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Abstract

We revise the main definitions of quantization and in this frame we treat
in particular Weyl and anti-Wick Operators. The paper can also be ragarded
as an introductory review of some aspects of the pseudo-differential caleulus
in R".
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1 Introduction: from Classical Physics to Quantum

Systems

At the beginning of this century classical physics seemed to be able to ex-

plain practically every physical phenomenon of nature. On one hand the second
Newton's law F = ma had been reelaborated and lead to the formulation of the
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powerful theories of Lagrangean and Hamiltonian Mechanics that provided a sat-
isfactory mathematical model for phenomena involving particles. On the other
hand wave-like phenomena found an interpretation by the wave equation

I)Eu(l.z) = Asu(t,z)

(with z € R"t € R,A; = Y7 10?2 ) and Maxwell laws of electromagnetism.
This illusion found its end with a number of experiments in the years around 1900.
Among the most famous of them we just cite the photo-electric effet, experiences
on diffraction of light and the problem of the stability of the electron. It is beyond
the scope of this paper to discribe precisely in which sense these discoveries
disregarded the above-mentioned theories. In one word, one could say that in the
case of microscopic systems involving particles such as atoms or electrons, nature
seemed to bahave in quite a different way as it should have done according to
the known classical theories of Physics. The most striking fact was that many of
these new discovered features of nature seemed to be (and are today) beyond the
possibility of perception of the world we are able to. The dual nature of matter
both as particle and as wave and the uncertainty principle of Heisenberg are just
the two most famous examples. It becomes then clear that a deep explanation of
nature must renounce to the help of intuition and practical experience due to our
senses and it appears then evident the importance of constructing an abstract
mathematical model that at best fits the experiments.

To be more precise let us consider the case of a single particle in the space
R" (note that for n = 3k it includes the case of k particles in the usual space
RY). The state of the system is then completely determined by the 2n variables
position € R” and momentum (i.e., in the simplest case, velocity times mass)
& € R". Each physical quantity relevant for the description of the system, for
instance position, velocity, potential energy, kinetik energy, angular momentum,
ete, is expressed by a real number depending on the state of the system and,
from the mathematical point of view, is then a real function of (z,£). The space
R x RY is called the phase space of the system. It not difficult to immagine that
in more complicated cases, where the particles have to satisfy some constraints,
the position variables describe a surface or more generally a manifold in R". The
phase space is then the cotangent bundle of this manifold and (z,£) play the role
of local coordinates. However this is not essential for the subject we want to deal
with. The evolution of the system is then a curve t € R — (z(1),&(1)) € R*" in
the phase space that satisfies the Hamiltonian system of equations

{"* B, H(,€)
%: = —8;, H(z,£)
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where H = E-V, E is the kinetik energy and V' the potential. H is called Hamil-
tonian function. The Hamiltonian equations are nothing else than a rewriting of
the second Newton law /' = ma in the frame of phase space.

The phase space model is no longer suitable for the description of quantum
systems. Instead of this, Schrédinger and Heisenberg presented two different
models that were later proved by Schridinger to be equivalent. According to
the model of Schridinger, the space L*(RZ) of square-integrable functions on
R substitutes of the phase space R} x R as underlying space. More precisely
the state of the system at a given time is represented by a function in L*(R2)
modulo a complex multiplicative constant. That is, if f € L*(R?), then for every
complex constant ¢, the function ef represents the same state. Equivalently we
can say that the states of a quantum system are points of the complex projective
space PL*(R?) and we can take as representative for each point in this space
& unitary function of L*(R"). Observables are now identified with (unbounded)
self-adjoint operators 7' on L*(R™) with dense domain and the rules used to
associate an operator with each classical observable are called quantization rules.
The description of the system is in general no more deterministic, as in classical
mechanics, but probabilistic in the sense as follows. The probability that the
value assumed by an observable 7" when the system is in the state ¢ lies in the set
I € R is given by ||E7(1)¢|*, where By is the spectral projection associated with
the operator 7. Only occasionally this probability distribution is concentrated
in one point, recovering then as particular case a deterministic description. The
evolution of the system is given by a curve t € R — ¢ € L?(R") that, instead of
the Hamiltonial equations, satisfies the Schrodinger equation:

3 sl
e o=l d

where £ is the Plank constant and # is the Hamulton Operator, i.e. the oper-
ator corresponding with the Hamiltonian function by the quantization rules. It
becomes then clear that these rules play a foundamental role in the construc-
tion of the mathematical model for the quantum system. The two foundamental
requirements that must be satisfied by these rules are the following.

1. The operator associated with the position observable f(z,§) = x; is the
multiplication operator M;¢ = z;¢

2. The operator associated with the momentum observable f(z,€) = &; is the
differentiation operator D;¢ %1),‘«::

The quantization of general observables f(x,£) is generally performed by re-
placing in the expression of f the variables z; and & with the corresponding
operators. This unfortunately leads to a non trivial commutativity problem as
we have of course 2,6, = &x; but M;D; # D;M;. This ambiguity makes it
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necessary to make a "choise” giving rise to different types of quantizations.

Here we shall fix mainly attention on the Weyl and the anti-Wick quantiza-
tion, addressing to Berezin (2] and Robert [11] for a more detailed discussion of
the general concept of quantization. Namely, the contents of the paper are the
following. In the next Section 2 we hegin to study Weyl quantization for partial
differential operators. To treal more general symbols we organize in Sections 3
and 4 a calculus on R™, based on a fixed weight function A(z, §). The correspond-
ing operators are in principle a particular case of the so-called Weyl-Hérmander
classes, cf. [9], however the peculiarities of the properties of A(z,€) allow here
stronger results. In particular, in Section 5 we introduce the T-quantization of
A-symbols, extending Shubin [12] and Boggiatto-Buzano-Rodino [3]; for 7 = 1/2
we recapture the Weyl quantization. General results on symbolic calculus are
presented in Section 6. In Section 7 we treat the anti-Wick quantization in strict
connection with Weyl operators, c¢f. Lerner (10|, Wong [13]. The final Sections
concern hypoelliptic operators, Sobolev spaces and Fredholm property.

We end these introductory remarks by fixing some notation.

Z5={1,3...}, N={0,1,..}, B*={zeR|z>0}, ={zeR|z>0}.

Given two multi-indices @, # € N" and z € R™, we set

lal = ayte-ta,, al =aylay, a<f <= a; <B; for g =l 2 n,
a<fl &= a#pf and a<p,

al 3
(a) | Fa-an if0<f<a,
B 0, otherwise,

2% =gV gfn 5% =68 =85} 0gn) D% =D}~ DER;

n o

with Dy, = —i8,,, for j = 1,...,n, and 42 = -1,
Given z, y € R", we se

Ty=Tytt ol Jolre = 2] = VEZ = (2 4o+ 2R)V2

(@) = Vit[alf, (@)= V1 +]al? + [y

We employ standard noLuLion of distribution theory: S(R™), S'(R"), £'(%2),
D'(Q). Moreover (u,v);2 = (u,7) = [uwdz, for u, v € S(R™).
I the domain of integration is not specified it is intended to be the whole space,

ic.forze€ R™ [udz = [ uds.
n
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If € € R, we set d§ = (2m)~"d&. so that [wd§ = (2x)™" [wdE.

Finally, given two functions f,g : X — R and A C X, we write f(2) <
g(x), for all z € A, il there exists C' € R* such that f(z) < Cg(), for all & € A.
Here the constant C' may depend on parameters, indices, ete. possibly appear-
ing in the expression of f and g, but not on = € A. We write f(z) ~ g(x) if
J(z) < g() and g(x) < ().

2 Some Remarks on Weyl Quantization

Let p(2,€) = 3j5j<m Ca(@)€® be a polynomial in § with coefficients ca €
C=(R"). If in correspondence with p(az, &) we consider the differential operator
P(,D) = ¥jajem Ca(@) D%, with D* = (=i)l°l52, we have that the two above-
mentioned rules of quantization are satisfied (apart from the inessential constant
factor ;:)‘ The polynomial p(z, €) is said symbol of the operators P(z, D).

For u € S(R™), we have u = [ e*€4(€)d€ and it is then convenient (o rewrite
the expression of P(z, D)u as

Pla,D)u = [ ¢€pla,ue)de ~ [ & pta utn)dyde

From this formula it appears natural to replace the polynomial p(z, &) with func-
tions a(z, £) belonging to some more general space; the operators

Avuta) = [ e%a(a, i€ ~ [ e a(z, uirdys

obtained in this way are said pseudo-differential, the function a(z, §) is still called
symbol of the operator.

Unfortunately this correspondence is not a quantization because the operator
Ay needs not to be sell-adjoint also when the symbol alz, §) is real. To overcome
this difficulty Weyl proposed another type of association namely

T

$

a(x, &) = Wyu(z) /6"“""0( = y~£) uly)dyd§

By this correspondence one has that the L*-adjoint of the operator W, is given
by the formula

W2 =Wa

from which it clear that in case a is a real function one obtains a self-adjoint
operator. With respect to the ambiguity of quantization due to the non com-
mutativity named in the previuos section, we remark that the Weyl quantization
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amounts to the “intermediate” choice §(M;D; + D;M;) in the case of the ob-
servables a(z,§) = «;€;, we omit the easy verification. If Pu = 3 jq1<m CaD%u
is a differential operator with C® coefficients, then the adjoint is given by Pu =
lajem D7 (Eau) so, it is worth remarking that

1 1 .
Wae, = E(M_,-D_,- + D;M;) = E(A,,Jr A7) (2.1)

that is the Weyl quantization coincides with the Feymann quantization for which
the observable a corresponds to the operator

1 .
Fo = 5(Aa + 42).

It is then natural to ask to what extend the Weyl and the Feynmann quantization
coincide. We remark at once that for polynomial with complex coefficients we
have in general no coincidence. Consider for example a(z, ) = ca,€; with ¢ € C.
Then by linearity W, = §(M;D; + D;M;) but the Feynmann quantization is
not C linear and we have (cM;D;)* — ¢D;M; # eD;M;. However, as observed
before, meaningful physical observables are real functions, so for polynomials it
is reasonable to consider real coefficients. In this case we have the following basic
case where Weyl and Feynmann quantizations coincide.

Proposition 2.1 Let a(x,§) = Y., 30a,s2°6 be a polynomial with real coeffi-
cients a, 5 of degree 1 either with respect to z or €, then:

1
Wau E(A" + Ay u.

Proof. It is sufficient to consider a(z, &) = aq52€°. 1 |8| = 0 then obviously
the thesis holds. Let |8] = 1, then a(z,§) = 2;€* for some j = 1,...,n and we
have

Wou(z) /c'("")ea:,é“u(y)dydé t %/e"“'“y,{"u(y)dyd{
(Azjeort 771 [6255u))
(-41,5““ + D% [h’)u”
(A,'(u | A;lsl.) u.

Il jal ~ 0 and | 3| = 1 the thesis is obviously true. By induction, suppose it holds
for |a| = 0 and some 3 then

RO 0] 1S = O] =
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1 1 1 'l
W, zou = Ez,-W,uu + -Q‘W,n(y,u) = iz,r"u 4 Ezﬂz,u

1 .
= A pou= 3 (A,‘,au o+ A;',_,u)A

If la| = 1 then a(x,€) = 2%& for some k = 1,...,n. For [8] = 1 the thesis
is (2.1). Suppose now it holds for some 3, we prove it for a(x,€) = 2;27¢; with
J = 1,..,n. We have

: 1 fict + 8
W g, u(2) = 5/0"‘ V8(2; + y;) (I -~ y) Euly)dyd§

1 1 z+y\?

= o Wang, + 5 | €=y, (2 ) gu(y)dye
2 2 2
1 | S

= Emjw””‘*“ + 5 Wang, (u5u(u)

T . ! .
= —41 (A.c“(,," t A;Js.") [ 1(.-\._:&(;/”1) | A‘,,&(mn))

1 1 1 4 1
T Z”i"‘”’)k“ t ]%”k(-’tn") t "ITJI)I:(TJ") f El)k(llfj.'l.‘l‘u)

But 28 Di(zu) = Di(@;0fu) — (Dka)z;u and 22 Di(aPu) = a;(Dr(a;)u +
2529 Dyu so that

1 1
W ang,u(@) = §$’Tal)*u + §D,.(z,z”u)

1 .
=3 (A,‘,,&u t .4,‘,,.&14)

50 the proposition is completely proved. m
From second part of the proof of the above Proposition we also get the fol-
lowing Corollary.

Corollary 2.2 Let a(@,§) = 35 agz” be a polynomial with complex coefficients
Qap, then:
Wau = A,

(that is the Weyl quantization still yields multiplication operators for polynomial
symbol mdependent on €).
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We remark that if |a] > 1,|8] > 1 the Proposition 2.1 is in general false.
Consider infact for instance in dimension n = 1 the symbol a(z,£) = 2°6%. We
have

Woagu = % / 0802 § 2y + 1) uly)dyde
LR T T ey 1.2 2
- da. D 2:tD (zu) 4 AD(I u)

Replacing 2D*(zu) = —2izDu-+ 22 D*u and —izDu = {D*(z?u) + {2°D*u + Ju
yields

o : 1
Wagu %(z‘l)‘u I DX(@%) - u) - 5(}1,:520 # Azt Idu).

This suggests that one can in general try to express the difference between
the two quantizations as a diflerential operator of lower order. This is in effect
true in the sense of the following proposition.

Proposition 2.3 Let a(x,§) ~ Y, 30a377€* be a polynomial with real coeffi-
cients 0, 5, then:

Wau %(Au t A u+ Ru

where
Ru ~ Zc,.gz’l)‘u
76
and the sum extends to the multiindez v < a, |y| < |a| — 2,8 < 8, |6| < |8] - 2.
Proof. We have from Proposition (2.1) that the proposition is true for |4] -

1. As usual we suppose it true for some |3| and shall proved it for 2;27€%, we
have

Woosgeu = [ B g g g deuiy)dyd

1 1
Ez,W_.ﬂE..u + EW’”‘"(V"‘)
%a:, (:::”I)"u + D°(zu) 4 Ru)

%(z"l)"(z,u) + D(a;2%) + Ru(z,u)) (2:2)
Using Leibnitz rule we have

D?(z,2") Z(:)H’z,l)"‘"’(z"u) z,0°(z"%u) + a, D% (z%) (2.3)

1<
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where the last term can be rewritten as
D~ (au) = o DO + Z (n % e’)av:p"l)"":—m
0fyZa-e; L

We have also

D) =a" (:) 2y D~ Tu = 2P2; D" + 0P DA~ (2.4)

yEa

Substituting (2.3) and (2.4) into (2.2) we get

: ! .
W, cogu =5 (A,J,né.. | AJIX,,(..) u
+ Rt Rogu) + Y % jc’>8“’m”1)"‘ﬂl'm

0fySa-e;

that is the thesis is proved. m

“inally it follows from the above considerations that in the case of the har-
monic oscillator of quantum mechanics, ie. in the case a(@,€) = a* | £ we
have

1 .
Waaea ;E(A,,‘,E, FAe) = Aje
3 Weight Functions
Our classes of symbols will be defined in terms of general weight functions

A(z) in R*". As an introduction, let us consider first the symbol of a differential
operator with polynomial coefficients in R™:

Az = Y cas®e

lat8]<m

Because a(z,€) is a polynomial in (z,£), and 0?8?41(1,{) is identically zero
for fa 4 3| > m, we have that for every (a,8) € N™ x N"

[o20a(a,6)| < (@, )™, for all (z,) € R" x R

These inequalities suggest the definition of the following class of symbols, intro-
duced by Shubin, Berezin and others authors. Let = = (2,€) € R*™ and denote
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by §™ = §™(R*") the class of functions a(z) € C*(R*") satislying the following
estimates for each y € N?":
|67a(z)| < ()™, for all z,
with m € R.
Of course one may substitute to (z) any weight function A(z), continuous in
R*", for which there exists ¢ > 0 such that

(2)¢ < A(2) = (2), for all z, (3.1)
and define the class of symbols a € SX'(R”‘) such that for each y € N*" we have
[07a(z)] < A@)™ M, forall z. (3.2)

One easily verifies that S* C S with m — max {% k}, and Sk ¢ 5™ with
m — max {ke, k} . This shows that taking into account more general weights does
not essentially change the class of symbols under consideration. The reason for
considering a more general weight A(z) resides in the fact that sometimes it may
be chosen in such a way as (o yield better estimates in the applications, see for
example the boundedness properties in the next Sections.

A basic example, which we shall consider in the sequel, is given by

n

Alg) =1tk 37 [ 5,
=1

q = (q1,-.-,q2) with g; > 1, adapted to the study of the operator having polyno-

mial symbol of the form a(z) = 3, <m Cas™-

Turning to the general case, to obtain a good pseudo-differential calculus, we
have to impose to A(z) some additional conditions. Namely, beside (3.1), we shall
assume that A(z) is slowly varying, i.e. there exists ¢ > 0 such that

A(2) ~ A(¢), for [ — z| < eA(z). (3.3)

Let us observe that, starting from (3.1), (3.3), one can always find Az) €
C=(R™), with A(z) ~ A(z), satisfying (3.1), (3.3) and the additional property

167A(z)] < A(z)' -1l (3.4)

In the next section we shall then be allowed to assume that (3.1) is also satified

by A(z).
From (3.3) it also easily follows that A(z) is temperate, in the sense that

A(z) < AQ)(z = ¢)- (3.5)

T
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Another property we shall require for A(z) is the following. We shall assume that

for all ¢ we have
A(tz) < A(z), (3.6)

where we may take ¢ € R, or more generally ¢ = (f3,...,t2,) € R*" with tz =
(£121, s t2n720). Combining (3.3) with (3.6) we obtain for ¢/ € R*", (" ¢ R*"

Atz +1'¢) < AQ) (= —¢)- (3.7)
From (3.5) it also follows that for any s € R
A(2)* < A(Q)*(=— )™ (3.8)
and more precisely for § < 0
A2) < (14 A=) (3.9)

The next proposition, used in the sequel, combines the preceding estimates in a
mare general form.

Proposition 3.1 Define

3 Az, €)*(z — y)*, fors > 0
Na(, 9, €) = 3.10
(196 {(l F Az, €)(x—y)~ "), fors<0, )
then ; 5
A2+ vy, €)* < min {.\,(r.y.{).A.(mw,E)} , (@.11)
for all s € R, v/, 0" € R", provided (z,y) — (v'z + ¢y, @ — y) is an isomorphism
on R*.

Summing up, we shall assume in the next section that A(z) satifies (3.1),
(3.3), (3.6), which give all the other preceding estimates.

Addressing finally to the readers acquainted with the work of Hormander (9},
Chapter 18, or Beals [1], on general pseudo-differential operators, we want to
regard A in the frame of the more general weights considered there. Precisely we
observe that (2A(z)? - (:l) t T(f}ITI gives a metric g in the sense of (9. In
fuct g is slowly varying, in view of (3.3). Moreover the symplectic dual metric
e I given by A(2)%C? = A2, €)% + Az, €)% and the temperance property
of |9 reads A(z) < A(Q)(L + A(Q)lz = ¢V, for some N > 0, which obviously
follows from (3.5). Since ¢ < g7 in view of (3.1), the uncertainty principle is also
satisfiod.
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The Weyl calculus of Hérmander (9] applies then to pseudo-differential op-
erators related to our weight function A. Let us also refer to Bony-Chemin [6],
concerning Sobolev spaces associated with a generic metric, and Lerner [10] about
Wick quantization. The calculus of (9] allows also linear symplectic changes of
variables.

On the other hand, A presents pecularities, coming from the previous prop-
erties, which will be essential in the development of our theory. So, rather then
appealing to the abo tioned general calculus, in the next sections we shall
prefer to start from scratch, emphasizing, for a fixed system of coordinates, the
results related to the quantization problem.

4 Symbols and Amplitudes

First we want to be more precise about notations for classes of symbols.

Definition 4.1 The symbol class SY*, denoted for short S™ in the sequel, m € R,
consists of the functions a(z) € C®°(R*™) which satisfy the estimates

[67a(z)| < A(z)™ 1.

Let us assume, without loss of generality, that A(z) satisfies (3.4); then we
may write A(z) € S,
We list in the following some basic propositions; proofs are omitted.

Proposition 4.2 We have S~ = ) S™ = S(R*").

Proposition 4.3 (i) S™ ¢ ™', ifm < m'.
(i) Ifa € S™, and b € S™, then ab € S™™ and a + b € S™x{mm’},
(iii) Ifa € S™, then D%a € S™ 10! for all a.
(iv) Ifa € S™, then Ty,a(z) = a(z — w) € S™ for all w € R*".

Let us observe that S™ is a Fréchet space with respect to the seminorms
|alk.sm = Supjy<k SUPepan A(z)"™ M| O7a(z)|.

The preceding Proposition 4.3 can be reconsidered in the corresponding topol-
ogy; we have in particular continuity of the linear map D® : §™ — gm-lal,

Definition 4.4 Leta; € S™,j - 1,2,..., m; — —oc withm, .y < my for all j,
and let a € S™ . We write a ~ 3°3° | a; if for all integer r > 2 a - E,,K, €
S™c. We say also in this case that 3737, a, is an asymptotic expansion fnra
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Proposition 4.5 Let a; € S™, j = 1,2,...,m, — —oc with m;,y < my for all
j. Then there exists a € S™ such that a ~ 577%, a,. If another symbol o' has
the same property, then a — o’ € S(R™").

In the next Section 5 we shall associate to the symbol a(z) € S™ the pseudo-
differential operator of generalized Weyl type

u— /e“**vNa((l - 7)z + Ty, &) uly) dyd€, (4.1)

where 7 = (7y,...,7) € R" is fixed and, for short, we denote by 7y the vector
(711 -+ Taln) €LC.. It is then natural to consider from the very beginning more
general operators of the form

Au(x) /c""""n(r. v, E)uly) dyde, (4.2)

where the function a(z,y, £) € C*(R™), called amplitude, satisfies the following
estimates suggested by (3.9).

5m

Definition 4.6 We define S
fring

to be the class of all a(z,y, &) € C®(R™) satis-

?’?Bﬁ'ﬁf,’a(m,u-iﬂ < Amar 0,84(2,,6), (4.3)
with
At 01€) = A, O™~ )™ (14 A O —) " )
Jor a suitable m' € R depending on a(x,y,£), but mdependent of a, 3, 7.
Note that (4.3) implies the somewhat weaker estimate
|68026a(z,9,6)| = Alz, ™-tr+oHl(g — ymimilasial,

which will be often used in the sequel.

In (4.3) the variables @ and y seem to play a different role; the subsequent
property, consequence of Proposition 3.1 gives however a symmetric form to Def-
inition 4.6.

Proposition 4.7 The estimate (1.3) is equivalent to cach one of the following
two, for suitable values of m' € R:

|oz02030(.,6)] < Amwmsnv:,), (4.5)

l&:afa;a(z. W E)I < min {Ammt.a8+(Z ¥ E)s Ammt a8y (¥ 3, 6) } -
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Proposition 4.8 Ifa(z,£) € S™, then for every + € R® the amplitude b(z,y,§) =
a((1—7)z + 7y.£), from (4.1), belongs to §™. In particular bz,y,§) = a(z,§)
and b(z,y,£) = al(y,€) are in 5",

Proposition 4.9 Ifb(z,y,€) € S, then b(y,z,€) € S anda(z,£) = b(x, z,£) €

qm

=m

Finally we observe that S is a Fréchet space with respect to the seminorms

aly 5 SUP  SUP Amym,a8(2 ¥, €) " B2 al, 1, )| .
lact Byl <k @€

5 Pseudo-differential operators

We begin by considering a general operator A of the form (4.2) i.e.

e / =0z, . €)uly) dyde, 1)

=m

with @ € 7. We may regard (5.1) as oscillatory integral, and define it for
u € S(R"). Otherwise, Au € S'(R") shall be defined on v € S(R™) by taking
(z — y) - € as phase, and a(x, y, §)u(y)v(z) as amplitude, i.e.:

T / ¢E=0€a(a, y, €)u(y)u(z) dadydé.

Using Definition 4.6 and subsequent properties, we obtain:

Theorem 5.1 The operator A in (5.1) defines a continuous map from S(R™) to
S(R™), and it extends to a continuous map from S'(R") to S'(R").

Definition 5.2 We shall write L™ for the class of all the operators of the form
(5.1) with amplitudes a(z,y,€) € 5"

The Schwartz kernel K4 of A, defined by (Ka,v@u) = (Au,v) = (u, ‘Av), is the
distribution in 8'(R?") given by

(K@) 6@ = [ (o, y, O0(a,0) dedydle, ¢ € SR,

We have for K, the following relevant properties.

Theorem 5.3 If A € L™, then K4 € C®(R*"\A), where A = {(z,7),x € R"}.
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Theorem 5.4 Lot A be a continuous map from S(R™) 1o S'(R"), with kernel
K € S'(R*). The following properties are equivalent:

(i) A is regularizing, i.e. it extends to a continuous map from S'(R") to S(R");
(i) Ka € S(R*™);

(ByAeL=,L"

Take note that if the amplitude a is in S(R™) then certainly a € S~ but
the opposite is not true; take for example ¢ € S(R") and define a(w,y, )
@z + y)é(€) € 5, which is not rapidly decressing a1 z = —y.

The next theorem has a crucial role when developing the symbolic calculus;
it states that every A € L™ can be represented in the special form (4.1) for any
fixed ¥ € R", with a suitable symbol in §™.

Theorem 5.5 Let A € L™ be given, with kernel K4 and amplitude a & S
and lot € R™ be fixed. There exists one and only one symbol b, € S™ snrh
that

Au(z) - /n“‘"""‘b,((l = 7)x + 7y.§) uly) dyds. (5.2)

For b.(x,&) we have the following expression
be(,6) = Fyee Ka (2 + T2 — (1 = 7y)
= /e"""’a(x + 71y, @ — (1 —7)y, € = n) dydn, (5.3)

and the following asymtotic expansion

b(2,6)~ Y (;:),'lu' P -1 (H:“I)‘,'D;n) (,2,€), (5.4)
By J

where we may assume the terms are re-arranged with decreasing orders.

Proof. We may give the standard oscillatory meaning to (5.3) and, changing the
order of the integrations, obtain

FyeKalz+ my,@ — (1 - 7)y) /c"'""“a(r Ty, a — (1 = 7)y,m) dydn

= /e"""u(z +ryx — (1 = 7)y, € — n) dydn.
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This proves the second identity in (5.3). Let us show now that the function
b-(z,§) defined by (5.3) is in S™. In fact, integrating by parts we have for
arbitrary M and N

R Ib.(,8) =
/e""”(v)"“(l =AM {7 (1 = A)) ags-(x, v, & 1)} dydn,
where
e 8 887,
O (0 EM) = Y ) (G8828)a) (2 + m,z = (1 =)y, € ~m).
7SR
Using (4.3). we can estimate under the integral sign by
y L\ R o
Az + 7y, & — )" ()™ (1 I Aa -+ Ty, € = m)(v) ') (W) =M ()=
< Az +Ty.6 - n)m—|allil(”)m’nu'[mm—zl«l(")—zl\‘_ (5.5)
Using (3.8), we may further estimate in (5.5)
Az + 7y.€ — ")m—|n el X A(:,'.‘E)m-lnlﬂl«l_"‘ ,I)))ru]n ot Blp
and choosing sufficiently large M and N we conclude b, € S™. It remains to
prove that b, satisfies (5.2) and admits the asymptotic expansion (5.4). Let us

denote for s moment A7, the kernel of the operator in the right-hand side of (5.2);
we have for ¢ € S(R?")

) / D€ (1 = 1)z + 7y, ) Bz, y) drdyde

/e"""b,(v,f)dz(v +rw, v — (1 — 7)w) dvdwdé,

by setting z = v + 7w, y = v — (1 = 7)w. From (5.3) we then get

(K¢, @) = (Fo—eKalv+ Tw,v— (1 = T)uv),f;_'-{o(u & 7w, v — (1 — 7)w))
{(Kalv 4 7w, v = (1 = T)w), (v + 7w, v = (1 = 7)w)) = (Ka,¢).
(5.6)
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This gives (5.2) and proves also the uniqueness of the symbol b,. Finally, to
obtain (5.4), we argue on the expression

be(2,€) = / eV =a(z 4 ry,z — (1 — 1)y, 1) dydn

and expand with respect to y at y = 0:

alz + 7y, — (1= 1)y,n)
(1)
Al

(1 - (f’.'i’;u) (@, 2,m) + rv(a,ym).
[B49l<N

Since
/c""""’y""" (Bf.’();,’a) (@,@,n) dydn = (=1)¥*1 (r'ié"’l)ﬁ.’l);n) (2,2, €),

it will be sufficient to prove that Ry(z,£) J e -Opy (@, y,n) dydn is in
S§™=2N_ This is easily obtained by giving to the remainder 7y (2,,7) the stan-
dard integral form and repeating the arguments in first part of the proofl. m

Definition 5.6 Let A € L™, With the notations of the preceding Theorem 5.5
we coll b.(2,€) the T-symbol of A. The symbol by(x,£), corresponding to v
(0,....0), is also called the left symbol of A: by(x.£) corresponding to
(1., 1) is called the right symbol and by s corresponding to T = (1/2,...,1/2)
the Woyl symbol. In the sequel we shall also write by for the Weyl symbol.

From (5.3) we get the kernel in terms of the 7-symbol: Ka(x,y)
’T_'.,_'bv((l — 7)o+ 7, ). It is worth to write down explicitly the three ex-

Au(z) = / e ==V (2, )uly) dyde

- / = bo(z, £)a(§) ds, (5.7)
Au(z) = /e"""{b,(y.{)u(y)dydﬁ‘ (5.8)
Au(z) = /e""‘”‘hr (z; ".{) uly) dyde, (5.9)
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and list the corresponding asymptotic expansions in terms of the amplitude
a(z,y,§):

bo(@, €) ~ Zi (98 Dga) (z,2.8), (5.10)
— 1)l
bz, ~ Y EHT (@ Dga) (. 2.8), (51)

—1)8l 71\ B+l
m»(r.swg ﬁlv)] (5) (88 D2Dja) (22,8, (512)
6 Symbolic calculus

We give now some applications of Theorem 5.5. The following theorem
allows us to deduce the expression of the mp-symbol of A € £™ from that of the
Ti-symbol, 7y # 7, in terms of an asymptotic series.

Theorem 6.1 Ifb,,(x,£), by (w,&) are respectively vy and mp-symbols of A € L™,
then:
1
bra(@,6) ~ D —(n — 72)° B¢ DZbr, (.6). (6.1)

a

For a given A € £™ with amplitude a(z, y,€), let us now consider the trans-
posed operator “A and the formal adjoint operator A*. Coming back to the proof
of Theorem 5.1, we have that ‘A, defined by

("Av,u) = (v, Au), u, v € S(R"), (6.2)
belongs to £ with amplitude
‘a(@,1,6) = a(y,z, ~§). (6.3)
Let us also introduce the conjugate operator A:
(Au,v) = (Aw,0), u,veSR")
belonging to £7 with amplitude
a(w,y,§) = alz,y, =€)- (6.4)
Then we define A* = ‘A = (T4), satisfying
(A'v,u)p2 = (v, Au)z,  wv ES(RY), (6.5)
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Therefore also A* belongs to S™, and it has amplitude
a* (e, 1,€) = a(y, 7,). (6.6)

Let us express the 7-symbols of ‘A, A, A*, which we shall denote by ‘b, (x,£), be(z, €),
b2 (=€), in terms of be(x,§). We first observe that, in view of (5.3) and (6.3),

(e Y/ / & Wa(ne (1 = 1)y by~ €) dydn = b1 (2 ~6).

Using then Theorem 6.1 we conclude:

Theorem 6.2 If A &€ L™, then ‘A € L™ and the T-symbol ‘b, (2,£) of ' A can be
exprossoed in terms of the r-symbol b.(z, &) of A by the formula

tbe(@, &) ~ Y ﬁ(l - 27)°88 Db, (x, 6).

@

From (6.4), (6.6) and (5.3) we have similarly b.(z,£) = b, (x, —€), b} (x, &)
by—»(x,£) and, summing up, from Theorem 6.1 we obtain:

Theorem 6.3 If A € L™ then A* € L£™. Moreover the T-symbol b*(x, ) of A*
is related to the (1 — 7)-symbol by—+(z,§) of A via the relation

by(2,§) = bi—r(z,£),

and can be expressed in terms of the r-symbol b.(x,£) of A via the asymptotic
1
b} (@,€) ~ zﬂ: = 27)° 8 Dgb,(x,€).
Corollary 6.4 If A € L™, then by (z,§) = by (2.£). In particular, the condition
A = A is equivalent to the real-valuedness of the Weyl symbol by (x,£).
Finally, we consider the composition A’A" of two pseudo-differential operators,

"€ £ A" € £™". Lot us write A’ in terms of its O-symbol by(z,€) and A” in
terms of its 1-symbol b (x,€); we have from (5.7), (5.8)

Au(z) / =Lt (x, £)(€) dE,

FA")©) = [ Bt dy
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This allows to write
AX'u(o) = [ I @,y uty) due.

Since
c(@,y,€) = bo(@, )b (y, &) (6.7)
el anitTE

/4m”

belongs to S in view of Proposition 4.8, we conclude A’A”
Applying further (5.4) to the amplitude (6.7), we conclude that b.(2,§), the
7-symbol of A = A’A”, has the asymptotic expansion:

18]
be(2,€) ~ Z‘ S = 170 (D2t (o DI (@, )

Applying Leibniz rule, we obtain then the following result.
Theorem 6.5 If A’ € L™, A" € L™, then A = A’A” € L™ t™". The T-symbol

br(2,§) of the product operator A can be expressed in terms of the 0-symbol
by (2, &) of A" and the 1-symbol b of A" by

—1)IBl(B + )! 7
be(@, &)~ > (—Wﬂ’u4)’(021);’%)(0;0;1),). (6.8)
6;127.‘63,?7

Combining (6.8) with Theorem 6.1, we may in principle express b, in terms
of h,‘, b’,{_,, for any 7,7 € R™. A natural choice is, of course, to set 7 = 71 = 7o;
let us consider for example the cases T = (%, %7 %) and s = (0= 20)"

Theorem 6.6 Let by, (z,£), bjy(z,£) be the Weyl symbols of A’ € L™, A" €

L™, Then the Weyl symbol by (z,€) of the product A — A’A" has asymptotic
expansion

13l
bw(z,g)~z( 23 2714 Bl0g D2by (2, €)0F Dby (2, €). (6.9)
B

Theorem 6.7 Let by(2,€), bj(2,€) be the 0-symbols of A’ € L™, A" € L™,
Then the 0-symbol bo(z, €) of A ~ A’ A" has asymptotic expansion

1
bo@,€) ~ D~ 08t (@,€) D20 (x, €).
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7 Anti-Wick symbols

Let ®(2) = n~/4e=317" be the normalized gaussian function on R?", i.c.
[|®|[z2(rany = 1. We begin by remarking that for j = 1,...,2n

G @) = (7.1)
In terms of quantization this means that the map
a(z) ~ Wasa (7.2)

satisfies rule (1.) and (2.) of Section 2. The map (7.2) is called anti-Wick quan-
tization and we shall usually write A, = Wa.e. Further in this section we shall
give a deeper interpretetion of this quantization in terms of L?-projections and
examine it into the frame of the pseudo-differential calculus. For the moment we
want to compare Weyl and anti-Wick quantization on a more informal level con-
cerning differential operator. From (7.1) we expect that, at least for polynomial
observables, the anti-Wick quantization do differs too much from the Weyl quan-
tization. More precisely we remark that if the observable a(z) is a polynomial
in z € R®" then the anti-Wick operator Wy.e is a differential operator. This is
immediate since (7.1) can be easily generalized to z* = z® x ®(z) + R, (z) where
Ra(z) EK& ¢y27. Then a @ is also a polynomial, but by Theorem 6.1, Wye
can written by means of the usual 0-symbol bg(z) which is still a polynomial in
view of (6.1). As the operators that arise in physics are essentially differential
operators it is then natural to ask if the converse is also true, that is if poly-
nomial symbols yield through anti-Wick quantization all differential operators
(with polynomial coefficients). The answer is affirmative as we see from the next
proposition.

Proposition 7.1 For each multiindex o there exists a polynomial Pa(z) such
that

Po(2) * ®(2) = 2% (7.3)
and P(2) = 2% + 30, ¢ 27
Proof. Set P(z) = )0, <, &7, then

Pa(2)+®(2) = Y cp /(; —w)’o()dw = Y :7%(5) /w[""‘b(z)dw

Ba Byy: ySBSa

=3 kylca)s”

ySa
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where
la ey (ﬂ) / WP18(2)duw. (7.4)
ySpsa i

As we require that (7.3) is satisfied, i.e. 2% = 5., k(cs)z7, we get the condi-

tions )
ke (cg) =1

7.5

{ ky(cg) =0, fory<a (]

Let N denote the number of multiindices v < «, then (7.5) is a system of N
linear equations in cg, 8 < a. We show that it has always a solution.

From the first equation of (7.5) we get immediately c, = 1. Consider now the

equations in (7.5) corresponding to multiindices vy with |y| = |e| — 1; they are n

independent equations of the form

e +b=0 (7.6)

with b = 1, so all ¢z with |B| = |a| — 1 are determined. We can consider now the
2n equations in (7.5) for which |y| = |a| — 2, they are again of the form (7.6),
where now b = 375 s, ¢cs (f) JwP=7®(w)dw (cs are already determined for
7 < ), and we see that also all ¢z with || = |a| — 2 are determined. Repeating
the argument we get then for the sistem (7.5) the solution:

Ca=1
.7
{ ¢ == pepcacs() [WP70W)dw for y<a )

[ ]
We pass now to consider the definition of the anti-Wick quantization under
a different point of view. We shall see further in this section that they are
equivalent.
We first consider the orthogonal projection Py, in L2(R™) on the vector

Dy () = 7r’"/4e"z'”e’%|yfz|2, (7.8)

where (y,7) are parameters in R??; that is, for u € L?(R"):
1) = (/@y'q(t)u(t)dl> @, (2). (7.9)

We want to regard P,, as pseudo-differential operator with symbol in the
classes of the preceding sections. To this end, we introduce the multiplication
operator and the shift operator in R™

Myw(z) = e=Mu(z), (7.10)

I\
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Tyu(z) = u(z —y) (7.11)

and set then
Uy = MyT,. (7.12)

Since M;! = M_, = My and T,7! = T_, = T, the operator Uy, is unitary,

ie. Uy = Uys,. Consider now ®o0(x) = a—/4e=3 for which [|®o,0ll2s =
72 [ e=la* 4o — 1, and the orthogonal projection Pog on ®o, with Schwartz
kernel

Koo(@,y) = n"/2e= 2=+l (7.13)

We have @, ,(z) = Uy,,®00(z) and therefore summing up, the orthogonal projec-
tion onto the vector with unitary norm ®, , can be written as P, , = U.,”,Puan!;,;.
Let us begin by computing og0, the Weyl symbol of Fp; from (5.3) and (7.13)

we have

1 1 230 513
00,0(2,§) = FieKoo (a: +5the— 51) are (1P +1el%),

Looking finally for o, ,, Weyl symbol of P, we may write

T

Pyqu(z) = Uy.n/ei(h”'eao.o <

% / @00, (IT“ —9,6— n) u(t) dtde,

2" ‘,5) (U7 bu)(t) dudé

in view of (7.10), (7.11), (7.12). Hence

Py qu(z) = / Vg, (’” 2' ‘,5) u(t) dtde, (7.14)
with real-valued Weyl symbol
Oyn(,€) = gop(z —y, £ — 1) = gne=(I=—vl* He=nl*) (7.15)
Using Corollary 6.4 and summarizing, we have the following result.
Proposition 7.2 The orthogonal projection operator P, on the unitary vector

(7.8) can be written as a self-adjoint pseudo-differential operator, with Weyl
symbol oy, € S(R?") given by (7.15).
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Consider now a € S™; we may define
A= / a(y, n) Py dydn

as integral of operators. To be definite, if u € S(R™), then P, u(z), as a function
of z,y,7, belongs to S(R®"). Since a(y,n) € S™ is a multiplier of S(R?") in view
of Proposition 4.2 and Proposition 4.3, (ii), then the mapping

u € S(R™) — a(y,n) Pyqu(@) € SR’
is continuous. Considering
Au@) ~ [ oy, n)(Py) @) dyin, (716)
we conclude that A acts continuously from S(R™) into S(R™).

Definition 7.3 Leta € S™. We call pseudo-differential operator with anti-Wick
symbol a the map A : S(R™) — S(R™) defined by (7.16).

Inserting (7.14), (7.15) into (7.16), we obtain for u € S(R™)
Au(z) = /ei(z—t).fb (”T'tg) u(t) dtdg, (7.17)
with
bz g) = 2n/a(yyn)e—(h—yl’ﬂe—nt’)dydn
= (2m)""(a * 000)(,8)- (7.18)

It follows in particular that the operator with anti-Wick symbol a(z,€) — 1 is
the identity operator. Before analysing in detail (7.18), we list some direct conse-
quences of (7.16); they are actually valid under much more general assumptions
than a € S™.

Proposition 7.4 Assume that A has anti-Wick symbol a(z,€) € S™. Then the
(formal) adjoint A* has anti-Wick symbol a(z,€); in particular if a(z,€) is real
valued then A is self-adjoint.

Proposition 7.5 Assume that A has anti-Wick symbol a € S™. If a(z,€) > 0
for (2,€) € R*", then A > 0, that is (Au,u)p2 > 0 for all w € S(R™). Morcover
ifa(z,€) > 0 for (z,€) € R*, then A > 0, i.e. (Au,u) >0 foru # 0.

‘e = _a\
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Proposition 7.6 Every operator A with anti-Wick symbol in S° is bounded in
L*R").

We now return to (7.17), (7.18), and show that A is actually a pseudo-
differential operator in the classes of the preceding sections.

Theorem 7.7 Let A be an operator with anti-Wick symbol a(z,&) € S™. Then
A € L™, Precisely, its Weyl symbol b(z, ) defined by (7.18) belongs to S™ with
asymptotic expansion b(z,€) ~ 3, 5 %%":?E’Bfa(z,gy where

e 2,./nayae—(ly\%m?)dydn; (7.19)

in particular coo = 1 and cop = 0 for odd |a + 3|.
Proof. It will be sufficient to prove that, for b(z,£) defined as in (6.16), we have

Ry=b- 3 %ag&;a eispzels (7.20)
latBISN

In fact, we may Taylor expand

1 6 a B 1 " p

awn) = ¥ Srmoola@&)n -9 W o) (@ y.& ).
latB|<N

Inserting in the expression b(z,€) = 2" [ a(y,n)e~(=="+e=n") dydn, we obtain

(7.20) with cap given by (7.19) and

Ry(x,€) = 2"/TN(Z,y,E,n)e'“"!’lu‘f"’mdydn,

To prove Ry(x,€) € S™ N we appeal to the temperance property, and precisely
10 (3.8). The theorem is therefore proved. m

Not every operator A € £™ admits an anti-Wick symbol a € S™; observe
in fact that the Weyl symbol b(z,€) in (7.18) must be an analytic function of
(z,£) € R*™. From the symbolic calculus we have however a converse of Theorem
7.7 modulo regularizing operators, cf. Theorem 5.4.

Theorem 7.8 For every A € L™ there exists a'(z,&) € S™ such that, writing
A’ for the operator with anti-Wick symbol a'(z,€), we have A — A" € L=, If
a(z,§) is the Weyl symbol of A, then a' ~ 37 ; émxagaga for suitable constants
Gas € R, with ¢ = 1, Gap =0 for |a + 8| = 1.
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We may now draw some important conclusions, concerning boundedness and
compactness of pseudo-differential operators. Namely from Theorem 7.8, Propo-
sition 7.6 and Proposition 7.5 we have:

Theorem 7.9 Every A € L0 extends to a bounded operator on L*(R™). More-
over, if A € L™ withm < 0, then A is compact in L*(R™).

Theorem 7.10 Let A € £* have Weyl symbol a(z,€) > 0; then for a suitable

C>0
(Au,w)p2 > —C|lul| g2, for allu € S(R™). (7.21)

It is possible to improve Theorem 7.10, precisely the conclusion (7.21) keeps
valid if @ € S* and a(z,€) > 0, cf. Hérmander (9], Chapter 18.

However pseudo-differential operators with positive Weyl symbol are not pos-
itive in general. Consider for example in dimension n = 1 the symbol a(z,€) =
22€2 > 0. The operator A with Weyl symbol a can be written as A = %(zl); t
D,x)* — 1 and therefore (Au,u)2 = i||(@D; + Dea)ul|?s — f[|ull?., where the
right-hand side is negative for suitable v € S(R).

As in Quantum Mechanics the smoothness of the observables is not required,
we remark finally that it would be interesting to extend the pseudo-differential
calculus to some classes of non-smooth symbols. In this regard we recall next
some results where the anti-Wick symbol lies in the LP(R?") spaces. As at the
beginning of this section, let A, be the operator with anti-Wick symbol a(z) and

@(z) the gaussian function.

Theorem 7.11 Let a € LP(R?), 1 < p < co. Then the linear map T : a €
LP(R?") — A, € B(L*(R™)) is continuous.

A proof of this result making use of the Closed Graph Theorem can be found
in [4]. Other results are the following.

Theorem 7.12 Let a € LP(R?"), p € [1,2], then A, is a Hilbert-Schmidt opera-
tor and for the Hilbert-Schmidt norm ||Aq|l2 we have ||Aqll2 = [|b]lp2(g2n), where
b= (27)"a*® € L*(R?") is the Weyl symbol of A,.

Theorem 7.13 Let a € L'(R?"), then A, is a Trace Class operator and:
Tr(4s) = @)™ [ aly,n) b(o — o€ — ) dodydedn.

For a deeper investigation in this direction see Wong [14].

(O
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8 Hypoelliptic Operators

Definition 8.1 A symbol a € S™ is called A-hypoelliptic if there exist | < m

and R > 0 such that
A(z) <la(z)l, for|z|=R (8.1)

and for each v € N*" we have

|67a(2)] < la(z)|A(z)™M,  for|z| > R. (8.2)

We denote HS™! the corresponding class of symbols. We say that a € S™ is
A-elliptic if (8.1), (8.2) are satisfied with | = m in (8.1) and we use the notation
ES™ instead of HS™™.

When checking A-ellipticity, it is convenient to use the following propositions.

Proposition 8.2 Let a € S™. We have a € ES™ if and only if there exists

R > 0 such that
A(z)™ < |a(z)], for |z| > R. (8.3)

Proof. In fact, from the very definition of class S™ we have [07a(z)| < A(z)™ D!
and therefore (8.3) implies (8.2). m
Example 8.3 (Standard elliptic polynomials) Consider the weight function
1/2
A(z) = (1 SR :]2’") , which is p ally equivalent to |z|. Consider a

polynomial a(z) = 3|4 1<m Caz® and its principal part a,(z) = 3-|4)-p Caz®. We
have that a € ES" if and only if |2|™ < |au(2)|; because of the homogeneity, this
is equivalent to the standard ellipticity condition

a,(2) #0, forz#0. (8.4)
Example 8.4 (Quasi-elliptic polynomials)
Fiz M = (M,...,My,), 2n-tuple of positive integers. We write p
maz; M; and

m = (m,...,mgy), withm; = p/M;, j=1,...,2n (8.5)

and consider consequently a(z) — > aeme<u Caz®, with quasi-principal part

ay(z) = Z CaZoe (8.6)

am=p
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Define
o 1/p
A= 1Y% (87)
=1
which is asympotically equwvalent to
Bl =Y e:e* (8.8)
am

We have that a € ES* if and only if
[elm < lau(2)] - (8.9)

Let us observe that a,(2) is quasi-homogeneous of degree yu with respect to the
weight m = (ma, . .., mgn) m (8.5), i.e.

@, (E 20 bt e )l = Eha (@l e heem)) for all t > 0.

Since [z]p in (8.8) is also quasi-homogeneous of degree ju, we have that (8.9) is

q lent to the quasi-ellipticity diti
a,(2) #0, for z # 0. (8.10)
For z = (z,€) € R?, a simple ple of quasi-elliptic poly ial is given by
&M 4 rak, Imr # 0 (8:11)

where h and k are positie integers;
We begin by starting without proof some preliminary propositions.

Proposition 8.5 (i) If a € HS™!, then a~' € HS=4=™.

(i) If @ € HS™!, then a='87a € S~ for every 7.

(iii) Ifa € HS™!, b€ 11S™ 4 then abe HS™Hm HY.

(iv) If a € HS™ and 7 € $™" with m/ < [, then a -+ € HS™!.

Definition 8.6 Let A € L™ and 7 € R™. We write A € HL™* if b, (,E),

the T-symbol of A, belongs to HS™*. [JL™ are correspondingly defined to be the
classes of all the pseudo-differential operators wilh T-symbol in 12.5™.

The next result shows that the definition of HL™!, EL™, does not depend
on 7 € R™.
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Proposition 8.7 Let 7y, 7 € R™ begiven. Ifb., (z,£), the T1-symbol of A € L™,
is in HS™!, then also the Ta-symbol by, (2, €) belongs to HS™!,

Remark 8.8  The preceeding proposition, jointly with Theorems 7.7, 7.8, gives

that A belongs to HL™! if and only if it admits, possibly modulo regularizing

operators, anti- Wick symbol in HS™.

Proposition 8.9 (i) If A€ HL™!, B e HL™Y, then AB € [ gmtm' il

(i) If A € HL™!, then ‘A € HL™ and A* € HL™!.

(iii) If A € HL™ and R € L™ withm! <, then A+ R € HL™!,

Theorem 8.10 If A € HL™!, then there exists B € HL™ =™ such that
BA=I+S, AB=I+S5,, (8.12)

where S; € £L7°°, j = 1,2. Such a map B is said parametrix of A.
J

Proof. Let us begin by considering the operator B; with Weyl symbol b;(z)
a(z)~, belonging to S~b=™ in view of Proposition 8.5 (i). From Theorem 6.6 we

have
BiA=T+ 'Ry, (8.13)

where R; has Weyl symbol 7; with asymptotic expansion
ri(@, &~ > (—‘Mz-'“ t8lge DBa~ 162 D2a (8.14)
1(2, PTE] 6 Dz x Dy a. i
lat-B(>0
From Proposition 8.5 (ii), (iii) we have for all a, 3
#Dfa'0{D2a = (a7'og Dia™") (adf D2a) € 57214,

which implies 7, € 572, i.e. Ry € £72 From (8.13) we get for every N the

identity
( 3 (~1)JR{) BiA=1I—(-1)¥RY. (8.15)
0.

Sj<N
Let us write 7; for the Weyl symbol of R{, which one can compute by applying
repeatedly Theorem 6.6 to 7y in (8.14). We have r; € S~% and using Proposition
4.5 we may construct
T~y (=1)r; € 8. (8.16)

720
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The operator R € S° with Weyl symbol r satisfies, in view of (8.15), (8.16),
RB1A =1 + S,, where S) € L= Tperefore the first identity in (8.12) is valid
for B = RB. Similarly we construct B € HL =™ satisfying the second identity.
]

Note that the parametrix is unique, modulo terms in £=>°. Hence operators in
HL™! are globally hypoelliptic, in the following sense.

Corollary 8.11 Let A € HL™!. If u € S/(R"), and Au € S(R™), then u €
S(R™).

The solvability of the equation Au — v, with A € HL™! will be discussed
in Section 10. We begin here to give the following special result of existence and
uniqueness, which will be basis for the definition of the Sobolev spaces in the
next Section 9.

Theorem 8.12 Let a € ES™ and assume a(z,€) > 0 for every (z,€) € R*™.
Denote by A the operator with anti-Wick symbol a(z, §). The map A : S(R™) —
S(R™) is an isomorphism, extending to an isomorphism on S'(R™). Moreover,
the inverse A~! belongs to BL™™. A
Proof. Observe that A actually belongs to EL™, in view of Remark 8.8, and is
self-adjoint in view of Proposition 7.4. Since a(z,§) > 0 implies A > 0 by virtue
of the second part of Proposition 7.5, the injectivity of A on S(R™) is granted.
We want to show that the equation Af = g admits a solution f € S(R™) for
every given g € S(R™). To this end, consider b = a~!, which belongs to £S~™ in
view of Proposition 8.5 (i), and denote by B the operator with anti-Wick symbol
b. Since b(z,€) > 0 for every (z,€) € R?™, we have that also B is injective on
S(R™). Therefore we may reduce ourselves to find a solution f of the equivalent
equation
BAf = Bg € S(R"). (817)

On the other hand we have

BA=I+R, with R € £72 (8.18)

This can be proved by observing that the Weyl symbols of 4 and B are re-
spectively, in view of Theorem 7.7: aw = a + a, witha € S™-2 and by
a=! + b, withb € S~—™=2. Since B is in EL™™ by virtue of Remark 8.8, from
Proposition 8.9 (i), Theorem 6.6 and formula (6.9) we then deduce BA € EL
with Weyl symbol 1 + 7, where 7 € S=2. The claim (8.18) is therefore proved,
and equation (8.17) reads

f+ Rf = Bg € S(R™). (8.19)
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Now we can apply the standard Fredholm theory to the map I + R : L*(R") —
L*(R™), since R is compact in L?(R™) in view of the second part of Theorem
7.9. Namely, the equation (8.19) admits a solution f € L?(R™) for every right-
hand side in L2(R™), provided u { Ru = 0 has no non-trivial solution in L*(R").
On the other hand we know from Corollary 8.11 that every u € L*(R") solving
u + Ru = 0 belongs actually to S(R™), whereas I + R = BA is injective on this
space as product of injective operators.

We can therefore solve (8.19) by a certain f € L*(R"), which actually belongs
to S(R™) in view of Corollary 8.11. Since such f also solves Af = g, we have
proved that the continuous map A : S(R™) — S(R™) is an isomorphism.

Finally we observe that the inverse A~! on the Fréchet space S(R™) is also
continuous, and then by transposition A extends to an isomorphism from S’'(R™)
to 8'(R"). The remark at the end of the proof of Theorem 8.10 shows A~! &
EL™™, that gives the conclusion. m

Example 8.13 We may actually find a symbol a satisfying the assumptions of
Theorem 8.12, i.e. a € ES™ and a(z) > 0 for every z (2,€) € R*™. An

obvious example is
a(z) = A(z)™. (8.20)

9 Sobolev spaces

By using anti-Wick quantization, a scale of Sobolev spaces, depending on
the parameter s € R, can be associated in a natural way to any given weight
function according to the following definition.

Definition 9.1 Let a € ES® satisfy a(z,€) > 0 for every (z,€) € R*™ and A be
the operator with anti- Wick symbol a, then we set:

H* = A7 (L3(R™)) = {u € S'(R")|Au e L*(R")}.

From Theorem 8.12, A is a bijection between H*® and L?(R"), therefore a
natural Hilbert space structure is induced from L*(R™) on H* via A.

Furthermore the definition of H* as well as its topology are independent of
the operator A. More precisely we have the following

Proposition 9.2 H* isa Hilbert space with respect to the scalar product (u,v) js
(Au, Av);2 and the corresponding norm |[u s = ||Au||;2, where A is an op-

erator with strictly positive anti-Wick symbol a € ES®. Moreover if b is another
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strictly positive symbol in the same class ES*, then the operator B with anti-
Wick symbol b defines the same space H* and the two norms || Aul| ;2 and || Bul| ;2
are equivalent.

The proof is obvious in view of Theorem 8.12. We remark that it could be
sometimes useful to consider the Hilbert space topology of H* defined through a
fixed standard scalar product. We shall do this by considering as "standard” the
scalar product associated to the operator W, with anti-Wick symbol A(z, £)*, cf.

Example 8.13.

Proposition 9.3 If A € L™, then it defines for every s € R a continuous oper-
ator A: H® — H*™™.

Proof. Referring to W;, the operator in E£! with anti-Wick symbol Af, ¢ € R,
we have

4wl grs-m = |Wy—mAullzz = |Wemm AW Wiul|z2 < Cl[Wiullz2 = Cllullae,

since Wy, AW,;! € £° and we may apply Theorem 7.9. m
Proposition 9.4 Fort > s we have a compact immersion j : H' — H*.

Proof. Write j = W_,WI W, 'W,, where W)W ! € L*~t : [R") —
L*(R™) is compact, in view of the second part of Theorem reft6.4. Since the
maps W, : H' — L*(R™), W_, : L*(R") — H* are continuous, the proposition is

proved. m
We have the following obvious consequence of Proposition 9.4.

Proposition 9.5 An operator A in L™ defines a compact map A : H® — HY,
whenever s — (> m. In particular, a regularizing operator is continuous and
compact from H* to H* for any s, { € R.

Proposition 9.6 lor cvery s € R, we have continuous immersions j : S(R™) —
H?, j: H* — S'(R"); morcover ), H® = S(R?), I, H® =S/ (R?).

Proof. The first assertions follow from the very Definition 9.1. Moreover,
since (J,,, £™ contains all the differential operators with polynomial coefficients,
we have () H* = S(R™). Similarly, using the structure theorem for S'(R™), we

obtain J, H* = S'(R"). m

Example 9.7 An equivalent definition of the space I* in the case when A
is defined as in example 8.4 with weight m = my,...,mg, and s multiple of
all my, is the following H® = {u € S'(R") | 2*D%u € L*(R") for all v
(. B), such that v-m < s} with norm [|ullgrs = 3, (a,8)y-m<s [lz* DPul| 2.

Yaue A\
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10 Fredholm operators

In this section we deal with the Fredholm property of the hypoelliptic operators
in £L™. For completeness we begin by recalling some elementary fact about
Functional Analysis.

Let F and F be Banach spaces and let B(E, F) denote the space of the
bounded linear operators from £ to F.

Definition 10.1 Let A € B(l, F); we indicate with Coker A the quotient space
F/ImA. An operator A € B([, F) is said to be a Fredholm operator if both
Ker A and Coker A are finite dimensional. We set Fred(£2, F') to denote the set
of Fredholm operators from I to I and for A € Fred(E, F) we define the index
of A as the integer number Ind A = dim Ker A — dim Coker 4.

Proposition 10.2 If A € Fred(F, ') then there exist an operator B € Fred(F, I)
and two operators Py and P, such that:

BA =1Ig - P,

AB=1Ip— P,

and Py and P, have finite rank (I;; and Ip denote respectively the identity op-
erators on E and F'). More precisely Py is a projection operator onto Ker A and
Ip — P is a projection onto Im A.

Let us denote by K (F, I') the set of the compact operators from £ to /'; in
the opposite direction we have the following result.

Proposition 10.3 If A € B(E, I') and there exist two operators By, By € B(1, I)

such that
ABy =Ip — Ry

with Ry € K(E, E) and Ry € K(F, F), then A € Fred(E, F).

{mA:m—m

Proposition 10.4 If A € Fred(B, F) and A’ is its dual operator, then A" €
Fred(F', E') and Ind A’ = — Ind A.

The analogous property holds in the case of Hilbert spaces, that is, if Iy, Hy
are Hilbert spaces and A € Fred(H, Ha), then A* € Fred(Hz, Hy) and Ind A*
~Ind A. More precisely Ker 4 = (Im A*)* and (Im A)* = Ker A*.

We come now to the case of pseudo-differential operators with symbols in the
classes S™, acting on the Sobolev spaces H* with s € R.
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As we know an operator A € £™ can be viewed as a continuous operator both
on S(R™) or on 8&'(R™). In the former case A turns out to be also a continuous
operator from H* to H*~™ with domain S(R™), so that it has a unique continuous
extension to the whole space H*. It is a straightforward matter that this extension
coincides with the restriction to H* of the operator A viewed as an operator on
S'(R™).

Definition 10.5 We shall denote with A, (sometimes in the sequel again A by
abuse) the restriction of A : S'(R™) — S'(R™) to H® or equivalently the extension
of A: S(R™) — S(R™) from S(R™) to H*.

Combining the existence of the parametrix with preceding proposition, with
respect to the Fredholm property we have easily the following theorem.

Theorem 10.6 Let A € L™, then:

(i) A, € Fred(HS, H=™);

(ii) Ind A; = dimKer A — dim Ker A*, Ind A; = dim Ker A — dim Ker ‘A, where

A* is the formal adjoint in (6.5) and ‘A the transposed operator in (6.2), so that

the index is independent of s;

(i) If T € L™ with m/ < m then A+ T} € Fred(H*, H*~™) and Ind(As + 1) =
Ind A;.

Corollary 10.7 If A € EL™ has real principal Weyl symbol then Ind A = 0.

We consider now the following question: Suppose we are given an invert-
ible pseudo-differential operator A. Is the inverse operator A~! still pseudo-
differential in the same class? The answer to the question is affirmative for many
classes of pseudo-differential operators of order zero and leads to the concept of
the Spectral Invariance introduced by Gramsch-Ueberberg-Wagner. References
on this subject can be found in Gramsch [8], Cordes [7]. For the case of operators
in the £° classes, we refer to Boggiatto-Schrohe [5] and state without proof the
following result.

Proposition 10.8 Let A € L° and suppose that A is invertible in the space of
the bounded operators on L*(R™), then A=' € L°.

Example 10.9 Consider in R P = Dy +ra*, with k positive integer and r € C.
We regard P in the frame of Ezample 8.4, Fzample 9.7, with weight (k, 1) and
consequent definition of A. The operator P is hypoelliptic if and only if Imr / 0.
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The transposed operator is given by ‘P = —D. + ra*, in the same class EL'.
The classical solutions of Pu = 0 are the functions

ki)

u(a) — cel-), CeC, (10.1)

which for C # 0 belong to S(R), or S'(R), if and only if k is odd and Imr < 0.
Similarly, 'Pu = 0 admits a non-trivial solution in S(R) if and only if k is odd

and Imr > 0. We may regard P as a Fredholm operator, setting for evample
P: H* — L*(R), with Ind P = dim Ker P — dim Ker 'P given by

0  for k even,
IndP =<1 fork odd and Imr < 0,
—1 for k odd and Imr > 0,

as we compute from (10.1).

Remark 10.10 Concerning hypoelliptic operators in HL™!, they cannot be re-
garded in general as Fredholm on H®. However, adapting the preceding arguments,
we may easily show that A € HL™' is a Fredholm operator on the topological

spaces S(R™), S'(R™) in the following sense:
(i) the map A : S'(R") — S'(R") satisfies Ker A C S(R™) and dim Ker A < oo;

(1)) Im A is a closed subspace in S'(R™);
(i) for Coker A = S'(R™)/Im A we may find representatives in S(R™) and we

have dim Coker A < co.
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