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Introduction 

Control is asoldas civilization. Among the first control devices of which we have 

delinite evidence are regulators which were used for automatically controll ing the 

intake for water storage tanks, dating from about the third century B.C.(Figure !). 
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F igure 1 
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As civHization developed, so did the need for control devices1 that is, mechanisms 
fer co,itFolling the state of a system. For the storage regulator the system is the 

vail!ve, the fioat, and the tank with its water. The state of this system could be a 
Jist of two items: t he amount (or height) of water in the tank, and whether the 

valve was open or closed. Undoubtedly similar control devices have also been used 

thr.oughout history for agricultura! irrigation. 

When the industrial age began in the 1700 1s, the need for control devices in­

creased dramatically. One of the best know11 is James Watt's governor for a steam 
engine, which regulated the supply of fuel to an engine to keep it running ata con­

sna1'11 rate of rpm (Figure 2). The vertical shaft is attached to the motor; as the 

mmtor speed increases, centrifuga! force moves the ball outward, and the attached 

levers clase the throttle. 
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Of course warfare made use of any new developments in technology, and in facl 

was a driving force in the development of teclrnology. One of the first weapons to 

need a fairly sophisticated control system was tbe torpedo. T he first torpedoes, de­

veloped during the Civil War in the United States, were crude devices which travelled 

on the surface. This made them vulnerable to marksmen, since a direct hit from a 

rifle round could easily detonate the explosive. To run under t he water, the torpedo 

needed a depth sensor and control vanes to force it down or up. It also needed a 

control system for the speed of the screw propeller. But t here is much more: the 

torpedo can osci llate about three axes, the vertical (yaw), horizontal perpendicular 

to the direction of motiou (pitch) and horizontal parallel to the direction of motion 

(roll ). Tbe mathematical modelling of the control of such a cornplex device was far 

beyond the methods of the era, and solutions were arrived at by hit and miss until 

well into the econd World War . 

yaw 

Figure 3 

With the rise of aircraft and rockets1 the sarne problems now arase with water 

repla ed by air as the medium of movemenl. A major impetus to the theory of 

control was tbe developmeut of control systems for aircraft. T he most sophisticated 

of these systems would be the automatic pilot, which holds an ai rcraft to a pre­

determined heading, altitude and velocity (and also controls pitch, rol! and yaw). 

The simplest of these systerns is the servomechanism which controls, for example, 

the setting of the ailerons. ll must compare tbe aileron position wilh lhe setting of 

the pilot's control lever, aud use a servo motor to adjust the actual position to fi t 
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the pilot's desired position. From the mathematical point of view this simple servo 

driveu control is of tbe same conceptual form as a thermostat in a dwelling, which 

compares the actual temperature (state) at a point in the dwelling with the desired 
temperature (target state) as set by the thermostat. The system allows power to 

Vhe furnace/air conditioning to rnake ch"nges as needed. The entire system can be 

modelled as a set of boxes with lines showing the use of information to control tbe 

furnace (Figure 4). With both ailer9ns and thermostats one must avoid "chattering" 

- roughly the rapid turning on and off of the contrnl mechanism. For example, you 

don't want your furnace turning on and off every 2 minutes. 

Power 

Fumace 

Figure 4 

These three examples are ali of the genre of feedback controls- the system uses 

only the value of its presenl state to determine the operation of the control appa­

ratus. In eugiueering language, tbe control system "feeds back" observations based 

on the state to decide wbat tbe control device should do. T bere is no external inter­

íerence with the system once the parameters (headings, temperature) are set , and 

Lhe time of at whlcb act.ion is t.aken is of no consequence. 

Nuclear reactors introduced a need for reliable fail-safe feedback control systems. 

One must conli.aually monitor the temperature of the core to prevent accidents. The 

core temperature can be coutroUed by two rnetbods: circulation of cooling Huid, and 

insertion of neutron mod rating control rods (equivalently, withdrawal of sorne fuel 

rods.). Such syste.ms get \!ery complex, here is a diagram of part of one such control 

system (Figure 5). 
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Figure 5 

Another aspect of control is lo introduce a cost function, or in sorne contexts, 

a performance criterion. Perhaps the oldest such problems a re those of the calculus 

of variations. A prototype of such problems is the brac:histrchrone problem, which 

we can state in a simplified form as the problem in the plane of designing a curve 

linking tbe points P = (O, 1) a.nd Q = (1, O) which allows a particle sliding down 

the curve under gravity from P to Q to descend in the least possible time. At first 

glance this ms far removed from control theory, but let1s rephrase it: You need to 
move a particle from P to Q under lhe force of gravily. Obviously any curve which 

is a lways decreasing (and even ma.ny which are not always decreasing) wi ll do. Each 

choice of curve is a control for moving from your initial slate (particle at P) to your 

desired targct state (particle at Q). Now you must choose the control (the curve) 

in such a way as to minirnize your cost, which in this case is the elapsed time. 
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One can see that such optima! control problems are mathematically more 

difficult Lban Lhe problem of steering the state of a system to a (neighborhood of 

a) Larget staLe. lt is not even clear that an optimal control will exist, and if we 

cau give an abstract proof lhat it does, how do we construct it? The problem is 

comparable with t.bat of finding the minimum ar maxirnurn of a continuous function. 

We can prove the ex:istence of a max and min on a closed interval, but the proof is 

uot constructive it <loes nol help u¡; find the extrema. 

Another problem is observability. One cannot always know ali the entries 

in Lhe state of a system. Those parts of the state (or sometimes, functions of 

the state variables) wbich we can see are called the observables. For example, 

i11 working with microeleclronic circuits, we may want to keep certain voltages or 

ourrents constro.iued tbrough the application of externa! voltages, but we are unable 
to actua lly read the desired voltages/currents. However, we may be able to use the 

cl1ip ouLput voltages/cu.rrents to bracket the unknown values, and then we can use 
these brackets to decide the values of our control devices. 

ln comple.' industrial processes (e.g., ·a petroleum refinery) we don't actually 

know the state of tbe system at ali times, we usually j ust sample tbe state at preset 

times and inf'." what is bappening from these samples. 

On top of ali this, there is the problem of noise and uncertainty. In the control 

of a spacecraíl, for e.~ruple, we gel data on the state of the systern wbich is full 

of noise to.tic from solar wind particles1 losses of data streams for various reasons. 

We need to devise filt.en wbich give us a reasonably accurate picture of the state1 

and we ueed a control algorithm which is robust in the face of errors induced by 

random ooi e and imperfect modelling. 

The Mathematical Formulation 

Now we can present sorne of the mathematics that goes witb tbe above general 

outline. 

We denote the state of the system by an n-vector x(t) , and tbe control mechanism 

by an m-vector u(t). The interaction of the control apparatus with the state of 

th systern i usually go,'erlled by a difference or differential equation (ordinary 
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or partial} T be simplest example of a control problem i when the tate evolves 

according to a system of differential equations, linear in both the state vector and 

the control veclor: 
x'(t) = A(t}x(t) + B (t)u(t). (1) 

Hcre A, 8 are respectively nxn and nxm matrices of (at Jeast) continuous íunctions. 
The major part of the analysis of such systems was done in the 1940's, l 950's, and 

l960's but many re ults were not immediately published because of World War 11 

and the ongoing tensions of the Cole! War. 

ln tbe mathematical treatment, the values of u(t) are assumed to lie in a compact 

convex set (say the unit cube in Rm ). The key tool here is to use the variation of 

constants formula: if X(t) is a fundamental matrix for the system x' = A(t)x, t hen 

the solutions of {1} are given by 

x(t) = X(t)X-'(O)x0 + l X (t)X- '(s)B(s)u(s}ds. (2) 

This gives a direct connection between control input and state out pu t. 

1f A and B are constant matrices, tben the problem of steering a given initial 

state x0 to a given target state x 1 reduces to a problem in linear algebra, and formula 

(2) leads almost directly to the bang-bang principie: 

lf you can steer from an initial state x0 to a taryet x 1 using controls wliich take 
values in a compact strictly convex set, then you can accomplish the same result 
using only controla whicli take values at the extreme points of tliis set. 

Tbe reason it is called tbe bang-bang principie is that if you were using a scalar 

control with values from tbe interval [-1, l ], then the principie says that you need 

only use the control values - 1 and +l¡ in other words, you don 't 11eed a throttle, you 
just "bang" the system with maximum control power unti l you get to your target. 

U we make a simple translation of the stat variable, we can assume that x ¡ = O. 

Theorem: Define the n x mn controlla bility matrix 

M = 8 , AB, A'B, 

i) We can teer any state in sorne small ball about the origin in R" to the 0-state if 

and only if rankM = n. 
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ii) We can steer auy initial state to the 0-state if and only if 

rank M = n and Re(>.) < O 

for ev ry eigenvalue of A. 

T he analysis of control problen1s gota major boost in the 1950's and 1960's with 

th appearance of major results by the Soviet school, the seminal work of tbe R.o­
manian ma.themaLician Popov, important work by engineers in England1 and results 

oblain d by th AJA group in lhe eastern U.S. and the R.and Corporation group 

in California. Much previously secret international work was studjed and improved 

by these groups and iucorporated into monographs and research papees in the open 

literature. The major center for tbe Soviet school was Leningrad (now St. Peters­

burg) ccntered on .L Lur'e. RlAS was a research center fundecl primarily by the 

U.S. Deíence Department, and located in Maryland, and the R.and Corporation was 

a gov rumenl-fuuded think-tank based in the Los Angeles area. Tbere were close 

contacts b tween the AJAS group and Princeton Univeesity, and severa! seminal 

works were published by Princeton Univefsity Press1 including translations of key 

R.ussian monographs and papees. At R.and , Richard Bellman was publisbing his re­

sul ta in dynamic programming and optima! control theory. In addition, he edited an 

importanl series of monographs published by Academic Press, and publisbed (witb 

Kenneth Cooke) a fundamental monograph on fi nite difference equations, wbich play 

a larg part in practica.I applicalions of control theory. Last, but certainJy nol least , 

w have th invenlion by Kalman of the J<a.lman filter for uncertain systems. 

In a p pu lar article, it would be a major digression to t ry to list ali of lhe playees 

o.11d Lh ·ir conLribuLions. lnstead we focus on a few individuals and a small number 

or lanclmnrk results a.nd monograpbs. 

ln the 811glish-langua.t literature, Lefsclietz' 1965 monograph "Stabilily of Non­

lin ar Control Sy tems~ was a major advance in the propagation oí the Jatest non­
lin ar r ults . This monograpb served to bring control theory to tbe atlention of 

811glish speaking ma1h ma.ticians. ln it, Lefscbetz explained, extended, and sys­

ternatiz el results which had recenlly appeared in lhe world literature. The mono­

graph n¡>peared in Lh series ~Mathematics i11 Science and Engineering" founded by 

R.ichnrcl Bellman and published by Acaclemic Press. In this same series appeared 
11 pLimiznlion 1Cclmiqu · wi1h ApplicnLions to Aerospace Systems" by George 
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Leilmann {1962), "Oplimum Design of Digilal Control Systems" by .Julius Tou 

(1963), "Dyna mic Programming in C bemical Engineering and Process Control" by 

Sanford M. Roberts (1965), "R.andom Processes in onlinear Control Systems" by 

A. A. Pervozvanskii (1965) , "Adaptive Processes in Economic Systems" by R.E. 

Murphy (1965), and "Cont rol Systems Funclions and Programming Approaches", 

by Dimil ris . Chorafas (1966). By 1975 there were Ol'er 70 volurnes in this series, of 

whi h more that 45 were di rectly rela ted to control tbeory. ln one·decade, this series 

of iuonograpbs established control theory as a flourishing mathematical discipline. 

A first major goal of engincers ancl theoreticians was to establish sorne usable re­

sulls for nonlinear systcrns. English researchers and the Romanian Popov pioneered 
the use of Laplace and Fouri r transforms for system tbat were linear iu the state. 

As a simple exampl , if in equation (1) the matrices A and B are co11sta11t1 then 

we can take the Laplace t ransform of t his equation and get (using Greek letters for 

trans~ rms): 

€(•)=[si - AJ- ' [x0 -'- Bµ(s)J. (3) 

'This is known as the frequency dom .Un formulation of the control problem. lf 

ali the eigenvalues of A have negative real part (note lhe leading terrn on the right 

side of (4)) then we can "steer" the state to x¡ =O exponentially fast by just setting 

u(t) = O (it may be however, t hat we can help things along by a judicious choice of 

u (-)). Note also that in this case the system would be robust srnall errors in t he 

coefHcients would not change the outcome. 

fn one dimension, one of the first non linear problems to get a thorough treatment 

was the P roble nn of Lur'e: 

:e'= - kx +u, u' = Q>(s) , s = c:c - /llJ, with k > O. 

Here the control parameters are e and p a nd the problern is to find necessary and 

sufficie.nt conditions (n.a.s.c.) for solutions (:c(t), u(t)) of this system to go to {O, O) 
as time goes lo infinity, independent of the initial conditions and regardless of the 

choi e nf function Q> (this is called absolute stability). T his is a typical indirect 

control problem: the evolution of the state x(t) is influenced by the control function 

u(t), but it is the rote oj change of u(t) which is determioed by t ite feedback ex-pu. 

T ite Soviet school made effective use of Liapunov functions to determine appropriate 
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n.a.s.c. for absolute stability of Lure's problem. Far this system, ene can use 

V = py' + <l>(s), where ·~{s) = J' </i(r)dr. One can then develop simple sufficient 

conditious for the lrajectories of solutions to cross the Jevel curves of tb.is fundion 
in th direction of its decrease, giving stability. Their work was applied to systems 

of higher dimension as weJJ, witb a commensurate increase in the linear a1gebra 

11eeded. 

Popov, followed by Ya.kubovicl1 ~nd by Kalmam, applied Fourier transform meth­

ods to make majar ad vanees in the analysis of control systems. Consider tbe vector 

syst m: 

x' =Ax - </i(s)b, u'= </>(s), s = CT X - '(U , 

where x, b are n-veclors, A is a matrix and a1'l other symbols represent scalnrs (T 

denotes transpose). 

lf the l'ourier lransform of a scalar, vedar or matrix function J(t) is defined as 

F'(w) = J;+ _..,, f (t)dt where the integration is carried out for eacb component of a 

vector or mat.rix, tbe.n lbe critica] matrix function in Popov's theory is the transfer 
function: 

G(U,, ) = c,.F'(eA1)b + 1-. 
lW 

He showed thal lhe inequality 

Re(l + iwq)G(iw) :2: O for sorne q :2: O and ali real w 

implies th system is absolutely stable. Stability is important because it implies 

•hal dislurbauces die oul naLUrally. 

How ver1 it is lbe synt.besis of controJs which is the most important problem 

íacing engineers in practice. How do we design a control which will force the state 
to arrive al and remain io a neighborhood of the given target state, to within sorne 
error tolerance? Agaio, we can translate the desired state to the origin, so we are 

askiug how to steer the state of tbe system to a small neigbborbood of tbe origin 

in stol x conlrol-space. The aoalysis for linear problems is a beautiful piece of 

mnth rnnl ical Lheory, usiog linear algebra, linear functiona1 analysis and convexity. 

As des ribed abo,·e.1 if we want to sene! a particular ini tial state x0 to a neighborhood 
of th • origin instale space, we convert the init ial value problem (1), x(O) = x0 to 

o single inlegral equation usi.ng lhe variation of parameters formula (2) for systems 



A BRJEF LOOK AT CONTROL TI-JEORY THRDUGH ITS HISTORY 35 

of differentíal equations. This simple formula connects our choice of u(-) to the 

corresponding output x(·). lt is clear from this fonnula, for example, that if the 

functions u(·) come from a convex set, t he po ible outputs x(·) also forma convex 

sel. In fact, if the values oí u(t) lie in a convex sel1 then this formula combines with 
a farnous theorem of Liapunov (not the stability Liapunov) on the range of a vector 
measure to assure us that we need only use controls which take their values at tbe 
xtreme points of this convex set i.e. 1 the bang- bang principie holds. 

T he situation wi th genuinely non linear problerns i much more challenging. Ba­

sically, engineers went ahead and developed intuitively plausible methods, without 

much help or input from the mathematical community. Oue of the most irnport.ant 

ideas was lo truucate Fourier expansions of conlrols and states. The method goes by 

various names U1e metbod of harmonic balance, the describing function method1 

equivalenl linearizat.ion, equivalent gains. Mathematicians recognize ali of these 
techniques as being variants of the R.itz/Galerkin method. As a simple example, 

consicler the caJar 110 11 linear problem: 

y'(t) = - y(t) + u 2(t), y(O) =O, y{7r) = O. (4) 

We assume that u(t) = ¿~-"" a,e;", and y(t) = Í:k=-"" b,e;" , and for simplic­

ity assume Lhat we use an even extensioa of each to the interval (-7!', 7r ) 1 so ª - 1 = a1 

and b_1 = b1. Tben we plug these expres.sions into (4) and throw away ali hut the 

terms in k = O and k = ± l. T his results in lhe following (note that bu = O) : 

"" "" . L ikb, e;kt = - L b,e;kt + L ( L ªiª•-;k'', 
k=- k=-oo k=- J=-k (5) 

-2b1 sin (t) = -2b1 cos(t) + ~ + 2a0 a, cos(t). 

So this simple algebraic equation connects lhe control coelficients a0 , a, to the 

response coefficient b1• Nyquisl and Bode developed graphical methods for analyzing 

lhe stability of nonlinear syslems alter such a truncation, a nd lhese were quickly 

xlended U> control problems. Such rnethods are surprisingly effective for a single 

syslems, but if one has a large nurnber of inleracting control systems, or a problem 

witb a high dimen ion lo the state and control variables, then they can be extremely 
dilficull to apply. 
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Optimal Control 

\!\lhen one puts in a cost functional, the situation becomes even more com­

plex. For example, consider the systern {x is the state, u t he control): x'(t) = 

f(t, x(t), u(t)), wilh desire<l target state x1. Note that we don ' t necessarily spec­

ify the Lime of arrival t1 at t he target. Now include a cost functionaJ for a given 

successful control: 

C(uOJ =· !,'' fu (t,.,(t), u(t))dt. 

'rhe idea is to minimize C over aJl successful controls. For example, if we take 

Jº = 1, th n we are minimizing t.he time to get t© the target state. T be connection 

wit.h Lhe calculus of varialions is clear1 but in fact was not noted in the early days of 

control Lheory. lu lhe late 1950' , the Pontryagin group at Moscow State University 

stu1111ed the control tbeory world by announcing the famous "ma.x.imum principle11 • 

To undersland the significance of this result, consider the problern addresse<l in 

standard nlculus courses of finding the absolute ma.x of a real-value<l differentiable 

fu11cLio11 f{x) deLine<l on an inlerval [a, bj. A suflicient condition tbat this rnax exist 

is that f be ontinuous (a condition not always met in engineering practice). But this 

~ condition does aotbing to help us find the point(s) wbere the max occurs 

(or its value), for Lbis we oeed to use the necessary condit ion f'(c) =O. Pontryagin 

o.nd his group gave us a necessary condition for a control to provide a solu tion to 

an opLimal control problem. 

To formulal lb.is poweríul principle, we consider for simplicity the autonomous 

problem 

1,, x'(t) = f(x(t), u(t)), u(t.)<U, C[u(·)J = 
0 

Jº (x(t), u(t))dt. 

H r x(t) and f are n.- \1'Clors, u(t.) is an m-vector with values in a convex closed 

bounded s l U. Ci"en a panicular control and response pair (x(t) , u (t)), we first form 

Lhe e:xLende<l slate :i(t) by adding Lhe new component x0(t) = ¡; j 0(r, x(r), u(r))dr 
(Lhe runniug cosl), so Z:,(t) = fo (x(t) , u(t)). We add this differential equation to 

our original systern, 1nitiog the extended system as :i'(t) = j'(:i(t), u(t)). For a 

giv n (nssumed opdmaJ) control and associa ted extended state we can linearize our 

cxL nd d differential equation about x(t) Lo get the associaLe<l linearized equaLion 
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and its adjoint: 

y'(t) = ~y, w'(t) = - [ ~] r w(t) . 

Tite solutions of the linearized adjoint are callee! co•lales. Finally, we need to in­

troduce a n associated Hamiltonian: 'H. (w, :i:, u} = w(t) · f(:i:, u), the inner product 

of w(t) and :i:'(t). T his is indeed a genuine Ha.mil tonian in the s~nse of physics for 

the linearized system and il adjoint that is, lhese lwo equations can be written 

respectively as: 

'() off '() {)H yt = ow 'w t =-ay· 

T he Hamiltonian is importru1t because the optimal control will maximize it al 

eacl1 value of t1 and in fact this ma.x:imurn value of H will be zero. That is 1 if 

M (w(·), x(·))(t) = max,.u'H.(w(t), :i:(t), v), then lhe ma.ximum principie states: 

lf (x-(·), u. (·)) is an optima/ co11trol-response paar min1mizing e for our problem, 

tl1e11 tliere en.sis a solution w(t) o/ the associated adJoint equation suc/1 that almost 

everywhere 

'H.(w(t) ,:i:. (t), u. (t)) = M (w(t),:i:. (t)) =O, and w.,(t) = w0 (0) ~ O. 

T hcrefore w need only find t he general solulion (!) of tbe linear a.djoint equation 

and try lo 6nd solutions which make 1{. identically zero. During this search (keep 

in rnind we don ' t know u. (t)) we have to carry u(·) a.long, and if we are lucky we 

will end up wilh a set of constraints on u(-) which will characterize it. ln fact, one 

may not need to find the general solution of th adjoint equation. 

As an example, consider the following scalar problem, with u(t)<[- l , J]: 

:z:'(t) = -x2(t) + u(t) , x(O) = O, x(t¡) = 1, C (u(·)) = [ ' u(r)dr. 

Th extended lin arized syste111 is (with Yo(·) as de6ned a bove, ¡¡1 (·) = x(-)) : 

This can 00 writleo in system forrn as 

f¡ = [ Yo l · y'(t) = [ O O ] -(t) 
y1 O -2x(t) y · 



Jack W. Macld 

T he nssocialed ( xtended) adjoint system and Hamiltonian are 

w'(t) = [ Q O ] tiJ(t) , 'fi = Wo(t)u + W1(t)(-x2(t) +u), o 2x(t.) 

M = max (w0 (0)u w1 (t) (-x;(t) + v)) = [wo(O} + w, (t)Jv - x2w, (t). 
11"(1- l,1) 

The linear íunction M (u) must be nonpositive for v<[-1 , l j. lt will have a max­

imum ¡ r u<[-1 , IJ al u= gn[w0 (0) +w1(t)J, so we know our optima! control must 

b bnng~bang. 111 this case we can find W(l) explicitly, and an elementary argument 

shows Lhat Lh control \\1ill have at most one switcli from ± 1 to +L l<nowiug Lhis, 

we cau reLurn lo Lhe original equation for x(t), replace u(t) by 1 and -1 respectively, 

and sol ve lhe r ult ing equations, piecing together successful responses wi lih at most 
11 switch. \Ve leave the details to the render and turn to other issues. 

Wlte.n lhe Pontryagin maximum principie was announced, and in particular when 

th monograph oí Pontryagin, Bol 'tanskii, Gamkrelidze aud Miscbenko appeared in 

8 11glish in 196-t (Ru 'an ven;ion in 1961),. the connection witb the calculus oí varia­

ti ns was clearly poinled oul. It was eventually noted that a paper of 8.J. McShane 

published in 1937 ÍOnlSbadowed the maximum principie. T bese connections are 

thoroughly plained in the 1966 monograph of Hestenes. Here is a very simplified 

explnnatioo (based on lhat given in the rnonograph oí Lee !'lld Marcus) oí the con­

" tion, 'vith no attempt made to carefully state hypotheses. Consider a control 

pro ·ess 

z'(t) = / (.r(t), u(t)), x(O} = xº , x(l ) = x1, C(u(·)) =J.' h(x, u}dt, 

with z(t)cR" , u(l)<R"'. Ir we could solve the equation p = f (x , u) for u = g(z,p) 
thon 11 could u Lbe dilTerential equation to write u(t) = g(x(t) , x'(t)). This me1U1s 

thnt 1vc could replace u(t) in the cost íunctional by g(x(t), x'(t}} ,, so we can restate 

our onlrol 1>roblem as 

min J.' h(x(t), g(x(t) , x'(t)))dt, 

wher lh mioimum is 1aken over ali functions x(.J which satis fy x(O) = x0 , z( l) = 
r1 . 'Thi i jusl e cl ic probl m in the calculus oí variations, and lhe standard 

11 ·essary condilions corm.spond to th maximurn principie. 
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Th maximurn principie provided far the first time a method for finding oplimal 

ontr Is, or at least r ducing the scarch to a smaller ubclass of the original set of 

plimaJ conLrols. However, its use can be very difficult in higher dime11sions1 and in 
problems involving severa! interacLing control ystems. 

Dynamic Programming and on mooth Analysis 

About tbe same lime that thc Pontryagin max:imum principie was being devel­

opecl, Richard Oellman was inventing a very effecLive melhod for a broad range of 

oplimizal1on problems, a meth d ideally suitecl to Lhe compuier. He christened il 

dynamic programming and described its uses in detail in his monograph uApplied 

Oynamic Programming11 in 1962, which wa.s followed by a rnonograph of Drcyíu in 

l965. Th foundaLion f this approach was Lhe followmg observat i 11 : suppose that 

you are trying to carry out a process so as to minimiz some functiona.J i.e. 1 to do 
things ophmally. lf you ·arry out an oplimal policy up to a ccrtai 11 tirnc, arriving 

al a &orne mlerrnediale statc1 the11 your policies after that tim rnusl be optimal for 

i11ilially i;ta.rung at lhis i11 ler111 cliatc stale. 

To clarify this somcwhat obscure stalement, consid r the problem of 111i11imizing 

th íunct1onal 

t J (y(·)) = Jo [(y')'+ y2)dt, y(O) =e, y'<L2(0, T). 

lnst ad of applying thc standard calculu of variations analysis, we treat t he 

problem as a decision process: for each t, assumiog Lbat y(t) is known, w rnust 

choose v'(t) so as to minirnize J. To translate lhis into sornelhiug practical, we writc 
thc minimum value as f(c, T) = minJ(y(·)), and assume that it is wcll delíned for 

a.11 T ?: O and e<R. We describe this minimum function as ih min of J (y(-)) for an 

intcrval of length T with initia l ondition e (nolice tbat !he problem is au tonomous, 

so tbere is no d pendence 0 11 wh re our int rval is located on the t-axis). 

llere IS a higbly intuitivc derivation of tbe socallecl O lima n equation for t his 

problern: Let q = x'(O) be lhe iniiial slope. If we break the interval [O, T) into 

[O, i:>JLJl.l, T), with 1:1 infini tesimal, then y(ó)-;::c-"-qD., and 

J(y) = ([' + [) l(y')' - y2)dt. 
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The optimality principie states that having arrived at y(t.) at time t., we must 

continue to choose y'(t) so that /~ is minimized. Since ~ is infinitesimal, we can 

take y(t) =e, y'(t) = q on [O, t.]. Thus the first integral in J(y(-)) above becomes 
(q2 + c')t.. If we choose y'(t) optimally thereafter, then the second integral gives 

m(c+qt., T-t.), i.e., it produces the minimum of .J far an interval of length T-t. 
and initial state e+ qt.. So we have 

J(u) = (q2 -+. c2)t. + m(c + vt., T - t.) , 

m(c, T) = min,[(q2 + c2)t. + m(c + qt., T - t.)]. 

Now, continuing our intuitive analysis with the infinitesimal~' we have 

8m am 
m(c + qt., T - t.)"' m(c, T ) + 8cqt. - 8T t.. 

Substituting this into the equation preceding, simplifying and letting t. --> O, we get 

am . [' 2 8m] ar =. mm, c-+ q + qa;; , 

with the initial condition m(c, O)= O. 

The minimum on the right occurs for q = - ~ ~, and so we ha ve the fol1owing 
nonlinear partial differential equation far m(c, T): 

8m 2 1 (ªm)' 8T =e - ;¡ 8c , m(c, O) =O. 

The point is that one could now salve this equation by numerical methods, 

and thus obtain the optima! value function, wi thout knowing the optimal control 

or associated optimal state. Then one can determine the optimal control by an 

incremental choice of y'(t), choosing this function so the cost stays at m(x(t) , T - t). 
As an aside, for this simple problem, we can actually determine the optima! 

cost function directly. We make the change of variable y(t) = cz(t) in the original 

problem, so z(O) = l. This converts the cost to c2 f0T[(z'(t))2 + z2 (t)Jdt, which shows 

that J (u(·)) = c2J(T). Plugging this into the partial differential equation above, we 

get a Ricatti equation far .J : 

.J'(T) + J 2(T) = 1, .J(O) = O, 
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with solution .J(T) = tanh(T). 

The Dynamic Programming analysis we used above can be made rigorous, under 
the key assumption that m(c, T) is differentiable. Unfortunately, this requirement is 

seldom met, even far simple problems. Nevertheless, Oynamic Programming gives 

correct answers for an amazing range of continuous and discrete problems, and is 

still one of the main techniques of choice far complex real-world problems ( e.g., space 

missions). Until recently, there has been a frustrating gap between what could be 

proved and what was actually working. 

In a landmark paper in Vestnik Moskovskovo Universiteta in 1958, A.F. Fil­

lipov showed how one could interpret a control problem involving the differential 

equation x'(t) = f(x(t), u(t)), u(t)<U(t) ~ El:", as a differential equation with 

multivalued right hand side. Basically, one thinks of the differential equation as 

x'(t)< LJ,.u f(x(t), v), where one must choose a solution of this multivalued differen­

tial equation which reaches the target and (if there is a cost) minimizes the cost. 

This allowed the use of sophisticated new tools from multifunction theory to be 

used to prove existence, and made people aware of the importance of multivalued 

functions. 
We mentioned above that a rigorous justification of Dynamic Programming is 

hindered by the nonsmoothness of the opt imal value function as a function of the ini­

tial and or terminal conditions on the state. Although the function is often Lipschitz 

continuous, it is seldom differentiable. In the course of dealing with nonsmoothness 
for general problems in optimization, various multivalued extensions of the deriva­
tive of a convex or locally Lipschitz function have been considered. In general, the 

tangen\ line to a real-valued function of one variable is replaced by_ a set of tangent 

lines which forma cone. Far example, the simple absolute value function f(x) = lxl 
is assigned the interval [-1, 1] as its derivative at the origin, or if you prefer, it 

is assigned the cone of straight lines through the point (O, O) with slopes from this 

closed interval (Figure 6). 



42 Jack W. Macki 

y= lil 

The generalized gradient at the origin is the cone of straight 

lines through (0,0) with slope between -1 and +l. 

Figure 6 

Analysis for such multivalued generalizations of the gra.<lient has been developing 

since the 1950's. Major schools have developed in a multitude of countries, motivated 

by a wide range of applied and pure problems. R.T. Rockafellar of the Uni ted States 

is one of the leaders in this field, and bis student Francis H. Clarke has develo)lecl 

a generalized gradient (the "Clarke gradient") which works very well for control 
theory. Clarke published a ground-breaking paper, "The m¡¡.ximum principie under 

minimal hypotheses" in 1976 (SIAM J. Control Optim. 14(1976), 1078-1091) which 

convincingly demonstrated the effectiveness of bis new tools, and he followed this 

in 1983 with a monograph. In 1990 Clarke, Ledyaev, Stern and Wolenski published 

the monograph "Nonsmooth Analysis and Control Theory" which provides an up­

te>-date treatment. The generalized gradient allows a much "cleaner" and complete 

theoretical treatment of existence, uniqueness, necessary conditions and sufficient 

conditions for a wide range of optimization prob1ems. 

Robustness 

From the engineering standpoint, the question of existence is often secondary. 

What really matters is that the solution be robust. This means that the system 

has a to1erance for disturbances and\or inaccuracies within specified bounds. This 

( 
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requirement refl.ects the fact that one never precisely knows the parameters in a 

modelling differential equation (and associated cost function) nor can one attain or 

measure exactly the given initial conditions. In addition, the successful control itself 
is an idealization which in practice can only be approximated. 

Bode in 1945 established the criterion for a limited type of robustness for scalar 

systems. 

Here is a simple example of how the question of robustnesS arises. Consider 

the control system whose governed by the scalar ordinary differential equation with 

constant coefficients: 

ax"(t) + bx'(t) + cx(t) = u(t), -1 ~ u(t) ~ +1, x(O) = x0 , x'(O) = x 1, 

with the aim of steering the state vector (x(t), x'(t)) to a given neighborhood of 

(O, O) and keeping it there. For any given choice of control function u(t) we take the 

Laplace transform of the equation and see that the transform of x(t), cal! it X(s), 
is given by: 

1 
X(s) =as'+ bs + c(U(s) + bx0 + ax1 + asx0 ), 

where U(s) is the transform of u(t). The fraction .,.},,+, is called the transfer 
function for the problem. Now the function x(t) will be the convolution of the 

inverse transform of the transfer function with the function u(t), plus the inverse 

transform of 
bxo + ax1 + asxo 

as2 +bs+c 
If the quadratic in the denominator of the transfer function has both roots with 

real part negative (such polynomials are called Hurwitz po/ynomia/s), then any easy 

argument shows that the state vector decays exponentially. In other words, this 

system attains the target neighborhood for any control. The coeflicients in the 

equation can be perturbed by small amounts and this conclusion will still hold. In 

this case the system is robust in every sense. 

Suppose we are dealing with a control problem involving an nth arder scalar 

constant coefficient differential operator: 
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Then we mimic the analysis in the above exarnple, taking the Laplace transform, 

and conclude that we want the polynomial E:=o a.s• to be Hurwitz, that is, ali 

of its roots should have negative real part. But unlike the above example, suppose 
that we are given a priori that each coefficient ak is restricted to a (not necessarily 

tiny) interval: mk :S" ak :S" Mk. Then as the coefficients independently vary over their 

respective intervals, we get a family of polynomials, the roots of which will cover a 

region in the complex plane. At first glance, this is a very complicated situation. A 

beautiful result of Kharitonov from 197.8 provides an amazingly simple resolution- it 

says you need only check four polynomials! The four Kharitonov polynomials are 

k21(s) = M0 + M,s + m2s2 + _m3s3 + M4s4 + M5s5 + 

Kharitonov's theorem states that the entire family is Hurwitz if and only if these 

four polynomials are Hurwitz. This result has been extended in many directions, 
for example, if the coefficients do not vary independently over intervals but instead 

each coefficient is a function of a vector parameter, then one can develop an analo-­

gous result under reasonable conditions (Anagnost, Desoer and Minnichelli, 1988). 

One can also prove a similar result for systems governed by difference equations 

(Mansour, Kraus and Anderson, 1988). 

The robustness of systems governed by vector differential equations is a more 

difficult topic, particularly when the control is a vector, and especially when it is 

a feedback control. We cannot take the time and space to <leal with that here, we 

just mention a few of the key ideas. In 1966 Zames introduced a highly geometric 

approach based on eones in an appropriate space of input-output relations. Safanov 

in 1980 published a rnonograph establishing robustness results for systerns, using 

sophisticated topological methods. 

Robustness is also a desired property far systerns with statistical indeterrninacy 

ar sorne type of random disturbance. We restrict ourselves to perhaps the most 

fundamental problem: How to estimate parameters (far example, the rate of growth 
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of bacteria, or the orientation angles of a space satellite) when you have limited 

samples of sorne observables, and these samples are possibly corrupted by noise. It 
is theoretically important, but not very useful from the practica! point of view, to 

prove that as the uncertainties die out, the estímate converges to the true value. 

What is importan! is to get an idea of the probability distribution of the unknowns, 

given assumed distributions for the indeterminacies and the disturbances. One might 

also hope to discover the dynamics of the expected value and/or the variance of 

importan! parameters. 

Robustness has understandably been a major subject of interest from the 1970's 

right up to the present, and is deserving of its own survey article. Fortunately such 

articles and monographs exist, and the reader is referred to the list of references in 

the Bibliography. 
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