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Abstract

In this paper we present algorithms that approximate invariant subspaces
of a linear operator on a finite (but very high) dimensional space. [irst we
will show, following Stewart and Sun (1990), that a small-enough error in
an approximation for such a subspace, is the solution of a generalized Ric-
cati equation. The solution of this Riccati equation will be approximated
by Picard iterations, and we comment on convergence speed, costs and in-
terrelations. As a by-product, we give an overview of iterative methods to
solve a Sylvester equation with one large and sparse and one small and dense
matrix
, we will accelerate the Picard iterations in the same way as the
Ralelgh Quotient [teration accelerates Shift and Invert. This results in

Newton-like methods for the generalized algebraic Riccati equation. Ad-
ditionally, so-called subspace acceleration will be applied, in the same way
ethod. Fi-

as the Arnoldi method is a subspace acceleration of the Power
nally, forced by efficiency considerations, we consider the effects of inexact
solution of equations at each level of the nested algorithms.

For invariant subspaces of dimension one, one of the resulting algorithms
is the Jacobi-Davidson by Sleijpen and Van der Vorst (1996).

Contents

1. Motivation

1.1 Brief overview of current methods for subspace computations




58 Jan Brandts

1.2 Putting this exposition in context
1.3 Outline and discussion of this paper
1.3.1 Four simple iteration schemes
1.3.2 Computable error bounds for the eigenvalues
1.3.3 Solving Sylvester equations
1.3.4 Acceleration of the Picard iteration in a Newton-like manner
1.3.5 Relation to the Jacobi-Davidson algorithm
1.3.6 Implementation matters
1.3.7 Numerical experiments

2. Invariant subspaces and algebraic Riccati equations

2.1 Preliminaries
2.2 Derivation of the generalized' algebraic Riccati equation
2.3 Stability and convergence of invariant subspaces

3. Solving the generalized algebraic Riccati equation

3.1 Solving a Sylvester equation per iteration step
3.1.1 Explicit treatment of the quadratic term

3.2 Solvig a small linear system of equations per iteration step
3.2.1 Implicit treatment of the quadratic term

3.3 Computable error bounds for the eigenvalues

3.4 Discussion of the results
3.4.1 The different conditions of the theorems in different norms
3.4.2 The convergence speed and the amount of numerical work

4. Tterative methods for the Sylvester equation

4.1 The diagonalizable and Hermitian case

4.2 Basic iterative method for the Sylvester equation
4.2.1 Linear system approximation
4.2.2 The Bartels-Stewart algorithm
4.2.3 Krylov subspace methods

4.3 Krylov subspace methods for the Sylvester equation
4.3.1 Geoemetrical interpretation
4.3.2 Building a Krylov subspace of long vectors

Yaie )\




Computation of Invariant Subspaces of Large ...

5. Acceleration of the algorithms

5.1 Acceleration by basis transformation
5.1.1 The accelerated algorithm

5.2 Subspace acceleration
5.2.1 A Ritz-Galerkin procedure with extra large vectors
5.2.2 A Ritz-Galerkin procedure based on Schur vectors

5.3 Jacobi-Davidson as one step of a successive substitution
5.3.1 Another interpretation for Jacobi-Davidson

6. Illustration of some of the methods

6.1 Initial approximation andd transformation

6.2 Analysis of iteration (26) for the quadratic equation in p
6.2.1 Acceleration of the successive substitution
6.2.2 Different convergence patterns for different matrices

6.3 Analysis of the iteration (41) for the quadratic equation in p

6.4 Computable bounds for the eigenvalue (revisited)
7. Practical considerations

7.1 Back-transformation to the original basis

7.2 Stability issues
8. Numerical experiments

8.1 No acceleration
8.1.1 The Hilbert matrix
8.2 Testing the accelerated algorithm
8.2.1 The inverse Hilbert matrix and Wilkinson's matrix
8.2.2 The SHERMAN4 matrix
8.2.3 The PORES 2 matrix

8.3 Conclusions and remarks

59



60 Jan Brandts

1. Motivation

The computation of invariant subspaces of a large and sparse matrix has
attracted more and more attention in the recent history. The main reason for
this is, that the computation of single eigenvectors can be highly numerically
unstable if the corresponding eigenvalue is either not simple, or very close to
another eigenvalue (Cf. Section 7.2 in (8] and Chapters IV and V in [18]). Indeed,
the distance between a simple eigenvalue A and its nearest neighboring eigenvalue
appears in the denominator of upper hounds for the quality of approximations of
A

A similar result holds for spectral invariant subspaces of hermitian matrices,
i.e., the distance between the eigenvalues belonging to the one invariant subspace
and those of the complementary invariant subspace, appears in the denominator
of upper bounds for the approximation quality of (each one of) the invariant
subspaces. In the unsymmetric case the situation is similar, though more com-
plicated. The corresponding distance is called separation, a concept for which we
refer to [19] and Section 3 of this paper.

To get a better understanding of the action of the linear operator and to get
insight in its spectral structure, it is clarifying to try to cluster the eigenvalues
in groups that are well-separated from each other and to calculate the invariant
subspaces belonging to each of the clusters in a stable and efficient manner.
Alterwards, computations for the restrictions of the operators to each of the
invariant subspaces could be performed in a relatively stable manner.

1.1 Brief overview of current methods for subspace computations

For small and medium sized matrices, algorithms like the QR algorithm, Ja-
cobi Rotations, Subspace Iteration, and Divide and Conquer methods are avail-
able that compute invariant subspaces often to great satisfaction. We refer to
the third edition (8] of Golub and Van Loan (1996) for details on those methods
and for a large collection of references to the literature. For a treatment of per-
turbation theory for invariant subspace approximations from the numerical point
of view, Chapter V of the book [18] of Stewart and Sun (1990) is indispensable.
The book 7] by Gohberg, Lancaster and Rodman (1986) is a standard reference
for a more theoretical treatment of perturbation theory.

For large and very large matrices, the situation is much less satisfactory, as con-
vergence and stability of many of the algorithms are not yet well-understood. At
present, the most competitive methods to calculate invariant subspaces of large

sparse matrices seem to be
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o the Inexact Block Rayleigh Quotient Iteration (IBRQI), which, for the Her-
mitian case, was analyzed by Smit (1997) in his thesis [14] and in [15] of
Smit and Paardekooper (1999); the general case was considered in [11] by
Lai, Lin and Lin (1997);

the Implicitly Restarted Arnoldi (IRA) as developed by Sorensen (1992) in
[16] and well-documented by Lehoucq (1995) in his thesis [12];

Jacobi-Davidson style QR (JDQR) algorithm by Fokkema, Sleijpen, Van
der Vorst [6], based on the Jacobi-Davidson algorithm [20] by Sleijpen and
Van der Vorst (1996), and well-documented by Fokkema (1996) in his thesis
[5].

The recent publication date of all those references indicates that the topic is very
much alive, and moreover, that the last words on this topic have not yet bheen
spoken. Note that all three methods are based on Ritz-Galerkin projection.

1.2 Putting this exposition in context

The first of the three methods in the list above works with invariant sub-
spaces as inseparable entities; the other two use a more flexible approach and let
the subspaces expand and collapse. The methods in this paper combine diflerent
aspects of the three, in the sense that also here we work with subspaces as insep-
arable entities and here too, Sylvester equations are iteratively solved, as in [14].
Also, we incorporate subspace acceleration as in the IRA and JD method. To be
more to the point, consider the following sketch of the IBRQI.

Given A, and Xo with X{'Xq = I. Set k = 1. Mo = X{'AXo.

While not satisfied, iterate ...
Solve Yj. from AYy — YiMy_y = Xjy
Xi Ry = Yi (QR-decomposition, orthonormalization of the columns of Yx)
M, = .\[’A.\’k (Ritz-Galerkin projection)
k=k+1

end

The major problem with this iteration is that the Sylvester equation in the first
line in the while loop becomes harder and harder to solve as the eigenvalues
of M converge to eigenvalues of A. Indeed, it is well-known that a Sylvester
equation is singular if both matrices share an eigenvalue, so the conditioning of the
equation becomes worse and worse as the algorithm converges, which may lead to
stagnation. This problem can be approached, as in the Jacobi-Davidson method
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[20], by solving for orthogonal corrections to the current approximation instead
of a completely new approximation, after which only the action of A restricted
to the orthogonal complement of the current invariant subspace approximation
is needed. Loosely speaking, one could say that the (near) singularity of the
equation is “projected away”. In the single-vector case, it has been observed that
this can greatly improve the performance of the method. If this single-vector case
is enhanced with subspace acceleration, we arrive at the Jacobi-Davidson (JD)
algorithm.

As we will show, JD neglects a mild non-linearity that may be important
in case the matrix under consideration is non-normal, since exactly the non-
normality is represented in the non-linear term. We will investigate the effects of
extending JD by including this non-linearity, which turns the Sylvester equations
to solve into generalized algebraic Riccati equations. The main drawback of
considering special algorithms for highly non-normal eigenvalue problems is, of
course, that standard perturbation theory tells us that the results produced by
any numerical algorithm are likely to be very inaccurate. So the question of
why to consider refinements of algorithms especially for those unstable cases is a
legitimate one.

Since, at present, there is no satisfying block version of the JD algorithm for
invariant subspaces (JDQR is a repeated single-vector algorithm), we consider
our algorithms a useful contribution to the existing literature. Apart from that,
stressing the link between the eigenproblem and the corresponding generalized
algebraic Riccati equation, is likely to make this paper interesting for people from
both research communities.

Similar to both IBRQI and JD(QR), we will also pay attention to the inexact
solution of correction equations, which, in most practical situations is unavoid-
able. The algorithms derive much of their strength from the fact that full accu-
racy for the inner iteration is not often needed, or can be compensated for by an
expanded search space.

1.3 Outline and discussion of this paper
We will deal with the stable and efficient computation of invariant subspaces,
and the algorithms to be presented are based on the iterative solution of a gen-
eralized algebraic Riccati equation, in which the unknown P is an (N — k) x k
matrix satisfying
e i BP - PM = PGP - C. (1)

We assume in efficiency considerations that & << NV, although theoretically
this assumption is redundant. The solution P is strongly related to the error in
an initial approximation X of an invariant subspace. The matrices C' and G are
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of the same size as P, while B and M are given and square. All four of them
depend implicitly on X. It will be reviewed in Sections (2.1) and 2.2 how (1) can
be derived. Since finding the solution of (1), which uniquely exists if ||G|| and ||C/|
are small enough with respect to the separation between B and M (Cf. Section
3), is equivalent to finding the invariant subspace, solving (1) is a non-trivial task.

There is a large and varied tradition in solving Riccati equations, especially
in the fields of differential equations, differential geometry, and control theory. In
those fields, however, one is mainly interested in special cases like the so-called
Lyapunov equation, in which B¥ = M. As a consequence, one typically focuses
on the computation of a large part (e.g., half) of the eigendata, which drastically
restricts the size of the problem that is possible to tackle in practice. Less theory
seems to be available for the general case and on the case that we study in
this paper, i.e., with a large matrix B for which matrix-vector multiplication is
relatively inexpensive, and a small matrix M.

In the differential equations community, one typically studies solutions of the
spuaran %’; =BP-PM-PGHP+C, (2)
and clearly, equation (1) investigates the critical points of 2. An important obser-
vation is that traditional solution methods for algebraic Riccati equations work
in the opposite direction of what we will try to pursue here: they solve the cor-
responding eigenvalue problem in order to get solutions of the Riccati equation,
while we try to solve the eigenproblem using approximate solutions of the Riccati
equation. We refer to the book [2] of Bittanti, Laub and Willems (1991) for an
overview of the history of the Riccati equation, aspects from differential geometry
and numerical algorithms, as well as for a large bibliography.

1.3.1 Four simple iteration schemes

As an initial attempt to solve (1), we propose to use Picard iteration to iterate
to a fixed point. For this, we have to choose, basically, which appearances of P
in 1 we will replace by P,_; and which by P,. Although it might be possible to
consider P in the factor GH P to be an unknown of such a successive substitution
process, we will not do so in this paper. This reduces the amount of possibilities
to four, which we can classify in two groups of two as follows,

o Treat the quadratic form explicitly as P,_1G# P,_; or implicitly as
PaGrPA

e Solve a linear system with matrix B or M, or solve a Sylvester equation
with both matrices B and M.

Ve i
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Note that solving a system with M does not need a mathematical treatment
different than the one for solving a system with B. We will stress this once more
in Section 3.

The Picard iteration from those four possibilities that is numerically the most
expensive per iteration step, is the successive substitution (3) below. It treats
the quadratic term implicitly and' solves a (different) Sylvester equation in each
slep, .

BP, — Po (M +G"P, ) = —C. (3)

The approach based on iteration (3) will be pursued in Section 3.1. In Section

3.2, we study the counterpart of (3) with respect to the amount of numerical work

per iteration step,
PaM = (B = PoaGH) Py + C, (4)

in which we only once need to compute the inverse of a small & x & matrix and
in which in each iteration a multiplication with B is required. Even though
we may expect that this iteration converges slower than (3), it is worthwhile
considering it because each iteration step is very cheap compared to solving a
Sylvester equation, as in (3). For completeness, theorems on the remaining two
successive substitutions will be proved, but in less detail than the ones (3) and
().

In Section 3.4 we will comment on the results. In Section 6, the Picard
iterations are illustrated in examples in which A is a two-by-two matrix.

1.3.2 Computable error bounds for the eigenvalues

If we assume that P is a solution of the generalized Riccati equation (1), it can
be shown (and it will be, in Section 2) that the eigenvalues of Meo := M+ G P are
cigenvalues of A. Since we proposed o approximate (1) iteratively by a sequence
(Py), and since the initial approximation M is explicitly known, it is possible to
compute the eigenvalues of the current approximation M, := M + G P, along
the way. Moreover, if we are able to find P%)un(ls for || P — P,||, then, since

Moo = My, - G(P = P,),

we can use the Bauer-Fike Theorem or the Henrici Theorem to find upper bounds
for the error in the spectrum of M -+ G P, with respect to the spectrum of Meo.
Since in many applications the dimensions ol the matrix M are small, this is
not merely an academic result: it is indeed possible to say something about the
conditioning of an eigenvector basis of M, and also about its deviation from
normality, which are both quantities that are present in the bounds. We will
discuss this in Section 3.3. See also Section 6.4 for a simple example.
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1.3.3 Solving Sylvester equations

A general account on solution methods for Sylvester equations is given in
Section 4. We will show in Section 4.2.1 that simple classical iteration schemes
connect the implicit and explicit Picard iterations. The methods of choice for
a Sylvester equation with one large and sparse matrix and one small and dense
matrix, however, are (based on) Krylov subspace methods, as we will discuss in
Sections 4.2.3 and 4.3. They will be used to solve an extra large system of linear
equations that models the action of the Sylvester operator. In Picard iterations
in which Sylvester equations with many right-hand sides have to be solved, such
as in the explicit approach, information of the previous iterations might be used
in the current iteration, for example by keeping (some of) the basis vectors of
Krylov subspaces in memory.

1.3.4 Acceleration of the Picard iterations in a Newton-like man-
ner

Given an initial approximation for an invariant subspace Xj, each one of
the successive substitutions of Section 3 produces a sequence P, converging to a
matrix P that represents the error in Xo. Having approximations of this error
available, we can, during the iteration, construct new approximations X, that
are likely to be better than the original approximation Xg. It is then possible
to construct new matrices B, M, C and G* with respect to X, once a while or
in each iteration step, and solve for the new error P. Since one of the hence
accelerated Picard iterations is equivalent to the Newton method, we expect that
this will lead to better convergence. Note however that the Newton method is
generally not very efficient if the iteration is started to far away from the root.
Some observations on this issue will be made in Section 5, and in Section 6 we

present an easy example.

1.3.5 Relation to the Jacobi-Davidson algorithm

In Section 5, some special attention is paid to neglecting the quadratic term
in (1) completely and solving (to full or less precision), the linear(ized) correction
equation

BP - PM = -C, (6)

which obviously yields an approximation P of P. Then, a new approximation of
the invariant subspace can be formed and new matrices B, M, G and C' computed,
after which the step (6) can be repeated. In the course of this iteration, a sequence
X, of approximate invariant subspaces is formed, that will hopefully converge.

T
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Clearly, this method can be referred to as an inexact Newton method for the
Riccati equation.

Remark 1.1 Already in 1846, Jacobi [10] described a very similar method to
approximate an eigenpair of a diagonally dominant matrix. After each linear
correction step (6), of which he approximated the solution by two steps Jacobi
iteration; however, he only updated the approximation for M. For more details,
see also [20] and the references therein.

It is possible to accelerate the algorithm even further by selecting from all

previous spaces Xg, - -+ , X,—1 a suitable linear combination with desirable prop-
erties in a Ritz-Galerkin like manner. For subspaces of dimension one, this gives
the Jacobi-Davidson algorithm by Sleijpen and Van der Vorst [20], while for sub-
spaces of larger dimension, it seems to be a useful generalization to invariant
subspaces; one that is more natural than applying Jacobi-Davidson to a block
vector.
Remark 1.2 The Davidson algorithm [4] for approximating an eigenpair j,u
with Au = pu, also incorporates subspace acceleration, but not with the correc-
tion equation (6), which takes place in the orthogonal complement of the current
invariant subspace approximation, but (approximating A by its diagonal D) in
the unrestricted space. Since in the latter case, the singularity of A — s/ in the
direction of u is not properly taken care of, this can cause severe problems. See
|20] for further details.

1.3.6 Implementation matters

In order to test the resulting algorithms, it is advisable to transform the
systems to solve on a more suitable basis. This is done in Section 7, in which also
some observations with respect to the stability of the solution of the Sylvester
equations are made. These observations originally stem from [20] and have been
proved to be of great practical importance.

1.3.7 Numerical experiments

[n Section 8 we will give some results of numerical experiments. We tested
some of our algorithms on standard test matrices from the Matrix Market collec-
tion [13] and other notoriously difficult eigenproblems like the one for the Hilbert
matrix (see Section 8.1.1). We consider algorithms with and without acceleration,
and use dilferent tolerances for the inner iterations involved. The results seem
very satisfactory, but it should be noted that it is hard to make a comparison
with the other algorithms because of their complicated nested structure.

w27
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2 Invariant subspaces and algebraic Riccati equations

We will now study invariant subspaces in the setting of [18]. We will use,
adapt and extend their notations and results, which were used to prove perturba-
tion theorems for invariant subspaces. In this section, we will put the emphasis
on algorithmical aspects.

Remark 2.1 Throughout the paper, and if no confusion is expected, we will
identify the columnspan of a matrix with the matrix itself, i.e. we talk about the
matrix X as well as the subspace X.

2.1 Preliminaries

Let X be a unitary matrix approximating an invariant subspace X. Consider
the projection M of A on X and let R be the corresponding residual. Explicitly,
this means that

XHXx =1, M=XHAX and R=AX-XM. (7)

Let Y be a unitary matrix spanning the orthogonal complement of X. Then,
(X]Y) is unitary, and transformation of A from the standard basis to the basis
given by the columns of (X|Y') results in the definition of the blocks M, B, C' and

GH in »
Y) = (X]Y) [+ﬂ e ] ®)

Note, by comparing columns, that AX XM +YC so C YHR. Also,
AY ~YB — XGH which means that XG¥ is the residual corresponding to
Y. In case A is hermitian, ¢' —~ G, and Y is as good an approximation of an
invariant subspace as X. We will now show how to find an invariant subspace
assuming that the approximation X of X is “good enough”. The main ideas of
what follows can be found, for example, in Chapter V of [18]. We wish to repeat
them here and provide some additional explanations.

A(X

2.2 Derivation of the generalized algebraic Riccati equation

Let ¥ be such that (X|Y) is an N x N unitary matrix. Then, because X is
an invariant subspace, transformation of A to the basis (X|Y) leads to
M| GH
0| B

AX|Y) = (X]Y) [ )

for certain M, G and B. Now, (.\"lY) can be constructed from X and Y as follows.

Ve oo
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First assume that H = )\:HX and K := YHY are invertible (this assumption
will later be translated as “X and X are close enough”). Then write

B ik H X - H
(XI¥) = (x) [;—”X—% = ) =

in which, clearly, P = YHXH~-! and Q@ = XHYK-1. As a product of two
unitary matrices, the most right matrix in (10) is unitarity as well, which leads
to the relations

XUX —HY(U+ PEP)H =1 and Y7V =KAU@+QYQK =1, (1)
and
XHy — gH(P! 4 Q)K = 0. (12)
Since we assumed H and K (o be invertible, we can conclude from (12) that
@ = —PH  after which it appears that A = (I~I»P”P)_% and K = (1+PP”)'%.
This results in
X = (X +YP)I+PEP)~% and ¥ =(¥ - XPHAI+PPI-5  (13)
We will now determine P such that (,‘;’I)}) realizes the block Schur form (9). The
only requirement is to choose P such that YHAX = 0, which, in terms of the
blocks M, B,C" and G in (9), is equivalent to the condition that P satisfies the
following generalized algebraic Riccati equation,
BP - PM = PGP - C. (14)
This equation might have several solutions. In the following section we will
comment on which solution gives rise to the invariant subspace X closest to X

First we quote a result from [18].
Theorem 2.2([18]) Suppose P satisfies (14), then, o(M + G* P) C a(A).

Proof. By definition, M = X”AX. Substituting X from (13) and using the
relation BP = PM + PGH P — C obtained from (14), we arrive at

M = (I+ PHP)~5(M + GHP)(I + PHP) 3, (15)
which means that, since o(M) C a(A), also the cigenvalues of M + G P are
a

cigenvalues of A.
Remark 2.3 (Special case: k = 1) Il we put k& = 1, the theory of Section 2.2
gives us a way to transform an approximation x; of an eigenvector of A into &
close-by exact eigenvector. First note that the non-linear equation (14) for the
matrix I reduces to an equation for the vector p as follows,

(B =ph)p =plg"p) — . (16)
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Moreover, Theorem 2.2 gives,
A=n+gp. @)

The one-dimensional case is special in the sense that g”p is a scalar that com-
mutes with p. We can keep this in mind while studying the iterative methods
to approximate the solution of (14) in Section 3 to come. See also Section 6 in
which k =1 and n = 2. O

2.3 Stability and convergence of invariant subspaces

We will now discuss the previous section in terms of stability and convergence.
First, let Uy and V3 be n x k matrices with orthonormal columns, and let (U;|Us)
and (V4|V2) be unitary. Then we define, as is usually done, the gap 6(:, -) between
Uy and V) by,

0(Uh, Vi) 1= |IUVall = |1 Po, — P |, (18)

where Py and Py are the orthogonal projections on I/ and V respectively. It is
well-known that 0(U;, V}) can be interpreted as the sine of the angle between Uy
and V4, and therefore, the condition from the previous section that H :— X e
should be invertible, is equivalent to the (not very restrictive) condition that the
angle between X and X should not be 5. Moreover, an easy calculation shows
that K is invertible if and only if / is.

Bach k dimensional invariant subspace of A that is not orthogonal to X,
corresponds to (at least one) solution P of the generalized Riccati equation (14).
This correspondence is expressed by the left formula in (13). From this formula,
we also find an oxpmqsnon for the gap between X and \ as follows,

0(X, X) = || X 1P + P P)~3 < ||P|l. (19)

One could define the invariant subspace X for which ll(.\',.\’) is minimal to be
the one “closest” to X. However, it is not clear if the X closest to X is the one
that corresponds to the minimal norm solution P of (14), regardless what the
inequality in (19) may suggest. Nevertheless, a useful theorem can be proved.
Iirst, we need to define the separation between two matrices.

Definition 2.4 Define, on the space of (N — k) x k matrices, the linear Sylvester
operator T associated with B and M, and consequently the separation between
the matrices B and M by

T:Q BQ-QM, sep(B,M):= inf |T(Q). (20)
J
Now, suppose that P satisfies (14), then (loar}g o
sep(B, M) “mf IT@)] < upn)” < G~y + H (21)

Ve = N
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Writing v := [|C|, x := ||G|| and ¢ := sep(B, M), we conclude that the norm
p = ||P|| of any solution of (14) satisfies

op < xP* + 7. (22)
If §2 — 4yx < 0, then (22) holds for all p, and nothing can be concluded for p
from this analysis. If, however, §2 — 4xy > 0, both roogs

n:=%(1~y/1—%/> and -rr:=2ix 1+'l1—4;2—'7) (23)

are positive and real, and (22) holds everywhere except on the open interval
T i= (7, 7). In particular this means that there exists no solution P of (14) such
that ||P|| € 7. By showing that A : P = T~Y(PGH P — C) is a contraction on
the ball B := {@Q|||Q|| < 7¢}, Stewart proved in [17] that there does indeed exists
a unique solution P of (14) in B.

Theorem 2.5 (/17]) Suppose sep(B, M)? — 4||C||||G|| > 0. Then there exists
exactly one solution P of (14) that satisfies

gl
P|<1<————. 24
I ”_n_sep(B,M) (24)
This solution gives rise to an invariant subspace X of A such that
- ep(B, M
0%, %) < 1Pl < 7 < —2ICL__  sep(Bi M) (@)

sep(B, M) = 2||G||

Proof. See Stewart [17] or (18] for details on the first statement. Combining
(19), (24) and the condition of the theorem leads to (25).

Summarizing, the discriminant-like condition sep(B, M)* — 4||C||||G]| > 0
provides us with a ball B in which a unique minimal-norm solution of (14) lives.
This ball is directly surrounded by a spherical layer of thickness 7, — 7¢ that does
not contain any other solutions. In Section 3 we will see that the relative thickness
of this layer directly influences the convergence speed of Picard iterations for the
Riceati equation. Note that the condition also implies that sep(B, M) is strictly
positive, or ||C']|||G| = 0 and an invariant subspace has been found.

3 Solving the generalized algebraic Riccati equation
Consider the non-linear equation (14), which is known as a generalized al-

gebraic Riccati equation. Since it is equivalent to an eigenproblem, it cannot be
solved directly, which necessitates the use of iterative methods. In this section we

e
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start with studying four different Picard iterations, and state conditions under
which they converge. From the proofs it will, as a side product, become clear
how fast they converge.

Remark 3.1 Although for diagonalizable or even Hermitian matrices, some of
the results might be simplified and improved, we choose to use a general setting
here. In Section 4 we will comment on these special cases.

In Section 3.1 we will consider two Picard iterations that are based on solving
a Sylvester equation in each step. In Section 3.2 we will consider the cheaper
alternative of inverting a small matrix once (or solving linear systems with it),
and applying one large matrix multiplication per iteration step. The proofs of
the theorems to follow are variations of a proof in Section 2.4 of [18].

3.1 Solving a Sylvester equation per iteration step

The most sophisticated Picard iteration to approximate the solution of (14)
is the following,
given Py =0, iterate BP, — P, (M + o Paoy) = -C, (26)

in which in each step a linear Sylvester equation needs to be solved. We present
details on solution methods for linear Sylvester equations in Section 4. Note that,
as P, converges to P, the eigenvalues of M + G P, converge to the eigenvalues
of interest (Cf. Th. 2.2). Assuming that each iteration step is performed exactly,
we can state the following theorem.

Theorem 3.2 Define the linear operator T on the space of (N —k) x k matrices,
and the separation between the matrices B and M by,
T(P) = BP - PM, §:=sep(B,M): ”Iiu:fl [|T(P). (27)
|

Assume that § > 0. Moreover, write v = ||C|| and x := ||G||. Then, if
82 —dyx >0, (28)

the implicit iteration BP, — P,(M + GY P,_)) —C is convergent if Py = 0,
and, using the notation from (23)

I|1P = Pall < rf(ﬁ)"< (29)

T

Remark 3.3 Note that condition (28),
sep(B, M) —4||C||||G|| > 0, (30)
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can be interpreted as a higher dimensional equivalent of the discriminant for the
quadratic equation (14) in P. 0

Proof of Theorem 3.2. The proof consists of three steps. Firstly, we will
prove that the sequence of norms p, := ||Py|| is bounded. Secondly, we prove
convergence of the sequence P,. Thirdly, we derive our final error bound.

Step I : Since the iteration (26) reads as P, = T=Y(P,GH P,y — C), for the
norms p, we find,

0 and pu< 2+ Xpps. (31)

Define the sequence &, by 5
=0 and npy=——xr-. (82
&o Sl = 5 e )

This sequence is, under the condition (28), well-defined as we will show now.
First note that &, = ¢(&x—1) with 9 5

#e) = gz E€). (@)
Clearly, ¢ is strictly increasing. Moreover, the quadratic equation ¢(€) = € is
the one in (22) which, by condition (28), has 7 < % as smallest positive root.
Left from this root, ¢ has derivative smaller than one. So, the Picard iteration
&n = ¢(&n—1) converges monotonely (o 7. From (31) and (32) we see that p, < &,
for all n, so that,

Vn,0 < ||Pl £ lim & = 7. (34)
k—oo
Step II : From (26) we find, after some rearranging of terms,
T(Bopa— o) = (Bu = B3 G BRI GRS R (35)
50 that, after taking norms an(kusmg the bound (34) we get,
1Pns1 = Pall < 576 (1P = Pall - 11Bn = Paall) (36)
I1Pasa — Pa II< ‘lIP Pay- (37)

So, P, is convergent with limit P.

|
|
which, using that 77 + 7, é results in l‘
Step III : Using the now established existence of P, we find from (26) and (14) {
{
|

that
T(P = P,) = (Pu= P)G" Pa_y + PG(Pacy — P),.. (38)
so that, after taking norms and l\smg (84) again,
P = Pall < =2 (I[P = Pall + [P = Pacl])- (39)
Clearly, this results in = T
1P = Pall € =[P = Pactll = Z[IP = Pacal. (40)
Lo 7
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The statement follows now inductively from ||P — By = |P|| < 7. u]

3.1.1 Explicit treatment of the quadratic term

The following Picard iteration is a somewhat simpler than the previous, since
the quadratic term is treated explicitly,
given Py =0, iterate BP, —P,M = PooyGHP,y - C. (41)

This iteration is, in a general form, considered in Section 2.4 of [18] with the
purpose to prove conditions under which (14) has a unique solution. Since some
steps in the proof in [18] are not optimal, we will formulate an improved version.

Theorem 3.4 With the same notations and under the same conditions as in
Theorem 3.2, we have that the explicit iteration BP, — P,M = P, ,GHP,_, - C
is convergent if Py = 0, and

ol
MI’—I’,.”ST,( are ) . (12)

Te+ Tr

Proof. We will only outline the proof since it contains the same elements as in
the proofs of Theorem 3.2 and Theorem 3.5 to come. The successive substitution
bounding the norms p, := || Py|| is ;

€0 =0, & =), with 6(§) =5 (v+x€%). (43)

There is again convergence of &, to fixed point 7¢ (C[.(23)). Since the existence of
a fixed point P has already been established in Theorem 3.2, we can immediately
compare P and Py, resulting in

27
S B SNSRI e S 4
1P =Pl < 2P Pocl (1)
Since ||P = Pol| = ||P|| € 7¢, the statement is now proved. (m]

3.2 Solving a small linear system of equations per iteration step

Another option is to go for the computationally cheapest iteration available
from this setting, which means treating the quadratic term explicitly, and solving
a system with the matrix M, that we assume to be much smaller than B,

given Po =0, iterate P,M = (B - PaoiG¥) Py 4 C. (45)

So, instead of a Sylvester equation with a large and a small matrix, we only have
N linear systems with a small k x k matrix to solve. It will probably pay off to
explicitly invert M.
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Theorem 3.5 Write u = |M~Y||=%, 8 = |B|,¥ = |C|| and x = ||G||- Suppose
§:=p—@>0, and &62—dyx>0. (46)

Then the explicit iteration P,M = (B — P,_1GH) P,y + C is convergent if

Py =0, and w
P = Pl < v (£E2)" (@)

Proof of Theorem 3.5 Similar as in the proof of Theorem 3.2 we can find a
sequence &, majorating the norms p,, := || P,||,
P

X
& =0 andforalln, pp<é&ni= 55 + ;En-] 18 ;5:_1- (48)

Under the given conditions, this sequence is well-defined as we will show now.
First note that &, = ¢(&,—1) with
Yoyl N
= L el ER. 49
SlEli= et T (19)

The quadratic equation ¢(&) = & is the one in (22). Since ¢/ is increasing for
§ = 0 and since ¢ intersects € — &, we have, with 7¢ from (23),
0<¢(€) <¢l(m) <1 forall €Ee|0,7) (50)

So, the successive substitution &, = ¢(&n—1) converges monotonely to 7¢ (C[.(23)).
Hence,
Vn, 0<pn< lim & =7 (51)
k=00

We shall use this to show convergence of P,. Rearranging terms from (45), we
get

(P=P)M = B(P = Pyy) + (Pact = P)GH Py + PGH(Pooy = P), (52)

so that, taking norms and using the bound (51) on the norms pn, we arrive at

IP=Pifl < 72“’ F XU+ [ Paca D) 1P = Pacal

3 2T =
< ZENp R, (3)
Using that || — 7|l ||7’]| < 7 we have completed the proof. o

m‘j



Computation of Invariant Subspaces of Large ... 75

3.2.1 Implicit treatment of the quadratic term

The last successive substitution that we will consider is one in which we solve
systems with the smaller matrix in each step, but, since we treat the quadratic
term implicitly, this small matrix changes in each iteration step. The iteration is

given Py =0, iterate P, (M +GH"P,_,)=BP,_,+C. (54)

For this iteration, we can prove the following result.

Theorem 8.6 With the same notations and under the same conditions as in
Theorems 3.5, we have that the implicit iteration Py (M + GY P,_y) = BPy_y+C
is convergent if Py = 0, and

ey 1—1_5_;%‘/—_]—’))_l (1—‘%;,/—1_()" o
Tt 1+ b=ByT=p 1+88yT=5)

Proof. Again, we will only outline the proof since it contains the same elements
as in the proofs of Theorem 3.2 and Theorem 3.5. The successive substitution
bounding the norms py := ||Py,]| is here

5+ B
=0, & =dG) with o€ = L1 (56)
There is convergence of &, to the smallest fixed point 7 from (23), giving

B
_,'([u-( \/IT;))]HP"—P" .||'§(l-v1_—77)||n..1—1’n||), 57)

Rearranging the terms we can prove that we have a Cauchy sequence, after which
the statement follows from ||y — Byl = [[CM || < v/p. a

Remark 3.7 As in the case of Theorem 3.2, we could \mrk with M, := M+GH P,

and get a result in terms of the norms jt, == ||M,;'||=". The following iteration
Py =0, iterate PaMn_) = BP,—, +C, (58)
is equivalent to (54). We will, however, not pursue this possibility. 0

3.3 Computable error bounds for the eigenvalues

As we already mentioned in Section 1.3.2, it is possible to monitor the
progress of the successive substitution methods by computing the eigenvalues of
the matrix M,, := M+G" P,. The sequence (M) converges to Mo, 1= M +GHP,
whose eigenvalues are a subset of the eigenvalues of A (see Theorem 2.2). The
difference between the two can be easily written down,

- M, =GP =PR,). (59)

Ve oanmmaN
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Any theorem on the perturbation of eigenvalues of a matrix can now be

applied to this situation, since we have developed bounds on the norms ||[P — P, ||
for each of the four successive substitution methods in Theorems 3.2, 3.4, 3.5
and 3.6. We will highlight two of them, of which the first one is a general result.
It includes the concept deviation from normality v(A) of a (general) matrix A,
which is defined as follows.
Definition 3.8 (Departure from normality) Suppose that AQ = QT is the
Schur decomposition of A for which the norm of the upper triangular part N of
T is minimal. Then v(A) := ||N|| is called the || - ||l-departure from normality of
A.

Theorem 3.9 (A Henrici corollary) Let x := ||G||, and let v(My) be the La-
departure from normality of the matriz M,,. Then for each eigenvalue A of My
there exist an eigenvalue yu of My, such that

. k=1 :

3 |A = p| < max (a.o%) , where 0= [P = Pylla [x Do v(Ma) | . (60)
3=0

Proof. The theorem is a trivial corollary of Theorem 7.2.3 in [8]. (]

For diagonalizable M,,, we have the well-known Bauer-Fike theorem. Note
that for normal M, (this is, unitarily diagonalizable) the results from Theorem 3.9
and Theorem 3.10 can be seen to overlap, by putting (M) = 0 and x,(Q) = 1.

Theorem 3.10 (A Bauer-Fike corollary) Let x := ||G|| and p € [1,00).
Suppose M., is diagonalizable, and that Qn is such that Q;'M,Q, is diagonal.
Denote the p-norm condition number of Qn by #,(Qn). Then for each eigenvalue
A of My, there exist an eigenvalue ju of My such that

A=l < Kp(@u)XIP = Pallp- (61)
Proof. We refer to [8] and the references therein for the Bauer-Fike Theorem.
The statement of the theorem here is just a trivial corollary. (m]

In Section 6.4 we will illustrate, using a simple example, that the bounds from
the two theorems above can, in some circumstances, indeed be estimated in a rel-
atively inexpensive way. This will result from back-transformation to the original
basis as will be shown in Section 7, and the fact that during the iterations (either
successive substitutions or Krylov subspace iterations), much information about
spectral properties of the operators involved, becomes available. Apart from that,
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extrapolation of the sequence P, is also a topic of interest. Indeed, asymptoti-
cally, the difference P, — P, behaves like a geometric sequence, especially after
taking norms. More research in this direction is needed.

3.4 Discussion of the results

In Sections 3.1 and 3.2 we have proved error bounds (implying convergence)
for four different successive substitution methods for approximating the solution
P of the non-linear Sylvester equation (14). The methods have been classified
according to how the quadratic term was treated (implicitly or explicitly) and
according to the type of equation to be solved (standard linear system or Sylvester
equation). We will discuss the results.

3.4.1 The different conditions of the theorems in different norms

First note, that although the conditions 4 > 0 and p < 1 seem to be the
same in all four theorems, there is a difference in the definition of the number 4.
For the Sylvester equations in Section 3.1, 6 was the separation between 3 and
M, while for the linear systems considered in Section 3.2, it was a difference of
norms. In the case of a Hermitian matrix A, which leads to Hermitian 3 and M,
the two quantities can be easily written down if specific norms are used.

Proposition 3.11 ((18), Th. 2.3 and Th. 3.1) Let B3 and M be square
matrices, then the separation between B and M in the Frobenius norm satisfies
sep(B, M) < min{|\p — Am||Ag €a(B) and Ay € o(M)}, (62)

while equality holds if M and B are Hermitian.

This result implies that, in the Hermitian case, the iterations (26) and (41)
can be applied as long as the spectra of M and B are disjoint, so, also if they
interlace. In that case one might expect that convergence of a block-iteration
could be as slow as the slowest single vector iteration. In Section 4 we will show
that, fortunately, this does not always need to be the case.

Consider on the other hand a situation in which M contains clusters of eigen-
values, and that the mutual distances within such & cluster are smaller than the
distance between the spectra of B and M. Then the block-algorithm is a clear
improvement over the multiple application of the single-vector variant.

We will now turn to the successive substitutions (45) and (54), in which sys-
tems are solved. The easiest norm to use seems the L; norm, since the condition
|IM = =" = IB]| > 0 reduces in the Hermitian case to

| max a(B)| < |mino(M)|. (63)
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This, however, does not admit interlacing spectra (although in different norms,
different results might be obtained). Note that (63) can also be realized by a
simple translation if the convex hulls of the spectra are disjoint sets. Alterna-~
tively, one could choose, by symmetry of formulation (not of the matrices) to
solve systems with B instead of with M. We note that an approach based on
harmonic Ritz values might be worthwhile considering in case one is interested
in approximating (clusters of) interior eigenvalues. We refer to [20] for details on
harmonic Ritz values in this context.

3.4.2 The convergence speed and the amount of numerical work

Comparing the theorems 3.2, 3.4, 3.5 and 3.6, we note that the upper bounds

for the Sylvester equation approach of Section 3.1 are better than those for the
linear system approach of Section 3.2, and also that the bounds for an implicitly
treated quadratic term are better than those for an explicitly quadratic term.
This could have been predicted on beforehand. It is also clear that the linear
system approach can be very much cheaper per iteration step than the Sylvester
equation approach (although one should realize that the most expensive part in
each step is probably the multiplication with the larger matrix). Also, explicit
methods are cheaper than implicit methods, in which the small matrix changes
in every iteration step.
Remark 3.12 Similarity transformations can be used to improve the convergence
estimates, although this hardly has any practical value. Defining U/ := VBV ™!
and T := W='TW with non-singular V and W, we find, with Z := V PW, that
(14) transforms into

UZ - 2T = Z(W='GHVv=") - VCW. (64)

Applying the convergence theorems (o a transformed system can lead to bet-
ter values for the parameters that determine the convergence, although only for
unitary transformations V and W we can transform the resulting estimates for
||Z — Z,|| back to estimates for [|P — P,||. 0]

Before we can make a fair comparison of the costs of the four methods, we
will need to concentrate on methods for solving Sylvester equations. We will see
that solving them to full accuracy can be very expensive. However, approximating
their solution by means of one or more steps of an iterative method can be feasible
as well (see also the IBRQI in [14]). As a matter of fact, we will see that some
of those inexact solution methods will reduce the Sylvester equation approach of
Section 3.1 to a linear system approach.
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4 Iterative methods for the Sylvester equation

In this section we will concentrate on solving the general Sylvester equation
FZ — ZT = E by means of iterative methods. We will follow the lines that
develop iterative methods for linear systems Az — b and adapt them to the
Sylvester equation setting. Note that we may assume that 7" is upper triangular,
since, using a Schur decomposition 7'Q = QT of T, the equation F'Z — ZT = I
transforms to

P(ZQ) - (2Q)T = EQ. (65)

Therefore, in the following we will try to solve FZ — ZT = F assuming that
T is upper triangular (note that we did not want to introduce new notations and
will continue to work with /', T' and F). Before that, though, we will consider
the special case that 7' is even on diagonal form (either as a result of a unitary
or a similarity transformation).
Remark 4.1 Throughout Section 4 we assume the matrix 7" or M to be much
smaller than B or I, so that the costs for computing & Schur form for 7' or M is
negligible. (0]

4.1 The diagonalizable and Hermitian case

Suppose that the matrix 7' in F'Z — ZT ~ E is diagonal, then solving this
Sylvester equation is (mathematically) equivalent to solving & independent linear
systems. In spite of that, neither one of the iterations from Section 3.1 reduces
to a set of k independent vector iterations because of interactions within the
non-linear term.

First reconsider iteration (41). Assuming that M = WDW~! diagonalizes
M, we can rewrite this iteration as

BZy — ZoD = ~CW + Zn-y (W™'GH) Z,—;, where Z,:=P,W. (66)

Since the quadratic term is treated explicitly, we can use the same diagonalization
of M throughout the whole iteration. Note however, that due to the presence of
the quadratic term in the right hand side, the block-iteration (66) is, in general
not equivalent to k single vector iterations,

Neither iteration (26) cannot be interpreted as & single vector iterations by
the diagonalization of the smaller matrix. Indeed, per iteration step, k indepen-
dent linear systems can be solved, avoiding the difficulties of solving Sylvester
equations in which the Schur factor has a non-trivial upper triangular part. But
since the matrix M,, : - M +G" P, changes in each iteration step and depends on
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the complete iterate P,, a total decoupling into k independent vector iterations
is not possible.

Remark 4.2 Note that diagonalization of the matrices M and M, := M+GHP,
in the successive substitutions of Section 3.2 leads to a similar result. There is a
step-by-step decoupling of the equations, which can be practically very useful in
the explicit iteration (54), but there is not a full decoupling into k independent
vector iterations. This is probably exactly what makes that the block algorithms
perform better than when k single vector iterations are applied. O

4.2 Basic iterative method for the Sylvester equation

Any iterative algorithm for solving the Sylvester equation will, essentially,
have the following structure. Given an initial guess Zo for the solution Z, we
calculate the residual Ro = B -+ ZoT — F'Zy, put k = 0 and iterate

solve Uy approximately and cheaply from FUy — UpT = Ry, (67)

Cr=FUr—UT, Rij1=Rr—Ck, Zpp1=2x+Us, k=k+1. (68)
If Uk is solved exactly from the residual correction equation (67), then Zjyy =
Z. Otherwise, the hope is that the algorithm will produce a sequence Zj. that
eventually converges to Z. Of course, there are a multitude of methods to solve
the residual correction equation only approximately. We start by showing a
simple one in Section 4.2.1 because it establish a connection between the Sylvester
equation approach of Section 3.1 and the linear system approach of Section 3.2.
Then we move on to variations based on the Bartels-Stewart algorithm (1] in
Section 4.2.2 and comment on the use of Krylov Subspace methods in Section

4.2.3.

4.2.1 Linear system approximation

The classical idea in linear system theory for the iterative solution of Az = b,
is to split the linear operator A = M — N such that solving systems with M is
easy, and then to iterate Mz = Nak +b to the fixed point z. The Richardson,
Jacobi and Gauss-Seidel algorithms are instances of this method, and we refer to
(9] for details. We can apply a similar approach in the Sylvester setting, resulting
in Algorithm 4.1 .

Proposition 4.3 Algorithm 4.1 converges to the solution Z of FZ — ZT = E if
the product of spectral radii p(F)p(T~") of F' and T~ is smaller than one (O,

T
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Now, apply one step of Algorithm 4.1 with start value Zy = 0 to approximate
the solution P, of each iteration step of (26). Then the approximating sequence
P, thus obtained is exactly the sequence P, from (54).

ALGORITHM 4.1: Classical Method for the Sylvester equation.
input: F\ 7T, I2, Z, tolerance
Ro = E— (FZy - ZyT)

k=

while ||Ry| > tolerance
UxT = —Ry

Ry = —FUy

Ziyr = Zy + Uy
k=k41

end (while)

Instead of having to combine the convergence theorem (Theorem 3.2) for the
sequence (26) with the convergence of Algorithm 4.1 given by Proposition 4.3,
we already proved convergence of this combined method directly in Theorem
Note that the condition for convergence in Proposition 4.3 is in fact the same as
in Theorem 3.6.

Remark 4.4 It is probably better not to start Algorithm 4.1 with Zy — 0, but
with the previously found value of P, _;. O
Remark 4.5 Note that if we do not update the non-linear term G P,y in (54),
the sequence P, still converges, but then to the solution of one iteration step of
iteration (26). 1)
Remark 4.6 Similarly, iteration (41) can be seen as arising from (45) in which
in each step, one step of Algorithm 4.1 is used to approximate the solution of the
Sylvester equation. (0}

4.2.2 The Bartels-Stewart algorithm

A second idea is to sequentially solve the columns w; of Uy as follows, Using
that 7" = (ty;) is upper triangular and assuming that u;,- -« ;-1 have already
been ealeulated, we find,

j=1
(" = tysl)uy = Rue; + ) gt (69)
=]

One can choose to solve (69) approximately by replacing I by a diagonal or tri-
angular matrix, or a product of triangular factors. The idea of solving a Sylvester
equation with /7 and 7' both upper triangular using the recurrence (69) is due to
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Bartels and Stewart [1], so, what we have just suggested is to use the Bartels-
Stewart algorithm to approximate the solution of the residual correction equation
(67). The resulting algorithm is Algorithm 4.2.

Clearly, a sequential algorithm solving the columns of Uz will suffer from
error propagation in the sense that if u; is only solved approximately, one cannot
expect any of the columns u;, j > 4, to be more accurate that u;. Therefore it is
important to use such a solution algorithm for example, as it is done here, in an
inner loop, such that the outer iteration might correct the effects of errors made

in the inner loop.

ALGORITHM 4.2: Classical Method with Bartels-Stewart residual correction.
input: /', upper triangular part K of F,T, E, Zy, tolerance
Ro = E — (FZy — ZoT)
k=0
while || R.|| > tolerance
KUy — UkT = Ry
Cx = FU, — UT
Riyr = Ry — Gy
Ziyy = Zk + Uy
k=k+1
end (while)

4.2.3 Krylov subspace methods

Of course, one can also employ Krylov subspace methods for linear systems
of equations to approximate each equation in (69). It is worth mentioning that,
denoting by K?(A,v) the p-dimensional Kryloy subspace of the matrix A and
startvector v,

VpeN,VieR, KP(Av) - KP(A-tl,v), (70)
50 that a Krylov subspace built to approximate the first of the equations in (69),
can be used in the consecutive equations in (69) as well. As a matter of fact, also
in future residual correction equations, corresponding to further iterations of the
successive substitution methods (26) and (41), the same Krylov subspaces could
be successfully employed. This is because the matrix B does not change during
the entire successive substitution.

4.3 Krylov subspace methods for the Sylvester equation

In Section 4.2 we have seen a nested iteration scheme with a very simple
outer iteration to approximate the solution of the Sylvester equation. The inner
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iterations suggested in Sections 4.2.2 and 4.2.3 may seem (and may be) to so-
phisticated in comparison to this outer iteration. Of course one could just skip
the whole outer iteration and apply, for example, the Krylov subspace approach
to ially solve the col of the unk n matrix Z as in (69), but, as
we already noted, this has the problem that errors made in the first columns
propagate to the other columns. This effect might become highly undesirable if
T has a large departure from normality, i.e., if the strict upper triangular part
of T is very heavy compared to the diagonal (See Definition 3.8). The following
class of algorithms suffers (in general) much less from & non-proportional distri-
bution of errors over the columns of Z, but the price to pay is clear too; they are
computationally more expensive.

4.3.1 Geometrical interpretation

It is not hard to adapt Krylov subspace methods for the solution of linear
systems directly to the Sylvester equation itself. It does imply, however, that we
will have to work with systems of the size (n — k)k x (n — k)k, since we need to
identify the matrices Z; (and others) of size (n — &) x & with vectors of length
(n — k)k. The linear Sylvester operator T (CLTh.3.2) operates on such yectors
and can be expressed as the (n — k)k x (n — k)& matrix

Ik@F -T @ In, (71)
where [, is the ¢ x ¢ identity matrix and @ the Kronecker product, which is
defined as follows,

anB -+ a.B
AeB - : . (72)
amB -+ ammB

where A = (ay;) is an (n — k) X (n — k) matrix and B a k x k matrix. In our
applications, the extra large matrix A @ B does not need to be formed explicitly
since in Krylov subspace methods it suffices to have its action available. And we
do have this action available, because if we define a function vec from the space
of (n — k) x k matrices to the space of (n — k)k vectors by

"
vec(Z) =vec ([ z1 |-+ |2k ]) = (!, =), (73)
it holds for the Sylvester operator that
vec(T(Z)) = vec(FZ - ZT) = (Ix @ F =T @ I,_i) vec(Z). (74)
4.3.2 Building a Krylov subsp of long vectors

The heart of Krylov subspace methods is formed by residual correction in an
expanding Krylov subspace of which an orthogonal basis is maintained during the
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iteration. Consider for example the residual correction Ry, = Ry — Cj in (67).
The correction Cy will in general not be the optimal correction of Ry in the span
aCy, and since we know that T(aCj) = aCjk we could have corrected with any
multiple of aCy instead, and update Zj in (68) with alx accordingly. Identifying
the matrices involved with vectors using the function vee, the optimal correction

is
Risy = R — aC) with a= %ﬁ—:—;. (75)
Note that
vec(A)vec(B) = trace(A”B), so, vec(A)vec(A) = ||A|},  (76)
where || - ||z denotes the Frobenius norm. Continuing to correct in subspaces

on which the action of T~ is known, and which grow in each step, leads to
algorithms like GMRES and GCR.

Remark 4.7 As a matter of fact, we could have introduced the inner product

(A, B) :— trace (A" B) (77)

on the space of (n — k) x k matrices as to derive the Krylov subspace methods
without any reference to IKronecker products and the function vee. We chose Lo
present the geometrical interpretation of Section 4.3.1 as well. 0

For completeness, we will give the GCR algorithm for the Sylvester equation
below, using the notation T(Z) for the Sylvester action on Z and the inner
product (-, -) from Remark 4.7. The operator S is a preconditioner for T and can
be chosen as any of the previous approximation methods.

In particular we stress that when in cach successive substitution step the same
Sylvester operator T is used, it will be worthwhile 1o re-use the Krylov subspace
built in the previous step. It can be used to correct the initial residual in this
‘old" space, but even more interesting seems its application as preconditioner.
Uhis might reduce the number of iterations of the Krylov subspace needed as the
successive substitution progresses.
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ALGORITHM 4.3: Preconditioned Generalized Conjugate Residuals
input: T, S, I, Z, Tolerance
Ry = E —T(%)
k=0
while ||| > tolerance
Uk = S™'(Rx)
Ck = T(Ux)
fori=0,-::,d—1 do
Biya = (Ci, Cy)/ai
Ck = Cy = Bi1Ci
Uk = Uk = BiyaUs
end for
or = ICull}
ag = (Cx, Ri)/ok
Zyyr = Zy A Uy
Risshl= Blsi=icv: Gl
k=k+1
end (while)

Also if the Sylvester operator changes in each step, the information from the
previous iteration step can be used as preconditioning for the new equation, l.e.,
the operator S could be the Krylov subspace approximation from the previous
step.

Having now available, ay this point, four successive substitution methods for
solving (14), and moreover, various ways to tackle the linear Sylvester equations
that arise in two of those iterations, we have the basic ingredients ready for a
class of workable algorithms. Before we will test them, we will consider how to
accelerate these algorithms.

5 Acceleration of the algorithms

In this section we will consider a logical extension of the successive substitu-
tion methods introduced in Section 3. In these methods, given an approximation
X for an invariant subspace X and an orthogonal matrix ¥ (see Section 2), we
produced a sequence P, that converged to a matrix P using the non-linear cor-
rection equation (14). Then, P was used to correct X to X = X + YP. So
far, we did not comment on the fact that during the successive substitutions,
intermediate approximations X, = X 4 Y B, can be produced and that those
can be used as an initial approximation for essentially the same iteration, but
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now with different matrices B, M,G and C' in (14). We will study this attempt
to accelerate the algorithms in Section 5.1.

In Section 5.2 we will comment on how to incorporate subspace acceleration,
which means that we will not only use P, to find a new approximate subspace,
but all the P; that were produced in the previous iterations as well. Here too, the
hope is to speed up the algorithms, and in particular to improve the convergence
in the initial steps.

Finally, in Section 5.3 we will comment on the close relation of the resulting
algorithms to the Jacobi-Davidson method of Sleijpen and Van der Vorst (20] in
the case of invariant subspaces of dimension one.

5.1 Acceleration by basis transformation

Given a sequence P,, defined by a successive substitution from Section 3 and
converging to P, we will, in view of (13) define
Xp:=X+4YP, and Y,:=¥Y-XPH (78)

so that with P = 0 we have X := X and Yj := Y. Moreover, let

Xl A Yo
(79)
The norms of the matrices involved, and also the norm of the Sylvester op-
erator Ty, : Z v B,Z — ZM,, are parameters that determine the upper bounds
for the successive substitutions, as stated in the corresponding theorems in Sec-
tion 3. Therefore, it might be an improvement to compute, at a certain point,
the matrices My, B,,,C, and G, and continue to iterate on the new nonlinear

Sylvester equation obtained this way,

B,P - PM, = PGHP - C,. (80)

Bni=YH AV M, 1= XHAX 0 Chjie= YA, andisGy

Unfortunately, it is not clear whether this new equation (80) really has better
convergence properties for the corresponding successive substitutions than (14),
and the contrary may very well be the case. In particular, this may happen when
Successive substitution steps are not computed in full precision, as will most often
be the case in practical situations.

Remark 5.1 The convergence of sep(Bn, M») to sep(B, M) does not need to
be monotone. Therefore, it might be that sep(Bn i1, Mny1) < sep(Bn, My), and
also that this negative effect is not compensated by small enough residuals Cy ;
and GYY, 1. So, also the upper bounds for the convergence might become worse.0

nile
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5.1.1 The accelerated algorithm

Taking the previous in account, we propose Algorithm 5.1 to accelerate the
successive substitutions. It is based on tracing the oaly quantity that supplies us
with immediate, though not always reliable, information about the convergence
to P of a successive substitution Py := ¢(Fs) for (80), i.e., the residual

Sk 1= BaPy = PM, + Co — PGH P, (81)

The magnitude relative to [|So|| of the residual [|Si/l, can be an indication of to
which extent Py has become a better approximation to P than F.

Note that there are at least three levels of iteration in Algorithm 5.1. Apart
from the outer and inner iterations, which are clearly distinguishable in the form
of two while loops, there is in general also an iteration present in the step Py
¢(Pg). This iteration can be the preconditioned Generalized Conjugate Residual
method (or, mathematically equivalent: preconditioned GMRES) and henceforth
there might even be a fourth level of iteration if the preconditioner is an iterative
method, in some sense also when 8 in Algorithm 4.3 is the approximate Sylvester
operator obtained by the GCR algorithm in the previous step.

ALGORITHM 5.1: Accelerated Succesive Substitution
input: A Xg.6y,69
n=0k=0 P =0
choose Yy and compute Bg, Mo, Co, Go
while [|Cql > &|Coll
8y = B.P,-PM,+Cn—PGIR
while || Sk[| > ea|Soll
Peiy = o(Px)
k =k+1
Sk = BnPu = PtMn + Ca— RGE P,
end (while)
Xns1 = Xn+Yo Py
choose Y, and compute By, i, Ma. 1, Caiy, G

Ry =Py

k" =0

n nil
end (while)

Note that only in the successive substitution (80) with n = 0, the initial approxi-
mation P = 0is used, In the successive substitution with index n > 1, the (generally
better) final approximation of the substitution with index n — 1 is used,
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5.2 Subspace acceleration

We are now ready to discuss an additional way to accelerate the algorithm, which is
subspace acceleration. Subspace acceleration is that what turns the power method into
the Arnoldi method (see for example [8] for both methods). The main idea is to use all
the information obtained in previous iteration steps to optimize the next, just as in the
Arnoldi method, a Ritz-Galerkin procedure is applied to the complete span of all vectors
that are the result from the application of A, while in the power method this is only
done with the span of the last vector thus obtained. Here we will discuss two ways to
incorporate subspace acceleration in Algorithm 5.1.

o Bach approximate subspace X, is seen as an inseparable entity, and a Ritz Galerkin
procedure for extra large vectors is applied to select from Xg,- - X, the linear
combination with residual (with respect to some extra large matrix) orthogonal to
their span (see Section 4.3 for the concept of Krylov Subspace methods for extra
long vectors).

Each approximate subspace X, is seen as a set of k vectors of length N, and a
Ritz-Galerkin procedure is applied to select from the total of kNN of those vec-
tors from Xy, -+, X, the best k that approximate the invariant subspace under

consideration.

In the coming two sections we will highlight both these methods.

5.2.1 A Ritz-Galerkin procedure with extra large vectors

As we have seen in Section 4.3, we can identify (n — k) x k matrices with (n — k)k
vectors by means of the mapping vec. This proved to be useful in the development of
Krylov Subspace methods for the Sylvester equation, using also the notion of Kronecker
products of matrices. The same ingredients can lead to a way to accelerate Algorithm
4.3 as follows.

Let @ be an orthogonal matrix spanning an invariant subspace for the matrix A, and
write AQ = QS, hence defining S. Let D be the diagonal matrix with the eigenvalues of
S on its diagonal. Then, in the notations of Section 4.3 it holds that

Ik ® A - D® I,) vec(Q) = 0, (82)

so the vec of the eigenspace that we wish to approximate, is an eigenvector of an extra
large matrix, belonging to its eigenvalue zero. It is possible to use in Algorithm 5.1 the
current approximations of the eigenvalues of S and to set up a Ritz-Galerkin method,
by projecting the extra large matrix on the span of all previously obtained extra long

veetors vee(X;)

Remark 5.2 Since convergence of the eigenvector(s) belonging to eigenvalue zero is now
preferred (see 82), one could work with harmonic Ritz values to obtain a more regular
convergence pattern than one would have when applying one of our algorithms to an
interior eigenvalue. Also in [20], the use of harmonic Ritz values is encouraged (as well
as explained). Because of the complicated and specialized nature of this topic, we will
not consider it in this paper. O

‘a9
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5.2.2 A Ritz-Galerkin procedure based on Schur vectors

Instead of the approach in Section 5.2.1 one could choose an easier alternative.
Assuming that approximations Xo, -, Xn—1 for the invariant subspace have been ob-
tained, one could, instead of applying a Ritz-Galerkin procedure to X,_; only (as in
Algorithm 5.1), apply it to (a part of) the complete set Xg, -+ , X,—1. For this purpose,
it will be convenient to orthogonalize X, column by column to all previous columns of
all previous X, such that (Xol -+ |Xy) is an orthogonal matrix. Then the Ritz-Galerkin
projection can take place, and from the resulting set of Ritz data, a suitable selection of
data to represent the new approximation X, of the invariant subspace can be made.
Remark 5.3 We suggest here to construct a Schur decomposition of the projected matrix
and select the k Schur vectors corresponding to the Ritz values closest to some pre-defined
target values, similar to what is done in Chapter 6 of [5].

5.3 Jacobi-Davidson as one step of a successive substitution

As mentioned in Section 1.3.5, the Jacobi-Davidson algorithm of Sleijpen and Van
der Vorst [20] can be embedded in our class of algorithms. In their approach, not the
non-linear correction equation (14) is iteratively solved, but the linear correction equation

BP - PM =—C. (83)

It is not hard to see that doing one step of the successive substitution (26) is equivalent
to solving (83). This is, in particular, caused by the starting value Py = 0 in (26).
Also, since we have already seen (in Section 4.2.1) that the application of one step of
Algorithm 4.1 to approximate a step of iteration (26) is equivalent to iteration (54), the
Jacobi-Davidson algorithm in which in each step the solution of (83) is approximated by
one step of Algorithm 4.1, is also equivalent to iteration (54).

One of the essential differences between Jacobi-Davidson, and a subspace accelerated
and basis-transformation accelerated successive substitution for (14) is, that no matter
how accurately (83) is solved, there is a limit to the accuracy of the next invariant
subspace obtained. Conversely, at least in theory, if (14) is solved exactly, we immediately
have the exact invariant subspace.

‘This difference can be important if we have to decide a priori how much effort we want
to invest into solving the correction equation. Given a certain amount of 'computational
effort’, it might be that (83) is over-solved, while (14) can, in principle, never be solved
too accurately. Of course, in the latter case one has to decide how much effort to put in
each of the successive substitutions, whereas with Jacobi-Davidson, this is not an issue.

5.3.1 Another interpretation for Jacobi-Davidson

The difference between the correction equation for Jacobi-Davidson (83) and the
non-linear correction equation (14) is, that the term PGH P is neglected. This can also
be interpreted as assuming that G = 0 and therefore, that Y is an invariant subspace
for A. In the Hermitian case, this would mean that the residual C for X is assumed
to be zero as well, which is not too bad since we assumed, in fact, that X is a good

Ve  ooanmnN
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initial approximation for X. So, as convergence to the invariant subspace progresses, the
neglected term converges to zero. In the non-symmetric (non-normal) case, however, the
term G can have any size, and is strongly related to the departure from normality (See
Def.3.8) of the matrix A. Even though Jacobi-Davidson may well converge, it might be
an improvement (and even a big improvement in case A is highly non-normal) to include
the term PG P and apply a number of successive substitution steps on (14).

Alternatively, in the non-symmetric case, it can be that G¥ indeed vanishes without
C having to vanish, in case Y is an invariant subspace and X is not. In that (unrealistic,
though instructive) situation, solving the linear correction equation exactly leads to the
invariant subspace X since the linear and non-linear correction equations coincide.
Remark 5.4 The conclusion is that this all asks for an approach in which not the
orthogonal complement of the invariant subspace plays a central role, but its spectral
complement. Assuming that X is a simple invariant subspace, A can be block diago-
nalized by a similarity transformation that is in general not unitary, which results in a
spectral resolution of A (see [18]). It will be topic of further research to find out to which
extent it is possible to work with the spectral resolution, since two obvious problems
immediately arise:

e The spectral complement is unknown and often of very high dimension,

e The favorable stability properties of Jacobi-Davidson might be lost.
In such an approach, if successful, both € and G would converge to zero, and the cubic

convergence of the Jacobi-Davidson algorithm for Hermitian matrices, might be restored
for non-normal matrices as well.

6 Illustration of some of the methods

We will now present some very simple examples to illustrate the mechanisms behind
some of the methods and algorithms so far. They concern the computation of an eigenpair
of a two by two symmetric matrix, which, for even more simplicity, is assumed to be
diagonal (although this is no further restriction for the method). Some comments on
other types of matrices will be made along the way.

6.1 Initial approximation and transformation

We will start with Lhe 601 wing situation, 1 1
A= ( and  (zolyo) == ‘< & ) (84)
0 a» /Trez\ € -1

So, we have an initial approximation o of the eigenvector (1,0)” and a vector yo or-
thogonal to o, and both 2y and o are of unit length. Transforming the matrix 4 on
the basis zo, yo, we get

2 o)
(s Gy ey s iy o el
c b 1+e2 1+¢€?
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In case a; # ag, the nonlinear equation (14) reduces to finding the scalar p for which
P+ (m—bp—c=0, or, ep’+(1—€)p—e=0. (85)

Clearly, the solution that we are interested in is p = . This is the only solution
that is an attractor in the successive substitution. Starting with pp = 0, the sequence p,
converges to p = ¢ for all £ with |e| < 1 for all & with |¢| < 1.

6.2 Analysis of iteration (26) for the quadratic equation in p
For our simple model problem, we will look more closely at the implicit successive
substitution method (26) as developed in Section 3.1. This gives the iteration

Pni1 = ¢(pn) where §(€) = S l_—;rsz

(86)
‘The convergence properties of this successive substitution clearly do not depend on
ay — as, but this is due to the simplicity of the problem; in fact, bp — pm is a scalar
multiple of ¢p, which normally is not the case. In Figure 1, the convergence is displayed
in the usual way. On the left, € = 0.8 and on the right, £ = 0.6. Note the difference in
convergence speed for the two values, as indicated by the following proposition.

% EPSILON = 0.8 EPSILON = 0.6
25 25|

2 2|

L5 15| 3 f

o s : 7/
wilitd, s DL ol

0

05 05

ot 1

15 L5

/A :

2 0 1 2 3 4 2 -1 0 1 2 3 4

Figure 1. Convergence of the successive substitutions for € = 0.8 (left) and € = 0.6
(right). The scale in both pictures is the same.

Proposition 6.1 The b ges linearly with asymptotic conver-
gence factor
i Pntl = Pn ’ 2
lim === = ¢'(e) = —€>. 87,
n=00 P — Py © ()
Proof. Standard, using Pni1 = @(pn) and the mean value theorem. (@,

Ve .. i\
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6.2.1 Acceleration of the successive substitution

The convergence in both cases is not monotone although the norms of the error
[lp — pnll do decrease monotonely. This, and the large difference in convergence rate for
the two values of € suggest to accelerate the method according to Section 5.1. To analyze
the effects of this acceleration, we compute explicitly what happens if we update b,m
and ¢ from the newly obtained approximation of the eigenvector.

Suppose we start iteration (86) with po = 0. Then, updating the subspaces according
o (78) leads to

& TosERIboR e yi = LB e _5_2 (88)
Vite VIt %=
Substituting the value for p, in the expressions for z; and y,; gives
il 1 =&
(z1ln) = Ve ( T ) . (89)

This expression can in turn be seen as initial approximation for the same eigenprob-
lem, and the result is that the accelerated successive substitution is cubically convergent
in this particular case,

sin(&,zn) = O(>"), (n— o). (90)

6.2.2 Different convergence patterns for different matrices

We stress that the cubic convergence of the simple model problem can also be ex-
pected in the higher dimensional setting for Hermitian matrices A, just as in the (Inexact)
Accelerated Rayleigh Quotient Iteration (14, 15] and the Jacobi-Davidson method [20].
Similarly, for general unsymmetric matrices, we expect the convergence to reduce to
quadratic. This can be seen from the example

1 4 1 12 L4k
= and (2 = ——— o
( Lol ) el VAT (1 fe)? ( labe a2 )
where (2,1)7 is an eigenvector belonging to eigenvalue 3 of A. Following the same lines

as before, we find

(91)

£+ 2)

_ o +p1yo

2
d z; = = 3
R L /12 a(]+0(53))

where a is a scalar such that the resulting vector has unit length. The term O(e?) is

i (92)

sharp, it cannot be improved.
In case of a double eigenvalue (note that this is not included in our theory of Section
3) the situation can be even worse. Consider the example

(1) ()
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where (1,0)" is an eigenvector belonging to the double eigenvalue 1 of A. Following the
same lines again, we find the optimal result,
To+pPivo

1 1
p1:§e and @ = m—a<o(5)), (94)

which means that the accelerated successive substitution only converges linearly, but with
reduction factor smaller than one half. Note that the unaccelerated algorithm converges
extremely slowly because ¢'(¢) = 1. Finally, in case of a double eigenvalue and an
eigenspace of dimension two, the algorithm converges in one step, since all p satisfy the
correction equation Op = 0.

Remark 6.2 In all cases, the convergence can suffer if the inexactness of the solution
methods is too large, although often, linear convergence with high speed remains, as we
will show in Section 6.3. O

6.3 Analysis of the iteration (41) for the quadratic equation in p

We will now repeat the analysis of the previous example for the iteration (41), of
which we noted that it can often be (in the high dimensional setting) much cl
perform. Also, since we have seen in Section 4.2.1 that (41) can be interpreted
from the inexact solution of iteration (26), it is interesting to see how much the
vergence proved in (89) suffers from inexact solution of the nonlinear correction equation.

EPSILON = 08,al =2,a2 = 1 EPSILON =08, a1 =2, 12 = 1.8

1 H o1
sl os o8 o4 02 0 02 o4 06 o8 | i

o oi o7 o3 o4 03 06 o071 on
Figure 2. Convergence of the successive substitutions for ¢ = 0.8 and a; = 2,a3 = 1
(left) and a; = 2,a; = 1.8 (right).

The successive substitution becomes in our simple example the following,

(b€ —bee® +¢). (95)

£l
~m

Pni1 = ¢(pn), Where ¢(€)

It should be noted that there is no cancellation like in the previous section due to the
specific form of the term b — m. So here, the iteration really depends on the entries ay
and as. In Figure 2 below, two pictures display the convergence for € = 0.8 in both

Ve oo
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pictures, while a; = 2,a2 = 1 in the left picture, and a1 = 2,a; = 1.8 in the right.
The parabola becomes more flat if the ratio a;/as tends to one (from below), and the
convergence becomes slower. This can be compensated by a smaller €.

Proposition 6.3 The i bstitution (95) ges linearly with asymptotic
conwergence factor
. Pntl —Pn 7 b(1 = 2ce) as
i = = =0(= 0). 96)
Jim BBy MR gl (o) (99)
Proof. Standard, using pn+1 = ¢(p») and the mean value theorem. (@]

In spite of the fact that both iterations (86) and (95) are linearly convergent, this does
not automatically imply that the accelerated versions of both iterations should behave
similarly. This can be shown by taking again po = 0, such that
(a1 = az)e

_ %ot P _ Yo — Pa%o
a; +

d y = ;
S N e

Substituting the value for p; in the expressions for z; and y; only gives, as opposed to

(89),
1 il 5‘25
(@1]y1) = 1+ (2e)2 ( o S ) (98)

©7)

where p; =

Now, A can be transformed to this new basis and the process can be repeated. As already
mentioned in Section 6.2.2, the acceleration of this method does not give an improvement
of the (asymptotic) convergence rate as big as in the previous section. This is essentially
due to the fact that the derivative of ¢ at the intersection point in the graph is linear in
€, while in Section 6.2 it was quadratic.

6.4 Computable bounds for the eigenvalue (revisited)

Going back to Section 3.4, we see that there we discussed computing bounds for
the eigenvalues. In our simple symmetric case we can apply the Bauer-Fike bound from
Theorem 3.10, so, writing my, := m -+ gpn we have,

lar = mal| <lglllp = pall- (99)
Once the linear convergence of p,, to p is clearly visible, extrapolation based on geometric
series can be applied to find an estimate for p and hence for ||p — pal|. Indeed, we could

try to use the following error estimation,

:\’) o
PP =Y Pt =Pk N (P —pn) Y #(6)* = BB TP (100)
1—¢'(e)
k=n k=0
In the right-hand side picture of Figure 2, even though convergence is slow, it is already

very much linear from the beginning.
Remark 6.4 Note that, apart from error estimates for the approximations my, of the
cigenvalue based on (99) above, one can also accept the extrapolation as approximation
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of the eigenvalue. Of course, in general there is no error estimate available for this
extrapolate. 0

We conclude by noting that although cubic and quadratic convergence are interesting
and desirable, it might not be so bad to have very regular linear convergence. Apart
from the fact that methods with linear convergence are as a rule numerically much
less expensive, the possibility to extrapolation might turn it into an option worthwhile
considering. For details on all kinds of extrapolation methods, we refer to the book by
Brezinski and Zaglia [3].

7 Practical considerations

In the end, it is theoretically clear that all we need to do is to solve P from the
non-linear equation (14) and to form the matrix M + C* P of which the eigenvalues are
the eigenvalues belonging to the invariant subspace spanned by the columns of X + Y P.
This, however, assumes that we have the matrices M, B and C readily available, and also
the matrix Y. Indeed, it is possible to form a matrix ¥ with the desired properties, and
to project A on the column span of Y to obtain B and so on, but in particular when k
is small and n large, this procedure is unacceptably expensive.

7.1 Back-transformation to the original basis

A way out is the following. To compute X, we do not need P and Y explicitly,
only their product @ := Y P. Recall that B = Y#AY,C = Y#R and GH = X" 4Y.
Therefore we can rewrite (14) as follows,

BP-PM = PGiP-C
sYHAYP) -YHYPM = YH(YP)XHAYP)-YHR
& YH(AQ-QM) = YH(QXYAQ-R). (101)

The orthogonality relation Y (4Q - QM — QX ¥ AQ + R) = 0 is basis-independent, so
now we can get rid of the unknown matrix Y and replace it by Z := I — XX since
YHz = 0« Zz = 0. Moreover, X¥R = X"Q = 0. This transforms (101) into the
equivalent equation
ZAQ - QM = QX" AQ - R. (102)
This equation only involves the given matrices A and X, and M and R, which are
relatively cheap to compute. After solving @ from (102), the sum X + @ can be formed
which has the same column span as X.

7.2 Stability issues

The orthogonality X/Q = 0 is a property of the solution @, and if we try to solve
(102) iteratively, it is not guaranteed that the iterates share that property. For stability
reasons, it is best to work in the orthogonal complement of the column span of X during

R
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the whole iteration process, and therefore we will work with the practical correction
equation

(ZAZ)(2Q) — (ZQ)(M + X7 A(ZQ)) = -R. (103)

The extra matrices Z have been put there to indicate that during an iterative pro-
cedure, all iterates will be projected on Y. Note that ZAZ is singular, so only its action
should be used, and one should be careful with preconditioning.

Remark 7.1 The values that determine the convergence speed of the upper bounds of the
successive substitutions, as given in Section 3, do not change under the transformation

performed.

8 Numerical experiments

We will now perform some numerical experiments to illustrate the algorithms. In
Section 8.1 we will consider the combination of the successive substitution (26) with the
Krylov subspace solver for Sylvester equations from Section 4.3.2. In Section 8.2 we will
accelerate this algorithm.

8.1 No acceleration.

We applied the successive substitution (26) and solved the linear Sylvester equation
in each step by GCR according to Section 4.3.2, to relative accuracy a;. So, given an
initial residual Sp, the outer iteration continues until for the residual S it holds that
[1Sk|l € e ||So||. Similarly, the relative accuracy for each GCR solve we denote by as.
We started with an approximation of the invariant subspace that was a random pertur-
bation of the exact invariant subspace with maximum relative size ¢ per matrix entry. So,
each entry zy; of the matrix representing the invariant subspace was randomly perturbed
within the range [(1 — t)zy;, (1 + t)@y;).

8.1.1 The Hilbert matrix

Let A = (ay;), where ay; := 1/(i+j — 1) be the Hilbert matrix of size 100 x 100. This
is a notorious example of an extremely bad conditioned matrix. We will first approximate
the largest five eigenvalues pigg, - - | f100, then the ones pge, - - - , poo. The convergence
is plotted in Figure 3 below. We started ¢ = 0.1 away from the exact solution, and
a) = ag = 10719

‘e A7
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HILBERT MATRIX SIZE 100, EIGENVALUES 96.100

97

HILBERT MATRIX SIZE 100, EIGENVALUES 16:90

10LOG OF RESIDUAL REDUCTION
a

ITERATION NUMBER

LIS
ITERATION NUMBER

45 5

Figure 3. Converge of the successive substitution (26) with GCR
for the Hilbert matrix of dimension 100.

The performance is excellent. Only eight (left picture) and five (right picture) outer
iterations are sufficient to reach a relative residual reduction of a;. In Tabular 1 we
present the exact eigenvalues, the approximations, and the absolute errors in those ap-
proximations for the largest five eigenvalues of A (corresponding to the left graph in

Figure 3).

approximate values

exact values

absolute errors

2.182696097757422¢ + 00

2.182696097757424e + 00

1.776356839400250e — 15

8.214455605561981e — 01

8.214455605561967¢ — 01

1.443289932012704¢ — 15

2.185958823706972¢ — 01

2.185958823706963¢ — 01

8.881784197001252¢ — 16

4.929225104310325¢ — 02

4.929225104310336¢ — 02

1.110223024625157e — 16

1.003181218354683¢ — 02

1.003181218355605¢ — 02

9.220055274816730¢ — 15

Tabular 1.

In Tabular 2 we present the exact eig

crrors in those approxi

, the apprc

Accuracy of the approximations of pgs, - , ft100-

and the absolute

ions

for the eig 1

the right graph in Figure 3).

S Hgey "

- pgo of A (corresponding to

approximate values

1.788722420011753¢ — 07 | 1.788722433072537¢ — 07

exact values

4.060783945837891e — 16

absolute errors

2.412650483324968¢ — 08

2.412649126353820e — 08

1.356971147926129¢ — 14

4.472343364861278e — 11

4.569865037083792¢ — 11

9.752167222251419¢ — 13

3.113442812051378e — 09

3.113349338012415¢ — 09 |

3.845863150109427¢ — 10

3.850229418596463¢ — 10

4.366268487035981e — 13

9.347403896297142¢ — 14
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Tabular 2. Accuracy of the approximations of ugs," "+ , Hgo-

We see from Tabular 2 that even though the convergence in the right picture of Figure
3 took place in less steps than in the left-hand side picture, the final approximations
are much less accurate. This is due to the fact that the separation between the target
eigenvalues and the rest is in the right-hand side much smaller (of order 10~!) than on
the left, where it was only of order 10~2,

8.2 Testing the accelerated algorithm

We will now test Algorithm 5.1. Three different levels of iteration are present. Let
a; and a» and the percentage ¢ be as in Section 8.1 and denote by aq the tolerance for
the extra most outer iteration level that was not used in Section 8.1.

8.2.1 The inverse Hilbert matrix and Wilkinson’s matrix

First we took for A the inverse of the Hilbert matrix of size 100 x 100, and approx-
imated the largest five eigenvalues. Then we took the famous Wilkinson’s matrix of size
200 x 200, and also here approximated the largest five eigenvalues.

‘The convergence plots are in Figure 4 below. We started ¢ = 0.1 away from the exact
solution, and a; = as = 1073,
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Figure 4. Convergence of the successive substitution (26) with GCR for &
Wilkinson (left) and an inverse Hilbert matrix (right).
The algorithm performs very well and already after a few iteration steps, the relative
residual reduction of ag = 10710 is realized.

8.2.2 The SHERMAN4 matrix

In the following experiment is A the SHERMAN4 matrix from the Harwell-Boeing
collection, that can be found in [13]. This matrix has size 1104 x 1104 and is unsym-
metric with real eigenvalues. The parameters for the three iteration levels were set on
1071 a; = 0.5 (with a maximum of 5 successive substitutions) and as = 0.1 (with
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a maximum of 30 GCR iterations).
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Figure 5. Convergence of the basis transformation accelerated successive
substitution (26) with GCR for the SHERMAN 4 matrix of dimension 1104.

‘The results for the approximation of the six largest eigenvalues are depicted in Figure
5. On the left we took ¢ = 0.1 and on the right ¢ = 1. In both cases, the convergence was
again excellent. The reason to take large tolerances for a; and as is obvious; we did not
apply any kind of preconditioning within GCR which means that solving systems will
become problematic. On the other hand, if we would take a; too small, we would not be
illustrating the acceleration, but purely the successive substitution again as in Section
8.1. Also, as an effect of the very inexact GCR solve, it might be that convergence of
the successive substitution stagnates.
In Tabular 3 below, we see again the same data as in the previous tabulars, for the case
in which ¢ = 1. And again it can be seen that the approximations of the eigenvalues are
very good, in spite of the fact that the initial approximation was relatively far away from

the exact invariant subspace.

approximate values

exact values

absolute errors

6.649656408021296¢ -+ 01

6.649656408021302¢ -+ 01

1.808331262509455¢ — 10

6.427368830619677¢ -+ 01

6.427368830619666¢ + 01

1.153637185780099¢ — 10

6.234470612362478e -+ 011

6.234470612362486¢ + 01

1.421085471520200e — 14

6.129003463774111¢ + 01

6.129003463774112¢ + 01

7.815970093361102¢ — 14

5.959818367933947¢ - 01

5.959818367922411e + 01

1.136868377216160¢ — 13

5.821585364878595¢ -+ O1

5.821585364896678¢ + 01

5.684341886080801e — 14

Tabular 3. Accuracy of the approximations of the largest six eigenvalues of

SHERMAN4.
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8.2.3 The PORES 2 matrix

In our final experiment we tried to obtain worse convergence by putting the toler-
ances of the two inner iterations very close to one.
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Figure 6. Convergence of the basis transformation accelerated successive substitution
(26) with GCR for the PORES matrix of dimension 1104.

This had indeed the desired effect, as is clearly visible in the left picture in Figure
6. The matrix is the PORES 2 matrix from the Harwell-Boeing collection, which is real
unsymmetric and of size 1228 x 1228. We approximated the largest six eigenvalues.

On the left, we took a; = 0.9 and as = 0.5. As before, ap = 107 and ¢t = 0.1,
and it took twenty iteration steps to solve the problem to the desired accuracy. On the
right we took a; = 102 and as = 10~2, which appeared already to be small enough for
very fast convergence in a few iteration steps. The exact and approximate eigenvalues
are tabulated in Tabular 4.

-approximate values

-exact values

absolute errors

1.682505953488249¢ + 07

1.682505953488348¢ + 07

9.946525096893311e — 07

9.744661832185134e + 06

9.744661832185108¢ + 06

2.607703208923340e — 08

9.742004198321559 + 06

9.742904198322691¢ + 06

1.132488250732422¢ — 06

5.279641583582438e + 06

5.279641583565828¢ + 06

1.660920679569244¢ — 05

010833e + 06

4.596517458224008e¢ -+ 06

2.678682561963797¢ — 02

4.595293666371528¢ -+ 06

4.595293704177797¢ + 06

3.780626878142357e — 02

Tabular 4. Accuracy of the approximations of the largest six eigenvalues of PORES 2.

8.3 Conclusions and remarks

Even though we did not present many c‘(periments, it is clear that we have de-
veloped a flexible method to approximate invariant s and the correspondi
cigenvalues. More experimenting with larger matrices is needed to prove the real vnlue
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of this approach. Also, we did not yet experiment with subspace acceleration (which was
not really needed in the examples showed), nor did we use any form of preconditioning
in GCR. In future work we will do this, and moreover try to find a way how to compare
the algorithm with JD and IBRQI in a reasonable way.

Remark 8.1 An indication of the success of our algorithms is that for the Harwell-Boeing
cases, the amount of floating point operations to find a solution, was (only) three to four
times more than the MATLAB sparse eigenvalue solver. O
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