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1 Introduction

In this work we present some problems from the Theory of Partial Differential
Equations of semi-linear type. The topic here is not the generalization of
results, but a presentation of different methods and techniques from Topology,
Functional Analysis and the Theory of Critical Points. It is necessary to
warn the reader about the danger he or she is exposed to: the glamour of
the challenge and importance of the problems, the variety and beauty of the
methods, and to find in this subject an important history, past and present,
suggesting a fruitful future!

2 Elliptic Operators and semi-linear Equations

Let © be a domain contained in RY, that is, a conected open subset of RY. A
partial differential operator L(D) of order 2 acting on real functions defined

on the closure of £, Q, has the formula

N N
L(D) = Y aij(2)DiD; + Y bj(x)D; + c(=) (1)
ij=1 j=1

“Notes from a short course given at the Universidade Federal do Cear4, January 1996
Translated from Portuguese by Andrés Avila
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where the coefficients ai; are real functions defined in Q. This operator is
called elliptic if

N
> ay(@i; >0, Vze®, p eRV\{0} (©)

ij=1

The operator L is called strongly elliptic if there exists a constant ¢ > 0
such that

N

> ai(@i; > e,  Voe@, peRY. )

ij=1

We refer to Gilbarg and Trudinger (5] for more details. The Laplacian

is an example of a strongly elliptic operator.
Consider a function f : @ x R — R. An equation of the form

L(D)u = f(=,u) )

is called semi-linear. This kind of equations shows up in several problems of
Mathematical Physics, Geometry, and others applied fields of Partial Diffe-
rential Equations. The main problem related to the equation (4) is to find a
function u :  — R which satisfies the equation and some boundary condition.

In case of applications such conditions have a specific physical meaning. The
most common conditions are

e (i) Dirichlet condition: u(z) = 0 for z € 6%,
o (ii) Neumann condition: ‘gﬁ(z) =0 for z € 09,

o (iii) Mixed condition: au(z) + ﬁg—:(z) =0 for ¢ € 8N with a, B fixed
constants.
All these conditions are homogeneous. There are also important nonho-

mogeneous conditions which the right hand side is replaced by a function g(z)
defined on 9.

e N\
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3 Model Problem

In this work we will only consider the problem below where the differential
operator is the Laplacian, the boundary condition is Dirichlet, and £ is a boun-
ded domain. Moreover, this case already has several problems and difficulties
with the theory. There is no way that the problem is trivial.

—Au = f(z,u) in Q,
{ u =0 on 8Q, ®)

where 2 € RY, N > 3 is a bounded domain and f satisfies the condition
(F) f:Q xR = R is locally Lipschitz.

Considering the different methods used to solve the problems of the Theory
of Partial Differential Equations, for example in (5), there will be different
concepts of solutions. To introduce them, we define some functional spaces:
continuous functions spaces, Schauder spaces, C*, and Sobolev spaces W™?.

3.1 The C** Spaces

Let A be a subset of R¥. We denote by C¥(A), k a nonnegative integer, the
space of all functions u : A — R with continuous derivatives of order up to
k. In this work, we will consider two examples of sets A: the domain Q and
its closure . When § is bounded, the space C¥(R2) can be endowed with the
structure of Banach space defined with the norm

|lullck = max{|DIu(z)| : j =0,...,k, = €Q}. (6)

For 0 < a < 1, we define the space C%(Q) as the space of Holder continuous
functions on Q. In this space the norm is defined by

il sup{“‘(;)_;y’f?)' vz,y € Ta Ay} ™)

it Definition.

A function u € C%(2) N C°(Q) which satisfies (5) is called a classical
solution.
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3.2 Sobolev Spaces

Let 1 < p < o0 and m = 1,2,.... Define W™2(Q) the set of all L2(Q)
functions with derivatives (in the sense of distributions D’(£2)) up to the order
m in LP(Q). What is the meaning of derivatives in the sense of distribution?
To answer this question, we notice that each function u € L}, (%), in fact each
function in LP(R), is a distribution. In fact, every function w € L} () can
be identified with a distribution T}, defined by:

<T,p5= /n w(o)p(e)dz, V4 € D(®)

where D(Q) = C2°(f2) is the space of functions with infinitely many derivatives

and compact support in . We define the derivative D; = 3% of T, as a
distribution, which we denote D;T,, and it is described by

< DTy, ¢ >:= — < Ty, Dip >, V¢ € D(R).

The space W™P is a Banach space endowed with the norm

lellwns = (32 / | Dau(m),pdz)i ®)

lel<m

It is easy to see that D(f2) is a vector subspace of W™P. The closure of
D(Q) with the norm (8) is denoted by W{™P(Q). Therefore, w € W ()
satisfies, in a certain meaning (the notion of trace which we will not explain
here), boundary conditions. For example, u € W,™? () satisfies the condition
“u =0 in ON.

The spaces W™P, when m and/or p increases, are better spaces. This is
translated in a precise way by the Sobolev embedding theorems.

o (i) Ifmp < N, W™P C L4 for all ¢ < 722

—mp?

o (ii) If mp > N, W™P C C%, where a =m — &.
The special case mp = N is called the Trudinger case and the Orlicz spaces

are called on stage.
When p = 2 W™2(Q) are Hilbert spaces. The notation H™ () is also used
to denote W™?(Q), and H*(Q) to denote Wg™*(Q), m =1,2,.. ..

(T
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Theorem 3.1 Poincaré Inequality (cf. [1])
There ezists a constant ¢ > 0 (depending on Q) such that

/«ﬁ < c/ Va2, we H(Q). ©)
Q Q

It follows from (9) that in H} () the expression

/n (Vul2 (10)

is an equivalent norm with respect to its norm

”/ﬂuzﬁ-/anP.

Consequently, now on we will assume that H{ () has its topology defined
by the norm (10).

3.3 Generalized Solutions (also known as weak solutions)

Let us motivate its arrival Let u be a classical solution of (5). Multiplying this
equation by a function ¢ € D(f) and integrating by parts, we obtain

[vuve= [ s@uwe  voen@. (11)
(1 1]

(Integrate by parts is to use the Green's Theorem. Notice that there is not a
boundary term because u = 0 on 9f).

The expression (11) has meaning for functions u which has only first deriva-
tive. This induces us to define generalized solution as a function u € WOI"’(Q)
such that (11) is verified. Because the functions in Wol"’(ﬂ) are not neccesarily
bounded, we must be careful about the integrability of the right hand side in
(11). This is obtained requiring polynomial growth in f as a function of u,
such that f(z,u) belongs to L}, (). For example, if p = 2, we ask for

|f(z,8)| <cs]?  +¢c, VseR, (12)

where ¢ < N’%’—z =: 2%, Check it! Find what growth must have f if p # 2.

A—
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3.4 The Variational Method for solving (5)
Suppose that f satisfies (12). Then, the functional & is well defined in Hj(R2)

by the expression
(e / [Vuf? - / Fla,u) 1)
2Ja o

where

Flzys) = /0 * ).

Indeed, if u € H} (), using the Sobolev embedding theorem we get u € L*",
and by (12), F(z,u) € L'. On the other hand, the first term of ®(«) is the
square norm in H}(R2). The functional & is differentiable, and indeed, of C*
class (cf. [3]). Its derivative ®'(u) at a point u € H}() is given by the term

<@'(u),¢>=/nVu~V¢—/nf(z,u)¢ (14)

for all ¢ € H}(2). Here, < -,- > denotes the duality pair between the dual
(H{)* and H{, where (H})* is the space of all linear continuous functionals
in H}. Because H} is a Hilbert space, (H{)* can be identified by the same
H} (that is, the Riesz Representation Theorem). Also, we can see < -, > as
an inner product in H}. To obtain the expression (14) we can compute the
derivative of a real function g with real variable ¢ defined by

9(t) = 2(u +14)

at the point ¢ = 0 (that is, the Gateaux derivative or the derivative in the
direction @).

Comparing now (11) and (14), we conclude that the weak solutions of (5)
are ezactly the critical points of ®, that is, the points in u € H{} () such that
®'(u) =0.

4 The Spectrum of the Laplacian

The problem (5) can be seen as a perturbation of a linear problem which
involves the Laplacian operator A. As we will see later, existence, nonexis-
tence, and multiplicity of solutions depend on the interaction of the nonlinear
part with the linear operator A. To understand this interaction, we need to
know the spectrum of the operatof, that is, the numbers A € R such that the

( T
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—Au = du in Q, :
{ u=0 on 89, %)
—Au =y in Q,
{ w=0 ondQ, (1)

has a solution u # 0.

165

To comprise this study we need the following result which will be proved *

in Section 6.

Theorem 4.1 For all f € L*(Q), Q a bounded domain, there ezists a unique’

weak solution of the problem

~Aw=f ' in@,
{ u=0 ondQ, ()

that is, w € H}(Q) such that
/Vu-v¢=/f¢, Vo € Hp. (18)
Q Q
Thus, the Theorem 4.1 give us an operator
T:1* > I

such that for each f € L? corresponds T'f = u defined by (18). It is clear that
T is linear. We can also see that T is continuous. In fact, if in (18) we choose

¢ = u we obtain
[rout = [ su (19)

Using Poincare’s Inequality (inequality (9)) and the Cauchy-Schwarz inequa-
lity we obtain from (19)

fu<(f2)(f)
(frmee)E <o [ 1)}

Moreover, because the image of T' is contained in H{ () and this space is
compactly embedded in Lz(ﬂ), we conclude that T is a compact operator.

and then
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Finally, we observe (we leave the verification of this fact to the reader) that T'
is a symmetric operator in L2, that is,

/Tf-g=/f-T9-

We have to use the spectral theory of symmetric compact operators, cf. (1],
which can be applied to our operator T'. First, we see that the eigenvalues of

T are positive. Indeed, suppose that Tf = uf for u € R and f € L?, f # 0.
Let u = T'f, then from (18) we get

/Vu V¢ = —/uq&, ¢ € H). (20)
Choosing ¢ = u in (20) we obtain

/ |Vul? = 1 / u?
m
which implies that p > 0. To obtain (20) we assumed that p # 0, what it is a
consequence of (18).
Thus, we can conclude from the theory of symmetric compact operators

that there exists a sequence of eigenvalues {un} of T, all positive, and such
that pun, — 0; we denote by ¢, a normalized eigenfunction, that is,

JE

T¢n = pndn, (1)

what shows, in particular, that ¢, € Hj. Using (18) with f = ¢n, u = T¢n,
we obtain

Consequently, we have

u"/wnw:/qsnv, Vv e H,

where it follows that ¢, is a weak solution of

—A¢n = pingn  In Q
{ ¢n=0  ondQ. (e)

Thus, we obtain the spectrum of the Laplacian (with Dirichlet boundary con-
ditions), A, = 7=t
0< X <A< .. > +oo.
But more Mathematics tells us that Ay < Ag, that is, A; is a single ei-
genvalue. It can also be proved that it is possible to obtain an eigenfunction

corresponding to Ay, such that ¢, (z) > 0 for z € 2, and moreover, %%1(1) <0
for z € 89, if Q is regular.

(T
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4.1 The regularity of the eigenfunctions

Now, we will use the following result called L? regularity of the elliptic equa-
tions (cf. [5]). This result generalizes the Theorem 4.1.

Theorem 4.2 For all f € LP(R2), p > 1, Q a bounded domain, there ezists a
unique solution of the problem (17) u € Wol"’ nw2e,

We also need a result about the C* regularity of the solutions of the
problem (17).

Theorem 4.3 If f € C%(Q), 0 < a < 1, then the solutions of (17) belongs to
C**(Q). Moreover, if f € CK%(Q) then u € C*+22(Q).

Now, we will use these two results to show that the eigenfunctioné bn
introduced above are, in fact, C*°. We use a process known as “bootstrap”.
Because ¢, € H{, it follows from the Sobolev embedding that ¢, € L*', and
from the LP regularity obtained from (22) it follows that ¢,, € W2?2". Again
by the Sobolev embeddings we obtain that ¢,, € L9 where IE = zl - % We
follow this process until we obtain that ¢, € W** where % < % (We leave to
the reader to check that this will happen after a suitable number of iterations
of this process). Once at this stage, we obtain that ¢, € C* and the C®
regularity give us ¢, € C*®. From here, it is only to continue the process.

5 A First Example of Nonexistence

Using some examples we see that the problem (5) not always has a solution. In
this section we see an example which the nonexistence comes from the location
of the nonlinear part with respect to the spectrum of the Laplacian. Let Q be
a bounded domain in RV, Which values A € R the problem

—Au = e in Q
{ u=0 on 99, (23)
has a solution? What we will prove is the following assertion: there exists
A+ > 0 such that if A > A, then (23) has no classical solutions. To prove this

fact, we obtain a necessary condition to solve (23). Integrating by parts twice
and using the fact that —A¢; = A\1¢;, we obtain

A1/u¢1 = z\/eutby (24)

167
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Because e® > es is valid for all s € R, it follows from (24)

/\1/u¢1 2 €A/“¢1< (25)

At this point, we need the Maximum Principle (cf. [5]) in the following
form which says “If u € C?(2) N C°(R) is such that —Au > 0 in Q and u =0

on 89, then u > 0.
We conclude that if A > 0, then a possible solution of (23) is nonnegative.

Because ¢; > 0 in 2, we obtain from (25) that

A1 > el
which is a necessary condition to obtain a solution of (23) for A > 0. Conse-

quently, if A > {l, the problem (23) has no solution.

6 The Pohozaev’s Identity and a Second Example
of Nonexistence

Let u € C2(22) N CY(Q) be a classical solution of the problem

—Au = f(u) in Q
{ u=0 on 89, (26)

where Q is a regular bounded domain in RY, N > 3. Then, u satisfies the
following identity

= e (1) 1 2
2N/nF(u) ~ 2)/n () f;n(z V)|V @7

where F(s) = [ f(t)dt and v is the exterior unit normal vector on 9% at a

point z.

The proof of (27) consists in multiplying the equation in (26) by = - Vu
and then integrating by parts. We leave to the reader this homework.

Now let us consider the problem

~Au = |ufP~lu in Q
{ u=0 on 0N, (28)

which has a solution u = 0. We ask if there is values of p for what the unique
solution is the trivial solution. The answer comes from the application of the

(T
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identity (27) with f(t) = |t|°~t. In this case F(t) = %ltP’ and (27) is reduced

to
(ﬂ_ N-2) /I““"}{ (- v)|Vul2. (29)

From here we obtain a necessary condition for the existence of a non-trivial
solution when € is a star-shaped domain. (Without loss of generality we can
assume that a star-shaped domain is star-shaped with respect to the origin,
that is, @ - v > 0). Thus, from (29) we have the condition 2 — (N —2) > 0.
If p > ¥%2, the problem (28) has no non-trivial solution.

7 Existence of a solution for Problem (5)

With our goal of illustrating several methods of solving equations of the kind
(5), we will concentrate in problems asymptotically non-linear. Other exam-
ples can be seen in (K], [R], [S], [MN]. The equation (5) is asymptotically linear
if the following limits exist and there are L>°(Q) functions:

lim f(@:9) = a(z), and lim @ = b(z). (30)

s—+00 ] §——00

For the asymptotic linear problems we have the following results

Theorem 7.1 Asumme that f satisfies the condition (F) in Section 2. As-
sume also that

a(z),b(z) < p < Ay, VzeQae., (31)
where p is a constant. Then, the problem (5) has a classical solution.
Theorem 7.2 Assume that f satisfies the condition (F) and

Aj < ¢ < a(x),b(z) < cjr1 < Aj1, VzeQae, (32)
where ¢; and ¢ are constants. Then, the problem (5) has a classical solution.

The proofs for the two theorems above are made using two methods: topo-
logical, via degree theory, and variational, minimization for Theorem 7.1 and
Saddle Point Theorem for Theorem 6.2. In any of the methods we need to
prove a compactness result, apriori bounds and Palais Smale condition which
we will show next.

_ [T
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8 A priori bounds and the Fuéik Spectrum
In this section we will prove the following result:

Theorem 8.1 Assume that the problem (5) is asymptotically linear with a,b €
L$°(R). Let us suppose also that the unique solution v € H}(Q) of

—Av = avt — v~ in Q,
{ v=0 ondR, (33)

1s the trivial solution. Then, there ezists K > 0 such that

lelle < K

Jfor all the solutions of (5).
Remark 8.1 In the statement of this theorem we have used the notation

* = max{v(z), 0} v~ =t (z) — v(z).

The problem (33) can be studied as the linearization of (5) at infinity. This
reflects very well the symmetry of the problem.

Proof. Theorem 8.1
By contradiction, assume that there exists a sequence u, € H{}(f) of

solutions of (5) such that ||un|| g — co. Let v, = W Because [|vnllg = 1,
using the weak compactness of the unit ball in a Hilbert space and the Sobolev
immersion theorem, we see that there exists a subsequence of (vy), which we
will also call (v,) , and a vy € H{ such that

vy = v weak in H} (34) |
) on norm of L. (35)

In addition, this subsequence can be chosen in such a way that vn(z) —
vo(z) ae. and |va(z)| < h(z), where h € L% These last assertions can be
proved using the Riesz-Fisher theorem about the completeness of L?. Then,
from the fact that u, is a generalized solution of (5) we have

/Vlln Sl g e HL(Q). (36)

IunHH'

It is possible to prove that

T |
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f(z,un) + - o2
— a(z)vy — b(z)vg , weak in L*. 37
[l | e o — b(z)v (37)

Taking limits in (36) we obtain

/va Vo= /(n:z(a:)vo+ — b(z)vy o

from we obtain that vy = 0 because of the hypothesis of the theorem. On the
other hand, making ¢ = v, in (36) we obtain

1—/|w,.|2 f@un)

“Treall

Taking limits and using the fact that v, — vy = 0 (strong convergence in
norm), we conclude that this is a contradiction.
[ ]

8.0.1 The Fucik spectrum

If a and b are constants, we will give the following definition: the pair (a,b)
belongs to the Fucik spectrum if the equation (33) has a non-trivial solution.
Notice that if a = b we have the usual spectrum studied in Section 3. It is
easy to see that the pairs (A1, b) for any b € R, and (a, A;) for all a € R also
belong to the Fucik spectrum. It is still unknow the whole characterization
of the Fucik spectrum. There are several works about it: Gallouet-Kavian,
Ruf, d’Aujourd’hui, Micheletti, Magalhaes, Gossez and the author. For more
details, see [F] and [K]. If @ = (0,1), we deal with an ordinary differential
equation (ODE) and it is possible to describe the spectrum completely. In
this case, we are helped by the theorem of existence and uniqueness which
ensure us that the non-trivial solutions have only simple zeros. From here, we
obtain the fact that where a solution v of (33) has definite sign, it satisfies
an ODE. For example, on an interval where v > 0, it satisfies the equation
—2" = av, which is the same equation for each interval. Then, if [, is the
length of those intervals, we have

"2

o= (38)
+

Thus, all intervals where v > 0 have the same length. In the same way, for
the intervals where v < 0 we have

b= (39)
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Finally, using (38) and (39) we obtain the following equations:
o If v has k intervals where v > 0 and k intervals where v < 0:

kr b _

T i e 11,
o If v has k + 1 intervals where v > 0 and k intervals where v < 0:
G
e If v has k intervals where v > 0 and k + 1 intervals where v < 0:
kn  (k+1)m 5
va Vb

We invite the reader to draw the pictures corresponding to these curves
on the (a,b) -plane.

Theorem 8.2 If a(z) and b(z) satisfy the condition (31) or the condition
(82), we obtain that the problem (83) possesses only the trivial solution.

Proof. We will do it under condition (32). The other case can be proved ‘
in a similar way. Let ’

_ At A

2 and #=Ajt1 — Aj.

A

Let us write (33) in the form

—Av— X =(a—A)vt—(b—A)v~ in Q,
{ v=0 on 9. (40)

Let T : L?> — L? the linear operator defined in the following way: for each
f € L? Tf is the solution w (unique) to the problem

—Aw-w = f in Q (41)
w = 0 on 9. (42)

It can be proved that (see Section 9) the norm of T is

2
17l = i (43)
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Consequently (40) is equivalent to
v=T[(a— Aot — (b—A\)v~] =: Sv.

Then, a solution of (33) is a fixed point of S and vice-versa. Because v = 0 is
a solution of (33), it is enought to prove that S is a contraction to conclude
the theorem. Let us denote by W : L? — L? the operator (non-linear) defined
by
Wo=(a= Aot —(b-Av".
Observe from the hypoteses (32):
la(z) = Allze=, Ib(z) = Allzee < max{|X —c;|,[A —¢jsal} =tk (44)

and k < 4. Denoting f(z,8) = (a—A)s™ — (b—\)s~, we observe that for each
z € § fixed, we have

|f(z,81) = f(@,82)| S klsy — 82|, Vs, 32 €R.

Then
[ wn(e) = Won@)P <8 [ jn(e) @),
1} Q

From here we obtain

2 2k
[|Sv1 = Svel < ;”Wvl = Wuellps < 7””! — a2,

which shows that S is a contraction. [}

9 The Problem (37) and the Fredholm Alternative
We will show that (37) has a unique solution.

Theorem 9.1 If A € R is not in the spectrum of —A under Dirichlet condi-
tion, then the problem (37) has a unique solution.

Proof.

Uniqueness: if u and v are soultiuons of (37), then w = u — v is solution
of —Aw = Aw. Because A # \;, we conclude that w = 0.

Eristence: We use the fact that the eigenfunctions ¢; corresponding to A;
normalized by f¢f = 1 form an complete orthonormal system in L?. Thus
we will solve problem (37) using Fourier Series. Let f € L?, we can write it

A
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as f = 302 ¢cj¢;. Denote by w € L? the solution of (37) we are looking for,
and let us write w = 3732 a;¢;. Then, (37) can be written as

oo £
Do ailh = N = Y eide (45)
=0 =0

Then a; = ,\_‘_ The convergence of the serie comes from the fact that

1
fosl < lesl )

where d is the distance of A to the spectrum, that is, d = min{|]A — X;| : j =
1,2,...}. From (46) immediately it follows that

1
Il < 5 )

We notice that [|ulz2 = Ea In (47) we obtain the equality if we solve the
problem

—Aw — Aw = ¢; in 2,
{ w=0 on 0%, ()
where ¢; is an eigenfunction corresponding to the nearest eigenvalue A; to A.
The Fredholm Alternative follows from the coupling of Theorem 9.1 and
knowledge about the spectrum. It is the following
Given the problem

—Au—du=f in Q,
{ w=0  ondR, ()

e (i) or the problem has a unique solution
e (ii) or the problem
{ —Au—Au=0 in Q, (50)

w =10 on 99,

has a nontrivial solution, that is, A is an eigenvalue. In this case, (50) has a
solution if and only if [ f¢ for all eigenfunctions corresponding to the eigen-
value A. (See [B]). It is well known from the Theory of symmetric compact
operators that those eigenfucntions form a finite dimensional subespace. ®m

(T |
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10 Proof of Theorem 6.2 using Degree Theory
We consider the family of problems

{ —Au=0Xu+ (1—6)f)(z,u) in Q, 1)

u=0 on 99,

where 0 € [0,1] and X = (X; + Aj41)/2. Let

s+ (1 —0)f(z,s)

=l
1-6
o lim s + (1= 0)f(z,5)
8——00 38

We can see that there exist constants ¢; and cp such that
Aj < a1 < ag(), by(z) < e < Ajya-

Then, from a result in Section 7, all the possible solutions of problem (51) are
bounded by a constant K. (There is a small reason to show that K does not
depend of #). We continue by defining the operators S : L?> — L? as the inverse
operator of —A under Dirichlet boundary condition, and by T : L? — L? such
that

Ty = S(0Mu + (1 — 6) f(z,u)).

‘We see that Tj is because S' is compact and the nonlinear operator involved
is continuous and bounded in L? (See [deF]). Thus, (51) is equivalent to

(I = Tp)u=0.
Because of the apriori estimate, for all [lu|| 2 = K + 1, (I — Ty)u # 0. Then
deg(I — T1, B:(0),0) # 0

for all > 0. Then,
deg(I — Ty, Bx+1(0),0) #0,

and from this fact we get a u € Bx41(0) such that (I — Tp)u = 0. But this is
equivalent to say that u is a solution of the equation (5).
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11 The Palais-Smale Condition

Let X be a Banach space and ® : X - R a C" functional. We say that &
satisfies the Palais-Smale condition at the level c (denoted by (PS)c) if all
sequences {un} € X such that

O(un) = ¢, and  ®(up) >0 (52)

have a convergent subsequence (in the X norm). If & satisfies the (PS),
condition for all ¢ € R, we simply say that ® satisfies the (PS) condition.

Theorem 11.1 Suppose that the condition (F) and also hypothesis that (33)

only possesses the solution w = 0. Then the functional ® defined in (13)

satisfies the Palais-Smale condition.

Proof. Suppose that there exists a sequence satisfying (52) (such sequences
are called Palais-Smale sequences) and such that

l[unllz = oo

We proceed exactly as in the proof of Theorem 7.1 and we obtain a contra-

diction. We leave to the reader to complete the proof.
]

12 Proof of Theorem 6.1 by Minimization
It follows from (31) that there exists fZ such that 4 <& < A1, and that

f(z,8) < pls| + ¢, Vs eR,Vz € R

and then A
Fo,s) < Els" +C,  VseRVoeq

Consequently, we can obtain the following estimates

@(u)z%/;w?-g/uz—c

B(u) > %(1 - %)/;vw ~@ 53)

and then
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where we have used the Poincaré inequality. The last inequality tells us that
® : H}(Q) — R is bounded below. Moreover, it tells us that ® is coercive,
that is, if |u|| — +o00, then ¢(u) — +oo.

Thus, we can prove Theorem 7.1 showing that the infimum of ® is attained.
There is two ways to prove this fact. The first one uses the following result
from General Topology.

Theorem 12.1 Let X be a compact topological space, and ® :— R a lower
semicontinuous function. Then ® is bounded below and there exists u € X
such that
P(u) = inf ®.
X

The second way to prove that our infimum of ® (the one defined at (13))
is attained is using the Ekeland’s Variational Principle.

Theorem 12.2 Let X be a complete metric space, and ® : X — R a function
bounded below and lower semicontinuous. Then, given € > 0 there exists
u, € X such that

B(u,) < il)}f@ +€ D(u) < ®(u) + ed(u,u,), VrelX.

Proof. (of Theorem 7.1 using Theorem 12.1)
Let R > 0 be such that

D(u)>1, Vue Hg,ul| >R,

which follows from (53). Now consider the functional @ restricted to the
closed ball B(O) of radius R and center at O in H}. Such ball is weakly
compact. On the other hand, the functional ® is weakly lower semicontinuous.
In fact, its first part is a norm (it is a fact that the norm is weakly lower
semicontinuous) and the second part is more than that, indeed is continuous,
which is a consequence of the compact embeeding from H} in L2, Then, we
can apply the Theorem 12.1 and conclude that there exists a ug € Br(0O) such
that
®(ug) = inf ®.
Br(0)

Because ®(0) = 0, it follows that ®(up) < 0. Then, ||ug| g < R, due to the
boundary of the ball we have ®(u) > 1. Consequently, there exists € > 0 such
that |lug + }w]l”r < Rforall0 <t <eandall |w||g = 1. Thus,

®(ug) < ®(ug + tw)

AT
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and then
D(ug + tw) — D(ug) S0

1
Taking limits we obtain
< ®(ug),w>>0, VweHy, [lw]=1

Then < ®'(up),w >= 0 for all w € H}, which implies that ®'(ug) = 0. That
is, u is a critical point of ® and then it is a solution of (5). n

Proof. (of Theorem 7.1 using Theorem 12.2)

It follows from (53) that the functional @ is bounded below. We also
have that  is continuous in the H3-norm. Then, we can apply the Ekeland’s
Variational Principle. Thus, given € = 1/n, there exists u, € H} such that

’ il
B(up) < 1}111‘{@ il (54)

and 1
®(up) < D(u) + ;d(u, up), Vu€H}. (55)

Taking u = uy, + tw in the last equation, where ¢ > 0 and [lw|[z = 1, we

obtain 1
D(uy) < B(uy + tw) + ;t,
that is
D(up) — B(un + tw) i i
t ~n

Taking limits we obtain

1
— < ®'(up),w >< =

and then 1
[<@(un)w>|<~  Vuwlm =1 (56)

Thus 1
')l < . (5)
Consequently {u,} is a Palais-Smale sequence. Because ® satisfies (PS), we
obtain a subsequence {up; } and ug € Hj such that {un,} — ug. Because  is
a C' functional, we follow from (54) and (57) that

D(up) = 1;11lf¢ and  ®'(up) = 0.
3

s W
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13 Proof of Theorem 7.2 using Variational Methods

Initially we observe that the following inequalities come from the variational
characterizationof the eigenvalues of —A under Dirichlet boundary conditions.
Given A; < A;41 two consecutives eigenvalues. Denote by Hj is the subspace of
H} generated by the eigenfunctions of A; with i < j. Then, H;" the orthogonal
complement of H; which is generated by the eigenfunctions corresponding to
the eigenvalues A; with i > j + 1. We observe that H; has finite dimension.
The inequalities we are refering to are the following

/|Vv|2 < ,\,-/uz, Vv e H;, (58)

/ [Vl 2 Ajan / W', Vwe Hy. (59)

The idea is to apply the following result, The Saddle Point Theorem, due
to Rabinowitz.

Theorem 13.1 Let X ba a Banach space and V' aﬁm‘te dimensional subspace.
Let W be the topological orth l l t of V, that is, a subspace of
X such that X =V ®W. Let <I> V- IR a C! that satisfies (PS). Suppose
there exzist constants a and b, and a real number R > 0 such that

®lopro)v < a (60)
Blw > b (61)
a<b (62)

where Br(O) is the ball of radius R centered at O in the space X. Then ®
has a critical point ta the level ¢ definde by

c=inf max ®(y(u))
V€T ueBR(0)NV

where I' = {7 : BR(O) NV — X;~ continuous,y(u) = u Yu € dBr(0)NV}.

Let us return to the functional ® defined in (13) and let us see that satisfies
the hypothesis of the Theorem 13.1 because of the hypothesis of Theorem 7.2.
We obtain from (F) and (32) the estimates

W)
8

_ [T

<é Vz € Q and |s| > s
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where \j < & < & < Ajt1. Integrating we obtain the constants ey, c2,d1 and
dy such that A; < ¢; < ey < Ajyq, di,d2 > 0 and
Lty 1o
7018 +dy < F(z,8) < Eczs + ds. (63)

Using (63) we obtain for v € Hj

B(v) < 1/]vvf- %c1/92+c

and using (58) we obtain
@(u)s%/(vw Loy /IVv]2+c

Because ¢; > j, it follows that ®(v) — —oco when |[v]| — oco.
In the same way from (63) and (59) it follows for w € H]-1 that

> 2/{Vw]2 /Ile2—c

But e3 < Aj+1, so we conclude that
inf{®(w) : w € Hj} = b > —oo.
Let us choose now R > 0 in such a way that
sup{®(v) : v € Hj,|v] = R} =a < b.

Finally, because @ satisfies (PS), cf. Section 11, we can apply Theorem 13.1
and conclude the existence of a critical point for our functional ® and conse- |
quently a solution of (5), proving the Theorem 7.2.

14 Proof of Theorem 13.1

The proof of Theorem 13.1 depends on the next two lemmata. The first one is
a weak version of the Deformation Lemma. This is enough for our purposes.

Lemma 14.1 Let X be a Banach space and ® : X — R a C* functional
satisfying the (PS) condition. Suppose that there is no critical point of ® at
the level c. Then, there exists g > 0 such that satisfies the following property:
given 0 < € < € < €9 and a continuous function n: [0,1] x X — X such that

(T
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o f(t,z) = a, VL € [0,1] and & such that |B(z) ~¢| > &,
o B(p(l,z)) <c-eif b(x) <cte

The reader can see a more general proof in the reference [R].
The next lemma says that there is a ‘linking’ between the sets W and
dBr(0) NV, which appeared in Theorem 13.1

Lemma 14.2 Let X, V,W and " as in Theorem 13.1. Then, given y € I'
there exists ug € Br(O) NV such that vy(ug) € W.

Proof. Let P : X — X a projection of X on V through W. This is
a continuous linear operator defined in the following way: given u € X, u
can be written in a unique way as u = v + w, and P is defined by Pu = w.
The continuity of P is included in the assertion X = V @& W, and that such
decomposition is possible because V' is finite dimensional. (Observe that if X
is a banach space, in general, there exist closed subspaces F; which have no
topological complement, that is, it is not possible to write X = 17 @ I for
some I%).

We define the following mapping

S: Bp(O)NV =V
by
Sv = P(y(v)).

Observe that Sv = v if v € dBR(0) N V. Consider the homotopy
H(t,") = (1—t)I +1tS, 0<t<l1.
Because H(t,v) = v #0 for all t € 0,1], v € dBr(0) NV, we conclude that
deg(H(t,-), Br(O),0) = const.

Because H(0,-) = I, that constant must be equal to 1. Then, because H(1,:) =
S, we have that there exists ug € Br(O) NV such that Sug = 0. That is, we
have y(ug) € W.
Proof. (Theorem 13.1)
Suppose by contradiction that ¢ is not a critical value. Then, there exists
¢y > 0 such that @ has no critical points between levels ¢ — ¢y and ¢+ ¢). In
fact, if there is no such ¢; we would have a sequence {u,} C X such that

®(uy) ¢ and P (uy,)

-;m

0. (64)
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Using the (PS). condition, it follows that there exists a subsequence and
up € X such that Un; — ug. Because @ is G, we obtain

®(up) =c and  D'(up) =

which is a contradiction. (This is the €y which appears in Lemma 14.1). Now,
let us take € < ¢ — a and € < ¢. Observe that, by Lemma 14.2, ¢ > b. Now
take e < € and let y € I" such that

max @(y(v)) <c+e (65)
vEBR(0)NV

We affirm that (v) = 5(1,7(v)) belongs to I'. Because the continuity is
clear, it is enough to show that ¥(v) = v for v € dBr(0) N V. That is, it
follows from the fact that y(v) = v and ®(v) < a < ¢—&. Then, the conclusion
of the first statement in Lemma 14.1 tells us that 5(1,v) = v. Now, it follows
from the second statement in Lemma 14.1 that

max P((v)) <c—g¢
veBr(0)nV

contradicting the fact of being infimum.
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