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Introduction

Control is as old as civilization. Among the first control devices of which we have
definite evidence are regulators which were used for automatically controlling the
intake for water storage tanks, dating from about the third century B.C.(Figure 1).
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As civilization developed, so did the need for control devices, that is, mechanisms
for controlling the state of a system. For the storage regulator the system is the
valve, the float, and the tank with its water. The state of this system could be a
list of two items: the amount (or height) of water in the tank, and whether the
valve was open or closed. Undoubtedly similar control devices have also been used
throughout history for agricultural irrigation.

When the industrial age began in the 1700’s, the need for control devices in-
creased dramatically. One of the best known is James Watt's governor for a steam
engine, which regulated the supply of fuel to an engine to keep it running at a con-
stant rate of rpm (Figure 2). The vertical shaft is attached to the motor; as the
motor speed increases, centrifugal force moves the ball outward, and the attached
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levers close the throttle.

Figure 2
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Of course warfare made use of any new developments in technology, and in fact
was a driving force in the development of technology. One of the first weapons to
need a fairly sophisticated control system was the torpedo. The first torpedoes, de-
veloped during the Civil War in the United States, were crude devices which travelled
on the surface. This made them vulnerable to marksmen, since a direct hit from a
rifle round could easily detonate the explosive. To run under the water, the torpedo
needed a depth sensor and control vanes to force it down or up. It also needed a
control system for the speed of the screw propeller. But there is much more: the
torpedo can oscillate about three axes, the vertical (yaw), horizontal perpendicular
to the direction of motion (pitch) and horizontal parallel to the direction of motion
(roll). The mathematical modelling of the control of such a complex device was far
beyond the methods of the era, and solutions were arrived at by hit and miss until
well into the Second World War.
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With the rise of aircraft and rockets, the same problems now arose with water
replaced by air as the medium of movement. A major impetus to the theory of
control was the development of control systems for aircraft. The most sophisticated
of these systems would be the automatic pilot, which holds an aircraft to a pre-
determined heading, altitude and velocity (and also controls pitch, roll and yaw).
The simplest of these systems is the servomechanism which controls, for example,
the setting of the ailerons. It must compare the aileron position with the setting of
the pilot's control lever, and use a servo motor to adjust the actual position to fit
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the pilot’s desired position. From the mathematical point of view this simple servo
driven control is of the same conceptual form as a thermostat in a dwelling, which
compares the actual temperature (state) at a point in the dwelling with the desired
temperature (target state) as set by the thermostat. The system allows power to
the furnace/air conditioning to make changes as needed. The entire system can be
modelled as a set of boxes with lines showing the use of information to control the
furnace (Figure 4). With both ailerons and thermostats one must avoid “chattering”
— roughly the rapid turning on and off of the control mechanism. For example, you
don't want your furnace turning on and off every 2 minutes.

28 Jack W. Macki

Power

Fumace
Thermostat

Switch

Figure 4

These three examples are all of the genre of feedback controls-the system uses
only the value of its present state to determine the operation of the control appa-
ratus. In engineering language, the control system “feeds back” observations based
on the state to decide what the control device should do. There is no external inter-
ference with the system once the parameters (headings, temperature) are set, and
the time of at which action is taken is of no consequence.

Nuclear reactors introduced a need for reliable fail-safe feedback control systems.
One must continually monitor the temperature of the core to prevent accidents. The
core temperature can be controlled by two methods: circulation of cooling fluid, and
insertion of neutron moderating control rods (equivalently, withdrawal of some fuel
rods.). Such systems get very complex, here is a diagram of part of one such control
system (Figure 5).
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Another aspect of control is to introduce a cost function, or in some contexts,
a performance criterion. Perhaps the oldest such problems are those of the calculus
of variations. A prototype of such problems is the brachistrchrone problem, which
we can state in a simplified form as the problem in the plane of designing a curve
linking the points P = (0,1) and @ = (1,0) which allows a particle sliding down
the curve under gravity from P to Q to descend in the least possible time. At first
glance this seems far removed from control theory, but let’s rephrase it: You need to
move a particle from P to Q under the force of gravity. Obviously any curve which
is always decreasing (and even many which are not always decreasing) will do. Each
choice of curve is a control for moving from your initial state (particle at P) to your
desired target state (particle at Q). Now you must choose the control (the curve)
in such a way as to minimize your cost, which in this case is the elapsed time.

[
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One can see that such optimal control problems are mathematically more
difficult than the problem of steering the state of a system to a (neighborhood of
a)target state. It is not even clear that an optimal control will exist, and if we
can give an abstract proof that it does, how do we construct it? The problem is
comparable with that of finding the minimum or maximum of a continuous function.
We can prove the existence of a max and min on a closed interval, but the proof is
not constructive-it does not help us find the extrema.

Another problem is observability. One cannot always know all the entries
in the state of a system. Those parts of the state (or sometimes, functions of
the state variables) which we can see are called the observables. For example,
in working with microelectronic circuits, we may want to keep certain voltages or
currents constrained through the application of external voltages, but we are unable
to actually read the desired voltages/currents. However, we may be able to use the
chip output voltages/currents to bracket the unknown values, and then we can use
these brackets to decide the values of our control devices.

In complex industrial processes (e.g., a petroleum refinery) we don’t actually
know the state of the system at all times, we usually just sample the state at preset
times and infer what is happening from these samples.

On top of all this, there is the problem of noise and uncertainty. In the control
of a spacecraft, for example, we get data on the state of the system which is full
of noise-static from solar wind particles, losses of data streams for various reasons.
We need to devise filters which give us a reasonably accurate picture of the state,
and we need a control algorithm which is robust in the face of errors induced by

random noise and imperfect modelling.

The Mathematical Formulation

Now we can present some of the mathematics that goes with the above general
outline.

We denote the state of the system by an n-vector z(t), and the control mechanism
by an m-vector u(t). The interaction of the control apparatus with the state of :
the system is usually governed by a difference or differential equation (ordinary

.
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or partial) The simplest example of a control problem is when the state evolves
according to a system of differential equations, linear in both the state vector and
the control vector:

z'(t) = A(t)z(t) + B(t)u(t). (1)
Here A, B are respectively nxn and nxm matrices of (at least) continuous functions.
The major part of the analysis of such systems was done in the 1940’s, 1950’s, and
1960’s but many results were not immediately published because of World War 11
and the ongoing tensions of the Cold War.

In the mathematical treatment, the values of u(t) are assumed to lie in a compact
convex set (say the unit cube in R™). The key tool here is to use the variation of
constants formula: if X (¢) is a fundamental matrix for the system 2’ = A(t)z, then
the solutions of (1) are given by

2(t) = X(§)X(0)z0 + /0 X (6 X () B(s)u(s)ds. )

This gives a direct connection between control input and state output.

If A and B are constant matrices, then the problem of steering a given initial
state z, to a given target state 2y reduces to a problem in linear algebra, and formula
(2) leads almost directly to the bang-bang principle:

If you can steer from an initial state zo to a target z; using controls which take
values in a compact strictly conver set, then you can accomplish the same result
using only controls which take values at the extreme points of this set.

The reason it is called the bang-bang principle is that if you were using a scalar
control with values from the interval [~1, 1], then the principle says that you need
only use the control values —1 and +1; in other words, you don't need a throttle, you
just “bang” the system with maximum control power until you get to your target.

If we make a simple translation of the state variable, we can assume that zy = 0.
Theorem: Define the n X mn controllability matrix

M =B, AB, A’B, ... A"'B.

i) We can steer any state in some small ball about the origin in R" to the 0-state if
and only if rankM = n.

o [
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ii) We can steer any initial state to the O-state if and only if

rank M = n and Re()) < 0

for every eigenvalue of A.

The analysis of control problems got a major boost in the 1950’s and 1960’s with
the appearance of major results by the Soviet school, the seminal work of the Ro-
manian mathematician Popov, important work by engineers in England, and results
obtained by the RIAS group in the eastern U.S. and the Rand Corporation group
in California. Much previously secret international work was studied and improved
by these groups and incorporated into monographs and research papers in the open
literature. The major center for the Soviet school was Leningrad (now St. Peters-
burg) centered on AL Lur'e. RIAS was a research center funded primarily by the
U.S. Defence Department, and located in Maryland, and the Rand Corporation was
a government-funded think-tank based in the Los Angeles area. There were close
~contacts between the RIAS group and Princeton University, and several seminal
- works were published by Princeton University Press, including translations of key
Russian monographs and papers. At Rand, Richard Bellman was publishing his re-
sults in dynamic programming and optimal control theory. In addition, he edited an
. important series of monographs published by Academic Press, and published (with
Kenneth Cooke) a fundamental monograph on finite difference equations, which play
a large part in practical applications of control theory. Last, but certainly not least,
we have the invention by Kalman of the Kalman filter for uncertain systems.

In a popular article, it would be a major digression to try to list all of the players
and their contributions. Instead we focus on a few individuals and a small number
of landmark results and monographs.

In the English-languate literature, Lefschetz’ 1965 monograph “Stability of Non-
linear Control Systems” was a major advance in the propagation of the latest non-
linear results. This monograph served to bring control theory to the attention of
English speaking mathematicians. In it, Lefschetz explained, extended, and sys-
tematized results which had recently appeared in the world literature. The mono-
graph appeared in the series “Mathematics in Science and Engineering” founded by
Richard Bellman and published by Academic Press. In this same series appeared
“Optimization Techniques: with Applications to Aerospace Systems” by George

-
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Leitmann (1962), “Optimum Design of Digital Control Systems” by Julius Tou
(1963), “Dynamic Programming in Chemical Engineering and Process Control” by
Sanford M. Roberts (1965), “Random Processes in Nonlinear Control Systems” by
A. A. Pervozvanskii (1965), “Adaptive Processes in Economic Systems” by R.E.
Murphy (1965), and “Control Systems Functions and Programming Approaches”,
by Dimitris N. Chorafas (1966). By 1975 there were over 70 volumes in this series, of
which more that 45 were directly related to control theory. In one decade, this series
of monographs established control theory as a flourishing mathematical discipline.
A first major goal of engineers and theoreticians was to establish some usable re-
sults for nonlinear systems. English researchers and the Romanian Popov pioneered
the use of Laplace and Fourier transforms for systems that were linear in the state.
As a simple example, if in equation (1) the matrices A and B are constant, then
we can take the Laplace transform of this equation and get (using Greek letters for
transforms):
&(s) = [s1 — Al [z0 + Bu(s)) 3)

This is known as the frequency domain formulation of the control problem. If
all the eigenvalues of A have negative real part (note the leading term on the right
side of (4)) then we can “steer” the state to z; = 0 exponentially fast by just setting
u(t) = 0 (it may be however, that we can help things along by a judicious choice of
u(+)). Note also that in this case the system would be robust—small errors in the
coefficients would not change the outcome.

In one dimension, one of the first nonlinear problems to get a thorough treatment
was the Problem of Lur’e:

7' = —kz +u, v = ¢(s), s =cz — pu, withk > 0.

Here the control parameters are ¢ and p and the problem is to find necessary and
sufficient conditions (n.a.s.c.) for solutions (z(t), u(t)) of this system to go to (0,0)
as time goes to infinity, independent of the initial conditions and regardless of the
choice of function ¢ (this is called absolute stability). This is a typical indirect
control problem: the evolution of the state z(t) is influenced by the control function
u(t), but it is the rate of change of u(t) which is determined by the feedback cz — pu.
The Soviet school made effective use of Liapunov functions to determine appropriate




n.a.s.c. for absolute stability of Lure’s problem. For this system, one can use
V = py* + ®(s), where ®(s) = [*¢(r)dr. One can then develop simple sufficient
conditions for the trajectories of solutions to cross the level curves of this function
in the direction of its decrease, giving stability. Their work was applied to systems
of higher dimension as well, with a commensurate increase in the linear algebra
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needed.

Popoyv, followed by Yakubovich and by Kalman, applied Fourier transform meth-
ods to make major advances in the analysis of control systems. Consider the vector
system:

7' = Az — $(s)b, v = ¢(s), s = 'z — yu,

where z, b are n-vectors, A is a matrix and all other symbols represent scalars (7'
denotes transpose).

If the Fourier transform of a scalar, vector or matrix function f(t) is defined as
F(w) = [, e~ f(t)dt where the integration is carried out for each component of a
vector or matrix, then the critical matrix function in Popov’s theory is the transfer
function:

: T (oAt i
=c Fle")b+ —.
G(iw) = ¢"F(e®)b+ o
He showed that the inequality
Re(1 + iwg)G(iw) > 0 for some ¢ > 0 and all real w

implies the system is absolutely stable. Stability is important because it implies
that disturbances die out naturally.

However, it is the synthesis of controls which is the most important problem
facing engineers in practice. How do we design a control which will force the state
to arrive at and remain in a neighborhood of the given target state, to within some
error tolerance? Again, we can translate the desired state to the origin, so we are
asking how to steer the state of the system to a small neighborhood of the origin
in state x control-space. The analysis for linear problems is a beautiful piece of
mathematical theory, using linear algebra, linear functional analysis and convexity.
As described above, if we want to send a particular initial state z, to a neighborhood
of the origin in state space, we convert the initial value problem (1), z(0) = =z to
a single integral equation using the variation of parameters formula (2) for systems

= N
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of differential equations. This simple formula connects our choice of u(-) to the
corresponding output z(:). It is clear from this formula, for example, that if the
functions u(-) come from a convex set, the possible outputs (-) also form a convex
set. In fact, if the values of u(t) lie in a convex set, then this formula combines with
a famous theorem of Liapunov (not the stability Liapunov) on the range of a vector
measure to assure us that we need only use controls which take their values at the
extreme points of this convex set-i.e., the bang-bang principle holds.

The situation with genuinely nonlinear problems is much more challenging. Ba-
sically, engineers went ahead and developed intuitively plausible methods, without
much help or input from the mathematical community. One of the most important
ideas was to truncate Fourier expansions of controls and states. The method goes by
various names—the method of harmonic balance, the describing function method,
equivalent linearization, equivalent gains. Mathematicians recognize all of these
techniques as being variants of the Ritz/Galerkin method. As a simple example,
consider the scalar nonlinear problem:

Y'(t) = —y(®) +u*(®), y(0) =0, y(m) = 0. (4)

We assume that u(t) = Y332 axe™, and y(t) = Y52 bre™™, and for simplic-
ity assume that we use an even extension of each to the interval (=7, ), 50 a_; = a;
and b_; = b;. Then we plug these expressions into (4) and throw away all but the
terms in k = 0 and k = +1. This results in the following (note that by = 0) :

00 00 o0 k
z ikbpe™ = — z bre'*t + Z (Z ajax—j)e™,

k=—o0 k=—o00 k=—00 j=—k (5)

—2b; sin(t) = —2b; cos(t) + a3 + 2aga, cos(t).

So this simple algebraic equation connects the control coefficients ag, a, to the
response coefficient b,. Nyquist and Bode developed graphical methods for analyzing
the stability of nonlinear systems after such a truncation, and these were quickly
extended to control problems. Such methods are surprisingly effective for a single
systems, but if one has a large number of interacting control systems, or a problem
with a high dimension to the state and control variables, then they can be extremely

difficult to apply.
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Optimal Control

When one puts in a cost functional, the situation becomes even more com-
plex. For example, consider the system (x is the state, u the control): z'(t) =
S(t,z(t),u(t)), with desired target state z;. Note that we don’t necessarily spec-
ify the time of arrival ¢; at the target. Now include a cost functional for a given
successful control:

o) = [ ! foltsa(t),ut)) e

The idea is to minimize C over all successful controls. For example, if we take
J° =1, then we are minimizing the time to get to the target state. The connection
with the calculus of variations is clear, but in fact was not noted in the early days of
control theory. In the late 1950’s, the Pontryagin group at Moscow State University
stunned the control theory world by announcing the famous “maximum principle”.

To understand the significance of this result, consider the problem addressed in
standard calculus courses of finding the absolute max of a real-valued differentiable
function f(x) defined on an interval [a, b]. ‘A sufficient condition that this max exist
is that f be continuous (a condition not always met in engineering practice). But this
sufficient condition does nothing to help us find the point(s) where the max occurs
(or its value), for this we need to use the necessary condition f’(c) = 0. Pontryagin
and his group gave us a necessary condition for a control to provide a solution to
an optimal control problem.

To formulate this powerful principle, we consider for simplicity the autonomous
problem

£(t) = £(a(0), u(e), ut)el, Olul)] = [ Fo(ate),u@))d.
0

Here z(t) and f are n-vectors, u(t) is an m-vector with values in a convex closed
bounded set U. Given a particular control and response pair (z(t), u(t)), we first form
the extended state #(¢) by adding the new component z(t) = f,; folr, z(r), u(r))dr
(the running cost), so z5(t) = fo(z(t),u(t)). We add this differential equation to
our original system, writing the extended system as 2/(t) = f'(&(¢),u(t)). For a
given (assumed optimal) control and associated extended state we can linearize our
extended differential equation about #(t) to get the associated linearized equation

(T
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and its adjoint: “
aamg i oo of|
IH = 27 Ty e | g
v =59 () [3:] w(t).
The solutions of the linearized adjoint are called costates. Finally, we need to in-
troduce an associated Hamiltonian: H(w,,u) = () - f(z,u), the inner product
of w(t) and '(t). This is indeed a genuine Hamiltonian in the sense of physics for
the linearized system and its adjoint—that is, these two equations can be written
respectively as:
vi=22 wi=-2
ow’ dy’
The Hamiltonian is important because the optimal control will maximize it at
each value of t, and in fact this maximum value of H will be zero. That is, if
M(u(-), 2(-))(t) = mazy M ((t), &(t),v), then the maximum principle states:

If (2.(+), u.(+)) is an optimal control-resp pair imizing C for our problem,
then there exists a solution W(t) of the iated adjoint equation such that almost
everywhere

H((), 2.(t), ua(t)) = M((2), 2.(t)) = 0, and wo(t) = wy(0) < 0.

Therefore we need only find the general solution (!) of the linear adjoint equation
and try to find solutions which make # identically zero. During this search (keep
in mind we don’t know u,(t)) we have to carry u(-) along, and -if we are lucky- we
will end up with a set of constraints on u(-) which will characterize it. In fact, one
may not need to find the general solution of the adjoint equation.

As an example, consider the following scalar problem, with u(t)e[—1,1] :

2(t) = =2(t) + u(t), 2(0) = 0, z(t;) =1, Clu()) = / A
0
The extended linearized system is (with yo(-) as defined above, y,(-) = (")) :
vo(t) =0, i(t) = —2z(t)u(t).

This can be written in system form as

| W dlistisn w0 0 .
v—[m]. y(t)—[0 —21(1)]”(')‘

o [




The associated (extended) adjoint system and Hamiltonian are
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0 0
0 2z(t)

M= max (wy(0)0 + wy (t)(=3(t) +v)) = [wo(0) + wi(B)]v — 2wy (2).

|~

w'(t) = [ ] (t), H = wo(t)u + wi (t)(—=2%(t) + u),

The linear function M(v) must be nonpositive for ve[—1,1]. It will have a max-
imum for ve[—1,1] at v = sgn[wy(0) + w) ()], so we know our optimal control must
be bang-bang. In this case we can find 1 (¢) explicitly, and an elementary argument
shows that the control will have at most one switch from +1 to 1. Knowing this,
we can return to the original equation for z(t), replace u(t) by 1 and -1 respectively,
and solve the resulting equations, piecing together successful responses with at most
one switch. We leave the details to the reader and turn to other issues.

When the Pontryagin maximum principle was announced, and in particular when
the monograph of Pontryagin, Bol'tanskii, Gamkrelidze and Mischenko appeared in
English in 1964 (Russian version in 1961), the connection with the calculus of varia-
tions was clearly pointed out. It was eventually noted that a paper of E.J. McShane
published in 1937 foreshadowed the maximum principle. These connections are
thoroughly explained in the 1966 monograph of Hestenes. Here is a very simplified
explanation (based on that given in the monograph of Lee and Marcus) of the con-
nection, with no attempt made to carefully state hypotheses. Consider a control
process

1
2'(t) = f(z(2),u(t)), z(0) = z°, z(1) = 3y, C(u()) =‘/n. h(z,u)dt,

with z(t)eR", u(t)eR™. If we could solve the equation p = f(z,u) for u = g(z,p)
then we could use the differential equation to write u(t) = g(=(t),(¢)). This means
that we could replace u(t) in the cost functional by g(z(t),z'(t)),, so we can restate
our control problem as

- / (a0, a(a(t), 2(0))dt

where the minimum is taken over all functions z(-) which satisfy z(0) = 7y, z(1) =
;. This is just a classic problem in the calculus of variations, and the standard

necessary conditions correspond to the maximum principle.
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The maximum principle provided for the first time a method for finding optimal
controls, or at least reducing the search to a smaller subclass of the original set of
optimal controls. However, its use can be very difficult in higher dimensions, and in
problems involving several interacting control systems.

Dynamic Programming and Nonsmooth Analysis

About the same time that the Pontryagin maximum principle was being devel-
oped, Richard Bellman was inventing a very effective method for a broad range of
optimization problems, a method ideally suited to the computer, He christened it
dynamic programming and described its uses in detail in his monograph “Applied
Dynamic Programming” in 1962, which was followed by a monograph of Dreyfus in
1965. The foundation of this approach was the following observation: suppose that
you are trying to carry out a process so as to minimize some functional-i.e., to do
things optimally. If you carry out an optimal policy up to a certain time, arriving
at a some intermediate state, then your policies after that time must be optimal for
initially starting at this intermediate state.

To clarify this somewhat obscure statement, consider the problem of minimizing
the functional

el
J() = / (/) +vldt, ¥(0) = ¢, yeL2(0,T).

Instead of applying the standard calculus of variations analysis, we treat the
problem as a decision process: for each t, assuming that y(t) is known, we must
choose y/(t) so as to minimize J. To translate this into something practical, we write
the minimum value as f(c,7') = minJ(y(-)), and assume that it is well defined for
all T > 0 and ceR. We describe this minimum function as the min of J(y()) for an
interval of length T with initial condition ¢ (notice that the problem is autonomous,
50 there is no dependence on where our interval is located on the t-axis).

Here is a highly intuitive derivation of the socalled Bellman equation for this
problem: Let g = 2'(0) be the initial slope. If we break the interval [0, 7] into
[0, AJUIA, T, with A infinitesimal, then y(A) ~ ¢ + gA, and

J(y) = (/DA+/AT) () + y*dt.
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The optimality principle states that having arrived at y(A) at time A, we must
continue to choose y'(t) so that [, E is minimized. Since A is infinitesimal, we can
take y(t) = ¢, y'(t) = g on [0, A]. Thus the first integral in J(y(-)) above becomes
(g% + ¢®)A. If we choose y/(t) optimally thereafter, then the second integral gives
m(c+qA, T —A), i.e., it produces the minimum of J for an interval of length T — A
and initial state ¢ + gA. So we have

u) = (¢ + A)A +m(c+vA,T - A),

m(c,T) = ming[(¢* + ¢*)A + m(c + gA, T — A)].
Now, continuing our intuitive analysis with the infinitesimal A, we have

m(c+gA, T — A) =~ m(c, T)+6—qA~Z-T"—lA

Substituting this into the equation preceding, simplifying and letting A — 0, we get
om : om
o7 =mim 2+ o+ o
with the initial condition m(c, 0) = 0.
The minimum on the right occurs for ¢ = —56—, and so we have the following
nonlinear partial differential equation for m(c, T'):

om _, 1/(om - a
ﬁ_C_Z<E:—) , m(c,0) = 0.

The point is that one could now solve this equation by numerical methods,
and thus obtain the optimal value function, without knowing the optimal control
or associated optimal state. Then one can determine the optimal control by an
incremental choice of y'(t), choosing this function so the cost stays at m(z(t), T — t).

As an aside, for this simple problem, we can actually determine the optimal
cost function directly. We make the change of variable y(t) = cz(t) in the original
problem, so z(0) = 1. This converts the cost to c? fOT[(z'(t))2 + 22%(t)]dt, which shows
that J(u(-)) = 27 (T). Plugging this into the partial differential equation above, we
get a Ricatti equation for J :

JUT) + THT) =1, J(0) =



—
F o
A BRIEF LOOK AT CONTROL THEORY THROUGH ITS HISTORY 41

with solution J(T') = tanh(T).

The Dynamic Programming analysis we used above can be made rigorous, under
the key assumption that m(c, T) is differentiable. Unfortunately, this requirement is
seldom met, even for simple problems. Nevertheless, Dynamic Programming gives
correct answers for an amazing range of continuous and discrete problems, and is
still one of the main techniques of choice for complex real-world problems (e.g., space
missions). Until recently, there has been a frustrating gap between what could be
proved and what was actually working.

In a landmark paper in Vestnik Moskovskovo Universiteta in 1958, A.F. Fil-
lipov showed how one could interpret a control problem involving the differential
equation '(t) = f(z(t),u(t)), u(t)eU(t) C R™, as a differential equation with
multivalued right hand ‘side. Basically, one thinks of the differential equation as
7' (t)e Uyey f(2(t),v), where one must choose a solution of this multivalued differen-
tial equation which reaches the target and (if there is a cost) minimizes the cost.
This allowed the use of sophisticated new tools from multifunction theory to be
used to prove existence, and made people aware of the importance of multivalued
functions.

We mentioned above that a rigorous justification of Dynamic Programming is
hindered by the nonsmoothness of the optimal value function as a function of the ini-
tial and or terminal conditions on the state. Although the function is often Lipschitz
continuous, it is seldom differentiable. In the course of dealing with nonsmoothness
for general problems in optimization, various multivalued extensions of the deriva-
tive of a convex or locally Lipschitz function have been considered. In general, the
tangent line to a real-valued function of one variable is replaced by a set of tangent
lines which form a cone. For example, the simple absolute value function i
is assigned the interval [—1, 1] as its derivative at the origin, or if you prefer, it
is assigned the cone of straight lines through the point (0,0) with slopes from this

closed interval (Figure 6).
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The generalized gradient at the origin is the cone of straight
lines through (0,0) with slope between —1 and +1.
Figure 6

Analysis for such multivalued generalizations of the gradient has been developing
since the 1950’s. Major schools have developed in a multitude of countries, motivated
by a wide range of applied and pure problems. R.T. Rockafellar of the United States
is one of the leaders in this field, and his student Francis H. Clarke has developed
a generalized gradient (the “Clarke gradient”) which works very well for control
theory. Clarke published a ground-breaking paper, “The maximum principle under
minimal hypotheses” in 1976 (SIAM J. Control Optim. 14(1976), 1078-1091) which
convincingly demonstrated the effectiveness of his new tools, and he followed this
in 1983 with a monograph. In 1990 Clarke, Ledyaev, Stern and Wolenski published
the monograph “Nonsmooth Analysis and Control Theory” which provides an up-
to-date treatment. The generalized gradient allows a much “cleaner” and complete
theoretical treatment of existence, uniqueness, necessary conditions and sufficient
conditions for a wide range of optimization problems.

Robustness

From the engineering standpoint, the question of existence is often secondary.
What really matters is that the solution be robust. This means that the system
has a tolerance for disturbances and\or inaccuracies within specified bounds. This
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requirement reflects the fact that one never precisely knows the parameters in a
modelling differential equation (and associated cost function) nor can one attain or
measure exactly the given initial conditions. In addition, the successful control itself
is an idealization which in practice can only be approximated.

Bode in 1945 established the criterion for a limited type of robustness for scalar
systems.

Here is a simple example of how the question of robustness arises. Consider
the control system whose governed by the scalar ordinary differential equation with
constant coefficients:

az'(t) + ba'(t) + cz(t) = u(t), —1 <u(t) < +1, 2(0) =z0,2'(0) = x4,

with the aim of steering the state vector (z(t),z'(t)) to a given neighborhood of
(0,0) and keeping it there. For any given choice of control function u(t) we take the
Laplace transform of the equation and see that the transform of z(t), call it X(s),

is given by: |
SREN= m(U(s) + bzg + azy + aszo),
where U(s) is the transform of u(t). The fraction - is called the transfer

function for the problem. Now the function z(¢) will be the convolution of the
inverse transform of the transfer function with the function w(t), plus the inverse

transform of
bzo + azy + aszg

as? +bs +c

If the quadratic in the denominator of the transfer function has both roots with
real part negative (such polynomials are called Hurwitz polynomials), then any easy
argument shows that the state vector decays exponentially. In other words, this
system attains the target neighborhood for any control. The coefficients in the
equation can be perturbed by small amounts and this conclusion will still hold. In
this case the system is robust in every sense.

Suppose we are dealing with a control problem involving an nth order scalar
constant coefficient differential operator: :

S ag
k-
= dt
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Then we mimic the analysis in the above example, taking the Laplace transform,
and conclude that we want the polynomial Y _, axs® to be Hurwitz, that is, all
of its roots should have negative real part. But unlike the above example, suppose
that we are given a priori that each coefficient ax is restricted to a (not necessarily
tiny) interval: my < ax < M. Then as the coefficients independently vary over their
respective intervals, we get a family of polynomials, the roots of which will cover a
region in the complex plane. At first glance, this is a very complicated situation. A
beautiful result of Kharitonov from 1978 provides an amazingly simple resolution-it
says you need only check four polynomials! The four Kharitonov polynomials are

k11(8) = mo + mys + Mys? + Mzs® + mys® + mss® + ...
k12(s) = mo + Mis + Mas? + mgs® + mas® + Mss® + ...,
ka1(s) = My + mys + mas® + Mys® + Mys® + mss®...,
koo (8) = My + Mys +7m232 +mys® + Myst + Mss® + ...,

Kharitonov’s theorem states that the entire family is Hurwitz if and only if these
four polynomials are Hurwitz. This result has been extended in many directions,
for example, if the coefficients do not vary independently over intervals but instead
each coefficient is a function of a vector parameter, then one can develop an analo-
gous result under reasonable conditions (Anagnost, Desoer and Minnichelli, 1988).
One can also prove a similar result for systems governed by difference equations
(Mansour, Kraus and Anderson, 1988).

The robustness of systems governed by vector differential equations is a more
difficult topic, particularly when the control is a vector, and especially when it is
a feedback control. We cannot take the time and space to deal with that here, we
just mention a few of the key ideas. In 1966 Zames introduced a highly geometric
approach based on cones in an appropriate space of input-output relations. Safanov
in 1980 published a monograph establishing robustness results for systems, using
sophisticated topological methods.

Robustness is also a desired property for systems with statistical indeterminacy
or some type of random disturbance. We restrict ourselves to perhaps the most
fundamental problem: How to estimate parameters (for example, the rate of growth

(T
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of bacteria, or the orientation angles of a space satellite) when you have limited
samples of some observables, and these samples are possibly corrupted by noise. It
is theoretically important, but not very useful from the practical point of view, to
prove that as the uncertainties die out, the estimate converges to the true value.
What is important is to get an idea of the probability distribution of the unknowns,
given assumed distributions for the indeterminacies and the disturbances. One might
also hope to discover the dynamics of the expected value and/or the variance of
important parameters.

Robustness has understandably been a major subject of interest from the 1970’s
right up to the present, and is deserving of its own survey article. Fortunately such
articles and monographs exist, and the reader is referred to the list of references in
the Bibliography.
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