CUBO Matemdtica Educacional
Vol. 5, N* 2, (289-262). JUNIO 2003.

State based systems are coalgebras

H. Peter Gumm
Philipps-Universitit Marburg
35032 Marburg, Germany
gumm@mathematik.uni-marburg.de

ABSTRACT
Universal coalgebra is a mathematical theory of state based systems,
which in many respects is dual to universal algebra. Equality must be re-
placed by indistinguishability. Coind replaces induction as a proof
principle and maps are deﬁnad by co-recursion. In this (entirely self-
contained) paper we give a first glimpse at the general theory and focus on
some applications in Computer Science.

1 State based systems

State based systems can be found everywhere in our environment - from sim-
ple appliances like alarm clocks and answering machines to sophisticated com-
puting devices. Typically, such systems receive some input and, as a result,
produce some output. In contrast to purely algebraic systems, however, the
output is not only determined by the input received, but also by some modi-
fiable “internal state”. Internal states are usually not directly observable, so
there may as well be different states that cannot be distinguished from the
input-output behavior of the system.

A simple example of a state based system is a digital watch with several
buttons and a display. Clearly, the buttons that are pressed do not by them-
selves determine the output - it also depends on the internal state, which might
include the current time, the mode (time/alarm/stopwatch), and perhaps the
information which buttons have been pressed previously.

239

240 H. Peter Gumm

The user of a system is normally not i d in i isely, what
the internal states of the system are, nor how they are npmmhd Ot‘ course,
he might try to infer all possible states by testing various input-output com-
binations and attribute different behaviors to different states.

Some states might not be distinguishable by their outside behavior. It
is therefore natural to define an appropriate indistinguishability relation “~"
on states. One expects this relation to be an equivalence relation, and that
factoring the state set by ~ would yield a representation of a system with
the same input-output behavior but with a minimal state set. While this is
true for most of the systems that we shall consider, our definitions will be
broad enough to allow for sy where indistinguishability is not it
Indeed, one may imagine situations where a collection of objects is observed
and it is easy to distinguish two objects that are far apart, but where objects
close to each other remain indistinguishable.

1.1 Black boxes

We begin with the simplest possible example, a “black box”, having at its
front side two buttons, labeled “h” and “t”, and a little display. Let us assume
that the display is normally dark. Only when the button “h” is pressed, the
display will show a natural number. Pressing “h” several times in a row, will
not change the number displayed. However, after pressing “t” one or more
times, when “h” is pressed again, we might see a new number.

/42|

Mathematically, a black box can be modeled by some set S of states to-
gether with two functions

h:S—=+N
t:5—- 8.

1.1.1 An Example

Consider a black box with an eight-element state set, where the state transition
function ¢ is indicated in the following figure by arrows, and the observation
function A is indicated by the labels on states.

O—O=0—@—0—60 @=@®

T

State based systems are coalgebras 241

Clearly, states with different output value are i diately distinguishabl
we only have to press h and shall see different results in t.he display. Sumluly,
the two states labeled 33 are distinguishable: After pressing ¢, followed by h,
we see a 17 in one case, and a 42 in the other case.

In contrast, all states labeled 42 are mutually indistinguishable, as are
all states labeled 17. No sequence of experiments can ever lead to different
outputs.

1.1.2 Indistinguishability

App ly, an indist ishability relation ¥ for black boxes must satisfy the
following rule, which we indicate by placing the premise above, and the con-
clusions, separated by commas, below a horizontal line:

vy
h(z) = h(y), t(z) 9 t(y).

It is clear, that there may be several indistinguishability relations; one of
them is always the equality relation “=" on states. Obviously, such indistin-
guishability relations are closed under set-union, so there is always a largest
one, which we shall denote by ~. Hence we call two states s and s’ indistin-
guishable iff s ~ &', which is the same as saying that the pair (s, s') belongs to
some indistinguishability relation.

1.1.3 Streams

As a second example consider the set N* of all streams over N. We define
h:N* = N as the head and ¢ : N — N as the tail operations, i.e.

h(ng,ny,nz, ...) = mg
t(ng,n1,my, ...) = (n,nz,...).

This system is special amongst all black boxes, for we can easily verify
the following proof rule, which states that two streams are equal iff they are

indistinguishable:
T~y

z=y.

1.2 Object oriented programs

In object oriented programming, a class is a collection of data elements, called
objects. All objects of one class share a common interface, consisting of a list

_ m—

242 H. Peter Gumm

of attributes and methods. The user can modify objects only by using their
public functions (aka methods) and he can observe their properties only via
public data fields (aka attributes). We shall give a simple class definition,

written in the lang Java, img ing a bank

class Account{
private int amount;
Account (){ amount=0; }
public trans(int n){ amount += n; }
public show(){ return amount; }

}

When an account is created, its integer variable amount is initialized to 0. This
private variable is not directly accessible to the user, he rather has to invoke
the public method show to find the account’s balance. Using trans, he may
perform a transaction, adding or subtracting money from the account.

As far as the specification of such an account is concerned, the user should
insist that the following equation be satisfied for any account x:

x.trans(n1).trans(n2).show() == x.trans(nl + n2).show()

that is, after making two transactions, one adding an amount of n1 and a

second, adding n2, the user should observe the same balance as if the amount

ol + 02 had been added at once. Note that == is the equality relation in Java

and that the dot-notation 8.m indicates application of method m to state s.
In contrast to the first specification, the user can not insist on:

x.transact(ni).transact(n2) == x.transact(nl + n2)

Both sides yield different internal objects, and these are not distinguishable
by observations using show. However, the bank might later decide to augment
an account object with an additional variable accesses, in order to keep track
of how often a given account has been accessed. In that case the last equation
will definitely be violated - the two sides of the equation yield different states

but for the customer, doing transactions and observing his balance, they
remain indistinguishable. Therefore, an indistinguishability relation ¢ for bank
accounts should satisfy:

x?y
x.shov() == y.show(), x.trans(n) ¢ y.trans()

State based systems are coalgebras 243

1.3 Automata

A can be idered as black boxes with an additional input device,
say a keyboard, where letters from an alphabet ¥ are entered. The output will
only tell, whether the word, isting of the seq of letters typed, has
been accepted or not. Automata are important computing and specification
devices in various branches of Comp Sci

Math ically, a is defined as a triple A = (5,4, E) where
S is a set of states, § : S x & — S a transition map and E C S a set of
accepting states. We write s |, if s € E.

A state z is said to accept the empty word ¢, just in case z |. It accepts a
word ¢ - w with first letter ¢ € ¥ and rest w, when §(z,¢) accepts w. Hence,
an indistinguishability relation 9 for automata should satisfy:

zdy
(z)+ yl), Ve€e I.(5(z,e) 0 d(y,e))

Again, there is always a largest such indistinguishability relation ~. It is
known as the “Nerode congruence”. Starting with a finite automaton, one
obtains a minimal automaton with identical “behavior”™ by factoring through
this Nerode congruence.

1.4 Nondeterministic systems

In computer applications, non-determinism can arise when various processes
run at the same time under the supervision of a scheduler, as is common in all
modern operating systems. The scheduler interrupts processes at previously
undetermined time points and yields the computing resources to other waiting
pr Additional di ions of non-d inism originate in communi-
cations between different processes. It can not be foreseen, when and whether
messages or signals will actually arrive.

Nond: inistic sy can be modeled by Kripke systems. These con-
sist of a set S of states and a binary relation R C § x § describing all pos-
sible state transitions. If R is clear from the context, one writes s — t, for
(s,t) € R. Moreover, one has a set ® of atomic propositions together with
a labeling v - § — P(®), assigning to each state s the set v(s) of all atomic
propositions valid in this state.

We represent Kripke Structures as graphs, where the atomic propositions
are attached to the nodes at which they are valid. The following picture shows

244 H. Peter Gumm

two Kripke structures over the set ® = {p,q,r,s} of propositions:
op op
P !

l l ro/ \u:

ro oS

We shall be concerned with the question whether the top nodes of these two
structures are distinguishable. Both are labeled with p, and they are not
distinguishable by using a single series of observations, since the sequences of
atomic properties encountered on paths from the top points are (p,g,r) and
(p,q, 5) in both cases.

In spite of this, the top nodes can be distinguished, for we need only make
a single transition to get to points which are mutually distinguishable. This
15 50, since in the right system, we are still given a choice of transitions - one
to a state labeled r, and one to a state labeled s. In the left system, there is
no choice remaining after the first transaction.

Thus, in order for two states to be indistinguishable, they must have the
same labels, and each choice of transition of one state must be matched by &
transition of the other state, so that the new states are still indistinguishable:

zdy
v(z) = v(v),
Vz'o = 2’ = 3y .(y > ¥ AZ'0Y),
Vyy =y = 32 (z = ' AZ'OY).

The latter two symmetric conditions are most easily visualized pictorially:

/ﬂ\y z/ﬂ\v
d l

e an, s
7 El 32’ v

2 Coalgebras

All of the above examples of state based systems, as well as many conceivable
vanations and generalizations turn out to be coalgebras. In each case, we have
some set S of states and transitions which may result in one or a group of new

State based systems are coalgebras 245

states, or in some combination of states and outputs. In all cases, we can code
the information into a single map

a: 8 — F(S),

where F'(S) is some “set theoretic construction”, depending on S. The follow-
ing list shows how to encode the examples discussed so far. We have added
topological spaces as a further, purely mathematical example, in order to show
that the concept of coalgebra which we are going to introduce, extends far be-
yond variants and generalizations of automata.

Black Boxes: a:S—+NxS, s> (h(s),t(s))
Bank Accounts : a:5—+NxSN s (show(s), n + s.trans(n))
Automata : a: 8= {t,f} x 8%, s (s€ E,er (s,e))

& — Kripke structures: a: S = P(®) x P(S), s+~ (v(s),{t|sRt})

Topological Spaces : a: S — P(P(S)), s—{UCS|30€rs€0OCU}

In the last example, a topological space (S,7) is encoded by mapping each
point to its filter of neighborhoods.

2.1 Type functors

The “set theoretic construction”, mentioned above, determines the type of
structure under consideration. To make this notion precise, by a fype, we
shall understand a functor F : Set — Set on the category of Sets. That is,
F associates to every set X a new set F(X), and to each map f: X = Y
between sets X and Y a new map F(f) : F(X) - F(Y), so that identity maps
and function composition are preserved, i.e. for arbitrary maps f : X = Y
and g: Y - Z one has:

Flgof)=F(g)o F(f), F(idx) = id(x).

2.1.1 Simple properties of set functors

For all nontrivial functors F : Set — Set, we may assume that F(X) # 0
whenever X # @, for it is easy to check, that the only functor F with F(X) = 0
for some X # @ is the constant functor, mapping each set ¥ to 0.

If X # 0, then a map f : X — Y is injective if and only if it has a
left inverse, ie. some map f~ : Y — X with f~ o f = idy. Consequently,
F(f~) o F(f) = idg(x), 50 F(f) is injective, too.

By the axiom of choice, a map g : X — Y is surjective, iff it has a right
inverse. By the same argument as above, F(g) is surjective, whenever g is.

——

246 H. Peter Gumm

2.1.2 Examples of functors

Kripke structures make use of the power set functor P(—), which associates
to any set X the set P(X) of all subsets of X and to any map f: X - ¥
the image map P(f) : P(X) - P(Y), mapping each U C X to its image
11U] = {f(w) | w € V).

For ®-Kripke Structures, we combine the powerset functor with the con-
stant functor, setting F(X) := P(®) x P(X). Amap f: X = Y is sent

to

idpe) x P(f) : P(®) x P(X) = P(®) x P(Y), with (P,U) « (P, f[U]).

2.2 Coalgebras and homomorphisms

Given a type functor F, we define a coalgebra of type F as a pair A = (A, ay),
consisting of a set A and a map

ap: A= F(A).

We refer 1o A as the base set and to a, as the structure map of A.
A homomorphism between coalgebras A = (A,a4) and B = (B,ap) isa
map ¢ : A = B with agop = F(p) o ay, i.e. with the following diagram

commuting:
A—2—B
y Jss
P(4) €L p(B)
By the defining properties of a functor, the identity id, isa b phism

on A, and homomorphisms are closed under function composition. Conse-
quently, F-coalgebras with their homomorphisms form a category, which is
denoted by Setyp.

2.2.1 Example: Y-Automata

In the case of L-automata, the homomorphism condition says that a map
¥ A = B s a coalgebra homomorphism between automata (A, 4, £4) and
(8,85, Eg), coded as conlgebras, iff for all a € A and for all ¢ € B:

a € Ey < y¢(a) € Ep, (1)
(04 (a,e)) = p(p(a),e)- (]

.

State based systems are coalgebras 247

2.2.2 Example: Kripke Structures
A map ¢ : A = B between ®-Kripke Structures (4, Ry, v4) and (B, Rg,vp)

is casily checked to be a coalgebra h phism, iff for all a,a’ € A, and all
Y € B:

va(a) = va(p(a)), (3)

aRpa' = p(a) Rp p(a'), (4)

wla) Rplt = 3d' € A.(aRd' Ap(a) = V). (5)

2.3 Isomorphisms, homomorphic images, subcoalgebras, sums

Whenever : A < B is a bijective homomorphism, then its inverse map ¢~!

is a homomorphism too, in other words, ¢ is an isomorphism. This can be
casily checked by calculating, using the homomorphism condition for ¢:

1 1 1

arop~' = F(g ") oF(p)oasop~! = Fp ")oagopoy™ = Flp~")oap.
If ¢ : A-=B is a surjective homomorphism, then the structure map ap on
B is uniquely determined by ¢ and the structure ay on A Hence B is called

the homomorphic smage of A under .

2.3.1 Subcoalgebras

If for a subset § C A there exists a structure map as so that the canonical
embedding €&: § — A is a homomorphism between § = (S, ag) and A,
then such an ag is uniquely determined. In this case, S = (S, ag) is called
a subcoalgebra of A, and we write S € A. By abuse of notation, the term
“subcoalgebra” is also used for the carvier set S itself. In our diagrams we use
hooked arrows for canonical embeddings and their F-images.

sL._g__.A
as| Jas

F(5) C€L p(a)

2.3.2 Sums

The disjoint union S := B, A; of a family of sets (A,)¢, together with the
canonical inclusions 14, : A; = DA, is the sum of the A, in the category
Set. This means, that for every “competitor”, i.e. for every set Q with its own

ﬂ

248 H. Peter Gumm

maps ¢ A, = Q, there is exactly one map g : E@[&—bc'ltha-'gl“
for all ¢ € /. (g is obtained as the “disjoint union™ of the g;).

K
EnEIAi‘_A -a5Q

Given a family (A;)ies of coalgebras, the maps g = Flia,) 0 ay, : A =
F(Z.c1A,), make the latter set a competitor for the sum. Consequently, there
is & unique map a : BiesA; & F(ZierAi) with ao s, = Flua,) 0 ay,. This
means that there is a unique coalgebra structure a on S A;, for which the
canonical embeddings 14, @ Aj = DierA; are homomorphisms. It is casy to
verify that £,c54; = (8,¢74;,) is in fact the sum in the category Setp, ie
for every competitor coalgebra Q with homomorphisms ¢, : A, =+ Q there is
precisely one bomomorphism 9 : SiesA; = Q with ¢ = g0y,

v
Bt A== <%0
* 1
nl ax |°o
F(SierA) <2 pa) T2 p(g)
F(v)

2.3.3 Pushouts

Given coalgebras A, (A;)ie; and homomorphisms g; : A — Aj, the pushout
of the (9,)ier is a coalgebra P with homomorphisms ¢; : A, = P, so that
Wow =0y, foralli,j € I, and for every “competitor” coalgebra Q with
homomorphisms ¢, : A; = Q, also satisfying ¢; o @; = ¢; 0, for all i,j € I,
there is exactly one homomorphism ¢ : P — Q with ¢govy = ¢ foralli € [

Ay \ ‘oh i

~
zQ
vy &
}\ /
Just as with sums, one checks that pushouts exist in Sefy, and that they

are formed just as in Set. More generally, this can be said for all colimits
in the catogory Setp. (In category theoretical language, the forgetful functor
U : Setp — Set creates colimits,)

" R

State based systems are coalgebras 249

2.4 Homomorphisms

The first lemma is quite technical, but we can draw from it quite a number

of useful consequences. It indicates how to carry over the coalgebra structure

from a given coalgebra along a surjective map, and how to restrict the structure
map of a coalgebra to any of its subsets:

Lemma 2.1 (Image Construction, Restriction) (1) Let A = (A ,a,)
be a coalgebra and [: A-»S a surjective map. We can define an F-
coalgebra structure ag on S, so that for any coalgebra C = (C,a¢) and
any map g : S = C we have: If go f is a homomorphusm, then so is g.

(ii) Let C = (C,ac) be a coalgebra and g : S—C an injective map. We
can define an F-coalgebra structure on S, so that for any coalgebra A =
(A, xs) and any map f: A = S we have: If go [is a homomorphism
then so is f.
Proof. We just indicate the proof of (i), similarly one proves (ii). Let f~ be
a right inverse map of f and set ag := F(f)oay o f~. Given a coalgebra C
and a map g : S — C where g o f is a homomorphism, we check:

AN

Flo)

F(A) —= F(S)

Flgof)

Flg)oas = F(g)oF(f)eancf”
= F(gofleancf”
= agogofof”
= acog.

2.4.1 Surjective-injective-factorization

Every map f: X = Y can be docnmpm«l into a surjective map [: X+ f[X],
followed by the canonical embedding € cY l(\l Thc next proposition states that
the same position is valid for h i.e. in the category Setj:

———

Proposition 2.2 (Factorization) Every homomorphism ¢ : A = B can be
decomposed as A—p|A] = B, 50 p[A] is a homomorphic image of A and o

250 H. Peter Gumm

subcoalgebra of B.
Proof. If g isal srphism bet algebras A and B, then (i) and (ii)
of the previous lemma yield two structure maps, ag) and ag) on g[4] € B:
v
b _w/"@’ B
Il s
aA LONE D) an

F(4) 2 pola)FS p(B)

Flg)

i'(LwIA]) campoy = age ggw og'
= agoyp
= F(p)oay
= F(Q&A|)°F(¢‘)°0A

= F(Qg(,q) cagyoy.

We can cancel the surjective map ¢’ on the right and, after discarding the case
#lA] = 0, also the injective map F(C\OIAI) to the left, to obtain ag;) = ag,). ®

242 Unions of subcoalgebras

("mmdu a coalgebra A and a family of subcoalgebras S, < A. From their sum
£e18, there is a unique homomorphism ¢ to A with pous, = Cd forallie .
Thr image of is just {J,¢, Sy, hence we get with the belpofprvpoailion 22

Lemma 2.3 1/ (S,),c; are subcoalgebras of A, then so is Uier Sic

Using a result of Trnkova (Trn69), one can also prove that subcoalgebras are
closed under finite intersections, hence the (carrier sets of) all subcoalgebras of
Aare the open sets of a topology on A, see [GS00b]. Conversely, by [Gum01bj,
every topology on a set A can be obtained this way.

R

State based systems are coalgebras 251

2.5 Bisimulations

Bisimulations are the compatible relations b Igeb Their impor-
tance for p science applications had been rulmd long before coal-
gebras were introduced in this field. Intuitively, two states of a system are
bisimilar, if they show the same behavior. The coalgebraic definition was
introduced by Aczel and Mendler[AM89):

Definition 2.4 A bisimulation b lgebras A and B is a binary rela-
tion R C A x B, on which a coalgebra structure p : R — F(R) can be defined,
making the projections m4: R — A and ng : R — B into homomorphisms.

A2 R B
041 |P la.
Fia) 5 plp)) p g

Working out this definition for our earlier examples of black boxes, X-
automata, and ®-Kripke structures, the reader may convince himself in each
case, that bisimulations are just the indistinguishability relations ¢ which we
have defined earlier.

2.5.1 Bisimulations and homomorphisms

Every bisimulation R provides a 2-span, i.e. a pair of homomorphisms R — A
and R = B with a common domain. The converse is also true, yielding a very
useful cb ization of bisimulations:

Proposition 2.5 Let ¢ : P — A and ¢ : P = B be homomaorphisms, then

(¢, ¥)[P) := {(0(p), ¥(p)) | p € P}
is a bisimulation between A and B. Each bisimulation is of this form.

Proof. (p,¥) : P = (p,¥)[P] is a surjective map, 74 © (¢,¢) = ¢ and
7p o (p,¥) = ¢ are homomorphisms. By Lemma 2.1(i), we can find a coalge-
bra structure on (¢, ¢)[P] € A x B, so that both x4 and 75 become homo-
morphisms, hence (¢, ¢¥)[P] is a bisimulation.

Obviously, for every bisimulation R between A and B has the rcqmred
shape, since R = (74, m)[R).

Corollary 2.6 A map ¢ : A = B is a homomorphism between coalgebras A
and B if and only of sts graph Gr(v) := {(a,¥(a)) | a € A} is a bisimulation.

2. T

252 H. Peter Gumm

Proof. Setting ¢ = id4 in the previous proposition yields one direction.
The key to the reverse direction is the observation that the first projection
74, restricted to the graph Gr(y) of any function ¢ : A — B, is always a
bijection, and that a bijective homomorphism is an isomorphism (section 2.3).
Consequently, w;l is a homomorphism, hence also) = g o w;l. []

Given a family (Ri)ies of bisimulations between A and B, then we have
homomorphisms 7 : R; — A and 7% : R; — B for each i € I. Consequently,
both A and B are competitors of the sum of the coalgebras R;, ¢ € I. Thus
we get homomorphisms 74, resp. 7p from YicrR; to A, resp. B. It is easy to
check that the image (74, 75)[SiecrRi] is just the set theoretical union ;¢; Ri,
so according to proposition 2.5 we obtain:

Lemma 2.7 The union of bisimulations is a bisimulati Consequentl;
there is always a largest bisimulation bet lgebras A and B.

)

In many respects, it seems that bisimulations behave like 2-dimensional
versions of coalgebras. However, bisimulations are not necessarily closed under
finite intersections.

Definition 2.8 The largest bisimulation between coalgebras A and B is called
~4B, or just ~4, when A = B. Elements a and b are called bisimilar, if
(a,b) €~a,8.

~ 4 is always reflexive and symmetric. For most functors F', the largest
bisimulation ~4 on an F-coalgebra is also transitive. An exception can be
found with the functor (—)3, sending a set X to

(X)3 := {(®0,31,82) | @i € X, (30 =21 V&1 = T2 V30 = 23)}
and amap f: X =Y to (f)3 with (/)3 (0, z1,22) = (£(20), f(21), f(22)).
In case that ~ 4 is transitive, we may call it observational equivalence, in
all other cases, we think that the term indistinguishability relation is more
appropriate.
3 Terminal coalgebra semantics
For most types of coalgebras there is a prototypical model which somehow

embodies all possible behaviors found somewhere in some coalgebra of this
type. Its definition is as follows:

(T

R

State based systems are coalgebras 253

Definition 3.1 A coalgebra T of type F is called terminal, if for every F-
coalgebra A there is precisely one homomorphism 7: A — T.

The following proposition makes precise that the terminal coalgebra, if it
exists, consists exactly of all possible behaviors occurring in F-coalgebras.

Lemma 3.2 If the terminal F-coalgebra T ezists, then for every F-coalgebra
A and for every a € A there exists precisely one t € T so that a ~ 47 t.

Proof. Given a € A, then a ~47 7(a) by corollary 2.6. Suppose, there is
another t € T with @ ~47 t. By proposition 2.5, there is a coalgebra P,
homomorphisms ¢ : P - A and % : P — T, and an element p € P with
o(p) = a and Y(p) = t. If t # 7(a) then 9 and 7 o p would be different

homomorphisms from P to 7. n
Corollary 3.3 The terminal F-coalgebra satisfies the following “co-inductive”
proof rule:

T~y

o=

The reason for this rule to be called coinductive is that it allows the fol-
lowing method for proving equality of two elements a and b € T

o Find some bisimulation R with a Rb,
e infer a ~ b,

e conclude a = b by terminality.

3.1 Programming with terminal coalgebras

Modern functional programming languages permit infinite streams as data
objects. The primitives to access streams are the functions hd (head) for
obtaining the first element of a stream and t1 (tail) returning the rest of the
stream when the first element is removed. Given a stream r and an element
n, with (n: r), we denote the stream s with hd(s) = n and t1(s) = r. The
following shows an interaction with an interpreter for a modern functional
programming language, such as e.g. Haskell [PH97]. The user enters his input
on the line beginning with the prompt “?”. The other lines contain system
output.

__ [

254 H. Peter Gumm

? ones = (1 : ones)

(E e i)
? fromn = (n : from n+l)
? mnats = from 1

(@RISR Pl RN)

? add (n :s) (m:t) = (ntm:addst)
? add ones (from 1) == from 2
(true, true, true, true, ...)

The programmer has defined streams ones and nats, and functions re-
turning streams from, and add. The function add, for instance, accepts two
streams as inputs and returns a stream whose k-th element is the sum of the
corresponding elements of the argument streams.

3.1.1 Co-Recursion

Several questions arise, for instance: Is there always a solution for (co)-
recursive definitions of the above shape, and is it uniqgue? The answer is
contained in the following result:

Proposition 3.4 The coalgebra of streams is the terminal black boz.

Proof. Let A be a black box, that is we have maps h: A - Nandt: 4 = A.
We need to show that there exists precisely one coalgebra homomorphism
¢ : A — N’ where N” is the black box of all N-streams with structure hd :
N — Nand t1 : N — N. The homomorphism conditions require of ¢(a)
for an arbitrary a € A:

hd(p(a)) = h(a), ©)
t1(p(a)) = ¢(t(a)). ¢

By induction one gets t1¥(p(a)) = ¢(t¥(a)), so the k-th element of p(a) is
just hd(p(t*(a))) = h(t*(a)), which proves both existence and uniqueness of
¥ L}
Now it is easy to see that all the streams and stream maps defined in the
above program are nothing but homomorphisms from certain black boxes to
the terminal black box of all N-streams. Each one is uniquely specified by the
presentation of one particular black box. Such function definitions are called
co-recursive.
In particular, the stream ones is defined by the (unique homomorphism
from the) one-element black box with output 1, the function from is defined

(T

d

State based systems are coalgebras 255

by the black box (N, 4dn, succ) to N* as the following figure demonstrates. We
leave it to the reader to find the black box co-recursively defining add.
N N N
sucey 4 Y1
NEELC BN

3.2 Proofs by Coinduction

How can we prove a statement about streams such as e.g. add ones (from
1) == from 2? In our programming exercise, this was checked only for the
first 4 positions. We shall show how to prove such program properties by
coinduction. As an example, we consider the mentioned equality:

add ones (from 1) = from 2.

The first step is to find some bisimulation R containing the two elements.
Choose
R := {(add ones (from n) , from (n+1))|n € N}.

R is a bisimulation, i.e. the heads are equal and the tails are again in R:

hd(add ones (fromn)) = hd ones+hd (fromn) =1+n =hd (from (n+ 1))
t1(add ones (fromn)) = add (t1 ones)(tl (fromn)) = add ones (from(n + 1))
tl(from(n+1)) = from((n+1)+1)

In particular, (add ones (from 1),from 2) € R C ~. Since we are in the
terminal black box, we may conclude: add ones (from 1) = from 2.

Observe, that in this co-inductive proof we actually had to show a more
general result. Such a phenomenon is, of course, also familiar from inductive
proofs.

3.3 Further terminal coalgebras

The reader may be curious as to what terminal Z-automata or terminal ®-
Kripke Structures might look like.

256 H. Peter Gumm

3.3.1 The terminal Z-automaton

Given an alphabet %, let * denote the set of all finite words with letters from
3. Any subset L C Z* is called a language over £. Given e € ¥ and L any
language, we define its “e-derivative” as

Le:={weZ*|e-we L}

Now we can define an automaton 7 = (P(2*), 4, E), having as base set the
set of all languages over ¥, and as transition operation the derivative, i.e.
0(L,e) := L. A language L is defined to be an accepting state, if it contains
the empty word, i.e.
LeE :< €€ L.

We leave it to the reader to verify that this indeed defines the terminal -
automaton.

A bisimulation of automata is exactly an indistinguishability relation as
introduced earlier. For the terminal automata this can be restated as:

LIM
(€L & c€M), Ve€Z.(L. 9 M)

Hence in order to show that two languages L; and Ly are equal, we need
to find a relation R, containing (L1, L), and satisfying the above condition.

J. Rutten [Rut98] demonstrates how to prove regular language equations
by coinduction. For instance, in order to show that for each language L,

(@ 4e 5 = 0T

it suffices to show that ¥ := {(1+ L-L* L*) |LC =*}U{(L,L) | L C T*} is
a bisimulation. Here, +, -, and * stand for union, concatenation and “Kleene-
Star” operations on languages; 0 denotes the empty language and 1 denotes
the language {e} containing only the empty word. Checking that the above
relation is in fact a bisimulation is made easy with the following rules of
derivative:

(L+M), = Lo+ M,
¢ if L
e e B¢
Le-M+ M., ife€l,
(L*)e = Le-L%,
o= e

(T

State based systems are coalgebras 257

The relevant calculation in checking that 9 is a bisimulation consists of:
L.-L*, ife¢ L

e AL = (D)o
IR LE DT L e e L, (e

(14L-L*)e =0+ (L-L*. ={

3.4 Existence of terminal coalgebras

The terminal ®-Kripke structure cannot exist due to the following lemma of
Lambek [Lam68]. Its base set T' would have to be in bijective correspondence
with P(®) x P(T'), which is impossible, since P(T') has strictly larger cardinality
than T for any set T':

Lemma 3.5 If the terminal coalgebra ezists, then its structure map is bijec-
tive.

Proof. Suppose that 7 = (T, «) is the terminal F-coalgebra, we shall con-
struct an inverse to . Applying F, we obtain a coalgebra F(T) on the base
set F'(T) with structure map F(«). Observe that a is at the same time a
homomorphism from 7 to F(7). Since 7 is terminal, there must also be
homomorphism § : F(T) — T. Now 8o « and id7 are two homomorphisms
from T to 7, hence idp = o a.

i F(T) i
a I"(a) l
F(a) F (ﬂ
ialfn) = F(F()) = F(T)
Applying F to this equation, and using that 3 is a homomorphism, we also

find:
idpr) = F(idy) = F(Boa) = F(B) o F(a) = aof.

3.5 Bounded Functors

The reason why there is no terminal Kripke structure lies in the uncontrolled
growth of the powerset functor. Indeed, as this chapter will show, we can have
a terminal Kripke Structure, if we impose a bound on the number of successors
a given state is allowed to have. Mathematically, we replace the powerset
functor in the definition of Kripke structures by Px(—), where P, (X), for any
set X, is the set of all subsets of X with cardinality less than the cardinality &.
Of practical relevance is the case of “image finite” ®-Kripke structures, which
are coalgebras of type P(®) x P, (—).

_ [T

S
258 H. Peter Gumm

Definition 3.6 A functor F is called bounded by some cardinal &, if for every
F-coalgebra A and every a € A there is a subcoalgebra S of A with a € S and

18] < &.

This criterion is easy to check for the examples encountered so far. For
black boxes, automata, programs, and Kripke Structures, we find that the set
of all states reachable from a given state a in finitely many steps, forms a
subcoalgebra. Thus (the type functor of) black boxes, programs, image finite
Kripke Structures, and Z-automata are bounded by w, resp. |Z*|. In all these
cases, we can construct the terminal coalgebra using the following theorem:

Theorem 3.7 If the type F is bounded, then the terminal F-coalgebra ezists.

Proof. Let us a start with a functor F, bounded by «, and let (U)ier be
the family of (up to isomorphism) all F-coalgebras of cardinality at most k.
Take their sum S = Z;¢;U; and let T be its smallest homomorphic image (the
pushout of all homomorphisms with domain §). We claim that 7 is terminal.

To check this, let A = (A, @) be any F-coalgebra. Since F is bounded, we
can find for every a € A some subcoalgebra V, < A with a € V, and |V, < &.
Now each V), is isomorphic to an appropriate U;, so we get both a homomor-
phism v : B4 4V, — S and a surjective homomorphism ¢ : ZeeaVo—A.

We form the pushout (W, ¢',4') of ¢ with 9, then ¢’ is onto, i.e. W
is a homomorphic image of S. It follows that there exists a homomorphism
¢:W = T. Now ¢ o) is a homomorphism from A to 7. It is routine to
check uniqueness.

bl
T s S /

Va

4 A Birkhoff style result

If the functor F is bounded, we can take a fixed set C' (the members of which
we call “co-variables” or “colors”) and consider the functor Fi : Set — Set
with X = C x F(X). It is bounded, too, so its terminal coalgebra 7¢ exists.

-
State based systems are coalgebras 259

The structure map of 7¢ combines an F-coalgebra structure o : To —
F(T¢) with a “coloring” map € : Tc — C. Being terminal as an Fc-coalgebra
is the same as saying that 7¢, as an F-coalgebra, is “co-free over C” as follows:

Definition 4.1 An Fcoalgebra Tc = (Tc, @) together with a map e : Tc — C
1 called cofree over the color set C, if for every F-coalgebra A and every
set map g : A — C there is a unique homomorphic extension, i.e. a unique
homomorphism §: A — Tg with g =€0g.

A

9
le

Fangd|
AT,

If the elements of the terminal coalgebra are interpreted as behaviors, we can
think of the elements of 7¢ as “behavior patterns”. In fact, they turn out to
play the same role that equations play in the dual theory of universal algebra,
50 we shall also use the term “co-equation”.

For t € T and A any F-coalgebra, we say that A satisfies ¢, in symbols

AEt,

if for every map g : A — C we have t ¢ g[A], i.e. if every homomorphism
¢ : A= T¢ avoids t. Such a definition of satisfaction by “avoidance” is not
uncommon in many fields of mathematics, such as e.g. graph theory or lattice
theory.

Any set E of behavior patterns, i.e. any set of co-equations, defines a class
of coalgebras, namely those, satisfying each t € E:

Mod(E) = {A € Setp |Vt € E.A |= t}.

This is called the co-equational class defined by E.

Each co-equational class is a covariety, i.e. closed under taking subcoalge-
bras (§), homomorphic images (#) and sums (Z). It is easy to see that a class
K is a covariety, iff £ = SHE(K), but, more importantly, for each covariety X
one can find a set E of co-equations defining K. This is the coalgebraic analog
to the famous theorem of Birkhoff:

Theorem 4.2 If F is bounded, then a class K of F-coalgebras is a covariety
if and only if it is a co-equational class.

L.

260 H. Peter Gumm

Proof. It is straightforward to check that a co-equational class is closed under
homomorphic images and under sums. To show closure under subcoalgebras,
one needs to check that every homomorphism ¢ : § = 7T¢ from a subcoalgebra
S < A can be extended to a homomorphism 9 : A — T¢. For this, we first
extend the set map eoy : § — C' to some set map g : A — C with g o C4= cop,
and then choose 9 := g, the homomorphic extension g.

For the other direction, choose a color set C' which is at least as large as
the bound & of the functor F. Given a covariety K, let

B={teTc|VAc KAL)

be the set of all co-equations with color set C, that are true in all of K. Clearly,
K C Mod(E), so it remains to show Mod(E) C K.

For every t € (Tc — E) there is a coalgebra A; € K and a homomorphism
@1+ Ay = Tc so that t € @y[A;]. Hence (T — E) is a homomorphic image of a
sum of coalgebras from K, in particular, it is a subcoalgebra of 7¢, belonging
to K.

Let now any B € Mod(FE) be given. For any b € B, we find a subcoalgebra
Sy < B with b € S, and [Sy| < k. Choose an injective mapping gp : S = C,
then its homomorphic extension g, : S, — T¢ will be injective, too. Con-
sequently, S, is isomorphic to a subcoalgebra of 7¢. Since S, € Mod(E), it
follows S, C (T¢ — E). Hence every Sy, and, consequently, B is in K. []

This version of Birkhoff’s theorem is still lacking any syntactical compo-
nent. Bounded functors F' can be characterized by means of surjective natural
transformations 7 from a functor of the form D x (—)* with appropriate fixed
sets D and M (see [GS00b]). The elements of the final D x (—)M-coalgebra can
be understood as infinite M-branching and D-labeled trees, so co-equations
can actually be represented as equivalence classes of such trees (see [Gum01a]).

Whether these further mathematical investigations will bear fruit in com-
puter science, remains to be seen. So far, it is well recognized that many
data types are coalgebraic in nature and that co-recursive specification and
verification methods and tools (see [HHJT98]) are appropriate to deal with
them.

4.1 Historical note

The earliest papers on coalgebras defined them as straightforward dualiza-
tions of classical universal algebras [Drb69), i.e. a coalgebra was a set A with
a collection of maps @; : A = n; - A into the n,-fold direct sum of A. How-
ever, this notion was too simple minded and, most of all, it was lacking any

(T

State based systems are coalgebras 261

reasonable applications. The more useful category theoretical notion, using
arbitrary Set-functors as types, was considered by Aczel and Mendler[AM89]
and Barr[Bar93).

A comprehensive structure theory of universal coalgebra was formulated
by J. Rutten in [Rut00] for type functors “weakly preserving pullbacks”. In
[Gum99a] the theory was generalized and extended to work with arbitrary type
functors. The structure theoretic effect of the (weak) preservation conditions,
as assumed in [AM89] and [Rut00], was characterized in [GS00a).

L. Moss has introduced in [Mos99a], see also [Mos99b], a modal logic for
coalgebras whose type functor weakly preserve pullbacks. The first Birkhoff
characterization was given in [Gum99b] - the syntactical side was added in
[Gumo01a).

References

[AM89] P. Aczel and N. Mendler, A final coalgebra theorem, Proceedings
category theory and computer science (D.H. Pitt et al, ed.), Lecture
Notes in Computer Science, Springer, 1989, pp. 357-365.

[Bar93] M. Barr, Terminal coalgebras in well-founded set theory, Theoreti-
cal Computer Science (1993), no. 114(2), 299-315.

[Drb69] K. Drbohlav, On coalgebras, Summer Session on the Theory of Or-
dered Sets and General Algebras, 1969, University of J.E. Puryne,
Brno, pp. 81-87.

[GS00a] H.P. Gumm and T. Schréder, Coalgebraic structure from weak
limit preserving functors, Coalgebraic Methods in Computer Sci-
ence (H. Reichel, ed.), Electronic Notes in Theoretical Computer
Science, vol. 33, Elsevier Science, 2000, pp. 113-133.

[GS00b] H.P. Gumm and T. Schréder, Coalgebras of bounded type, Tech. Re-
port 25, Philipps-Universitat Marburg, 2000, (to appear in Math.
Structures in Computer Science).

[Gum99a] H.P. Gumm, Elements of the general theory of coalgebras, LUATCS
99, Rand Afrikaans University, Johannesburg, South Africa, 1999.

[Gum99b] H.P. Gumm, Equational and implicational classes of coalgebras,
Theoretical Computer Science 260 (1999), 57-69.

_ [T

262

[Gum01a]

[GumO01b]

[HHIT98]

[Lam68]
[Mos99a]
[Mos99b]

[PHY7]

[Rut98]
[Rut00]

[Trn69]

H. Peter Gumm

H.P. Gumm, Birkhoffs variety theorem for coalgebras, Contribu-
tions to General Algebra, vol. 11, J. Heyn Verlag, 2001, pp. 159-
173.

H.P. Gumm, Punctors for coalgebras, Algebra Universalis (2001),
no. 45, 135-147.

U. Hensel, M. Huisman, B. Jacobs, and H. Tews, Reasoning about
classes in object-oriented languages: Logical models and tools, Bu-
ropean Symp. on Programming (Ch. Hankin, ed.), Lect. Notes in
Computer Science, vol. 1381, Springer, 1998, pp. 105-121.

J. Lambek, A fizpoint theorem for complete categories, Mathema-
tische Zeitschrift (1968), no. 103, 151161.

L.S. Moss, Coalgebraic logic, Ann. Pure Appl. Logic 96 (1999),
277-317.

L.S. Moss, Erratum to “coalgebraic logic”, Ann. Pure Appl. Logic
99 (1999), 241-259.

J. Peterson and K. Hammond, Report on the programming language
Haskell: a non-strict, purely functional language, version 1.4, Tech.
Report YALEU/DCS/RR-1106, Yale University, 1997.

J.J.M.M. Rutten, Autormata and coinduction (an ezercise in coalge-
bra), Tech. report, Centrum voor Wiskunde en Informatica, 1998.

J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theo-
retical Computer Science (2000), no. 249, 3-80.

V. Trnkovd, Some properties of set functors, Comm. Math. Univ.
Carolinae (1969), no. 10,2, 323-352.

