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Abstract

This article is an expanded version of notes for a series of lectures given at
the Corso estivo Categorie ¢ Topologia organised by the Gruppo Nazionale
di Topologia del M.U.R.S.T. in Bressanone, 2 - 6 September 1991. Those
notes have been brought up to date by the addition of new references and a
summary of what has happen in the area in the last ten years.

In 1991, the Italian Gruppo Nazionale di Topologia organised a summer course
on Category Theory and Topology in the delightful setting of the town of Bres-
sanone. There were several series of lectures planned and they asked me to give
some on abstract homotopy theory and its interaction, both with category the-
ory and with topology. The notes for the course were typed up and were made
available as preprints from both Genova and Bangor. In the ten years since that
meeting, I have been asked on several occasions if there was a published version
of the course, or was there a version online somewhere. It seemed that others
had found the notes to be of some use as a way into the area, giving, as I had
hoped, some intution about what the problems were, what the potential for new
applications is and so on. There has been no published version, nor web version
available until now and my stock of hard copies was diminishing, and the contents
was not as up to date as they might be, so ... .

When it was suggested that I write an ‘overview’ article on my own area of
research for Cubo, I realised that there was here a good opportunity to prepare an
updated version of the notes. It would fulfil the request from the editor and would
make the notes more widely available, as a similar version could be put ‘on-line’.
In fact, in retyping the notes I found that not many changes did need making and
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this article has retained the form of notes for an informal postgraduate course
(complete with suggestions for exercises etc). The main body of the material has
been updated only in as much as the references have been changed to account
for publication of material previously in preprint form, but in the last ten years
several excellent texts and papers on the subject matter have been published so
I have added another section with a discussion of the view of the various topics

today and have given a supplementary bibliography.
I hope the notes are still found useful. They were aimed at postgraduate
students one year into their studies, so are intended to be approachable.

1R Bangor, 2001.

Aims of the course.

e To give the background and some historical perspective on Abstract Homo-
topy Theory.

e To introduce some of the key ideas of abstract homotopy, its different
‘schools’ and how they interact and to indicate the sources in which they
may be found.

e To try to help build up categorical and geometrical intuition on the subject
which, by its very abstraction, can seem too unapproachable to be of use.

e To provide, where possible, a unifying ‘overview’, by concentrating on cer-
tain ‘themes’ that illustrate:

. what is abstract homotopy theory,
. why the problems that form the subject matter of abstract homotopy
theory can be of interest outside the confines of that theory,

[

but they will not attempt to prove deep results nor do more than skate over
the surface of the subject.

Prerequisites

* A basic knowledge of homotopy theory with some intuition about the fun-
damental group (or fundamental groupoid), polyhedra, etc. A knowledge of
the higher homotopy groups would be useful, but is not essential. In the last
section, some covering space theory is used, but this can be approached via
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sheaf theory for the reader with a categorical or algebraic geometric back-
ground or can be found in books such as Massey [73]. All the material on
groupoids and much more can be found in Brown [13].

A first course in category theory covering categories, functors, natural trans-
formations, limits (and colimits) and the idea of adjoint functors. (At the
Corso estivo such a concentrated course was given by R. Betti.) This sub-
ject matter corresponds approximately to the first five chapters of Mac Lane
[69], but we will not need the depth given there.

For the last section of these notes, some ideas about sheaves and toposes
are assumed. At the Corso estivo, such material was beautifully covered in
lectures by F. Borceux and the notes are available (Borceux, (8]).

1 Introduction to Abstract Homotopy Theory

To understand the possible aims of abstract homotopy theory, it will help to
list some general ‘problems’, some of which are of a philosophical or metatheoretic
nature, others are very pragmatic and practical.

e Notions of deformation and of homotopy occur in many parts of mathe-
matics. Such ideas are central in topological homotopy theory, but what
is homotopy theory? What is ‘a homotopy theory’? As one talks of ho-
mology and cohomology theories, what explicit structures, that exist in the
topological case, are needed for homotopy theory? In other words: ‘what
is homotopy theory?’ and ‘what makes homotopy theory work?’

In algebraic topology, one often looks for algebra that models the topology.
How can one look for algebraic models of homotopy types and once one
has found them, can one ‘do homotopy theory’ with them? This leads to a
related problem:

Early models for algebraic information on homotopy types, such as chain
complexes, led to the study of chain complexes of modules, etc., which
represented ‘algebraic homotopy types’. Their study led to the growth of
homological algebra. Finding newer, fuller algebraic models for homotopy
types that take account of non-abelian behavior would seem to open the
door to a process of adaptation which could have implications in non-abelian
cohomology, homotopical algebra and hence, in particular, in algebraic ge-
ometry. This depends on being able to ‘do’ homotopy theory with such
models of algebraic homotopy types, and not just at a trivial level.
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o To manipulate algebra, one uses categorical tools such as limits and colimits.
What are the good categorical tools for working with homotopy theory?

In some of the applications of abstract homotopy theory, one is studying
geometric objects such as spaces; one is using a geometric notion of homo-
topy, but the tools used, and even the language used, seems simpler when
viewed from the abstract viewpoint (cf. Edwards and Hastings [36] for
strong shape theory, Porter [79] and Hernaridez-Porter [46], [47] for proper
homotopy theory using inverse systems and Baues [5], (6] for an approach
to classical homotopy questions with remarkable new results, using in part
insight gained by the abstract homotopy theory he develops. There is also
work by Baues with Ayala, Marquez, and Quintero which is in preprint form
and uses a direct abstract homotopy theory approach to proper homotopy
theory).

2 First Theme: What is a Homotopy Theory?

To provide possible answers to this question, we start by listing some exam-
ples. Some of these will be examined in more detail later.

A brief list might include Spaces, Groupoids, Simplicial Sets, Simplicial Ob-
jects in other categories, Cubical Sets, Chain Complexes and Small Categories.

In more detail:

Spaces: There is perhaps no real need for explanation here, but there are
various points worth making that can serve as an introduction to some of the
ideas that come later. We consider a ‘suitable’ category, Top, of topological
spaces and continuous maps. Homotopy between maps is defined by maps from
a cylinder:

‘H: fo= fi : X — Y’ can be read as * fp is homotopic to fi by the homotopy
H'; it interprets as ‘fo, fi : X = Y in Top, H : X x I = Y (where I = [0,1])
and H|X x {0} = fo, H|X x {1} = fi

From the notion of homotopy one gets that of ‘homotopy equivalence’:

: X — Y is a homotopy equivalence if there is a g : ¥ — X and homotopies
/I8 g[ ~ [dy, K : fg = Idy. We also say X and Y have the same ‘homotopy
type' in this case.

Following the usual convention, we put [X, Y] = Top(X,Y)/ =. The category
Top/ =~ has spaces as objects but these (X, Y| as sets of morphisms. Homotopy
types correspond to isomorphism classes in Top/ ~.

There are special classes of maps called cofibrations and fibrations. These are
defined by the homotopy extension and homotopy lifting properties, respectively.




Abstract Homotopy Theory: The Interaction of Category... 119

For example if f : X' — Y is a cofibration then given any homotopy H : X X[ — Z
and any map g : Y — Z such that H|X x {0} = gf. there is a homotopy
K Y x I — Z extending H and starting with g, i.e. K(f x I) = H and
K|Y x {0} = g. This can be written more simply if we write eg(X): X — X x [
for the map eq(X)(2) = (2,0), then it reads f is a cofibration if and only if, given
g9:Y — Z so that

& (X)
s G

Wl
3

commutes, thereis a K : Y x I — Z such that K(f x I) = H and f = Hey(X).
We also say that [ satisfies the homotopy extension property.

Note that fibrations are not a dual notion in the naive sense!

Our final points on Top relate to pointed spaces and homotopy groups. A
pointed space is a pair (X, @g), where g € X. ‘Pointed maps’ of pointed spaces
[ (X @) — (Y,y0) send @g Lo yo and give a category Topg. Homotopies
between such ‘pointed’ maps are assumed to be constant on these base points.
Writing S™ for the n-dimensional sphere, n > 0, special attention is given to the
sets [(S™, 1), (X,20)]. For n = 0, SO is a two point space {—1,1} and we write
mo(X, wo) = [(S° 1), (X, m0)]. It is the set of arcwise connected components of
X, pointed at the component corresponding to . This notation mp is also used
in the unpointed case. In general we write m,(X,z0) = [(S™, 1), (X,@0)]. For
n > 1, my(X,@p) has a natural group structure and for n > 2, this structure
is abelian. A map f : X — Y of spaces is called a weak eguivalence il mo(f) :
mo(X) — mo(Y") is a bijection and for all n > 1 and all possible basepoints 2o € X,
Tn([f) : (X)) — ,(Y) is an isomorphism. Any homotopy equivalence is a weak
equivalence but the converse does not hold in general. For ‘locally nice’ spaces
such as polyhedra and more generally for CW-complexes (which are built up
inductively by attaching ‘cells’ to others of lower dimensions), the two concepts
coincide and any weak equivalence between such spaces has a homotopy inverse.

Groupoids: These are small categories in which all morphisms are invertible.
Groups correspond to the special case in which there is only one object. A special
class of examples are the fundamental groupoids of spaces.

Let X be a space and let X be a subspace of X (often one takes Xo = X

Ve oS
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or Xo to be a convenient finite set of base points). The fundamental groupoid
II; X X consists of all homotopy classes of paths @ : [0,1] — X where a(0),
a(1) € Xp and where if e, 8 : [0,1] — X are two such paths, they are homotopic
as paths if they are homotopic as maps with domain (0, 1] and the homotopy fixes
the ends of the paths, i.e. H : a =~ @ satisfies H(0,t) = a(0), H(1,t) = a(l)
for all ¢ € [0,1] so we must have a(0) = B(0) and a(1) = B(1). The proof that
IT; X X is & groupoid is only slightly different from the proof that (X, ) is a
group. If you have not seen it before, try to prove it or worse, look it up in some
textbook.

The groupoid IT; {0, 1} consists of two objects 0 and' 1, their identities, and
two morphisms ¢ : 0 — 1, t=! : 1 — 0. We will denote this groupoid by I as well.
Homotopy of groupoids can be defined by a cylinder G x I or by a ‘cocylinder’
H', since, if G and H are groupoids, there is a natural isomorphism

Gpd(G x I, H) = Gpd(G, H).

This ‘cocylinder’ is just the category of functors from / to H. It is easily seen to
be a groupoid. (Checking this is left to you!) (Reference for groupoids: Brown,
(13].)

Note in some categories of spaces, there is a cocylinder X/ which behaves
in the same way as above, but as it does not exist in all the usual categories
of spaces that you might need, we have only handled the cylinder based theory
above.

Simplicial Sets: These form an extremely useful category in which to do
homotopy theory. The basic theory can be found in the first half of the survey
article by Curtis, [31], whilst Gabriel and Zisman, (39] look at the theory in a
more categorical way. 4

Let [n] = {0 < 1 < ... < n}, considered as an ordered set or as a small
category. Looked at for small values of n, it is clear why it is considered as a
categorical simplex.

Writing Cat for the category of small categories and A for the full subcategory
of Cat determined by the objects, [n] for n > 0, a simplicial set is a functor
K : A% — Sets and S — Simp(Sets) is just the notation for Sets®”, the cat-
cgory of contravariant functors from A to Sets and all natural transformations

e
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between them. A simplicial set K is often written diagrammatically as

The maps d; : K, — Ku—1, 0 < i < n, are called the face maps, the maps
8it Ky — Kng1, 0 <1 < nare called the degeneracies. (You should be asking
yourself why “contravariant” and why only these maps are shown). The d; and
; satisfy certain “simplicial identities”, which can be found in many books (e.g.
Gabriel and Zisman [39]) or, better still can be worked out for yourself from the
definition of d; and s; (see below). As a simple example of a simplicial set, we can
take Aln|] = A(—, [n]), the n-simplex. Here are some other examples as exercises.

Exercises:

1. Consider the maps

bi:[n—1] = [n] 0<i<n,

oi:[n+1]— [n] 0<i<n,
where 4§, is injective with image not containing the element i, for instance & :
(1] = [2], is given by dp(0) = 1, do(1) = 2, so referring back to the 2-simplex
diagram above §; gives the face which is opposite i; and where o; is surjective
repeating i, (e.g. g : (2] — [1], is 60(0) = 0, 6o(1) = 0, and oo(2) = 1).

Prove that these maps for all n and i generate all the maps in A, i.e. any
[ : [m] = [n] can be written as a composite of os and s, usually in many different
ways. Find some relationships between pairwise composites such as 6;0; = some
other composite of dxs. Then compare your answer with any list of the simplicial
identities (e.g. in (31]), but BEWARE of the dual identities!

As any f in A can be factorised in this way, K € S can be specified by
specifying the d; = K(&;) and 8; = K(0y).

2. Let A™ be the topological n-simplex, rep d by
n
{(to; . ta) ERPHN S HEY
=0
There are maps &, : A" — A" given by

Gi(to, -+ tn) = (to,- - tic1, 0, i, . 1),
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for 0 < i < n, which insert A™ as the i face of A™+1. Similarly let oy : A™ —
A™! be the map

ai(ta; - H5itn)l= (O iR s, s o T

Let X be a space and set Sing(X), = Top(A™, X). Using the compositions with
the 6; and o;, prove that Sing(X) is a simplicial set. It is called the singular
complex of X.

The singular complex construction gives a functor
Sing : Top — S.
This has a left adjoint | |:S — Top called geometric realisation:
Top(|K], X) = S(K, Sing(X))
and the natural map

|Sing(X)| — X
is a weak equivalence (that is, it induces isomorphisms for all 7,s). Check this
for yourselves.

It is sometimes the case that within a category of spaces, Top, one can
form mapping spaces Y, but in any case provided that for each n, A™ is in
our chosen category, Top, and for all X in Top, X x A" is there as well,
we can form something that plays the role of Sing(YY) namely Top(X,Y),
where Top(X,Y), = Top(X x A" Y). (Checking that this is a simplicial set
is again left to you.) A similar device works in the category Cat, of small cate-
gories, Cat(C, D), = Cat(C x [n], D), and even inside S itself (i.e. S(K,L)n =
S(K x Aln], L)).

2. Let C be a small category and put Ner(C), = Cat([n},C). Check that
Ner(C) is a simplicial set. It is called the nerve of C. (The space BC =
|Ner(C)| is called the classifying space of C' and for special cases of C is often
used in algebraic K-theory.)

Simplicial Objects in Other Categories.

If A is any category, we can form Simp(A) = A2™. These categories often
have a good notion of homotopy. Of particular use are:

(i) Simp(Ab), the category of simplicial abelian groups. (This is equivalent to
the category of chain complexes by the Dold-Kan theorem (cf. Curtis, [31])).
(ii) Simp(Gps), the category of simplicial groups. (This ‘models’ all connected

e )
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homotopy types, by Kan [62] (cf. Curtis, [31})). There are adjoint functors
Gt Seonn — Simp(Gps), W : Simp(Gps) — Scomn. With the two natural maps
GW — Id and Id — WG being weak equivalences. There are fairly recent
new results on simplicial groups by Carrasco (22| that generalise the Dold-Kan
theorem to the non-abelian case, (cf. Carrasco and Cegarra [23]).

(iii) Simp(Gpds): in 1984, Dwyer and Kan [35] (and also Joyal and Tierney, and
Duskin and van Osdol, ¢f. Nan Tie (74, 75]) noted how to generalise the (G, W)
adjoint pair to handle all simplicial sets, not just the connected ones. (Beware
there are several important printing errors in their paper [35].) This category
‘models’ all homotopy types using a mix of algebra and combinatorial structure.

Kan complexes and Kan fibrations.

Within the category of simplicial sets, there is an important subcategory
determined by those objects that satisfy the Kan condition, that is the Kan
complezes.

As before we set Aln| A(—,[n]) € S, then for each i, 0 £ i < n, we
can form a subsimplicial set, A*[n]| of Aln| by discarding the top dimensional n-
simplex (given by the identity map on [n]) and its i** face. We must also discard
all the degeneracies of the simplices. This informal definition does not give a
‘picture’ of what we have, so we will list the various cases for n = 2.

A [2]= / 3 -0 face missing

(e le.. Sy

o

Any map p: B — B is a Kan fibration if given any n, i as above and any (n,i)-
horn in E, i.e. any map fi : A'[n] — E, and n-simplex, fo : Aln] — B, such
that

| —
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Ai["]._fl_>E

A==V

Jo

commutes, then there is an f : Alr] — B such that pf = fo and f.inc = fi, i.e.
[ lifts fo and extends f;.

A simplicial set, K, is a Kan complex if the unique map K — A[0] is a Kan
fibration. This is equivalent to saying that every horn in K has a filler, i.e. any
Ji+ Af[n] — Y extends to an [ : A[n| — Y. This condition looks to be purely
of a geometric nature but in fact has a strong algebraic flavour; for instance if
Ji: A'[2] = Y is a horn, it consists of a diagram

265

of ‘composable’ arrows in K. If [ is a filler, it looks like

/ \i;
e
(A
and one can think of the third face ¢ as a composite of @ and b. This ‘composite’

¢ is not usually uniquely defined by a and b, but is ‘up to homotopy’. If we write
¢ = ab as a shorthand then if g : A%2] — K is a horn, we think of g; as being

/
C——

and to find a filler is to find a diagram

X
/ NS
&

.

—_—
e

and thus to ‘solve’ the equation dz = e for o in terms of d and e. This ‘algebraic '

T
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aspect of Kan complexes is very important for understanding recent developments
in the area (cf. Ashley [4], for instance, or the work of Carrasco mentioned
earlier.)

Examples and Exercises.

1) Sing(X) and Top(X,Y) are always Kan complexes. Why?

2) Ner(C) is Kan if and only if C is a groupoid. Prove it.

3) A simplicial set K is weakly Kan if for any n and 0 < k < n, any (n, k)-horn
in K has a filler. Prove that for any C any small category, Ner(C) is weakly
Kan.

Back to * What is homotopy?’

In each of these settings, and in many more, one has a notion of equivalence
(weak equivalence or homotopy equivalence depending on the context). Suppose
C is a category with a collection, X, of maps called weak equivalences (no prop-
erties are thought of as being attached to the name, for the moment, it is just a
name). We can form a new category Ho(C) = C(X~') by ‘formally inverting’ the
morphisms in £. We do this by taking for each f € X, say [ € C(X,Y), a new
symbol f~! and we add it into C(Y, X). We then form composite words in the
old arrows together with all these new ‘inverses’ and if we ever see a pair, f/~!
or [~ f, we cancel it out. (See Gabriel and Zisman, [39] for a proper description
of this process). The resulting category comes with a functor v : C — Ho(C)
with the nice universal property that if @ : C — D is any functor such that for
all f € ¥, a(f) is an isomorphism in D, then a factors uniquely through v, i.c.
there is a unique a : Ho(C) — D such that

c>\ & A‘D

Ho(C)

commutes. This category will be called the homotopy category of C (and usually
we will miss out mention of X).

We will need this construction often later. We note that using it one can
prove, for instance, that Ho(Top) = Ho(SimpGpds) for a suitable definition of
weak equivalence in SimpGpds (cf. Dwyer and Kan [35]).

Common structure in the examples?

There are various interacting structures and therein lies the problem in de-
ciding exactly what is an ‘abstract homotopy theory’. We note various attempts
to encode at least part of that structure.
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a) Quillen: (82, 83, 84)

This is one of the most widespread of the structures by which I mean that
it is elegant and quite powerful, so has often been considered as the basic ab-
stract homotopy theory to use. It considers a category C with infinite limits and
colimits and three classes of morphisms called weak equivalences, fibrations and
cofibrations, whose behaviour, and in particular whose interaction, is governed by
various axioms. (We do not give them here as they can be found in many sources
in the list of references.) The origins of the work may be found in deformation
theory and the need for a cohomology of commutative algebras (cf. Quillen, [84]).
Once developed, Quillen used it highly successfully in [83] to produce new results
on rational homotopy theory.

One may criticise it from various viewpoints. For instance, the weak equiv-
alences, etc. are given right from the start and no guidance is given how these
classes might arise. Thus weak equivalence are often given by ‘external’ infor-
mation (e.g. f: K — L in S is a weak equivalence if |f| is a weak equivalence
in Top). This does not help one when interpreting the notions geometrically.
Linked to this is the fact that several important ideas such as that of fundamen-
tal groupoid, homotopy limits and even homotopy equivalence are ‘out of place’
in the theory. If one wants the homolopy theory primarily to study some notion
of homotopy, Quillen’s theory is not designed with your application in mind. It
can do a lot, but it is not the universal solution. (Of course I do not claim to
know if & universal solution exists, let alone what it is!)

b) Kan: [61].

Kamps: numerous articles from 1968 onwards, see (50, 51, 52, 53, 54, 55, 56,
57, 58, 59| and, of course [60].

Here the ‘primitive’ idea is that of abstracting the structure of the functor ‘X'
goes to X x [0, 1]’ used as the basis for topological homotopy theory. Dually one
can use ‘X goes to X7’ when that exists.

Let C be a category. A cylinder functor on C is a functor I : C — C together
with natural transformations eg, ey : [dc — I and p: I — Ide with pey = pey =
Id. This defines a notion of homotopy in an obvious way, and hence a relation
on the sets C(X,Y), etc. This relation need not be an equivalence relation, but
one can still form C(2-1) for ¥ the class of homotopy equivalences.

To control extra structure, form Q(X,Y)n = C(I"X,Y). These sets together
with the maps Q(X,Y)n, — Q(X,Y)n1 induced by the e;(X), for i = 0,1 and
Q(X,Y)n — Q(X,Y)n-1 induced by p(X), give Q(X,Y) the structure of a cubical
set. Cubical sets are somewhat similar in definition to simplicial sets, but one
replaces simplices, [n], by cubes {0 < 1}, to get the basic category. One can
define (n,1)-boxes and Kan conditions somewhat as before and the existence of

‘e = a)
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fillers for certain boxes gives properties of homotopy relations. For instance, if
any box of the form

QX.Y)

fills to give an element in Q(X,Y), then the homotopy relation on C(X,Y) is
symmetric. We sketch a proof.

Suppose f,g : X = Y, H : f =~ g, then H : IX — Y and satisfies
[ = Hep(X), g = Hey(X). Form the box

/_L_/

I

ey

As we are supposing this has a filler, there is some K € Q(X,Y)z with form

f x f

I K H'

i 8
H

Restricting to the last face (via an e, induced face map) gives
H;ox f.

Exercise: What fillers, if any, are needed to prove = (i) reflexive, (ii) transi-
tive?

If you look back at Kan's paper or the papers of Kamps, you will see that
they refer to fillers as solutions to the ‘equations’, which are the ‘boxes’. This
idea is very useful as was mentioned before. Kamps and myself [60] include a
discussion of how various fillers tegether with preservation of pushouts and the
initial object give classes of homotopy equivalences and cofibrations that satisfy
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a weakened form of Quillen’s axioms that are due to K. Brown [12]. Baues has a
similar result.

¢) Baues (3]
Baues uses interacting structures, one of Quillen type (or rather of K. Brown's

version of half of Quillen’s theory) and the other of cylinder functor type. The
two structures are called cofibration categories and [-categories.

Cofibration category: (C, cof, w.e.)

i.e. a category ' with two classes of morphisms, cof of cofibrations and w.e.
of weak equivalences. These are (o satisfy:

C 1) Isomorphisms are both cofibrations and weak equivalences. If

A i @

are composable morphisms in C, then il two of f, g gf are in w.e., so is the third;

if f, g € cof then gf € cof.
C2) Pushout axiom
Given B — A in cof and any [ : B — Y, the pushout

exists and 7 is in cof; if [ is a w.e., S0 is f; if i is also a w.e., so is i.
(C3) Factorisation axiom
Given B L ¥ there is a factorisation

with i € cof, g € w.e.

C4) Axiom on fibrant models

Using the terminology: “f is a trivial cofibration” to mean “f € cof Nw.e.”,
and “RX is fibrant” to mean “Given any trivial cofibration i : RX = @, there is

a retraction r: Q — RX, ri = Idpy", the axiom states:
Given X € C, there is trivial cofibration X — RX with RX fibrant.

‘e a)
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I-category (C, cof, I, ).

Here C is a category, ‘cof’ is a class of ‘cofibrations’, 0 is the initial oblect of
C and I is a cylinder functor.

These are required to satisfy:

11) I is a cylinder functor;

I 2) Pushout axiom (almost as in the first part of C2 above, but [ is 8lgo to
preserve pushouts, and 10 = §;

I 3) Cofibration axiom:

Iso C cof; 0 — X is always in cof; a composition of cofibrations is a cofibra-
tion and all morphisms in cof satisfy the homotopy extension property (cf, the
discussion of cofibration in Top earlier in these notes.)

I 4) Relative cylinder axiom.

Ifi: B — Ais a cofibration and one forms the pushout

BRUBS . L AUA

eyl v e, (B) [
B XI ———= AU (B xNUA

then the natural map
AU (BxI)ugA— AxI
is a cofibration;
I 5) The interchange axiom.
For all objects X, there is a map
TP SX
interchanging the two copies of /, i.e.
Tei(1X) = Iei(X) T(lei( X)) = ei(IX)

for ¢ = 0,1. (This corresponds to exchanging the first and second /-coordinates
of X x I x I, that is,
(&,8,8) = (2,,9).

These axioms are generally intuitive and are easy to use. (The relative cylin-
der axiom is the only one that may require thought if you are from an algebraic
or categorical rather than a topological background.)

Ve .  ocamae
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Theorem 1 (cf. Baues [5])
If (C, cof, 1, B) is an I-category and we let w.e. be the class of homotopy equiv-

alences with repect to I, then (C, cof, w.e.) is a cofibration category.

Baues develops a large segment of homotopy theory in this setting and gives
a large number of examples. He then goes on to get deep new results on the
homotopy theory of spaces via this abstract homotopy approach. (See also Baues,

(6])-
3 Second Theme: Algebraic Models for Homotopy Types

Algebraic Homotopy
The ultimate aim of algebraic homotopy is to construct a
purely algebraic theory, which is equivalent to homotopy
theory in the same sort of way that ‘analytic’ is equivalent
to ‘pure’ projective geometry.

J.H.C.Whitehead, [91], (quoted in Baues, [5])

A statement of the aims of ‘algebraic homotopy’ might thus include the fol-
lowing homotopy classification problem (from the same source, J.H.C.Whitehead,
[91)):

) by

Classify the homotopy types of polyhedra, X, Y, .
algebraic data.

Compute the set of homotopy classes of maps, [X,¥], in

terms of the classifying data for X, Y.

These aims, with the possible enlargement of the class of objects of study to
include many other types of spaces, are still valid. One may summarise them
by saying that one searches for a nice “algebraic” category A together with a
functor or functors

F : Spaces — A
and an algebraically defined notion of homotopy in A such that
a) if X =~ Y in Spaces, then F(X) ~ F\(Y) in A;
b) if f = g in Spaces, then F(f) ~ F'(g) in A,
and F induces an equivalence of homotopy categories

Ho(Spaces) =~ Ho(A).

|Here Spaces is a category, perhaps of topological spaces such as polyhedra
or CW-complexes, but it may be larger than this and may contain the sort of
‘gencralised space’ used in other contexts such as algebraic geometry.|

Y\
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Ideal Scenarios

i) If we know how X is constructed from simpler objects (e.g. from ‘cells’ or
‘simplices’) and if we know F' on these simple objects, then we can ‘calculate’
F(X) completely, (e.g. not just up to extensions of groups or its analogue in A).
For this to be the case, we would need a result of the form of the van Kampen
Theorem:

Recall (cf. Brown, [13] or Massey, [73]), the van Kampen theorem says that
if X = AuB, A, B are open, then

I, (ANB) —I1, (A)

T4 (B) s [T (X)

is & pushout of groups (or groupoids).

(For the group version, one needs AN B arcwise connected; for the groupoid
version A N B is a union of arcwise connected components and one bases the
groupoids on at least one point in each component, cf. Brown, [13]). It is worth
noting that the usual proofs of the van Kampen theorem use ideas of ‘subdivision”
and ‘filling’ similar to those we have looked at earlier. (It is a useful exercise to
examine the proofs [rom this viewpoint. There are other proofs using gluing of
covering spaces that do not use these ideas explicitly --find the connection!)

i) It is to be hoped that the ‘algebra’ in A reflects the ‘geometry’ in the spaces.
This is evident in the fundamental groupoid where the algebraic composition is
defined via a geometric construction.

iii) Ideally the detailed ‘homotopy structure’ of Top, Poly, or your [avourite
category of ‘spaces’ will be reflected in A, ..., but what does ‘detailed homotopy
structure’ mean? We are back with a version of our original question, now perhaps
with richer intuition of ways of approaching it.

These ‘ideal scenarios’ are, at present, unrealistic. There are however various
ideas that may reduce the problem to more manageable proportions.

We could:

a) restrict the spaces being considered using geometric properties, e.g. having
dimension < n (cf. Whitehead, [90] or more recently Baues [5] and [6]); or

b) find & model which models fully only certain homotopy types (typically those
having some condition such as m;(X) = 0if i > n); or

¢) find a model that classifies all spaces and maps, but up to a weaker relation
than homotopy, (e.g. up to n-equivalence, cf. Whitehead (89, but beware the
definition of n-equivalence will be slightly different in more recent work).

Ve e
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The specific examples of these strategies are, of course, not the only ones
possible, but they have the merit of being linked in the idea of n-type (Fox,
[37], Whitehead, [89], Loday, [67], etc.) The idea is that n-equivalence measures
information detectable with maps coming from polyhedra of dimension < n, so
the m;(.X') for i > n do not have as much significance for this notion of equiva-
lence. Bach n-equivalence class of spaces (= n-type) has a representative X with
mi(X) = 0 for i > n, so here the three ideas are strongly linked.

Examples:

(For simplicity, assume that X is a connected CW-complex or polyhedron.)

n = 1 : the fundamental group m(.X) or groupoid I1;(X’), completely models
the I-type of X, classifies maps from l-dimensional complexes into X and also

classifies covering spaces of X
Before we go to higher values ol n, we need some more notation and termi-
nology.
We write X for the union of the 4-cells for i < n. ‘Recall’ that if (X, A)
is a pair of spaces, with A C X, a9 € A, then m,(X, A, zq) is the n'* relative
homotopy group of (X, A). It consists of homotopy classes of maps from an n-
cube /™ into X' that map all but one face of /™ to @ and the remaining face
into A. The detailed description will not be needed here, but can be found in
most books on homotopy theory. Restricting the maps to the last face gives a
homomorphism

0 (X, A, 20) = mn_1(4, 7).

We can now handle the case n = 2:
MacLane and Whitehead [70] showed that the algebraic structure of

8 (X, X, @) = m1 (X7, 20)

models the 2-type of X (Their 3-type is our 2-type - the terminology has changed
in the years since their work was published.)

The structure referred to is that of a crossed module (see below). We note
that
(i) Ker 9 = ma(X);
(ii) Im 8@ < 7y (X7)
and
(iii) Coker @ = m;(X),
so the usual invariants m and 72 can be found from this data.

Crossed Modules

A crossed module, (C,G,0), consists of groups C, G, an action of G on C
(written (g,¢) — ?c) and a homomorphism 0 : C — G such that

Eemm N\
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CM1  0(%) = g.0c.g™! forall ge G, ceC;
CM2 % =cd.c? for all ¢, € C.

Morphisms are pairs of maps preserving structure. These give a category,
CMod, of crossed modules.

Examples and Exercises.

1. If G is a group, and N < G with i : N — G the inclusion, then (N, G, 1) is
a crossed module, where G acts by conjugation, *n = gng™' € N.

Exercise: If (C',G,0) is a crossed module, prove that Im 0 2 G.

2. If M is a left G-module (so M is an abelian group with an action of G on
it), let @ : M — G be the morphism with, for all m € M, 0(m) = lg, the identity
of &, then (M, G, 0) is a crossed module.

Exercise: If (C',G,0) is a crossed module, prove that Ker 0 is a G-module on
which Im 0 acts trivially.

3. Let G be any group. There is a natural homomorphism

a: G — Aut(G),
where Aut(G) is the automorphism group of G. The homomorphism e is given
by : if g € G, a(g) is the inner automorphism given by conjugation by g, i.e.

a(g)(@) = geg~ forz €G.

Exercise: Prove that (¢, Aut(G), a) is a crossed module.

Digression on Internal Categories.
Let C be a category with finite limits. An internal category in C is a diagram

C,'_>C,,-—‘—>C,

where
s = ‘sourceof-"'
t ‘target of - '
i = ‘identity on-"'

and si = ti = Idg,, together with a composition map (in C)
C %Gy =Gy,

whose domain is given by the pullback
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Ciox G G,

|

(e

G

satisfying the usual associativity and identity rules. We say C is the object of
arrows and Cy the object of objects, then €'y 4 x, C) is the object of composable
pairs of arrows.

| Thinks : (b,a) € Cy , x, Cy if and only if ta = sb, i.e.

(a(n) =, ’,(a‘,)(b) i ) s(a) = 1)

In general, objects of C may not have elements - in the case we need this
however, they do as we need C = Grps, the category of groups.|

We write Cat(C) for the category of internal categories in C.
Proposition 1 (cf. Brown-Spencer (21| and see remarks in that paper.)
The categories CMod and Cat(Grps) are equivalent.
Sketch Proof.

With the same notation as before, set A = Ker s and let # : A — Cy be given
by #(a) = t(a), i.e. 8 is the restriction of t to A. The action is

%a = i(g)ai(g) .
The verification of CM1 and CM2 is left to you.
Now suppose (A,G,0) is a crossed module. Take Cy = G, C; = A x G, the
semidirect product of A and G. [Look this up in a good Group Theory book for
fuller details, but here you will need to know the multiplication in this group:

(a,9).(a',g') = (a.d,99').|

Now define s(a, g) = g, t(a,g) = 0(a)g, i(9) = (14,9) and the composition by the
composite of

92 @)y " oalayg

is to be (a'a,g) : g — 0(a’a)g. Again the job of checking that s, { and ¢ and the
composition are all group homomorphisms and that they make up an internal

B 2N
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category in Grps is left to you. (In fact it is an internal groupoid in Grps -
prove it).

We saw that ITp(X, A) — I1;(A) is a crossed module and so there will be a
Cat(Group) as well. It is fairly easy to see how to generalise these ideas from
groups to groupoids, so we get a crossed module of groupoids corresponds o a
special type of double groupoids, that is a ‘groupoid with two independant com-
positions’. This can be interpreted as homotopy classes of maps of squares. We
thus have that : 1-types correspond to groupoids: 2-types correspond o dou-
ble groupoids (but with a bit more extra structure in fact). For more details see
Brown-Higgins, [15], which describes a van Kampen theorem for crossed mouldes.

To try to approach our ‘ideal scenario’, our crossed modules should carry an
abstract homotopy theory that at least partially reflects that of spaces. In fact to
get a richer structure than we have here, it is best to go to ‘crossed complexes’.
These were introduced by Whitehead in [89], where they are called ‘homotopy
systems’. Approximately they are obtained by attaching to a crossed module

9:C =G
a chain complex of modules (over a groupoid)
8

) 8 ~ y
0= Cp = Gy -iv = C3

to get a ‘chain complex’
9 a L)
et e e

(so @3 = 0) of groupoids (but €' and & may be non-abelian). Writing CRS for
the category of crossed complexes, we get a functor

I1: CW — CRS
I(X)n = {ma(X™, X", p)p € X}

(X)) = X'X° = x°

the homotopy or fundamental crossed complex functor (cf. for instance Brown
and Higgins, [19]).

Note the following:
a) I satisfies a van Kampen theorem (Brown-Higgins, [16]) and CRS supports,
& Quillen model category structure (Brown and Golasinski, [14)).
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b) CRS is equivalent to several algebraic-geometric categories, e.g. w — gpds,
0o — gpds, (which are cubical sets with extra algebraic structure), simplicial 7-
complexes (which are Kan complexes whose fillers are nicely behaved, (cf. Ashley
[4])) and their cubical analogues. These 7-complexes remind one of the struc-
tures that Kamps imposes in his abstract homotopy theory to get nice homotopy
properties, but the structure used here is literally ‘infinitely richer’.

¢) CRS has a tensor product and an internal hom-structure

CRS(X @Y, Z) =~ CRS(X, CRS(Y, Z))

(cf. Brown-Higgins, [17]).

d) ILX gives complete information on the 2-type of X and on the chain com-
plex of modules over I1; (.X') given by the chains on the universal cover of X, (cf.
Brown-Higgins, [18]).

e) There is a simply defined functor from simplicial groups (or simplical groupoids)
to crossed complexes which gives an algebraic version of II, (cf. Carrasco and
Cegarra[23] and Carrasco, [22]).

Crossed complexes thus model more information than chain complexes and
have the additional nice feature that they can easily be adapted to other algebraic
settings (e.g. crossed complexes of commutative algebras were used by Lichten-
baum and Schlessinger, [65], in work on the cotangent complex construction).
They may thus be useful in non-abelian homological algebra and ‘homotopical
algebra’.

Other extensions of crossed modules have also been used.

The categories CMod and Cat(Grps) have finite limits so we can form

Cat?(Grps) = Cat(Cat(Grps))

and so on to get Cat™(Grps) (Loday, [67])
These model all (n+1)-types extending the Mac Lane - Whitehead result and
they satisfy a form of van Kampen theorem, (Brown-Loday, [20]). Cat*-groups

correspond to crossed squares:

L—A’M

A‘J lu with  pA=vA'
N——pP

in which A\, ', g, v, and p are crossed modules and there is an ‘h-map’, h :
M x N — L that behaves like a commutator. An almost typical example is when

Y o\
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1 and v are inclusions of normal subgroups and L = M NN with A, X, inclusions
and h(m,n) = [m,n| € L.
A useful observation is that if G is a simplicial group and M < G then
o (M) — mo(G)

is a crossed module (try to prove this yourself - it's easy!) and up to isomorphism
all crossed modules arise in this way (cf. Loday, [67] or Porter, [81]). Now if
N <1 @G as well, form the square

To(M A N) — xo(M)

To(N)—>wo(G)

This is a crossed square and up to isomorphism all crossed squares arise in
this way - and so on.

It seems likely that to get a nice homotopy theory of crossed squares one
would need to add a chain complex as a ‘tail” in some way. Current research is
investigating categorical and homotopical properties of such objects.

4 Third Theme: Categorical Structures of Homotopy
Theory
(We use Ho(Top) as an example; the same sort of things happen in other homo-
topy categories.)

o) Homotopy categories have few limits and colimits in general.

(To prove this requires more algebraic topology than I am assuming and in
fact specific proofs of this are quite few in the literature. Heller ([45], p.32.) gives
the example

ga—L—sg2

where the degree of [ is 2. This diagram cannot have a pushout in Ho(Top) for
il P was a pushout then the cohomology of P with coefficients Z and Z/2 would
violate the Universal Coefficient Theorem.)
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What is much easier (o prove is:

b) Pullbacks (and pushouts) in Top are not preserved on passage to Ho(Top)

e.g. Suppose X is a space and A C X with i : A — X the inclusion. Let {+}
be a one point space, 7 € X \ 4, a € A, and a : z = a, a path.

{a)}—=A H——=A
7 e
) —=X (e X

are both pulbacks in Top, where we have used a and z also to denote the functions
picking out those elements, and having domain {+«}. These two functions are
homotopic, in fact the path a is a homotopy between them, so the two diagrams

A A
l‘ and l'
(") —=X () —=X

considered as disgrams in Ho(Top) are isomorphic diagrams, hence their pull-
backs (in Ho(Top)) if they exist, are isomorphic. Clearly such a pullback cannot
be isomorphie (i.e. homotopy equivalent) both to a one-point set and the empty
set, since there are no maps with the empty set as codomain except the unique
identity function having the empty set as both domain and codomain.

¢) Basic constructions go wrong in homotopy categories
e.g. Suppose G is a group and X is a left G-space (i.e. X has an action

GxX =X
written
(9, @) = "z

which is continuous - we will give G' the discrete topology). This can also be
thought of as a functor
X : G — Top.

(Exercise: Check that by considering a group as a groupoid and hence as a
category, & G-space 1s a functor as stated).

If we replace X' by a homotopy equivalent Y, i.e. an isomorphic object in
Ho(Top), we cannot claim that Y will be a G-space (see later as well) so the
notion of G-space is not homotopy invariant.

Some simple exercises on limits and colimits - for later use.
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Let X : G — Sets be a G-set (or more generally a G-space).
1) The colimit of X satisfies:

Sets(ColimX,Y) = G — Sets(X, k(Y))

where, if Y is a set, k(Y") is Y with trivial G-action.
Prove that ColimX is isomorphic to X/, the set of G-orbits of X (i.c. the
set of equivalence classes for the relation z ~ %x).

2) The limit of X satisfies
G — Sets(k(Y), X) =~ Sets(Y, LimX).

By taking Y to be a singleton set, {+}, or otherwise, prove that LimX is Fizg X,
the fixed point set of X:

FizgX = {z € X : ¢ =7z for all g € G}.

The corresponding constructions for G-spaces, of course, work in the same way.

Many problems in algebraic topology are linked to the problem of calculating
the invariants of the homotopy type of X/G or Fizg X given similar information
on X. An important variation on this is to consider homotopic group actions and
to find invariants of X/G or FizgX which are invariants for all related actions.

Exercise: Find an example of a G-space X' such that within Ho(Top), the
limit and colimit of 7.X : G — Ho(Top) do not exist. (Recall: 5 : Top —
Ho(Top) is the natural quotient functor, see earlier).

The next subject we need to look at in this section also needs a bit more
category theory, namely, the theory of Kan extensions. [Historical thought: D.
M. Kan whilst working in abstract homotopy theory made a great contribution
to ‘pure’ category theory. He was one of the first to identify the fundamental
properties of adjoint functors and also looked at the extension problem that is
now central to ‘Kan extensions’, (cf. Mac Lane [69]).]

Problem:

Given A K B,

Fl
(62
find the ‘best’ F': B — C completing the diagam, i.e. 1o ‘extend’ F along K.
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In general an exact extension, i.e. 'K = F, is not possible and ‘best’ is
interpreted, as with adjoints, etc., as a universal property.

Two solutions:

(1)

FlAnKF
C

Rang F, the right Kan extension of /' along K, (when it exists) comes with
an isomorphism
Nat(SK, I') 2 Nat(S, Rang I)

natural in § : B — C. [Thinks: it is a right Kan extension because it occurs in
the righthand part of the Nat( , ) expression|.

In particular, there is a natural transformation (Rang F)K — F that corre-
sponds to the identity on Rang I,

(ii) The left Kan extension, Lan I, comes with a natural isomorphism

Nat(F,SK) =~ Nat(LangF, S).

[Thinks: Yes, a left Kan extension is in the left hand position of the Nat|.
Note: if A, B are small, then C* and CB, that is the functor categories,
exist and K : A — B induces a functor

cX:cPch

by composition with K. If right and left Kan extensions along K exist for all /'
in CA, this is the same as saying that C¥ has right and left adjoints.

Exercise:

Suppose G, H are groups (considered as categories), K : G — H a functor,
(i.e. a group homomorphism), X : G — Sets, a G-set. What are RangX
and LangX? (These correspond to quite well known constructions in group
representation theory.) It may help to notice that when H = {1}, the trivial
group, these are LimX and ColimX. The way to try to calculate Rang X and
Lang X is to imitate the arguments used with LimX and ColimX earlier.

Hack to homotopy theory: Homotopy Limits and Colimits.
(Bousfield-Kan [11], Dlusie, (48], Boardman-Vogt, (7], Vogt [88], Edwards and
Hastings [36], Bourn-Cordier, [10], etc).
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ldea:
Lim : €7 — C is right adjoint to k : C — C”, the ‘constant diagram’ functor.
If C has a homotopy structure (e.g. notion of weak equivalence) so that
Ho(C) can be formed, then k induces

Ho(k) : Ho(C) — Ho(C”)

for & suitable notion of weak equivalence in C”. [In fact one uses the level weak
equivalences in C7) which are those

XY XY ec’

for which each f(j) : X(j) — Y(j) is a weak equivalence]. In many cases Ho(k)
has a right adjoint, Holim

Ho(C”)(k(X),Y) =~ Ho(C)(X, HolimY').

Problem: understand the construction of Holim) in sufficient generality.

Of course, 8s we can interpret homotopy structure in several ways, 50 we can
interpret Holim. We shall look at Ho(Top) and homotopy fibres as we have
already looked at ‘fibres’.

Example:

If f : X — Y is a fibration and Y is arcwise connected, then the fibre £(f)
is determined up to homotopy

F(ﬂy —_—

[ -

e '8
v

If £ is not a fibration, then we can make it into one using factorisation (compare
Baues" Axiom C3 and dualise) and then take fibres, or ... we can do it directly
and get & homotopy fibre using a homotopy pullback.

Let Fi(f)y = {(\@)[A : I — Y,\0) = y, A1) = f(x)}, then we have a
dingram
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F (ny L X
i pllx) =x

Cr——y

which is not commutative, but there is a homotopy H : Fy(f)y — Y/ given by
H(\,z) = A\, between the two composites of the sides, H : y =~ pf. Note that
if we change y along a path (i.e. change the map y within its homotopy class,
then the homotopy type of F,(f), does not change. Thus F3(f), is more robust
than the fibre itself. We tend therefore to omit the y from the notation where
possible.

For & more concrete example, take f: A — X to be the inclusion, then

ma(X, A) & i (Fh(f))

as can easily be checked directly. [Hint: pick ag € A as basepoint so Fj(f) is
{(A\sa)|A s T — Y, \(0) = ag,\(1) = f(a)}. Base Fj,(f) at the constant path at
ag, i.e. (A ag) with A(t) = ag for all ¢t € /. Now describe a loop in F},(f) at this
basepoint|.

Exercise: (Returning to a general f: X — Y.)

Suppose we try to fill in the corner with another square plus homotopy

A —=X
7|

{*)—!-/—>Y

K:Ax I =Y orif you prefer, Il : A — Y.

Is there some universal property for the original square that leads, say, to a
map A — Fy(f), wogether with factorisations of the homotopy K via the natural
homotopy H? e.g. something like

g e
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This suggests that homotopy limits should ‘store” more homotopy information
than ordinary limits allow - but in Ho(C), this information has been destroyed.
This further suggests that homotopy limits correspond to structure in C rather
than in Ho(C) as such, and this would seem to be the case. (Some authors use
Holim for the functor at the homotopy category level and holim for a functorial
construction in C that gives representative objects for Holim.)

All these ideas can be dualised to give homotopy colimits

Ho(C”)(X, k(Y)) =~ Ho(C)(HocolimX, Y)

and more generally homotopy Kan extensions:

if A B are small, kK : A — B induces Ho(C¥) : Ho(CB) — Ho(CA),
homotopy Kan extensions are left and right adjoints to this functor, if they exist.

Grothendieck [44] started a discussion of the existence of homotopy Kan ex-
tensions as ‘integrators’ in derived category theory (cf. Verdier, (87|, Deligne,
|32}, Hlusie, [48]; the theory of derived categories is a rich homotopy structure on
categories of chain complexes in various settings of, for instance, algebraic geome-
try). His idea relates to his ‘ Pursuit of stacks’. Stacks (cf. Giraud [40] or Deligne
- Mumford [33] ) are ‘fibred categories’ of a certain type, but Grothendieck thinks
of them as a varying family of models of homotopy types much as a sheal can
be thought of as a varying family of sets; the gluing of sections is also slightly
different. To handle the homotopy theory of stacks easily, he needs to be able to
form extensions along maps between the ‘bases’ (i.e. whatever objects are playing
the role of space, or site, in the theory of stacks). His manuscript [44] contains
an enormous amount of abstract homotopy theory.

Although the motivation was different, the use of homotopy Kan extensions
was also considered essential by Anderson [1] and, taking his ideas further, Heller,
[45] has placed them at the centre of his ideas on abstract homotopy theory. He
describes & homotopy theory as being the functorial assignment to each small
category, J of a category T(J) (thought of, for us here, as Ho(C”), and adjoints,
both right and left, to the induced functors

Ho(CF) : Ho(CY) — Ho(C")

il 2 J = J', with these data satisfying certain axioms. The standard example
is Ho(S") and he shows that it acts on arbitrary homotopy theories in a natural
and useful way. This theory is quite hard going, but it looks as if it is very rich,
and a lot of further research needs to be done in it to exploit its potential for the
applications that Heller just touches on.
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5 Fourth Theme: Enriched Categories and Homotopy
Theory

We saw how the Kan-Kamps approach to homotopy theory in a category
leads to a cubical set Q(X,Y) with Q(X,Y)o being the ordinary hom-set, in
other words it enriches the ‘hom’ with more structure. The theory of enriched
categories can be approached for the algebraic topologist via the licially
enriched categories used in Quillen [82] or for the categorist via the book by
Kelly [64]. We will not go into the theory in detail, but will give some examples:

- For each X, Y in Top, we can form a simplicial set Top(X,Y’) with

Top(X,Y), — Top(X x A™,Y).

This behaves as if it were Sing(Y ) even if Y does not always exist within the
category of spaces being considered.

- For each X, Y € S, we get S(X,Y) with
S(X,Y)n = 8(X x Aln|,Y).
If Y is Kan, then so is S(X, Y), no matter what X is.
- For each X, Y € Cat, the category of small categories, then we similarly
get Cat(X,Y),
Cat(X,Y), = Cat(X x [n],Y).
These are all examples of S-enriched categories (or S-categories for short),

i.e. categories C, where C(X,Y) = C(X,Y)o for some simplicial set C(X,Y),
where the composition map in C extends to one between these C(X,Y)s

le. C(X,Y) x C(Y,2) — C(X, Z)

satisfying associativity and identity rules in the obvious way. Similarly, there is a
notion of S-functor F : A — B between general S-categories; this consists of an
assignment, F on objects and for pairs Ag, A, of objects in A, a simplicial map

Faga, ¢ A(Ao, Ay) — B(FAg, FA;)

satisfying axioms expressing compatibility with composition and identities. (For
full detail, see Kelly |64]).

If C is an S-category, we can form a category moC with the same objects and
having

(mC) (X, Y) = ma(C(X, Y))-
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For instance, if C = CW, then mgCW = Ho(CW), the homotopy category of
CW-complexes. Similarly we could obtain a groupoid enriched category using
the fundamental groupoid (cf. Gabriel and Zisman, [39)).

One can ‘do’ some elementary homotopy theory in any S-category, C, by
saying that two maps fo, fi : X — Y in C are homotopic if there is an H €
C(X,Y)y with doH = [y, diHl = fo.

This theory will not be very rich unless at least some low dimensional Kan
conditions are satisfied. The S-category, C, is called locally Kan if each C(X,Y)
is & Kan complex, locally weakly Kan if ..., ete.

The theory is ‘geometrically’ nicer to work with if C is tensored or cotensored:

If forall K €S, X,Y, € C, there is an object K@X in C such that

CKeX,Y) = 8(K,C(X,Y))

naturally in K, X and Y, then C is said to be tensored over S.
Dually, if we require objects C(K, Y') such that

C(X,C(K,Y)) > S(K,C(X,Y))

then we say C is cotensored over S.

Proposition 2(cf. Kamps and Porter, [60])

If C is a locally Kan S-category tensored over S then taking IX = All|@X, we
get a good cylinder functor such that for the cofibrations relative to | and weak
equivalences taken to be homotopy equivalences, the category C has a cofibration
category structure.

There are variants of this, due to Kamps alone, where C is both tensored
and cotensored over 8 and the conclusion is that € has a Quillen model category
structure. The examples of locally Kan S-categories include Top, Kan, Grpd
and CRS, but not Cat or S itselfl.

6 Fifth Theme: Homotopy Coherence

(We will often use h.c. as an abbreviation for “homotopy coherent”.)

We have already seen several problems in which homotopy coherence plays a
part ( e.g. changing a G-space X' by a homotopy equivalence, or describing the
universal property of a homotopy pullback). What is homotopy coherence?
Examples of h.c. diagrams in a category with cylinder.

1) A diagram indexed by the small category, [2].
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X()

X(01). N{\(\w
X(012)
—_—

X(0) X2 X(2)

is h.c. if there is specified a homotopy
X(012) : IX(0) — X(2),
X(012): X(02) = X(12)X(01).

2) For a diagram indexed by [3]: Draw a 3-simplex, marking the vertices X'(0),
..., X(3), the edges X(ij), etc., the faces X(ijk), etc. The homotopies X (ijk)
fit together to make the sides of a square

X(13) X(01) —BIXU_ 023) x(12) X(01)

Xi013) X(23) Xto12)

X(03) ———— = X(23) X(02)
X(023)

and the diagram is made h.c. by specifying a second level homotopy
X (0123) : I°X(0) — X(3)

filling this square.

These can be continued for larger (n], and the results glued together to make
larger h.c. diagrams. Of course, this is not how it is done, but it provides some
understanding of the basic idea. The basic theory was developed by Vogt, (88|
following methods introduced with Boardman, (7] (see also the references in that
source for other earlier papers on the arca). Cordier [25] provides a simple S-
category theory way of working with h. c. diagrams and hence released the
‘arsenal’ of categorical tools for working with h. ¢. diagrams (cf. Bourn-Cordier
[10] and Cordier (26] for an h. ¢. description of homotopy limits of h. c. diagrams
using S-categorical language, again generalising earlier work of Vogt).

Results

() If X : A — Top is a commutative diagram and we replace some of the
X(a) by homotopy equivalent Y (a) with specified homotopy equivalence data:

fla): X(a) - Y(a), g¢g(a):Y(a)— X(a)
Hia) : g(a)f(a) = Id, K(a): f(a)g(a) = Id,
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then we can combine these data into the construction of a h. c. diagram Y based
on the objects Y(a) and homotopy coherent maps

f:X=Y, g:Y—=X, ew,

making X and Y homotopy equivalent as h.c. diagrams.

Exercise: Investigate this in simple cases, e.g. when A = [1] or [2].

(This applied to G-space X shows that if we replace X by a homotopy equiv-
alent Y, then Y is a h. c. version of a G-space, i.e. a h. c. diagram of type
G).

(ii) Vogt[88] If A is a small category, there is a category Coh(A, Top) of h.c.
disgrams and homotopy classes of h. ¢. maps between them. Morcover there is
an equivalence of categories :

Coh(A, Top) = Ho(Top™)

(‘This ‘explains’ in part why homotopy limits can be interpreted in terms of h. c.
cones, ef. Bourn-Cordier, 10| and Bousfield-Kan [11}

(il)) Cordier (1980) [25].
Given A, a small category, then there is an S-category S(A) (with moS(A) =
A) such that a h. ¢. diagram of type A in Top is given precisely by an S-functor

F:S(A) — Top

This suggests the extension of h. ¢. diagrams to other contexts such as a general
locally Kan S-category, B:

(iv) Cordier-Porter, (27|
Vogt's theorem generalises to a locally Kan, B, replacing Top.

(v) Cordier-Porter, 28|

If B is locally Kan, [ : F — G an h. c. map between h. c. diagrams of type
A in B and H(a) : g(a) = f(a), then there is a h. c. map g: F' — G constructed
from f and H having g(a) at index a.

More recently, results seem to be revealing a rich theory of S-categories, S-
funetors and coherent maps between them, that runs parallel to ordinary category
theory. There seem to be coherent versions of representability theorems, adjoint-
ness, monads ete. Bvidence for these in special cases has been found many times
before and has proved crucial in the development of algebraic topology. What is
now appearing would seem to be a much more global view providing a lot more
machinery and an underlying theory for handling examples.
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7 Sixth Theme: A wider perspective and some sur-
prising links.

Why bother developing such theories? Do they interact well with other parts
of Mathematics or are they, as some people would suggest, the equivalent of
‘contemplating one’s navel’, merely introspective Mathematics. Such questions
are useful, even when difficult to answer. Interactions with different parts of
maths seem to be a sign of health, although absence of such interactions often only
means a lack of ‘ripeness’, of ‘maturity’ in some sense, of the subject. Following
ideas of Grothendieck and others, [ will attempt to show reasons for optimism in
the future of abstract homotopy theory.

1. Grothendieck(SGAL, [42]): The fundamental group of a topos.

Let E be a Grothendieck topos (think of E as the category, Sh(X), of set
valued sheaves on a space X). Within [, we can pick out a subcategory, C, of
locally finite, locally constant objects in [E. (If X is a space with E = Sh(X),
C corresponds to those sheaves whose ‘espace étalé’ (cf. Borceux [8]) is a finite
covering space of X). Picking a base point in X generalises to picking a ‘fibre
functor’ F : € — Setspy,, a functor satisfying various conditions implying that
it is ‘pro-representable’. (If 29 € X is a base point {zg} — X induces a ‘fibre
functor’ Sh(.X) — Sh{wzg} = Sets, by pullback).

If I is ‘pro-representable’ by P, then m(E, F) is defined to be Aut(P), which
is a profinite group. (Usually I will simply write m;(E), for this). Grothendieck
proves there is an equivalence of categories C = 7 (E) — Setsgy, the category of
finite 7y (E)-sets. If X is a locally nicely behaved space such as a CW-complex and
E = Sh(X), then 7 (E) is the profinite completion of 73 (X). This profinite com-
pletion occurs only because Grothendieck considers locally finite objects. With-
out this restriction, a covering space Y of X would correspond to a 7 (X)-set, Y/,
but if Y is a finite covering of X" then the homomorphism from ;(X) to the finite
group of transformations of Y factors through the profinite completion of 7y (X).
This is defined by : if G is a group, G = lim(G/H : H < G, H of finite index) is
its profinite completion. This idea of using covering spaces or their analogue in
E raises several important points:

a) these are homotopy theoretic results, but no paths are used. The argument
involving sheaf theory, the theory of (pro)representable functors, ete., is of a
purely categorical nature. This means it is applicable to spaces where the use
of paths, and other homotopics is impossible because of bad (or unknown) local
properties. Such spaces have been studied within Shape Theory and Strong Shape
Theory, although not by using Grothendieck’s fundamental group, nor using sheaf
theory. (See 2 below for more on this connection and such sources as Lisiea and
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Mardesié [66], Edwards and Hastings, [36], Cordier and Porter, [29], Mardesi¢
and Segal [71] for more information on Shape and Strong Shape).

b) As no paths are used, these methods can also be applied to ‘non-spaces’,
e.g. locales (cf. Borceux [8]) and possibly to their non-commutative analogues,
quantales. For instance, classically one could consider a field k£ and an algebraic
closure K of k& and then choose C to be a category of étale algebras over k, in
such a way that my(E) = Gal(K/k), the Galois group of k. A beautiful treatment
of this can be found in Douady and Douady, [34), and the link with locales
(which is very strong) is explored in Joyal and Tierney, [49]. It in fact, leads
to o classification theorem for Grothendieck toposes. From this viewpoint, low
dimensional homotopy theory is seen as being part of Galois theory, or vice versa.

¢) This underlines the fact that m(X) classifies covering spaces - but for
i > 1, m(X) does not seem to classify anything other than maps from S* into X!

This is abstract homotopy theory par excellence, but where are the links with
earlier work?

Artin- Mazur (1965-66), [3].

Their sim was to ‘study the analogues of homotopy invariants which can be
obtained from algebraic varieties by using the étale topology of Grothendieck,
thus their starting point was a nice Grothendieck topos (namely sheaves for the
étale Grothendieck topology on a nice scheme).

[Thinks: do I need to know a lot about schemes, varieties and the étale
topology to understand their work? No, certain of their constructions do need
an slgebraic geometric or categorical viewpoint to be interpreted easily, but the
general picture can be obtained without that. Specific results, of course, do
refer to algebraic geometric properties, but the essence of these can be extracted
without detailed knowledge|.

Digression on Cech methods

Given a (compact) space X and a finite open cover, a, of X, we can form a
simplicial set C(X, a), whose n-simplices are (n + 1)-strings of open sets from a,
le. (Uo,.--y U,,), each U; € a, satisfying NU; # 0.

If 3 is another cover such that for each V € 3, thereisa U € a with V C U,
then the assignment V — U in this case defines 8 map

C(X,a) = C(X,08)

dependent on the choice of U for each V', but independent ‘up to homotopy’. Ap-
plying one’s favourite homotopy functor £ : § — A, to each C(X, a) and to these
homotopy classes of induced transition maps, yields an inverse system of objects
in A, what is called, in Artin-Mazur, (3], a pro-object in A. [Thinks: Profinite
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groups occurred in Grothendieck's work? Is there a connection?] Cech in the
1930s, applied homology and cohomology in this situation to extend simplicially-
based homology to a much wider class of spaces. Lefshetz, without the language of
category theory, studied, again in the 1930s, the formal properties of inverse sys-
tems of polyhedra and maps between them and his student Christie [24] looked
at the homotopy groups in this setting. Borsuk [9] developed Shape Theory,
which although initially very geometric in flavour turned out also to be described
in terms of Christie's theory of the “Cech extensions” of homotopy theory, (see
Cordier and Porter, [29] for a categorical approach to Shape Theory).

The use of modified Cech methods in algebraic geometry was well established
when Grothendieck and his collaborators in Paris started adapting it to work
with a Grothendieck topology. Verdier in SGA4 (2] introduced hypercoverings
and we return to Artin and Mazur to find their use in homotopy theory. (The
work of Lubkin, [68], should also be mentioned here as it contains much that is
parallel to the development by Verdier, Artin and Mazur and is sometimes much
easier to decipher for the non-specialist algebraic geometer).

Given that a Grothendieck topology is essentially about abstracting & notion
of ‘covering’ (cf. Borceux, [8]), it is not surprising that modified Cech methods
can be applied. Artin and Mazur [3] used Verdier's idea of a hypercovering to get,
for each Grothendieck topos, [, a pro-object in Ho(S) (i.e. an inverse system of
simplicial sets), which they call the étale homotopy type of the topos E (which
for them is ‘sheaves for the étale topology on a variety’). Applying homotopy
group functors gives pro-groups m;(IE) such that m(E) is essentially the same as
Grothendieck’s 7;(E). (Here you need to know that the category of profinite
groups, i.e. inverse limits of finite groups each with the discrete topology, is
equivalent to the category of pro-objects in the category of finite groups. The
proof is not difficult and should be clear if you first check up on the definition of
profinite groups. WARNING: if you remove ‘finite’ the result does not hold, but
you can recover it in part by working with “pro-discrete localic groups” instead of
topological groups, i.e. take limits of finite groups within the category of ‘localic’
rather than ‘topological’ groups, remembering that ‘locales’ are almost ‘spaces
without points’, again see Borceux, (8]).

Grothendieck’s nice 7y has thus an interpretation as a limit of a Cech type,
or shape theoretic, system of ms of ‘hypercoverings’. Can shape theory (or its
more powerfully structured ‘strong’ or ‘coherent’ version, cf. Lisica and Mardesié,
|66], or the book [72], Edwards and Hastings, [36], Porter [76, 78]) be useful for
studying étale homotopy type? Not without extra work, since the Artin-Mazur-
Verdier approach leads one to look at inverse systems in proHo(S), i.e. inverse
systems (diagrams) in & homotopy category not a homotopy category of inverse
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systems as in Strong Shape Theory (in the same references as above and for
comparison Porter, [80]). Attempts to ‘rigidify’ the hypercovering approach, so
as to get into Hopro(S) have been made (e.g. by Lubkin, [68]) or using simplicial
schemes in Friedlander, [38]) but none has yet come to light that can be said to
be the definitive method.

One of the difficulties with this hypercovering approach is that ‘hypercovering’
is o difficult concept and to the ‘non-expert’ seem non-geometric and lacking in
intuition. Thankfully for us, there is an alternative approach put forward by Ken
Brown [12]. (Thinks: I've already seen that paper referred to earlier in these
notes, haven't 17)

As the Grothendieck topos E ‘pretends to be’ the category of Sets, but with
a strange logic, we can ‘do’ simplicial set theory in Simp(E) as long as we take
care of the arguments we use. To see a bit of this in action we can note that the
object (0] in Simp(E) will be the constant simplicial sheaf with value the ordinary
[0], “constant™ here taking on two meanings at the same time, (a) constant sheaf,
i.e. not varying ‘over X' if E is thought of as Sh(X), and (b) constant simplicial
object, i.e. each K, is the same and all face and degeneracy maps are identities.
Thus [0} interpreted as an étale space is the identity map X — X as a space over
X. Of course not all simplicial objects are constant and so Simp([E) can store a
lot of information about the space (or site) X. One can look at the homotopy
structure of Simp(E). Ken Brown [12] showed it had a fibration category struc-
ture (L.e. more or less dual to the axioms that Baues gives (see above) and giving
half of Quillen’s structure) and if we look at those fibrant objects K in which the
natural map

p: K — 0]

is & weak equivalence, we find that these K are exactly the hypercoverings. Global
sections of p give a simplicial set, I'(K) and varying K amongst the hypercoverings
gives a pro-simplicial set (still in proHo(8) not in Hopro(S) unfortunately) which
determines the Artin-Mazur pro-homotopy type of E

This makes the link between shape theoretic methods and derived category
theory more explicit. In the first, the ‘space’ is resolved using ‘coverings' and
these, in & sheal theoretic setting, lead to simplicial objects in Sh(X) that are
weakly equivalent to [0]; in the second, to evaluate the derived functor of some
functor F : C — A, say, on an object C, one takes the ‘average’ of the values of
F on objects weakly equivalent to G, i.e. one works with the functor

F:W({C)=A



152 Timothy Porter

(where W(C) has objects, @ : C — C', a a weak equivalence, and maps, the
commuting ‘triangles’, and this has a ‘domain’ functor § : W(C) — C, é(a) =
¢ and F' is the composite /°6). This is in many cases a pro-object in A -
unfortunately standard derived functor theory interprets ‘commuting triangles'
in too weak a sense and thus corresponds to shape rather than strong shape
theory - one thus, in some sense, arrives in proHo(A) instead of in Ho(proA) ,
(cf. [32]).

Grothendieck (letter to L. Breen, [43] mid 1970s; Pursuing Stacks
[44], 600 page manuscript.)

Already within his non-abelian cohomology, Giraud had introduced stacks.
These are fibred categories with a special sheaf-like property. A fibred category
is a functor f : E — B with lifting properties that are rather like those of a
Kan fibration in low dimensions. As an example, let /7 : B — Cat be a functor,
then Grothendieck had introduced a semidirect product construction, as had
Ehresmann (for which see his collected works).

Exercise:

Given F' : B — Cat, form up a category ['xB, that has a functor pp : F'xB —
B with p;.' F(B), and there is an induced map so that if 3: B — B' in B,
there is a functor pp'(8) : p,‘,.’(li) — p,’,'(H') corresponding to F(3). Investigate
this structure more fully.

Thomason [85], trying to look for the structure of homotopy limits and
colimits in Cat for potential applications in algebraic K-theory, proved that
hocolim(F) = F » B, for a suitable and natural homotopy structure on Cat.

We will not need to know the detailed definition of a stack in Giraud's sense,
but will think of it as a varying family of homotopy types with a gluing rule that
is a homotopy coherent version of the gluing rule for local sections in a sheal.
Stacks occur quite naturally in various situations, (cf. Deligne and Mumford,
(33]).

Grothendieck’s suggestion in his letter to Breen was that there was a higher
order covering space concept and a corresponding Galois theory. Covering spaces
correspond to locally constant sheaves and the fibres of a covering space projec-
tion are sets, therefore representing “O-types”™ in the homotopy sense. A stack of
groupoids (as in Deligne and Mumford, (33]) is a varying family of 1-types, so
we could consider & suitable notion of “locally constant™ stack of groupoids as
corresponding to & Ist order generalisation of a covering space. Covering spaces
are classified by G-sets, where G = 7;(X), or more generally ;(E) or a groupoid
version of it. Locally constant stacks of groupoids are, perhaps, classified by
G-groupoids, where G is ... what? At this stage in Grothendieck’s thought ex-
periment, we can see a need for a concept.
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We saw that if G was a group,

G — Aut(G)

was & crossed module. If we form up the corresponding cat'-group, G x Aut(G)
and call it Aut(G), then we have the possibility that a cat'-group C could act
on G via 8 map C — Aut(G) of cat'-groups. This idea is however depending
too much on a rather special consruction, but does suggest that automorphism
objects of n-types might be (n + 1)-types - a sort of higher order symmetry
groupoid construction.

Exercises

1) Let G be a groupoid. Form the functor category G and select those
funetors that are automorphisms of G. Let Aut(G) be the corresponding full
subeategory. Show that Aut(G) is a cat'-group with group structure coming
from composition of functors. Deseribe in detail the corresponding crossed mod-
ule of groupoids.

2) Specialise the above construction to the case where G has only one object,
L.e. is a group. Seen this somewhere before?

3) Generalise the construction of 1) in the following way. Let Equiv(G) be
the full subcategory of GE determined by the self equivalences of G, i.e. those
J : G — G that are equivalences of categories. Find an adequate description of
the structure that Equiv(G) has - it is not a group as such, since such an f need
not have an inverse. Compare the resulting ‘thing’ with Aut(G).

The idea, then, that perhaps ‘locally constant’ stacks of groupoids might
be equivalent in some way to that of G-groupoids, for some crossed module or
cat'-group, G does not seem so silly as all that. We have proved nothing, but
the analogies suggest what approach might work. Before, however, we can do
that various problems have to be resolved, for instance do we really know what
‘locally constant’ is to mean. ‘Constant’ might be imagined to mean each ‘stalk’
isomorphic 1o all the others, but ‘stalks’ are defined ony up to equivalence so
perhaps ‘equivalent’ to the others might be more reasonable. Another problem is
that we do not know the level of ‘equivalence’ to expect between locally constant
stacks of groupoids and G-groupoids. One expects an equivalence of homotopy
categories, but what is that to mean for these two situations and is it all that
can be achieved.

These condsiderations are in any case only a simple case of the general ones.
Grothendieck’s problem was to prove a general version of this. Stacks are thought
of ns varying families of homotopy types. An n-stack will be a varying family of
n-types (so the above discussion was about 1-stacks), whilst if G is a model for
an n-type, one hopes to find an automorphism (n + 1)-type so that (n - 1)-type
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can act on an N-type G via a homomorphism to its automorphism (n + 1)-type.
Hopefully you have guess Grothendieck’s idea by now. The generalisation of
Galois theory to higher order should be:

Locally Constant n-stacks on E — G(E)-(n-types)
where G(E) is an (n -+ 1)-type. We can list some of the problems and possible
methods of attack. We have already seen some ideas:

0-types | 1-types | 2-types [ ’ n-types
Sets Groupoids | Cat’-groupoids ... | Cat™I-groupoids
= crossed modules ... | crossed (n — 1)-cubes
= special double ... | = special n-fold
groupoids 8.5 groupoids

but Grothendieck, although himself in favour of an n-fold groupoid model warns
that there may be as many choices of model as there are mathematicians working
with them and his n-fold groupoid is not constructed as Loday’s cat(n — 1)-groups
are, so even if the idea is the same, the model may be somewhat different.
Grothendieck is thus suggesting an ‘equivalence’ between stacks of (n — 1)-fold
groupoids and G(E)-(n-1)-fold groupoid, where he hopes G(E) can be constructed
fairly directly from E, will be a ‘homotopy invariant’ etc. and will be an n-fold
groupoid.

Assuming that we picked models for n-types, what is to be an n-stack. That
they exist is not in doubt. A stack, as was said earlier, is a special type of
fibred category, small categories model all homotopy types (Thomason (86]), but
in a somewhat non-geometric way, so we could possibly look for categories that
correspond to n-types, but then where do n-fold groupoids with quite a bit of
mixed algebraic and geometric structure in them, fit in? If we keep categories as
our models, we need to describe n-types in those terms, if we abandon categories
for n-fold groupoids, we do not know any longer what is a stack!

We still have the problems that we noted earlier with 1-stacks: what does
‘locally constant’ mean? and what does ‘equivalence’ mean? We must also point
out that the automorphism object of an n-fold groupoid has yet to be shown to
be a (n + 1)-fold groupoid, although intuitively it seems ‘obvious’!

There is some evidence for Grothendieck’s idea since if X is nice, i.e. a CW-
complex, the étale homotopy type of E = Sh(X) is given by the homotopy type of
X, so the crossed module of the Mac Lane-Whitehead theorem yields a possible
2-fold groupoid associated to E in a natural way:

(X, X7) — I (X7),

but this is dependent on the choice of 1-skeleton, X1, so is only really determined

Yéaawm N
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‘up to equivalence’.

There is a lovely elegant proof of the classical or groupoid van Kampen theo-
rem which uses covering spaces. Brown and Loday [20] have proved a generalised
van Kampen theorem for cat™-groups. This may also be seen as evidence for some
sort of Galois theory involving a ‘fundamental’ n-fold groupoid of a space and
in that way giving a geometric interpretation of the Brown-Loday van Kampen
theorem.

Grothendieck also, in [41], looked at cofibred additive categories and his re-
sults again suggest that there is, here again, the same sort of phenomenon occur-
ring. The pay-off of a proof of a higher order Galois theorem would be consid-
erable. The technical tools needed for producing such a proof may exist already,
but they need adapting.

8 Conclusion (to the Bressanone notes)

I have tried to give you a taste of abstract homotopy theory, of some of its
different facets and to show how a categorical viewpoint is essential for producing
a ‘coherent’ view of homotopy theory. Abstract homotopy theory can produce
new results of a calculatory nature in the hands of someone like Baues, [5], but
is also very important in providing general categorical machinery for handling
homotopy types. (I have not tried to be exhaustive in my coverage of the area).
I have ended with an attempt to explain the core of Grothendieck’s programme
‘Pursuing Stacks’. Those notes mention quite a lot of abstract homotopy theory,
of a very elegant type, but their motivation is best found in Grothendieck’s higher
order Galois theory, an idea that, if it could be pushed through, would have
an enormous potential for applications in algebraic geometry, algebraic number
theory, etc., as well as in more topological areas. To complete Grothendieck’s
programme, many of the ideas mentioned in these notes will be needed. The
questions that that programme raise still need more formulation before it can be
even classed as a conjecture, but it is a useful focus for developing further this
area of abstract homotopy theory.

9 Conclusion : Ten years on.

Since the notes were first written, there has been considerable activity in the
area of abstract homotopy theory and related areas of homotopical algebra. I
cannot hope to do justice to all of it so will attempt merely to indicate some new
sources, texts and results closely related to the themes of the various sections.

Ve oo
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The material on homotopy theories, both generically and for specific exam-
ples has been significantly increased with, in particular, the book by Goerss and
Jardine, (G&J|, on simplicial homotopy theory, and Mark Hovey’s [MH] on Model
Categories. At an introductory level, there is also my own text with Kamps, [60],
already cited, which was still in preparation when the original lectures were given.
Other material can be found in James’ Handbook, [IMJ], especially the article
by Dwyer and Spalinski, [D&S|, and my own one on proper homotopy theory.

For work on algebraic models for homotopy types, the Handbook article by
Baues, [HJB| summarises a lot and is reasonably accessible with the background
assumed here. Work extending that mentioned in the notes includes the begin-
nings of a clear theory relating the different models for 3-types. This extends early
but unpublished work by Joyal and Tierney that discussed ‘lax 3-groupoids’ as
such a model. (A 2-groupoid is equivalent to a cat!-groupoid or a crossed mod-
ule; a lax 3-groupoid similarly is related to the quadratic modules mentioned by
Baues in [HJBJ).

My own work with Mutlu, [M&P1, M&P2, M&P3, M&P4], has continued the
analysis initiated by Carrasco, (22] and Cegarra, [23], and has tried to study the
way in which the categorical/ algebraic structures inherent in the models of the
different n-types, is already visible in the simplicial groupoid model.

The 2-groupoid/crossed module models mentioned in the notes are derived
from filtered spaces, e.g. from the skeletal filtration of a CW-complex. The
problem of finding ‘absolute’ models, independent of any additional structure
and extending the construction of the fundamental groupoid, seemed to be a
hard one. An elegant construction has now been given by Hardie, Kamps and
Kieboom, [HK&K], and again the techniques should be reasonably accessible
with the background assumed here.

Good source material on derived category theory and triangulated categories
is now available. These areas are treated in Mark Hovey’s book, but also in the
book by Neeman, [AM]. This latter handles in detail.the question of Brown rep-
resentability, that is, approximately, representability of functors ‘up to homotopy’
in those settings.

When the original notes were being written, I was working with Cordier on an
attempt to produce homotopy coherent analogues of much of elementary category
theory, with a view to applying it to aspects of the Pursuit of Stacks. The amount
of enriched category theory needed to read [C&P] is slightly more than has been
assumed here but that paper does try to bridge the gap between the abstract
categorical machinery and the interpretation in terms of homotopy coherence.
The ‘Pursuit’ continues (see also later)!

The work of Grothendieck and its relationship with classical Galois theory etc.
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is now treated in detail in a beautifully accessible text by Borceux and Janelidze,
[B&J]. Some insight on the homotopy coherence of the nerve construction and
the rigidification of hypercoverings has been given in a recent thesis (M. Alinor,
University of Wales, Bangor, 2000), but this is not yet available in preprint form.

Gradually Grothendieck’s ‘Pursuit’ has attracted more and more interest.
Results on algebraic stacks are now much more readily available, [G&M-B],
whilst simplicial versions of some of Grothendieck’s ideas have been developed
by Simpson, [CS], Toen, [BT] and others. (Check the math preprint archive at :
http://arXiv.org/ and then look on the nearest mirror site to you to find these
and many related papers).

‘Globular’ models for n-types were suggested by Grothendieck in (44]. Glob-
ular descriptions of (strict) n-categories and groupoids have been know for some
time, but it has become clear that they do not model all homotopy types. For ex-
ample, 3-groupoids do not model all 3-types, merely those with vanishing White-
head product. On the other hand ‘lax 3-groupoids’ also called ‘Gray-groupoids’
do, as was mentioned earlier. Lax versions of co-categories were sought for avidly
and now several different successful approaches have emerged. Papers by Batanin,
[MB], Baez and Dolan, [B&D], and Tamsamani, [ZT] are amongst the earliest,
whilst Hermida, Makkai and Power, [HM&P], and Leinster, [TL] have looked
at comparisons between these models. (Again look up these authors on the
Archive, and on their homepages, to see the current state of play on this). It
is of note that the motivation for these papers is often very different. Some of
the authors are motivated by considerations mentioned earlier in this article, but
Baez and his co-workers are coming at the problem from the direction of, and
with insights from, mathematical physics. Others approach it with applications
in Logic and Computer Science in mind. [The Newsletter maintained by John
Baez (http://math.ucr.edu/home/baez/TWF.html) is an excellent place to gain
information on what is happening in the area).

As you can see, the area has exploded. (I have not done justice to much of the
work that has been done, even in the limited area on which I have concentrated).
There remains however, a lot to be done. The abstract homotopy theory of weak
oo-categories is little understood as yet. The evidence for Grothendieck’s idea
gets stronger and stronger, but explicit (and understandable) direct constructions
of say, ‘universal 2-stacks’ or similar objects still seem some way off.

As I said in the introduction, I hope the notes and these brief additional com-
ments will be useful and will persuade more researchers that abstract homotopy
and its many facets, has something to offer them.

T.P., Bangor, 26 July 2001.
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