq.(45) has no periodic solutions of any prime period p > 2.
When :
R > i

let 6 € (0, g) be such that

cosf = L and sinf = ARE
" 2VR - OE

and define the set

Fi= {b;—dc— %cot(wﬂ):nz 1 and sin(ng) #0}.

Then (see [15]) every solution {z,}%2, of Eq.(45) with zo ¢ F is periodic if and
only if 8 is a rational multiple of m, and no solution of Eq.(45) is periodic otherwise.
Furthermore if
= gw
P
where p and g are positive integers which are relatively prime, then every solution

{22} of Eq.(45) with zg ¢ F is periodic with prime period p.
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