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"For since the whole of nature is akin, and the soul has
learned all things, there is nothing to prevent someone, upon
being reminded of one single thing - which men call learning -
Jrom rediscovering all the rest, if he is courageous and faints
not in the search”. Socrates from the Dialogues of Plato

FORWARD.

To refer to this text as one on “Socratic Topology™ is most likely to be an over-
statement. Perhaps “SemiSocratic Topology” would provide more of a description.
Exercises appear at first to be nonexistent. However, on more careful reading, one
observes that many of the theorems come with no proof. The student reader of this
text is expected to provide the proofs with some hints from time to time from the
Professor. Proofs of the more complex results are included in the text. It is intended
in part for the student to learn from these proofs some of the techniques required to
handle some of the other results. In this author’s opinion, this course will be of great
value in preparing a student for research in mathematics.

The more rigid method of asking students to present proofs of theorems goes back
to the late Professors Moore and Wall of the University of Texas. Thus the “Texas
Method” was born and continued by their students and many of their mathematical
descendants (which includes this author) . In more recent times, it appears to have
lost some of its appeal. Perhaps, in this age of knowledge, it is difficult to find
students that have not already retained enough information to make the Texas(or
Socratic)Method practical.

These notes have been developed over a period of a few years and used in a
number of graduate topology classes at Louisiana State University. The initial notes
were inherited from the long chain of Socratic [Texas School] Professors and were
already substantially different than those first developed by Professor Moore.

57




W
58 John A. Hildebrant

The material in this text is intended to be covered in two semesters. It is recom-
mended that chapters 1-8 be covered in the first semester and the remaining chapters
in the second semester with some selection. Chapters 9, 10, and 11 should be cov-
ered as preparation for algebraic topology. Chapters 12-19 can be selected according
to the Professor’s preference. If it is discovered that the first eight chapters cannot
be covered in the first semester, then postpone some of this material to the second
semester. It is important that the material be covered carefully and at a pace to
accommodate the needs of the students, even if some later material goes uncovered.
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1 FUNDAMENTAL CONCEPTS

A topological space (X, ) is a set X together with a collection 7 of subsets
of X such that: — (1)@ €rand X €75

(2)if A€ 7 and B €7, then AN B € 7; and

(3) the union of a family of members of 7 is a member of 7.

The members of 7 are call T-open (or simply open) subsets of X, and 7
is called a topology on X.

A subcollection f of 7 is called a basis for = provided each member of 7
is a union of members of .

A subcollection o of 7 is called a subbasis for 7 provided the collection of
all finite intersections of members of o is a basis for 7.

Theorem 1.1 Let 3 be a collection of subsets of a set X. Then f3 is a basis
for a unique topology on X if and only if:

(1) X is a union of members of B; and

(2) if A€ B and B € 8 and p € AN B, then there ezists K € 3 such that
peE KCANB.

Theorem 1.2 Let o be a collection of subsets of a set X. Then o 1s a subbasis
for a unique topology on X.

If X is a set and 7 = {X, 0}, then (X,7) is a topological space. The
topology 7 is called the indiscrete topology on X.

If X is a set and 7 is the collection of all subsets of X, then (X,7) is a
topological space, and 7 is called the discrete topology on X.

Example. Let X be a set and let 7 = {A: A C X and X\A is finite } U {0}.
Then (X,7) is a topological space. The topology 7 is called the cofinite
topology on X.

Example. Let IR be the set of real numbers and let 8 = {(a,b): a < b in
IR}, where (a,b) = {: a < & < b}. Then § is a basis for a unique topology £
on R called the Euclidean topology or usual topology.

Example. Let IR be the set of real numbers and let 8 = {[a,b): a < b in
IR}, where [a,b) = {a < < b}. Then f is a basis for a unique topology 7 on
IR called the half open interval topology.

Example. Let IR be the set of real numbers and let R? = R x IR. For
each (a,b) € R? and each € > 0 let D((a,b),¢) = {(z,y) € R?: (z — a)® +
(y — b)* < €%} i.e., the open disk with center (a,b) and radius e. Let 8 =
{D((a,b),€): (a,b) € R? and € > 0}. Then 8 is a basis for a unique topology
7 on R®. Note that 7 is the product topology induced by the Euclidean
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topology on IR. Again, the topology 7 on IR? is called the Euclidean (or
usual) topology.

Example. Let IR be the set of real numbers and let 7 = {4: A C R and
either 0 € R\A or IR\{1,2} C A}. Then (IR,7) is a space.

Example. Let IN be the set of positive integers and let B, = {2n—1,2n}
for each n € IN. Then 8 = {By,: n € IN} is a basis for a unique topology on
IN.

Example. Let H = {(a,b) € R?: 0 < b} and let L = {(a,0) € IR?}. Let
B1 = {D((a,b),€) : D((a,b),e) C H\L}, and let B2 = {[D((a,0),e) N (H\L)]U
{(a,0)}: a € R,e > 0}. Then 8 = f; U p, is a basis for a unique topology on

Example. Let IN denote the set of positive integers, and for each n € IN
let By = {(%,y) € R?: 0 <y < 1}. Let By = {(0,y) € R*: 0 < y < 1}

0
and let A = {(z,0) € R®: 0<z < 1. Let X = AU (J B, with the relative
n=0

Euclidean topology of R?.
If (X, 7) is a topological space, then we frequently supress the mention of

7 and simply refer to X as a space.

If X is a space and p € X, then a subset V of X is called a neighborhood
of p provided there exists an open set G such that p € G C N.

If E is a subset of a space X and p € X, then p is called a limit point of
B provided that for each neighborhood N of p, (N\{p}) N E # @. We use E'
to denote the set of all limit points of £ in X.

A subset E of a space X is said to be closed provided that E' C E.

1.3 Theorem. Let X be a space. Then:

(a) @ and X are closed;

(b) the intersection of any family of closed sets is closed; and

(c) if A and B are closed sets, then AU B is closed.

If E is a subset of a space X, then the closure of E is defined E = EUE'. A
point p € X is called an interior point of £ if E if there exists a neighborhood
N of p such that N C E. Observe that p is an interior point of F provided F
is a neighborhood of p. The set E° of all interior points of F in X is called
the interior of F in X. A point b € X is called a boundary point of F
provided that for each neighborhood M of b, we have that M N E # @ and
M N (X\E) # @. The set F of all boundary points of E in X is called the
boundary of E in X. Observe that dE = EN X\E.

1.4 Theorem. If E is a subset of a space X, then these are equivalent:

(a) E is open;

(b) E = E°;
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(c) X\E is closed; and

(d) ENJE = 0.

1.5 Theorem. If E is a subset of a space X, then these are equivalent:

(a) E is closed;

(b) E=E;

(c) X\E is open;

(d) EC E.

If E is a subset of a space X and 7 = {ENV: V isopen in X}, then observe
that (E,7) is a space. The topology 7 is called the relative topology on E,
and (B, 7) is called a subspace of X. Again, we refer to E as a subspace of
X if the topology on F is the relative topology. The statement “A is open
[closed] in E” means that A C E and that A is open [closed] in the relative
topology.

1.6 Theorem. Let E be a subspace of a space X and let A be a subset of
E. Then:

(a) A is open in E if and only if there exists an open set U in X such that
A=ENU; and

(b) A is closed in E if and only if there ezists a closed set F' in X such
that A=ENF.

If E is a subspace of a space X and A C E, then:

(a) A" denotes the closure of A in E;

(b) dgA denotes the boundary of A in E; and

(¢) A°F donotes the interior of A in E.

1.7 Theorem. Let E be a subspace of a space X, AC E, and letp € E.
Then p is a limit point of A in E if and only if p is a limit point of A in X.

1.8 Problem. Let E be a subspace of a space X and let A C E. Determine
the relation (if any) between:

(a) A% and A,

(b) 8 A and 04;

(c) A°E and A°.

A space X is said to be second countable if the topology of X has a
countable basis.

If X is a space and p € X, the a local basis at p is a collection 8 of
neighborhoods of p such that each neighborhood of p contains a member of 3.

If X is a space and p € X, then X is said to be first countable at p if X
has a countable local basis at p. If X is first countable at each of its points,
then X is said to be a first countable space.

A subset E of a space X is said to be dense in X if E = X.
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1.9 Theorem. A subset E of a space X is dense in X if and only if each
nonempty open subset of X contains a point of E.

A space X is said to be separable if X contains a countable dense subset.

1.10 Theorem. Each second countable space is a separable first countable
space.
A cover of a space X is a collection 7 of subsets of X such that X is a
union of members of . If the elements of  are open [closed], then v is called
an open [closed] cover of X.

If v is a cover of a space X and 8 C v is also a cover of X, then f3 is called
a subcover of .

A space X is called a Lindelof space if each open cover of X has a

countable subcover.
1.11 Theorem. Each second countable space is a Lindelof space.

2 FUNCTIONS, QUOTIENTS, AND PRODUCTS

If X and Y are spaces and f: X — Y is a function, then f is said to be
continuous at p € X if for each neighborhood N of f(p) in Y, there exists
a neighborhood M of p in X such that f(M) C N. If f is continous at each
point of X, then f is said to be continuous.

Note that f: X — Y is continuous at p € X if and only if for each open
set U in Y with f(p) € U, there exists an open set V in X such that p € V'
and f(V)CU.

2.1 Theorem. Let f: X — Y be a function from a space X into a space
Y. These are equivalent:

(a) f is continuous;

(b) If U is open in Y, then f~*(U) is open in X;

(c) If F is closed in Y, then f~1(F) is closed in X; and

(d) f(A) € f(A) for each AC X.

A function f: X — Y from a space X into a space Y is said to be open
[closed] if the image of each open [closed] set in X is open [closed] in Y.

A function f: X — Y from a space X into a space Y is called a home-
omorphism if f is bijective (one-one and onto), f is continuous, and f~! is
continuous. We say that X and Y are homeomorphic under f.

2.2 Theorem. Let f: X = Y and g: Y — Z be continuous functions.
Then gf is continuous. Moreover, if f and g are homeomorphisms, then f~1,
g~ ', and gf are homeomorphisms.

If f: X = Y is a function and E C X, then the function g: £ — Y such
that g(z) = f(z) for each z € E is called the restriction of f to E and is

e A
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denoted g = f|E.

If g: E = Y is a function and E C X, then f: X — Y is called an
extension of g provided g = f|E.

A subspace F of a space X is called a retract of X if there is a continuous
function r: X — E such that r|E = 1g (the identity map on E). The function
r is called a retraction of X onto E.

2.3 Theorem. A subspace E of a space X is a retract of X if and only if
each continuous function f: E — Y has a continuous extension to X.

If A is a subspace of a space X, f: X — Y a continuous function, and B is
a subspace of Y such that f(A) C B, then the continuous function g: A - B
defined by g(z) = f(z) for each z € A is called the function from A into B
defined by f.

An embedding of a space X into a space Y is an injective (one-one)
continuous function f: X — Y which defines a homeomorphism X — f(X).

Let {X,: a € A} be a collection of spaces, and let o = { n Ua: Up is

open in Xz for some B € A and Uy = X, for all A # 8 in A} Then oisa
subbasis for a unique topology 7 on P = [] X,. The space (P,7) is called
acA

the topological product of the collection of spaces {X,: a € A} and 7 is
called the product topology.

2.4 Theorem. Let {X,: a € A} be a collection of spaces. Then the
projection

gt H Xo = Xp
a€A

is an open continuous surjective (onto) function for each f € A.

If X is a space and M is a set, then X* denotes the topological product
of M copies of X and A(X) denotes the diagonal of XM

2.5 Theorem. Let {X,: a € A} be a collection of spaces, Y a space, and
f:Y > H Xa. Then f is continuous if and only if naf is continuous for

each B € A
2.6 Theorem. Let X be a space and let M be a set. Then the diagonal
injection A: X = XM is an embedding and A(X) is a retract of xM

2.7 Theorem. Let {fo: Xo = Ya}aca be a collection of continuous func-
tions and let

Ps: H Xa = Xp
agA
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and
g H Yoo Yp
acA
be projections for each B € A. Define

£ 1 Xa = [ Yo
aEA a€A
such that mgf = fgpg for each B € A. Then f is continuous.
The function f = [] fo in 2.7 is called the product of the functions
a€A

{fa: € A}

A function f: X — Y from a space X to a space Y is called a quotient
map provided f is surjective, and E is open in Y if and only if f=*(B) is open
in X. Note that f is continuous.

2.8 Theorem. Let f: X — Y be a quotient map and let EC Y. Then E
is closed in Y if and only if f=(E) is closed in X.

2.9 Theorem. If f: X — Y is an open [closed] surjective continuous
function, then f is a quotient map.

2.10 Theorem. Let f: X — Y be a quotient map and let g: Y — Z be a
function (Z is a space). Then g is continuous if and only if gf is continuous.

2.11 Theorem. Let X be a space, Y a set, f: X — Y a surjective function,
and let 7= {V: V CY and f=Y(V) is open in X}. Then (Y,T) is a space
and f is a quotient map.

The topology 7 in 2.11 is called the quotient topology on Y induced by

f.

If X is a space, R is an equivalence relation on X, p: X — X/R is the
natural map, and 7 the quotient topology on X /R inducted by p, then (X/R, )
is called the quotient space of X mod R.

Let X be a space and A a subspace of X. Define R = {(a,b) € XxX:a=1b
or a,b € A}. Then R is an equivalence relation on X. The quotient space
X/R is denoted X /A.

Let f: X — Y bea function and let K(f) = {(a,b) € XxX: f(a) = f(b)}.
Then K(f) is an equivalence relation on X. The space X/K(f) is called
the decomposition space of f, and the relation K(f) is called the kernel
relation of f. Let ps: X — X/K(f) denote the natural map.

Let E be a space, I = [0,1], X = E x I, and let A = E x {1}. The
space Cone(E) = X/A is called the cone over E. Let g: X — Cone(E)
be the natural map. The point g(4) is called the vertex of the cone and
the quotient space S(E) = Cone(E)/q(E x {0}) is called the suspension of

(T
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E. Let p: Cone(E) — S(E) be the natural map and let v be the vertex of
Cone(E). Then the points p(v) and p(q(E x {0})) are called the poles of
S(E).

Let IR denote the space of real numbers with the usual (open interval)
topology, and let n € IN. The space IR" is called n-dimensional Euclidean
space. The unit open n-cell is E" = {(z1,...,2,) € R™: 2+ .- +2} < 1}.
The unit n-cell is B" = {(z1,...,2,) € R*: 2} + --- + 2 < 1}. The unit
n-sphere is S™ = {(zo,...,%n) € R"': 23 + .-+ z2 = 1}. Note that S* is
the boundary of B? in IR?. The unit n- cube is I", where I = [0, 1].

A space X is called an n-cell [n-sphere] if X is homeomorphic to B™ [S™].

2.12 Exercise. Show that I? is a 2-cell.

In fact, I"™ is an n-cell for each n.

Let X = R™1\{(0,....,0)} and let p = {((ao, - 1an), (boy... b)) € X x
X: there exists A\ € R\{0} such that b; = Aa; for 0 < i < n}. Then p is
an equivalence relation on X. The quotient space RP" = X/p is called real
projective n-space.

Two points (zg,...,z,) and (yo,...,yn) in S™ are said to be antipodal
provided z; = —y; fori = 0,1,...,n.

2.13 Theorem. (a) The boundary of B™ in R" is S"~;

(b) The susp of S™ is h phic to S™*1;

(c) The quotient space obtained by identifying antipodal points on S™ is
homeomorphic to RP".

2.14 Exercise. Establish the table:

CountableProducts | Subspaces | Continuous
[ First Countable yes yes no
Second Countable yes yes no
Separable yes if open yes
Lindelof no if closed yes

A property of topological spaces which is preserved by homeomorphisms
is called a topological property.

2.15 Theorem. Fach of the following is a topological property:

(a) First countable;

(b) Second countable;

(c) Separable; and

(d) Lindelof.

Ty
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3 SEPARATION AXIOMS

A space X is called a Tp-space if for each pair a,b of distinct points of X,
there exists an open set U such that either a € U and b € X\U or b € U and
a€ X\U.

A space X is called a T)-space if for each pair of distinct points a, b, there
exists an open set U such that @ € U and b € X\U.

A space X is called a Ty-space (or Hausdorff space) if for each pair a,b
of distinct points of X, there exist open sets/U and V such that a € U, b€ V,
and UNV = @.

If X is a space and p € X, then X is said to be regular at p if each
neighborhood of p contains a closed neighborhood of p. If X is regular at each
of its points, then X is said to be a regular space.

3.1 Theorem. If X is a space, then these are equivalent:

(a) X is regular;

(b) If A is closed and p € X\ A, then there ezist open sets U and V in X
such that ACU,p€eV, andUNV =@, and

(c) If p € X and U is an open set containing p, then there ezists an open
set V such thatpe VCV CU.

If X is a space and p € X, then X is said to be completely regular
at p if for each neighborhood W of p, there exists a continuous function
f: X — I = [0,1] (usual) such that f(p) = 0 and f(X\W) = 1. If X is
completely regular at each of its points, then X is said to be a completely
regular space.

A space X is said to be a normal space if for each pair A, B of disjoint
closed sets, there exist open sets U and V such that A C U, B C V, and
UnNVi=@:

3.2 Theorem. A space X is normal if and only if for each closed set A
and each open set U such that A C U, there exists an open set V' such that
ACVCVCU.

A space X is called a T3-space if X is a regular 7}-space.

A space X is called a Ty-space if X is a normal Tj-space.

3.3 Theorem. A space X is a Ty-space if and only if {p} is closed for
eachp € X.

3.4 Theorem. Each completely regular space is regular.

3.5 Theorem. A space X is a Hausdorff space if and only if A(X) =
{(z,z): z € X} is closed in X x X.

3.6 Theorem. If X is a T;-space, then X is a T;_1-space; fori=1,2,3, 4.
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3.7 Exercise. Give an example of a T;_,-space which is not a Tj-space for
i=1,2,3,4.

A property of spaces is said to be hereditary if each subspace of a space
having that property also has the property.

A property of spaces is said to be productive if the topological product
of a family of spaces having this property also has the property.

3.8 Theorem. T; for i = 0,1,2,3,4, regular, completely regular, and
normal are all topological properties.

3.9 Theorem. Each of T; for i = 0,1,2,3, regular, and completely reqular
are both hereditary and productive properties.

Note that normal and T} are excluded in 3.9.

3.10 Lemma. Let X be a space, D a dense subset of I = [0,1] and let
{G4: d € D} be an open cover of X such that Ga C Gy whenever a < b
in D. Define f: X = I by f(z) = glb{d € D: z € Gy} for each z € X.
Then for y € I: (a) {z € X: f(z) < y} = U{Gq: d € D,d < y}; and (b)
{z € X: f(z) <y} =N{Gq: d € D,y < d}. Moreover, f is continuous.

3.11 Urysohn’s Lemma. Let X be a normal space and A and B disjoint
closed subsets of X. Then there ezists a continuous function f: X — I such
that f(A) =0 and f(B) = 1.

Proof. Let T denote the topology of X, and let D denote the set of dyadic
rational numbers in [0, 1].

We will establish the existence of a function g: D — 7 such that A C g(0),
g(1) = X, g(d) € X\B ifd < 1in D, and g(a) C g(b) for a < b in D. For
this purpose, let IN denote the set of all positive integers and define D, =
{k/2": k=0,1,...,2"} for each n € N.

Let M = {(Dn,gn): gn: Dy = 7, ﬁg_gw) =X, gn(k/2") C
gn((k +1)/2") for k=0,1,...2" — 1, and gn((2" — 1)/2") C X\B}.

Note that M # @ by taking n = 1.

Define a partial order < on M by (Dn,9n) < (Dm,9m) if n < m (and
hence D, C Dy,) and gy|Dp = gn.

By HMP there exists a maximal chain M’ in M.

Let N' = {n € IN: (Dy,gn) € M'}.

We claim that D = |J{Dp: n € N'}. Let d € D and suppose that d ¢ Dy,
foralln € N'. Let d = k/2™. Since D, contains those dyadic rational numbers
with denominators smaller than 2", we have that 2™ > 2" and hence m > n
for each n € IN'. Thus IN' is finite. Let r = maz{n': n’ € IN'} and define
gm: Dm — 7 50 that (D, gm) € M and gm|D, = g,. Then M’ U{(Dn, 9m)}
is a chain in M, contradicting the maximality of M. We conclude that
D=U{Dn:neN'}.




68 John A. Hildebrant

Now define g: D — 7 so that g|D, = gn, for eachn € IN', and let G4 = g(d)
for each d € D, and apply the Lemma 3.10.

3.12 Theorem. Each Ty-space is completely regular.

3.13 Theorem. Each regular Lindelof space is normal.

Proof. Let X be a regular Lindelof space and let A and B be disjoint
closed subsets of X. For each p € A, let W, be an open set containing
p such that W, C X\B. Now A is Lindelof, so there exists a countable
subcover {Wy,: n € IN} of the Wy's ,i.e., A € |J Wy and W, C X\B for

nelN

each n. Similarly, there exists a countable collection {Hy: n € IN} of open

sets such that B C |J Hj, and H, C X\A for each n. For each n € N, let
nelN

L L
Uy = Wi\ L"J H; and let Vy = Hy\ ) Wi Then Uy = Wiy 0 (X\ U F) and
=1 =1

Vo= HoN(X\ U W:), so that each Uy, and each V, is open. Let U = (J U,
neN

i=1
and let V = (J V. Then U and V are open sets.
neN

We claim that A C U. Let p € A. Then p € W, for some n and p ¢ Hy,
for all m, so that p € W\ UH. U,. Thusp € U and A C U.

A similar argument shows that BC V.

It remains to show that UNV = @.

Suppose that UNV # @ and let p € U N V. Then p € U, for some n and

n

p € Vi, for some m. We can assume that m < n. Then p € W,\ | H; so that
i=1

p ¢ Hp, since m < n. But p € Vj, implies that p € Hp,. This contradiction

proves that U NV = @, and hence X is normal. [ ]

In 3.14 we will use IR to denoted the real numbers with the usual topology.
3.14 Lemma. Let X be a space and let fn: X = R a sequence of con-

tinuous functions. If f M, is a convergent series of positive numbers such
thai |fa(z)| < My for euch z € X and each n, then for each z € X, the series
Z fn(z) converges, and the function f: X — IR defined by f(z) = ): fa(z)
i;lcontinuous.

Proof. (i). Let z € X, and let Sy = il fi(z). We will show that S, is a

j=

Cauchy sequence. Let K, = Z": M;. Then K, is convergent and hence Cauchy.
0. Then there exith;la positive integer N such that |K, — Kn| <

Let ¢ >



B

Socratic Topology

¢ when myn > N. Let n > m > N, then |S, — S| = E fi(z)| <
j=m+l

n n
> Ifite)l€ ¥ Mj=K,—Kn=|Kn—Kn|<¢. Thus S, is Cauchy,
J=m+1 j=m+1
00
and hence convergent, so that ) fj(z) is convergent.
j=1
00 00
(ii). Define f(z) = Y. fn(x)foreachz € X. Let K = 3> Mjandlete > 0.
n=1 j=1
k
Then there exists ng € IN such that |[K — E M;| < €/3 when k > ng; and for

syl cen RS 2 RZCIES 2 M=K - ZM<

J=k+1
€/3.
(iii). We claim that f is continuous. Let z € X and € > 0. We will show
that f is continuous at . Let ng be as in (ii). For each j = 1,2,...,ng there
exists an open set U; containing z such that If_,(z) f;(2)] < €¢/(3ng) when

z € Uy, since each f; is continuous. Let U = ﬂ U;. Then z € U and U is

open.

Let y € U. Then | S'f(fjm - W) < >":° I£5(@) - 1) < f'z"l(e/(svm»
p2

= ¢/3, 5o that [{(2) - f(y |—|>:<f,(z) 1o+ z e )—_iﬂfj(y)l
J=no

<|5:</,(z> O z @)1+ ZHI;(y)I<(s/3)+(e/3)+(e/3)

=g, and we conclude that f 1s contmuous [ ]

3.15 The Tietze Extension Theorem. Let X be a normal space, C a
closed subspace of X, and let f: C — I a continuous function. Then there
ezists a continuous function g: X — I such that g|C = f.

Proof. We represent I = [-1,1]. Let Hy = {z € C: f(z) > 1/3}
and let K; = {z € C: f(z) < —-1/3}. Then Hy = f7!(1/3,1] and K; =
f7Y~1,-1/3], so that H; and K; are disjoint closed subsets of X. By
Urysohn's Lemma, there exists a continuous function fy: X — [-1/3,1/3]
such that fi(H;) = 1/3 and fi(K;) = —1/3. Note that |f(z) — fi(z)| < 2/3
forall z € C. Let Hy = {z € C: f(z) — fi(z) > 2/3} and let K; =
{z € C: f(z) - fi(z) £ —2/9}. Then H; and K, are disjoint closed sub-
sets of X. Again, by Urysohn’s Lemma, there exists a continuous function
fa: X = [-2/9,2/9] such that fa(Hz) = 2/9 and fa(K2) = —2/9. We have
|f(z) = fi(z) = fa(z)| < 4/9 for all z € C.
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Continuing this construction, we obtain a sequence of continuous functions
fa: X = [-2771 /37,271 /37

such that |f(z) — fi(z) — fa(z) — -+ — fa(@)| < (2/3)" for each z € C. Let
00 el

M, =2""1/3". Then Y M, = 1. Applying 3.14, we define g(z) = Y fn(z),
n=1 n=1

n
so that g is continuous. For z € C, we have |f(z) — ) fj(z)| < (2/3)", and
i=1
hence |f(z) — g(z)| = 0 and f(z) = g(z). We conclude that g|C = f. [ ]

4 COMPACTNESS

A space X is said to be compact if each open cover of X has a finite subcover.

4.1 Theorem. Let E be a subspace of a space X. Then E is compact if
and only if each open cover of E by open sets in X has a finite subcover.

A family « of sets has the finite intersection property if the intersection
of any finite subfamily of @ in nonempty.

4.2 Theorem. A space X is compact if and only if each family of closed
sets in X which has the finite intersection property has a nonempty intersec-
tion.

4.3 Theorem. A closed subspace of a compact space is compact.

4.4 Theorem. The continuous image of a compact space is compact.

4.5 Theorem. A compact subspace of a Hausdorff space is closed.

4.6 Theorem. Let X be a compact space, Y a Hausdorff space, and
f: X =Y a bijective conti Jfuncti Then f is a homeomorphism.

4.7 Theorem. A compact Hausdorff space is normal.

4.8 Theorem. A compact regular space is normal.

4.9 Theorem. Let X and Y be spaces with Y compact. Then the first
projection m: X x Y — X 1is a closed map.

Proof. Let C be a closed subset of X x Y and let p € X\n(C). Then
(pxY)NC = @. For each y € Y let Uy, be open in X and let V;, be open
in Y such that (p,y) € Uy x V; and (Uy x V)N C = @. Now {V;:y € Y}
is an open cover of Y. Let Vi,...,Vu be a finite subcover with Uy, Us, ..., Uy,

corresponding. Let U = ﬂ Uj. Then p € U and U is open in X.

Suppose U N «(C) # @ and let ¢ € U N m(C). Then there exists yy € Y
such that (g,y0) € C. Now yo € Vj, for some jy and g € Uj,. Hence (q,,) €
(Uj, x V5,) N C. This contradiction proves that U N«(C) = @ and n(C) is
closed. [ ]
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4.10 Wallace’s Lemma. Let X, Y, and Z be spaces, A a compact subset
of X, B a compact subset of Y, f: X x Y — Z a continuous function, and
let W be an open subset of Z such that f(A x B) C W. Then there exists
an open set U in X and an open set V inY such that ACU, BCV, and
fUxV)CW.

4.11 Lemma. Let X be a space and let i be a collection of subsets of X
with the finite intersection property. Then v is mazimal with respect to having
the finite intersection property if and only if AN H # @ for all A € ~ implies
that H € ~.

Proof. Suppose that v is maximal with respect to having the finite inter-
section property. Then Ay, A3, ..., A, € v implies that A;NA;N---NA, € 7.
Suppose that HNA # @ for all A € . Then yU{H} has the finite intersection
property and hence H € 7.

Suppose that v has the finite intersection property and that HNA # @ for
all A € v implies that H € v. Let v C 7/, where ' has the finite intersection
property. Let H € /. Then HN A # @ for all A € v, so that H € v, 7' C v,
7' =7, and v is maximal with respect to the finite intersection property. =

4.12 Lemma. A space X is compact if and only if N{A: A € v} # O for
each collection ~ of subsets of X which is mazimal with respect to having the
finite intersection property.

Proof. Suppose that X is compact and that v is a collection of subsets of X
which is maximal with respect to having the finite intersection property. Then
{A: A € v} is a collection of closed sets with the finite intersection property,
and hence ({A: A € v} # @ by 4.2.

Suppose, on the other hand, that the condition holds. Let ¢ be a collection
of closed subsets of X with the finite intersection property. In view of 4.2, we
need only show that ({A: A € o} # 0. Let A = {a: a is a collection of
subsets of X with fip and ¢ C a}. Then A # O, since ¢ € A. Now A is
partially ordered by C. By HMP, there exists a maximal chain A’ in A. Let
y=U{a: a€ A’} (= {A: A€ a for some a € A'}).

We will show that v is maximal with respect to fip.

Let Ay, Aj,..., A, € 7. Then there exist 71,72,...,7n € A’ such that
A; €y fori=1,2,...,n. Since A’ is a chain, there exists m with1 <m <n,

n

such that J % € ym. Thus A}, Ay,..., An € ym, and since v, has fip, we
i=1
have Ay N A;N---N A, # Q. This implies that v has fip.
To see that v is maximal with respect to fip, suppose that v C 4" and that
¥ has fip. Now ¢ C 7, and hence y' € A. Thus A'U {+'} is a chain in A, and
since A’ is maximal, we have 7' € A', 4/ C v, and hence v = v'. It follows

_ [
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that v is maximal with respect to fip.

Now@# | AC ) A= () 4, so that X is compact. ]

Aey A€o A€o

4.13 The Tychonoff Theorem. Let {Xq: @ € A} be a collection of

nonempty spaces. Then [] Xq is compact if and only if X, is compact for
a€A

each a € A.

Proof. Let X = ] X,.

aEA

Suppose that X is compact and let @ € A. Then me: X — X, is a
continuous surjection, so that X, is compact for each a € A.

Suppose that X, is compact for each & € A. If Vg is an open set in X,
for a € A, denote by V, = [] Tp, where Ty = V, if @ = B, and T = Xp if

€A

a # B. Let 7 be a collection of subsets of X which is maximal with respect to
the finite intersection property. Then for each a € A, {ma(B): B € v} has fip
in Xo. Let py € ({7a(B): B € v} for each a € A, and let p € X such that
Ta(p) = pa for each a € A.

We will show that p € {B: B € 7}, so that, in view of 4.12, we will have
that X is compact.

Let W be a basic open set in X containing p. Then W = [] V,, where

A

a€

Va is open in X, for « € F (some finite subset of 4), and V, = X, for
a € A\F. Then, for each a € A, we have p, € Vo[ {ma(B): B € 7}, so that
Va N 7a(B) # @ for each B € v, since V, is open. Thus, for each a € 4,
VaNB # O for each B € v, so that Va € v by 4.11. Now W = (\{Va: a € F},
so that W N B # O for each B € 7. We obtain that p € B for each B € 7,
p € N{B: B € v}, and X is compact. ']

4.14 Theorem. Let X be a Hausdorff space, vy a tower of compact subsets
of X, and G an open subset of X such that N{A: A€y} CG. Then BC G
for some B € 7.

If X is a space and p € X, then X is said to be locally compact at p if
p has a compact neighborhood. If X is locally compact at each of its points,
then X is said to be a locally compact space.

4.15 Theorem. Let X be a locally compact Hausdorff space and let p € X.
Then the family of compact neighborhoods of p is a local basis at p.

4.16 Theorem. Let X be a locally compact space and let f: X — Y be
and open continuous function. Then f(X) is locally compact.

Note that, as a consequence of 4.4 and 4.15, both compactness and local
compactness are topological properties.

4.17 Theorem. Let E be a subspace of a locally compact Hausdorff space

(T
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X. Then E is locally compact if and only if there exists an open set G in X
and a closed set F in X such that E =GN F.

Proof. Suppose that E is locally compact. Then for each a € E, there
exists an open set G, such that a € G, and G, N E is compact. Since X is
Hausdorff, G, N E is closed for each a € E. Let G = (J{G,: a € E}. Then G
is open and E C G. We will show that E is closed in G. Now for each a € B,
ENG, =GaN(GaNE), so that ENG, is closed in Go. Thus G,\(ENG,) is
open in G, and hence open in G. We obtain that E = G\ U [Ga\(£NGa))

is closed in G, so that B = G N F for some closed subset F of x.

Suppose, on the other hand, that E = G N F for some open set G and
some closed set F' in X. Let a € E. Then there exists an open set U such that
aeUCUCG, andUlscompact Thena e UNECUNE=UNFNG =
UNF =TU. Since UN F is closed and U is compact, we have that U N E is a
compact neighborhood of a in E. We conclude that E is locally compact. m

4.18 Theorem. A locally compact Hausdorff space is completely reqular.

Proof. Let X be a locally compact Hausdorff space. Let p € X and A a
closed subset of X such that p € X\A. Then there exist open sets U and V
such that U and V are compact andp e UC U CV C V C X\A. Now V is
a compact Hausdorff space and hence is normal. By Ur\ ysohn’s Lemma, there
exists a continuous function f: V — I such that f(p) = 0 and f(V\U) =
Define F: X = I by F|V = f and F(X\V) = 1. Now X = VU (X\U) is a
closed cover of X, and V N (X\U) = V\U and F is 1 on V\U, so that F is
continuous, and X is completely regular. [ ]

4.19 Theorem. Let X be a Hausdorff space and let E be a dense locally
compact subspace of X. Then E is open in X.

Proof. For each e € E, let G, be an open set such that G, N E is compact
(and hence closed in X). For each e € E, ENG, = G.N(G, N E) is closed in
G, so that G.\(EF NG,) is open in G,. Let G = |J G,. Then G is open, so

e€E

that G\ U [Ge\(ENG,)] = B is closed in G. Thus E=ENG =XNG=G

and G i;f)'x,en' so that F is open. ]

A subset E of a space X is said to be nowhere dense in X provided
E'=0.

4.20 Lemma. Let {Xo: a € A} be a collection of spaces such that an
infinite number of the X,'s are not compact, and let E be a closed compact
subset of [] Xa. Then E is nowhere dense in [] X,.

acA a€A

Proof. Suppose that E fails to be nowhere dense. Then E° = (E)° # 0.
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Let W be a basic open subset of [] X, contained in E. Then there exists a

acA

finite subset F' of A such that na(;’) = X, for a € A\F. Thus mq(E) = X,
is compact for & € A\F, so that all but a finite number of the X, s are
compact. This contradiction proves that E is nowhere dense. n
4.21 Theorem. Let {Xq: a € A} be a collection of spaces. Then [] X,

is locally compact if and only if each X4 is locally compact and all but Zeﬁnite
number of the X, ’s are compact.

Proof. Suppose that each X, is locally compact and F is a finite subset of
A such that X, is compact for @ € A\F. Let p € H Xa-. For each a € F), let

N, be a compact neighborhood of 74 (p), and let Na = X, for a € A\F. Then
JI Ne is a compact neighborhood of p, so that H Xq is locally compact.
aEA

Suppose that X = [] Xq is locally compact. Let a € A and let p € X,.

a€A
For B € A\{a}, let g5 EEXﬁ and let ¢ € X such that m3(q) = gp for B # a and
7a(g) = p. Then g has a compact neighborhood N in X. Since 7, is open
and continuous, m,(/N) is a compact neighborhood of p in X,, so that X, is
locally compact. Thus X, is locally compact for each a € A.

Let p € X and let N be a compact neighborhood of p. Let W be a basic
open subset of X such that p € W C N. Then there exists a finite subset F*
of A such that 7, (W) = X, for @ € A\F and so m(N) = X, is compact for
a € A\F. Thus all but a finite number of the X, ’s are compact. L]

A family a of subsets of a space X is said to be locally finite if each point
of X has a neighborhood which meets at most a finite number of members of
a.

If a and 3 are covers of a space X such that each member of a is contained
in some member of 3, then « is said to be a refinement of 3.

A space X is said to be paracompact if each open cover of X has a locally
finite open refinement.

4.22 Theorem. Each regular Lindelof space is paracompact.

Proof. Let X be a regular Lindelof space and let V be an open cover of X.
For each p € X, let V}, € V such that p € V;, and let U, be an open set such
that p € Up C l_; C Vp. Let {U,, : n € IN} be a subcover of {Uy: p € X}, and
let V,, € V such that U, C V;, for each n e IN. Note that {V},: n € N}
covers X. For each n € IN, let W, = V},,\ U U,,'. Then W, is open for each

i=1
n€N. Let W= {W,:neN}
We claim that W covers X. Let p € X. Then p € Up, for some n € N,
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and Uy, € V. Let k = min{n: p € V},,}. Thenp € V,, and p ¢ V},, for

n < k, so that p ¢ U, for n < k. It follows that p € Wy, and W covers X.
Since Wy, €V}, € V for each n € IN, we have that W is a refinement of V.
To see that W is locally finite, let p € X, and again let k = mm{n pE

Up,}. Then p € Uy, and Uy, NW, = @ for n > k, since W,, =V, \ U L

Thus Up, is a neighborhood of p which meets at most a finite number of the
elements of W.

We lude that X is pnl pact. ]

Note that each pact space is par p

4.23 Theorem. Each closed subspace of a pammmpact space is paracom-
pact.

4.24 Lemma. Let {My: a € A} be a locally finite collection of subsets of
a space X. Then:

(a) {Mq: a € A} is locally finite; and

(b) If B C A, then U{Mp: f € B} is closed.

4.25 Lemma. Let X be a paracompact space and let U = {U,: a € A} be
an open cover of X. Then U has a locally finite open refinement {V,: a € A}
(indezed by A) such that Vo C U, for each a € A.

Proof. Let W be a locally finite open refinement of &/. For each W € W,
let Hw € U such that W C Hy. For each a € A, let V, = U{W € W: Hwy =
Ua}. The V, is open and V, C U, for each a € A.

Let p€ X. Then p € W for some W € W, and W C Hy = U, for some
a € A, so that p € V,. Thus {V,: a € A} is an open refinement of .

We claim that {V,: @ € A} is locally finite. Let p € X. Then there exists a
neighborhood N of p such that N meets Wy, Wa, ..., W, € Wand NNW # 0,
W € W implies that W = Wj for some j = 1,2,...,n. Let a,az,...,an € A
such that Hw, = Uq,; j = 1,2,...,n. Suppose NNV, # @. Then NNW # ?
for some W € W such that Hy = U, sothat W = W; forsome j = 1,2,...,n
We obtain that Hw, = Uy, and hence a = a; for some j = 1,2,...,n. We
conclude that {Va: a € A} is locally finite. L]

4.26 Theorem. A paracompact Hausdorff space is normal.

Proof. We first show that X is regular. For this purpose let A be a closed
subset of X and let p € X\A. For each a € A, there exists an open set U,
such that p ¢ U, and a € U,. Now {U,: a € A} U {X\A} is an open cover
of X. Let {V,:a € A} U{G} be a locally finite open refinement such that
Va C U, for each a € A and G C X\A (from 4.25). Then W = [J{V,: a € A}
is an open set containing A. By 4.24 (b), W = |J{Va: a € A}. Now p ¢ V,
for each a € A, since V, C U, so that p ¢ W. Then p € X\W and A C W,
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so that X is regular.

To see that X is normal, let A and B be disjoint closed subsets of X. Then
for each a € A, there exists an open set U, such that BNU, = @ and a € U,.
Now {U,: a € A}U{X\A} is an open cover of X. Let {V,: a € A}U{G} bea
locally finite open refinement such that V; C U, for each a € A and G C X\ A
(from 4.25). Then W = [J{Va: a € A} is an open set containing A. By 4.25
(b), W = U{Va: a € A}. Now BNV, = @ for each a € A, since V, C U,,
so that W N B = @. We conclude that B C X\W and A C W, so that X is
normal. u

If X is a space and f: X — I = [0,1] is a function, then the closed set

(f) = {z: f(z) # 0} is called the support of f. Note that z € X\S(f) if

and only if there exists a neighborhood U of z such that f(U) =

If X is a space, then a family {fo: X — I, a € A} of continuous functions
is called a partition of unity provided:

a) {S(fa): a € A} is alocally finite closed cover of X; and (b) Y fa(z) =

aEA

1 for each z € X.

If X is a space and Y = {U,: @ € A} is an open cover of X, then a
partition of unity {fo: @ € A} is said to be subordinate to & provided that
S(fa) C Uy for each a € A.

4.27 Lemma. Let X be a Ty-space and let {Uy: a € A} be a locally finite
open cover of X. Then there ezists an open cover {V,: a € A} of X such that
Vo C U, for each a € A, and V, # @ whenever Uy # @ for each o € A.

Proof. Let 7 denote the topology on X and let A = {(B, fg): B C 4,
fB: B = 7 such that fp(a) C Ua, fB(a) # @ if Us # @, and UBf(a) U

a€

U Ua=X}.

a€A\B

We first claim that A # @. Let o« € A such that U # @, and let B = {a}.
We consider two cases:
Case 1. U, C U{Up: B € A\B}.
Let p € U, and let fp(a) be an open set such that p € f(a) be an open set
such that p € f(a) € f(@) C Us. Then (B, f) € A.
Case 2. Uy Z U{Up: B € A\B}.
Then N{X\Us: B € A\B} = N is a nonempty closed subset of U,. Let
fB(c) be an open subset of U, such that N C fg(a) C fa(a) € U,. Then
(B, fp) € A.

We conclude that A # @. Define a partial order < on A by (B, fg) <
(C, fc) provided B C C and f¢|B = fp. By HMP, there exists a maximal
chain C in A. Let H = [J{B: (B,fp) € C} and define fy: H — 7 by

(T
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fu|B = fp for (B, fp) €C.
We claim that X = U fu(@)U | U,. Let p € X. Then there exists a
aEH aEA\H

finite subset F of A such that p € Ug if 8 € F and p ¢ Up if B € A\F. Again,
we consider two cases:

Case 1. FN(A\H) # 0.

Let B € FN(A\H). Thenp € Ug and f € A\H,sothatpe |J U..
a€A\H

Case 2. FN(A\H) = 0.

In this case, F C H, and there exists (B, fg) € C such that F C B. We have

thatp¢ U Ua,p€ U fB(e), and hencepe U fr().
acA\B aEB aEH
The two cases above prove that X = |J fg(e)U U U
aeH aeA\H
We claim that A = H. Suppose that A # H and let p € A\H. Now
X=U fa(@ulpu U Ussothat X\[U fu(@u U UdC
acH aEA\(HUB) aEH a€A\(HUB)
Ug. There exists an open set V (# 0 if U # @) such that X\[ U fu(a)U
aEH

U Uy CV CV C Us. Define F: HU {8} = 7 by F|H = fg and

acA\(HUB)
f(B) = V. Then (H U, F) € C ; contradicting the maximality of C. We
conclude that A = H. Define V, = fa(a) for each a. [}

4.28 Partition of Unity Theorem. Let X be a paracompact Hausdorff
space and let v be an open cover of X. Then there exists a partition of unity
which is subordinate to .

Proof. Since X is paracompact, v has a locally finite open refinement which
covers X. We can assume that v is locally finite. Let v = {Gq: @ € A} and
U = {Uy: a € A} a locally finite open refinement of  such that @ # U, C
Ua C G, (we assume that G, # O for each a € A). Let V = {V,: a € 4}
be a locally finite open refinement of U such that @ # V,, C Va C U, for each
a € A. Let go: X — [0,1] be a continuous function such that go(Va) = 1 and
9a(X\Ua) = 0 for each a € A. Define ¢: X = R by 9(z) = Y gg(z). Note

BEA

that for each z € X, there exists a finite subset F' C A such that ¢ € U, for
a € Fand z € X\U, for a € A\F, since U is locally finite, so that go(z) = 0,
if a € A\F, and gg(z) = 1 for some B € A, since ¢ € Vj for some § € A.
Thus v is well-defined and v (z) > 0 for each z € X.

We claim that ¢ is continuous. For each p € X, let N, be an open set
containing p such that N, meets only a finite number of members of /. Then
N = {Np: p € X} is an open cover of X. We will show that 1| N}, is continuous

()
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for each p € X. Let F = {a1,...,an} C A such that N, N Uqs; # @ for
j=1,...,n;and NyNUq = O for & € A\F. The function +: IR™ — IR defined
by +(z1,...,Zn) = Z1 + - + Ty, is continuous, and the function k: Np, - R"
defined by k(z) = (9o, (2), - - -, gan()) is continuous. Now ¥|Np = + o k, so
that | N}, is continuous for each p, and hence 9 is continuous.

The function 4: [0,1] x (0,00) — IR defined by &(r, s) = r/s is continuous.
Define fo: X — [0,1] by fa(z) = ga(z)/3(z) for z € X. Let ma: X —
[0,1] x (0,00) be defined by mq(x) = (ga(x),%(2)), so that fo = & 0 mq for
each a € A is continuous.

Let @ € A. Then {z: fo(z) # 0} C Uy, so that S(fa) € Us C Ga-

Let z € X. Then E fo(z) = E ga(@)/%(z) = 1. By 4.24, {Us: € A}

is locally finite, so that S(f,,) € Ua ylelds that {S(fa): @ € A is locally finite.
Since for each € X, « € V, for some a € A, ga(z) = 1, so that = € S(fa),
and hence {S(fa): @ € A} is a cover of X. [ ]

A space X is said to be o-compact if X is a union of a countable family
of compact subspaces.

4.29 Lemma. Let X be a locally compact o-compact Hausdorff space.
Then there exists a countable open cover {Un:n = 1,2,...} of X such that
U, is compact and Uy, C Upy1 for each n.

Proof. Since X is o-compact, there exists a collection {Cp: n € IN} of
compact subsets of X such that X = |J Cy. For each n € IN define F,, = L"J s

neN i=1
Then each Fy, is compact, Fy, C Fy, 1 for each n, and X = |J F,.

neN

Let 7 denote the topology on X, and let K = {(K,gk): K CIN, 1 € K, if
me K,and 1 <n <m,thenn¢€ K; gx: K = 7, F, C gk(n), and gg(n) is
compact for each n € K, and gk (n) C gk (n + 1), whenever n+ 1 € K}.

We claim that K # @. Let K = {1}. Let W be an open cover of F
such that W is compact for each W € W (using that X is locally com-
pact Hausdorff), and let Wy, Ws,..., W, be a finite subcover of Fy. Define

n

2 o
9k(1) = U W;. Then Fy C gk (1) C gk (1) = U W, (compact). We see that
i=1 j=1
(K,gx) € K and hence K # @.
Let C be a maximal chain in K, and let H = [J{K: (K, gk) € C}. Define

gr: H — 7 so that gg|K = gk for each (K, gx) € C. Then (H,gy) € K and
hence in C by maximality.

We claim that H = IN. Suppose that H # IN. Then H has a largest
member h. Now gg(h) U F;.H is compact. Let V be an open set containing
gK(h] U Fp41 such that V is compact. Define gguga+1)(h + 1) = V and

(T
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9ru{h+1)(n) = gr(n) if n € H. Then (H U {h +1}, 9Hu(h+1)) € K and in C;
contradicting the maximality of C. It follows that H =
Let U, = gn(n) for each n € IN. Then each U, is open, U, is compact,
and U, C Upyy. Since F, C Uy, and X = U Fa, {Un: n € IN} covers X.
neN
[ ]

4.30 Theorem. Each locally compact o-compact Hausdorff space is para-
compact.

Proof. Let X be a locally compact o-compact Hausdorff space.

Since X is locally compact Hausdorff, X is regular.

Since X is o-compact, X is Lindelof.

The conclusion now follows from 4.22. ]

A cube is a topological product space I™ for some set M, where I = [0, 1].

4.31 The Tychonoff Embedding Theorem. Each completely regular
Hausdorff space can be embedded into a cube.

Proof. Let X be a completely regular Hausdorff space, and let M =
{(p,A): A is a closed subset of X and p € X\A}. For each (p,A) € M,
there exists a continuous function fi, 4): X — I such that f(, 4)(p) = 0 and
fp,4)(A) = 1. Define ¢: X — IM so that m(, 4)¢ = f(5 4 for each (p, A) € M.
Then ¢ is continuous.

To see that ¢ is injective, let z and y be distinct points of X. Since X is
Hausdorff, {y} is closed, so that (z, {y}) € M. Note that m( (,})¢() = 0 and
T(z,{y})?(¥) = 1, and hence ¢(z) # ¢(y) and ¢ is injective.

To complete the proof that ¢ is an embedding, let U be an open subset
of X. We will show that ¢(U) is open in ¢(X). Let g € ¢(U) and let u € U
such that ¢(u) = g. Then (z,X\U) € M. Let W = [] W, 4) such that

(p,A)EM
Wip,a) = I if (p, A) # (u, X\U) and W(, x\p) = [0,1). Then W is a basic open
set in I so that W N¢(X) is open in ¢(X). Now ¢ = ¢(u) € WN¢(X), since
fru,x\vy(w) = 0. We claim that W N ¢(X) C ¢(U). Let b € W N $(X) and let
a € X such that ¢(a) = b. Then my x\v)(b) = 7w x\v)$(a) = fu,x\v)(a) #
1, since b € W, and hence a ¢ X\U, and a € U. Thus b € ¢(U), and
WnN¢(X) C ¢(U), and ¢(U) is open in ¢(X). [ ]

If M is a countable set, the cube I™ is called the Hilbert cube and is
denoted I°.

4.32 Theorem. A second countable T3-space is normal.

4.33 Theorem. A second countable T3-space can be embedded into 1.

Proof. Let X be a second countable T3-space, and let 8 be a countable
basis for the topology of X. Let M = {(A,B): A,B € fand A C B}. Then
M is countable. For each (A,B) € M, let f(4p): X — I be a continuous
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function such that fi4 p)(4) = 0 and f(4,5(X\B) = 1 (X is normal from
4.32). Define ¢: X — IM so that m(4,8)$ = f(a,p) for each (4, B) € M. Then
¢ is the desired embedding. [ ]

A function f: X — Y from a space X into a space Y is said to be dense
if f(X) is densein Y.

A compactification of a space X is a dense embedding f: X — Y of X
into a compact space Y.

4.34 Theorem. Each locally compact Hausdorff space has a Hausdorff
compactification.

4.35 Theorem. Let X be a non-compact space and oo a point not in X.
Let Xoo = X U {co} and let B = {U: U C Xo and either U is open in X or
X\U is a closed compact subset of X}. Then f3 is a basis for a unigue topology
T on Xoo such that (Xeo,T) is compact. Moreover, the inclusion i: X — X
is a compactification of X.

The compactification i: X — X, in 4.35 is called the one point com-
pactification of X.

4.36 Theorem. Let X be a non-compact space. Then Xo, is Hausdorff if
and only if X is a locally compact Hausdorff space.

4.37 Exercise. The one point pactification of R™ is h phic to
S™ for each n € IN.

A Stone-Cech compactification of a space X is a compactification
B: X — Bsuch that if f: X — Y is a continuous function from X into a com-
pact Hausdorff space Y, then there is a unique continuous function g: B =Y
such that f = gf.

4.38 Lemma. Let X and Y be Hausdorff spaces, D a dense subset of X,
and f,g: X = Y continuous functions such that f|D = g|D. Then f = g.

4.39 Theorem. Each completely regular Hausdorff space has a unique
(Hausdorff) Stone-Cech compactification.

5 CONNECTEDNESS

If X is a space and U and V are disjoint nonempty open subsets of X such
that X = U UV, then the pair U,V is called a separation of X. We write
X = U|V to denoted that U,V is a separation of X.

A space X is said to be connected if X has no separation.

5.1 Theorem. Let C be a connected subspace of a space X and let E be a
subspace of X such that C C E C C. Then E is connected. In particular, C
is connected.

(T
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5.2 Theorem. A space X is connected if and only if X contains no proper
subset which is both open and closed.

5.3 Theorem. The continuous image of a ted space is ted.

If a and b are points of a space X, then a and b are said to be connected
in X if there exists a connected subset of X containing both a and b.

5.4 Clover Leaf Theorem. If {Cy: a € A} is a family of connected
subsets of X such that (| Cq # @, then |J C, is connected.

a€A €A

A component of a space X is a ma.xi.:nal connected subset of X.

5.5 Theorem. Let X be a space and p € X. Then p belongs to ezactly
one component of X.

If X is a space and p € X, then the component of X containing p is denoted
by C(p).

5.6 Theorem. Each component of a space is closed.

5.7 Theorem. Let X be a space and let R = {(z,y) € X x X: z and y
are connected in X}. Then:

(a) R is an equivalence relation on X; and

(b) If p € X, then C(p) is the R-class of p.

The relation R in 5.7 is called the component equivalence on X.

5.8 Theorem. Let {Eqy: a € A} be a tower of compact connected subsets
of a Hausdorff space X. Then (| Eq is connected.

acA

5.9 Theorem. The product g] a family of connected spaces is connected.

Proof. We first prove that the product of a finite number of connected
spaces is connected. It is sufficient to show that the product of two connected
spaces is connected.

Let M and N be connected spaces and let (p,q) and (a,b) be in M x N.
Then (a,q) € M x N, and M x {q} is a connected subspace containing (a, q)
and (p,q), so that (a,q) and (p,q) are connected in M x N. Also (a,b) and
(a, g) are connected in mx N by {a}x N, so that (a,b) and (p,q) are connected
in M x N (5.7). It follows that M x N is connected.

Let {X,: a € A} be a family of connected spaces and let X = ]'[ Xa.

Suppose that X = U|V is not connected. Let p € U and g € V, and let w
be a basic open set containing g such that W C V. Then there exists a finite

subset F' of A such that W = [[ Wa, W, is open in X, for each a € F
a€A

and W, = X, for a € A\F. Let T = HTa,whereTa— Xq if @ € F and

Ta = {7a(p)} if @ € A\F. Then T is connected and p € T, so that T C U. Let
z € X such that m4(2) = 7a(9) if @ € F and m4(2) = ma(p) if & € A\F. Then
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ze€TNW. But W CV and T C U, so that U NV # @. This contradition
yields that X is connected. [ ]

5.10 Exercise. Let n € IN and prove that IR™, I, and S™ are connected.

5.11 Exercise. Show that if X is connected, then Cone(X) is connected.

5.12 Theorem. Let f: X — Y be a continuous function and let A be a
connected subset of X. Then f(A) is contained in ezactly one component of
¥

A space X is said to be totally disconnected if each component of X is
degenerate (a single point).

A function f: X — Y from a space X into a space Y is said to be mono-
tone if f~(p) is connected for each p € Y.

5.13 Theorem. If f: X — Y is a monotone quotient map and K is a
connected open [closed] subset of Y, then f~1(K) is connected.

Proof. We prove 5.13 in the case that K is a closed subset of Y.

Suppose that f~1(K) = A|B, where A and B are closed in f~!(K). Since
f~(K) is closed, A and B are closed. Let p € A. Then f~'f(p) is a con-
nected subset of f~1(K) containing p, so that f~'f(p) C A. We obtain that
f1f(A) = A and similarly, f~!f(B) = B. It follows that f(A4) and f(B) are
closed, since f is quotient. Now K = f(A)U f(B) = f(A)|f(B); contradicting
that K is connected. Thus f~!(K) is connected. .

5.14 Theorem. If R is the component equivalence on a space X, then
X/R is totally disconnected.

A space X is said to be locally connected at p € X if for each neighbor-
hood N of p, there exists a neighborhood M of p such that M C N and each
pair of points in M are connected in N. If X is locally connected at each of
its points, then we say that X is a locally connected space.

5.15 Theorem. Let X be a space and let p € X. Then X is locally
connected at p if and only if each neighborhood of p contains a connected
neighborhood of p.

5.16 Theorem. If a space X is locally connected at p € X, then p € C(p)°.

5.17 Theorem. An open subspace of a locally connected space is locally
connected.

5.18 Theorem. Let X be a locally connected space and let f: X — Y be
a continuous closed surjective function. Then Y is locally connected.

Proof. Let p € Y and V be an open subset of ¥ containing p. Then
f' () € f74V) and f7'(V) is open. Since X is locally connected, for
each ¢ € f~!(p), there exists a connected neighborhood T, of g such that
T, C f7'(V). For each ¢ € f~!(p), let M, be an open set such that q €
M, C Ty Let M = U{M,: g € f~(p)} and let T = J{Ty: g € f~'(p)}.
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Then M is open and f~'(p) € M C T, so that p € f(M) C f(T) C V.
Now f(T) = U{f(T,): g € f'(p)}, and each f(Ty) is connected, since f is
continuous and Ty is connected. Since p € N{f(Ty): ¢ € £71(p)}, we have
that f(T) is connected by the cloverleaf theorem.

We will show that f(T') is a neighborhood of p. Since M is open, X\M is
closed, and hence f(X\M) is closed, since f is closed. Thus H = {Y'\ f(X\M)}n
V is open. Now p ¢ f(X\M), since f~'(p) C M, so that p € H. We claim
that H C f(M). Let t € H. Thent ¢ f(X\M) and t € V. Thus t € f(M),
since f is surjective.

We conclude that p € H C f(M) C f(T) € V, H is open, and f(T) is
connected. It follows that f(7) is a connected neighborhood of p contained in
V, and so Y is locally connected. [ ]

From 5.3 and 5.18, we see that connectedness and local connectedness are
topological properties.

5.19 Theorem. Let X be a space. These are equivalent:

(a) X is locally connected; (b) The components of each open subspace of
X are open; and (c) The connected open subsets of X form a basis for the
topology of X.

5.20 Theorem. Let X be a Hausdorff space and let f: I — X be a contin-
uous function (where I = [0,1] with the usual topology). Then f(I) is locally
connected.

5.21 Theorem. Let X be a connected space and let f: X — R (reals with
the ususal topology) be a continuous function such that f(p) < 0 and f(g) >0
for some p,q € X. Then f(a) =0 for some a € X.

6 METRIC SPACES

A metric on a set X is a function d: X x X — [0, 00) such that:

(a) d(a,b) =0 if and only if a = b in X;

(b) d(a,b) = d(b,a) for each a,b € X; and

(c) d(a,c) < d(a,b) + d(b,c) for each a,b,c € X.

If d is a metric on a set X, r > 0 is a real number, and p € X, then the
r-sphere in X with center p is defined N,.(p) = {z € X: d(p,z) <r}.

6.1 Theorem. Let d be a metric on a set X and let f = {N,(p): p €
X,0 <r}. Then B is a basis for a unique topology on X.

The topology on X generated by 3 in 6.1 is called the topology defined
by the metric d.

A space (X,7) is said to be metrizable if there exists a metric d on X
such that 7 is the topology defined by d.
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6.2 Theorem. A subspace of a metrizable space is metrizable.

Two metrics d and ¢ on a set X are said to be equivalent if they define
the same topology on X.

6.3 Lemma. Let d be a metric on a set X. Then there ezists and equivalent
metric § on X such that 0 < §(a,b) < 1 for each a,b € X.

Proof. Define &(p,q) = min {1,d(p,q)} for each p,g € X. To see that § is
a metric on X, let a,b,c € X. Then

(1) 8(a,b) =0 < d(a,b) =0 a=1b;

(2) d(a,b) = 8(b, a) is clear; and

(3) &(a,b) + 8(b, c) = min {1,d(a,b)} + min {1,d(b,c)} =

141> d(a,c); or
1+d(b,c) > d(a,c); or
d(a,b) +1 > é(a,c); or

d(a,b) +d(b,¢) > d(a,¢) > 6(a,c)

Thus § is a metric on X with 0 < §(a,b) <1 for a,b € X.

To see that d and § are equivalent, let M; (z) denote neighborhoods in the
§-topology and let N, () neighborhoods in the d-topology.

Let ¢ € X and r > 0. We will show that M, (z) is open in the d-topology.
Let p € M,(z). Then d(p,z) < r. Let ¢ = r — 6(p,z). We claim that
Ne(p) € M,(z). Let t € Ne(p). Then d(p,t) < ¢, so that d(p,t) < r — d(p,z).
We then have d(t,z) < d(p,z) + d(p,t) < d(p,z) + d(p,t) < r, and hence
t € M;(z), Ne(p) C M;(z), and M,(z) is open.

Let z € X and r > 0. We will show that Ny(z) is 6-open. Let p € Ny(z).
Then d(p,z) < r. Let ¢ = min {r — d(p,z),1}. We claim that M(p) C Ny(z).
Let t € M.(p). Then é(p,t) < ¢ < 1, so that 6(p,t) = d(p,t). We have
d(p,t) < € < r —d(p,z) and so d(t,z) < d(p,t) + d(p,z) < r. We conclude
that t € Ny(z), Mc(p) C Ny(z) and Ny(z) is d-open. ]

6.4 Theorem If {Xi:i=1,2,...} is a countable collection of metrizable

spaces, then H X; is metrizable.

Proof. For each i € IN, let d; denote the metric on X; which defines the
topolgy on X; and is such that 0 < d;(z,y) < 1 for each z,y € Xi (6.3).
Let X = [] X;. For each z,y € X, define d(z,y) ):2 id;(zi,y:), where

iEN
z; = mi(z) and y; = mi(y) foreach i € IN. Thendisa metnc on X. It remains

to show that d defines the product topology on X.
Let W be a basic open set in X in the product topology. We will show
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x
that W is d-open. Now W = [] W; where W; is open for i € F' (a finite subset

i=1

of IN) and W; = X; for i € N\F. We can assume that F = {1,2,...,m}. Let
p € W, and let p; = mi(p) for each i € IN. Now for each i € F, there exists
; > 0 such that Ny, (pi) € W; (in the d; metric). Let r = 2~™-min{r;: i € F}.
Then 7 > 0 and Nr(p) € W (in the d-metric), and it follows that W is d-open.

Let G be open in the d-metric topology on X and let z € G. Then
there exists m € IN such that Ny-m+1(z) C G (in the d-metric). Let F =
{1,2,...,m}, Wiy = Ny-m1(z;) for i € F and W; = X; for i € N\F. Then
z € W= [[ Wi, W is a basic open set in the product topology on X and

ielN
W C Ny-m+1(z) € G. It follows that G is open in the product topology on
X. ]

6.5 Theorem. Each of the spaces R™, I, S™, and I*° is metrizable.

6.6 Theorem. Metrizability is a topological property.

6.7 Metrization Theorem. Fach second countable T3-space is metrizable.

A metric space (X, d) is a space X together with a metric d which defines
the topology of X.

6.8 Theorem. If (X,d) is a metric space, then d: X x X — [0,00) is
continuous, where [0,00) has the relative usual topology of the reals.

Proof. Let r < z in [0,00). We claim that d~!(r,s) is open in X x X.
Let (z,y) € d~'(r,s). Then r < d(z,y) < s. Let ¢ = min {ﬂéﬂl, ﬂf%)‘—r}
Then (z,y) € Ne(z) x Ne(y). A straightforward argument shows that Ne(z) x
N(y) € d~*(r,s). A similar argument shows that if s € (0, 00), then d~1[0, s)
is open. It follows that d is continuous. [ ]

If (X, d) is a metric space, and A and B are subsets of X, then the distance
between A and B is defined d(A4,B) = glb{d(z,y): z € A,y € B}. If
A = {a}, then this distance is denoted d(a, B).

6.9 Theorem. Let (X,d) be a metric space, E C X, and f: X — [0,00)
the function defined by f(z) = d(z, E) for each z € X. Then f is continuous.

Proof. Let r < s in [0,00). We will show that f~(r,s) is open in X.
Let z € f~!(r,s). Thenr < f(z) < s, ie,, r < d(z,E) < s. Let € =
min {s — d(z, E), (d(z, E) — r)/2}. Then N,(z) C f~*(r,s). It follows that
f~(r,s) is open and f is continuous. []

6.10 Lemma. Let (X,d) be a metric space, let A be a closed subset of X,
and let p € X. Then p € A if and only if d(p, A) = 0.

6.11 Theorem. Each metric space is a first countable Ty-space.

Proof. Let (X,d) be a metric space. That (X,d) is a first countable T5-
space is straightforward. To see that this space is normal, let A and B be
disjoint closed subsets of X. Define h: X — IR by h(z) = d(z, A) — d(z, B).
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Then h is continuous from 6.9. Let U = h~*(—00,0) and V = h=1(0, 00). Then
U and V are disjoint open subsets of X containing A and B, respectively. m

6.12 Theorem. Let (X,d) be a metric space. These are equivalent:

(a) X is second countable;

(b) X is separable; and

(c) X is Lindelof.

6.13 Theorem. Let (X,d) be a compact metric space, Y a Hausdorff space,
and let f: X =Y be a continuous function. Then f(X) is metrizable.

Proof. Now f(X) is a compact Hausdorff space, and hence is 75. We will
show that f(X) is second countable. Now X is second countable from 6.12. Let
/3 be a countable basis for the topology of X, andlet o = {U: U C X and U isa
finite union of members of 8}. Then o is countable, and {f(X)\f(X\V): V €
o} is a basis for the topology of f(X). (]

A space X is said to be countably compact if each countable open cover
of X has a finite subcover.

6.14 Theorem. Let X be a Ti-space. Then X is countable compact if and
only if each sequence in X clusters to a point of X.

Proof. Suppose that each sequence in X clusters. Let {Uy: n € IN} be a
countable open cover of X. Suppose, for the p"urpose of proof by contradiction,

that there is no finite subcover. Then X\ |J U; # @ for each n € IN. Let
=1
n
2n € X\ U Uj. Then z, —lrp for some p € X. Now p € U,, for some m € IN;
=1

but z, € X\Up, for n > m, i.e., £n €% X\Un; and this contradicts z, i p.
We conclude that {U, : n € IN} has a finite subcover, and hence X is countably
compact.

Suppose, on the other hand, that X is countably compact, and let {z,}
be a sequence in X. Suppose, for the purpose of proof by contradiction, that
=, does not cluster in X. Then for each p € X, there exists an open set V,
containing p such that z, €¢ X\Vj, i.e., for each p € X, there exists n, € IN
such that z,, € X\V,, when n > n,. For each p € X such that p ¢ {zn}, there
exist open sets Wy, Wa, ..., Wy, containing p such that z, ¢ Wy for n < ny;
and for p € {z,}, there exist open sets Wy, Wa,..., Wh, containing p such that
zn & Wy for n < np when p # zp,. Let Up = VpNWinWen---N Wy, for each
p € X. Then if p # a,, {z,} NUp = @ and if p = zp, {zn} NUp = {zn}. Let
U =U{Up: p ¢ {za}}. Then {U,Uy,,Us,,...} is a countable open cover of X.

k
Let {U,Uz,,Uz,, ..., Uz} be a finite subcover. But o1 € X\[UU U UyJ;
=1

which is a contradiction. ]

(T
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6.15 Theorem. Let X be a first countable space and let p € X. Then each
sequence which clusters to p has a subsequence which converges to p.

Proof. Let z, 4 p and let {Up: n € IN} be a local basis at p. For each
n € Nlet V,, = UyNU2N---NUy. Then {V;;: n € N} is a local basis at p with
Va1 € Vy for each n € IN. For each k € IN, let ng € IN such that z,, € Vi,
with ny < na < ng,---. Then {zy,} is a subsequence of {z,}. We claim that
Tn, — p. Let W be a neighborhood of p. Then V;, C W for some m € IN. Let
k > m. Then nx > n,, and 2, € Vi C Vs, € W. Thus for k > m, z,, € W,
i.e., Ty, €° W, and hence 5. [ ]

6.16 Theorem. A metric space X 1s compact if and only if X is countably
compact.

Proof. If X is compact, then clearly X is countably compact.

Suppose that X is countably compact. Let ¢ > 0. We first claim that
there is a finite e-sphere cover of X. Suppose not. Define a sequence {p,} as

n-1
follows: let py € X, and let pp € X\ | Nc(p;); recursively. Then, by 6.14,
Jj=1

Pn iy p for some p € X. There exists p, € N (p), and hence d(pn,pm) < €, sO
that p € Ne(pn). This is a contradiction, and hence there is a finite e-sphere
cover of X for each € > 0.

We claim that X is separable. Let @ denote the set of all positive rational
numbers. For each r € @, let U, be a finite cover of X by r-spheres. Select an
element from each member of the finite set ¢, and denote the resulting finite
set as D,. Let D = |J{D,: r € Q}. Then D is a countable dense subset of X.
Thus X is seperable and hence Lindelof (6.12). Clearly, a countably compact
Lindelof space is compact. [ ]

If (X, d) is a metric space, E is a subset of X, and € > 0, then a subset M
of X is called an e-net for E if for each z € E, there exists y € M such that
d(z,y) < e.

A subset E of a metric space X is said to be totally bounded if for each
€ > 0, there exists a finite e-net for E.

6.17 Theorem. Let E be a subset of a metric space X. Then E is totally
bounded if and only if for each € > 0, There ezists z1,...,z, in X such that

n

E C U Ne(zj)-
=1

A subset E of a metric space X is said to be bounded if there exists p € E
and 0 < r such that E C Ny(p).

Note that a totally bounded set is bounded.

6.18 Theorem. If E is a totally bounded subset of a metric space X, then

(T
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E is totally bounded.
6.19 Exercise. Show that a subset of R" is bounded if and only if it is

totally bounded.

A sequence z,, in a metric space (X, d) is called a Cauchy sequence if for
each € > 0, there exists a positive integer k such that d(z,,om) < € whenever
m,n > k.

A subset E of a metric space X is said to be complete if each Cauchy
sequence in E converges to a point of E.

6.20 Theorem. A closed subset of a complete metric space is complete.

6.21 Theorem. A complete subset of a metric space ts closed.

6.22 Theorem. Let E be a closed subset of a metric space X. Then E is

Tt dedt

compact if and only if E is D and totally b

6.23 Exercise. Show that a subset E of IR" is compact if and only if B is
closed and bounded.

6.24 Lemma. Let (X, d) be a metric space, A and B closed subsets of X,
and let p € X. Then d(A, B) < d(A,p) + d(p, B).

Proof. Suppose that d(A4, B) > d(A,p)+d(p, B). Then d(4, B)—d(p,B) >
d(A,p) = glb {d(z,p): = € A}, so that for some a € 4, d(4, B) — d(p, B) >
d(a,p). Now d(A, B) — d(a,p) > d(p,B) and for some b € B, d(4,B) —
d(a,p) > d(p,b). Thus d(4,B) > d(a,p) + d(p,b) > d(a,b). We have that
d(4, B) > d(a,b), a € A, b€ B. But d(A, B) = glb{d(z,y): © € A,y € B}.
This contradiction yields that d(A4, B) < d(A,p) + d(p, B). (]

6.25 Lemma. Let (X,d) be a metric space and A and B subsets of X.
Then d(4, B) = glb{d(z, B): = € A},

6.26 Lemma. Let (X,d) be a metric space and for each positive integer n
and each subset E of X define: Sy(E) = {z € X: d(z, B) < 27"} and define
Cn(B)={z € X: Sy C E}. Then:

(a) Sn(E) is open;

(b) B C 54(B);

(c) Cn(B) is closed;

(d) Ca(B) € B; and

(€) 5n(Ca(B)) C E.

Proof. (a) follows from 6.9.

(b) If e € B, then d(z,e) =0 < 27", so that e € Su(E).

(c) Cn(B) = X\Sn(X\E) and (c) follows from (a).

(d) Let @ € Cy(B). Then Sp(z) C B, and ¢ € Sp(z), so that z € B and
hence Cn(E) C E.

(e) Let = € Sp(Cn(E)). Then d(z,Cn(E)) < 27", and hence d(z,p) < 27"
for some p € Cn(E). We have that Sn(p) € E and z € Sa(p), so that z € E.
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It follows that S,(Cn(E)) C E. [

6.27 Lemma. Let (X,d) be a metric space and A and B subsets of X.
For each positive integer n and each subset E of X define Su(E) = {z €
X:d(z,E) <27"}.

(a) If C = S,(A), then d(z, A) < 27" for each z € C, and hence d(C, A) <
2708

(b) If Sa(A)N B = @, then d(A,B) > 27" ;

(¢) If G = Snsa(A), H = Sn3(B), and Sa(A) N B = @, then d(G, H) >
2-(+1): gnd

(d) If G = Spy2(A), H = Spy2(B), and d(A, B) > 27", then d(G, H)
> 2—(n+l).

Proof. (a) Let z € C and let e > 0. Then N,.(z) N S,(A) # @. Let p €
Ne(z)NSy(A). Then d(p,z) < € and d(p, A) < 27". By 6.24, d(z, A) < e+27"
for each € > 0. Thus d(z, A) < 27", so that d(C, A) < 27".

(b) Suppose d(4,B) < 27". By 6.25, d(A,B) = glb {d(A,y): y € B}.
Thus there exists b € B such that d(a,b) < 27", and hence b € Sp(A). This
contradicts Sp(A) N B = @, so that d(A,B) >27".

(c) Suppose d(G, H) < 2~("t1), Then there exists g € G and h € H such
that d(g,h) < 2-("+1), By (a), d(g, 4) < 23 and d(h, B) < 2-("+3). B
6.24, d(A, B) < d(A, g) + d(g, h) + d(h, B) < 2-0+3) + d(g, h) + 2-(+3) =
2-(0+2) 4 d(g, h) < 2=(n+2) 4 9=(n+1) = 3. 9=(n+1) By (b), we have 27" <
3271, 5o that 1 < 3. This contradiction yields that d(G, H) > 2~("t1),

(d) Suppose d(G, H) < 2-(+1). Then d(g,h) < 2=+ for some g € G
and h € H. By (a), d(g,4) < 2-™*2 and d(h,B) < 2-("+?. Thus, by
6.24, d(A, B) < d(A, g) + d(g, h) + d(h, B) < 2-"*2) + d(g, h) + 2~ "2 =
2-("+1) 4 d(g, h) < 2-(1+1) 4 9=(n+1) = 2-n hich contradicts our assumption.

n

6.28 Lemma. Let (X,d) be a metric space, € > 0, and let {Fa: a € A}, be
a family of closed subsets of X such that d(F,, Fg) > € for a # f in A. Then
F =U{F,s: a € A} is closed.

Proof. Let = € F. Then Ng(x) NF, # O and Ne(z) N Fp # @. Let
p € Ne(z) N Fo and let ¢ € Ng(z) N Fg. Then d(z,p) < 5, p € Fa and
d(z,q) < 5, 9 € Fp. Thus d(p,q) < d(p,z) +d(g,2) < 5+ 5 = €, so that
d(p,q) < €, p € Fu, and q € Fs. It follows that d(F,, Fg) < € and hence
a = . We conclude that N¢(x) N Fa # @ for exactly one g € A, and hence
each neighborhood of  meets Fi,. Since Fy, is closed, ¢ € Fu,, and T € F}
and F is closed. [ ]

6.29 Theorem. FEach metric space is paracompact.

Proof. Let (X,d) be a metric space and let {U,: a € A} be an open
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cover of X. Let < be a well-ordering of A. For E C X and n € NN, let
Sn(BE) = {z € X:d(z,E) < 27"} and let Cp(E) = {z € X: Sp(z) C E}.
Then by 6.26:

Sn(E) is open;

E C Sn(E);

Cr(E) is closed;

Ca(E) C E; and

Sn(Cn(E)) C E.

Let n € IN. We claim that there exists a collection {D%: a € A} of subsets
of X such that D} = Cn(Ua\ U Dj) for each a € A. To establish this, let A

y<a

be the collection of all pairs (o, B) satisfying:

(a) B C 4;

(b) ag € B, where ag is the least element of 4;

(c) Ify € A, a € B, and v < a, then 7 € B; and

(d) 0 = {Ma: a € B} is a collection of subsets of X such that M, =

Cn(Ua\U{M,: v < a,y € B}) for each a € B.
Now ({Cn(Uay)}, {a0}) € A, so that A # @. Define (o1, B1) < (02, B;) on A
provided oy C o5 and By C B;. Then < is a partial order on A. Let A* be
a maximal chain in A, and let H = |J{B: (o, B) € A*}. We will show that
H=A

Suppose that H # A, and let oy be the least element of A\H. Then
) # ag, since ag € H. Now from (c¢), v < a1, implies v € H, and a; < 8
implies 8 € A\H. Define My, = Cp(Us,\ U M,) andlet o1 = J{o: (0, B) €

YEH
A*}. Then (07 U {Mq,},H U {a1}) € A and is above each member of A*;
contradicting the maximality of A*. It follows that H = A and that oy is the
desired collection.

We claim that {D2: « € A,n € IN} is a cover of X. Let z € X, and
let A be the least element of A such that z € Uy. Let n € IN such that
Nixw(z) = Sp(z) C Ux. Suppose that z ¢ D}. Then Sa(z) € Up\ U DJ, by

<A

definition of D}. Thus S,(z)N U D} # @, and hence Sy(z)NDj # @ for some
<A
B < A. We obtain that z € S;(Dp) = Su(Cn(Up\ U DY) C [from 6.26(e)]
1<B
Up\ U DI C Up. Thus & € Up and B < A; contradicting the fact that ) is the
1<B

£
least such member of A. We conclude that z € D} and {D2: a € A,n € N}
covers X.

For each n € IN and a € A define:

(T
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F} = Sn13(D3); and
G: = Sn+2(D:)'
Note that G7, is open from 6.26(a).
Let = € F?. Then, by 6.27(a), d(z, D7) < 2~ so that d(z, D7) <
2-(n+2) and hence z € GR. It follows that F7 C Gi-
Suppose that & < B in A. Then Sy (D) = Sn(Cn(Us\ U,, D3)) C Up\ Uﬂ e
1< 7<)

X\Dj, so that S,(Dg) N Dg = @. By 6.27(b), d(Dg, D) > 27", Thus for
a# fin Aandn € N, d(Dj,Dj) > 27". Also from 6.27(c), d(Fy, F§) >
2-("+) for a # B in A and n € IN.
s e — (] F2 for each n € IN. Then, by 6.28, F™ is closed for each
Q€A

neN.
Define U7 = G4\ U F* forn € N, a € A. Then U is open.

i<n

We claim that {UZ: @ € A,n € IN} is a locally finite refinement of
{Ua: a € A}.

To see that {UZ: @ € A,n € IN} covers X, let z € X. Now, since {D: a €
A,n € IN} is a cover of X, so is {Fy: a € A,n € IN}. Let m be the least
positive integer such that = € Fj" for some 8 € A. Then z € Fj'\ U{Fi:ae
Aji<m}=FP\U{F': i <m} C GP\U{F*: i <m} = Up.

To see that {UZ: a € A,n € N} is a refinement of {U,: a« € A}, let a € A
and n € N. Then U € G = Susa(D3) € $(D) = Sa(CalUa\ Y D) €

Ua\ U D2 C U,
1<a

It remains to show that {UZ: a € A,n € IN} is locally finite. Let z €
X. Then z € D for some m € N and 8 € A. Now Sp43() is an open
set containing z. We will show that Sp:3(z) meets at most m members
of {U2: a € A,n € N}. Now Sm43 C Sm+3(Dg) C Fj* C F™, so that by
definition of U7}, we have that Sm+3(z)NUL = @ fora € Aand i > m. Suppose
that i < m and & # v in A. Then d(Dj, Dy) > 27, so that, by 6.27(d),
d(GL,,Gh) > 27041 > 9=(m+) Suppose that S,,.3(z) meets both G% and
Gi. Letp € Spys(x YNG?, and let g € Sm+3(z)NG3, so that d(p, ) < 2-(m42),
and hence d(G}, GY) < 2-(™+2); contradicting d(G},,G) > 27(™+). Thus
Spm+3(z) meets at most one G, for eachi <m. It follows that Sp+3(z) meets
at most m members of {G%: @ € A,n € IN}, and hence at most m members
of {UZ: a€ Ajn € N}. ]

If (X,d) and (Y, e) are metric spaces, and f: X — Y is a function, then f
is said to be uniformly continuous if for each € > 0, there exists § > 0 such

_ [
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that e(f(a), f(b)) < € whenever a,b € X and d(a,b) < 4.
6.30 Theorem. Let X be a compact metric space, Y a metric space, and
f: X =Y a continuous function. Then f is uniformly continuous.
Proof. Let € > 0. Since f is continuous, and X is compact, f(X) is com-
n

pact. Let y1,92,...,yn be a finite § -net for f(X). Then f(X) C U N:(y;)
=

and {f‘l(Ng(yj)): 1 < j < n} is an open cover of X. For each p € X, let
&y > 0 such that Nog, (p) C f (N (y;)) for some j. Now {Ns,(p): p € X} is
an open cover of X. Let N, (p1),...,Ns,, (px) be a finite subcover, and let
O'=min{0pys -5 0p0

Suppose that a,b € X and d(a,b) < §. Now a € N, for some 4, so that
d(a,pi) < &, and d(a,b) < &y,. We obtain that d(b,p;) < 2d,, and a,b €

Nag,, (pi). Thus f(a), f(b) € N¢(y;) for some j, and hence d(f(a), f(b)) < €
| ]

7 BAIRE CATEGORY THEORY

Recall that a subset E of a space X is nowhere dense in X provided E° = @.

7.1 Theorem. Let E be a subset of a space X. (a) E is nowhere dense
in X if and only if for each nonempty open subset U of X, there exists a
nonempty open subset V of X such that V. CU and VNE = @. (b) If E is
nowhere dense in X and B C E, then B is nowhere dense in X. (c) If BC E
and B is nowhere dense in E, then B is nowhere dense in X. (d) If E is
nowhere dense in X, then X\E is dense in X. (e) If E is open, then E\E is
nowhere dense in E.

A subset E of a space X is said to be first category in X if there exists
a countable collection E; for ¢ € IN of subsets of X each of which is nowhere
dense in X such that B = U E;. If E is not first category in X, then E is

said to be second category in X. If X is first [second] category in itself,
then X is said to be a first [second] category space.

7.2 Lemma. Let E be a subset of a space X and let B C E. Then:

(a) If E is first category in X, then B is first category in X.

(b) If B is second category in X, the E is second category in X.

(c) If B is first category in E, then B 1s first category in X.

(d) If B is second category in X, then B is second category in E.

(e) If E is open and B is second category in E, then B is second category
in X.

7.3 Theorem. Let X be a locally compact Hausdorff [or complete metric]

o A
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space, and let Gy, for n € IN be a countable collection of open subsets of X
each of which is dense in X. Then ﬂ G; is dense in X.

Proof. Suppose that A and B are open dense subsets of X, and let U
be an open subset of X. Then U N A is nonempty and open in X, so that
(UNA)N B # @. We obtain that AN B is dense in X.

Case 1. Suppose that X is a locally compact Hausdorff space. Let U be an
open subset of X, and let V; be an open subset of X such that V is compact
and Vo C Vo C U. Let V; = Vo N G;. There exists an open set Vz such
that V; is compact and Vo € V3 C V; N Ga. Define recursively a sequence
{Va} of open subsets of X such that for each n € IN, V,, is compact and
Va1 € Vg1 € VaNGryr. Now V1 DV, D -+ is a tower of compact subsets
of X and hence ﬂ Vn#@. Letpe ﬂ 73 WeclalmthatpeUﬁ MRGH:

nelN

Letn € IN. Thenp €EVn1 TV, ﬂGn“ C VaNGpi1 € Vouo1NGaNGrya C

cCWNGING2N- NGpy1 SUNGIN---N Gpyy, so that p € U and
p € G,. We obtain that pe U N ﬂ Gy, and hence [ Gp, is dense in X.
5 nelN
Case 2. Suppose that (X, d) is a complete metric space For n € IN and

;;E X, let Su(p) = {z € X: d(z,p) < ") and let Sh(p) = {z € X: d(z,p) <
i1

Let U be an open subset of X. We want to show that UNn (| Gp # @.

neN

There exists ny € IN and p; € X such that S,’.,(p,) CU. Let V) = Sp,(p1)NGy
(# O, since G, is dense). There exists ny > ny and p; € X such that SE., (p2) C
Wi. Let V2 = S;,(p2) N G2 and n3 > ng and p3 € X such that S!., C Va. We
obtain recursively, sequences {p,} in X, ny < ny < ng < -+, {Sn;(p;)}
and {Vp} such that V; = Sy, (p;) N Gj, Sn,.,(ps) € Shipa(pjs1) C Vj, and
Snyaa(Ps+1) € Shy4s S S, (ps) € Shy(p3) - S U.

7.4 Baire Category Theorem. Let X be a locally compact Hausdorff [or
complete metric] space. Then X is second category.

Proof. Suppose that X is first category. Then X = U Aj, where 4; = 0.

Let B; = A; for each i € IN. Then X = UB.,B lsclosed and B = 0.

ieN
For each i € IN, X\B; is open and dense in X from 7.1(d). Thus from
7.3, ) (X\B;) is dense in X. But N (X\B:) = X\ U Bi = @. This
€N €N iEN

contradiction proves that X is second category. [ ]
7.5 Theorem. Let X be a locally compact Hausdorff [or complete metric]
space. Then:

N Y
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(a) Each nonempty open subset of X is second category in X.

(b) If EC X and E is first category in X, then X\E is second category
in X and dense in X.

Throughout the remainder of this section we let IR denote the space of real
numbers with the Euclidean (usual) topology, and [0,1] the unit interval with
the relative topology. Note that the topology of R is induced by the metric
defined by d(z,y) = |z — y| for 2,y € IR and that [0,1] is compact. Also note
that IR is complete.

Let C[0,1] denote the continuous functions f: [0,1] — IR with a metric
defined by d(f,9) = supgepo,) |f(2) — g(z)|- This metric is called the sup
metric on C[0,1].

7.6 Lemma. The set C|0,1] with the sup metric is a metric space.

7.7 Lemma. Let f, converge to f in C[0,1] and let z, converge to z in
[0,1]. Then fn(zy) converges to f(z) in R.

7.8 Lemma. If f, is a Cauchy sequence in C[0,1] and z € [0,1], then
fn(z) is a Cauchy sequence in R.

7.9 Theorem. The space C[0, 1] is a complete metric space.

If n € N, let P, denoted the set of all f € C[0, 1] such that there exists
p € (0,1 — 2] such that |ﬁ&’){:ﬁ2)[ <nforallhe (0,2

7.10 Lemma. For each n € IN, P, is closed and nowhere dense in C[0,1].

7.11 Lemma. The space C[0, 1] is not equal to U 7

7.12 Theorem. There exists a continuous functmn f:[0,1] » IR which is
nowhere differentiable on [0, 1).

Proof. Let f € C[0,1] have a derivative at p € [0,1) and let a = |f'(p)|-
Then there exists € > 0 such that lﬂzﬂ’)r:L(zl[ <a+1for|h| <e Letn €N

suchthatﬂ+l<n,,—1_<5,andp<1—# Then f € B,. Thus {J Pu
neN
-

contains all functions which are differentiable at some point of [0, 1).

8 NETS

A directed set (D, <) is a set D together with a relation < on D such that:
(a) @ < a for each a € D (reflexive);
(b) Ifa<band b <cin D, then a < ¢ (transitive); and
(c) If a,b € D, then there exists ¢ € D such that a < ¢ and b < ¢ (directed

property).
A net in a space X is a function ¢: D — X from a directed set D into X.
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If¢: D - X isanet and E C X, then ¢ is eventually in E if there exists
a € D such that ¢(d) € E for each d € D such that a < d. This is denoted
¢€EE.

If ¢: D - X is a net and E C X, then ¢ is frequently in FE if for each
d € D, there exists e € D such that d < e and ¢(e) € E. This is denoted
¢ el E.

If ¢: D — X is a net in a space X and p € X, then ¢ converges [clusters|
to p provided ¢ is eventually [frequently] in each neighborhood of p. This is
denoted ¢ 5 p [¢ 5 pl.

8.1 Theorem. A space X is Hausdorff if and only if each net in X has at
most one point of convergence.

A sequence is a net whose domain is the set of positive integers with the
usual ordering.

8.2 Theorem. Let E be a subset of a space X. These are equivalent:

(a) E is closed;

(b) If ¢ is a net in E and ¢ < p, then p € E; and

(c) I/¢iaaneliﬂEand¢lvp, thenp € E.

If E and D are directed sets, then a function A: E — D is cofinal in D
provided that for each d € D, there exists e € E such that d < A(z) in D
whenever e < z in E.

A subnet of a net ¢: D — X is a net ¥: E — X such that there exists a
cofinal function A\: E — D with ¢ = ¢

8.3 Theorem. Let X be a space, ¢: D — X a net, and let p € X. Then
') ER p if and only if there ezists a subnet ¥: E — X such that ¢ < p.

Proof. Suppose ¢ o p, and let U be the collection of all neighborhoods
of p. Let E = {(d,U) € D x U: ¢(d) € U} and define (dy,U;) < (d2,Ua)
provided d, < d; and Uy C U;. Then E is directed set. Define ¢: E — X
by ¥(d,U) = ¢(d) and X\: E — D by A\d,U) = d. Then, for (d,U) € E,
dA(d,U) = ¢(d) = ¥(d,U), so that ¢ = ¢ o A. To see that A is cofinal in D,
let d € D, and let U € U such that ¢(d) € U. Then (d,U) € E. Suppose that
(d,U) < (d',U") in E. Then d < d' and U’ C U, so that d < d' = \(d',U")
and hence X is cofinal in D. We obtain that ¥ is a subnet of ¢.

To see that ¥ 5 p, let U be a neighborhood of p. Then ¢(d) € U for some
d € D. Suppose that (d,U) < (d',U’") in E. Thend < d' and U’ C U. Now
W(d',U") = ¢(d') € U' C U, so that ¢(d',U") € U, ¢ €° U, and 3 = p.

Suppose there is a subnet ¥: E — X of ¢: D — X such that ¢ < p. Let
A: E = D be a cofinal function such that ¥ = ¢oA. Let U be a neighborhood
of p, and let d' € D. Now there exists ¢’ € E such that ¢’ < e implies that

([
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(e) € U, and there exists e € E such that e’ < z implies that d' < A(z).
Let & € E such that e/ < € and ¢’ < & Then 9(€) € U and d’' < A(€), so that
%(€) = #(A(€)) € U. Let d = A(€). Then d' < d and ¢(d) € U, so that ¢ i p.

n

8.4 Theorem. Let X be a space, p € X, and ¢: D — X a net in X such
that ¢ 5 p. If: B — X is a subnet of ¢, then 1 < p.

8.5 Theorem. A space X is compact if and only if each net in X has a
subnet which converges to a point of X.

Proof. Suppose that X is compact and that ¢: D — X is a net. Suppose
that for each p € X, the net ¢ does not cluster to p. Then for each p € X, there
exists an open set U, containing p such that ¢ €° X\U,. Now {Up: p € X}
is an open cover of X. Since X is compact, there exists a finite subcover
{U1,Us,...,Un}. For each Uj, there exists dj € D such that d;j < d in D
implies that ¢(d) € X\U;. Let d € D such that dy,ds,...,d, < d. Then

n

#(d) € N(X\U;) = X\Uj=1"U; = @. This contradiction yields that
j=1

¢ i, p for some p € X, and hence by 8.3, there is a subnet converging to p.

Suppose that each net in X has a subnet which converges to a point of X.
Then, by 8.3, each net in X clusters to a point in X. Let A’ be a collection
of closed subsets of X with the finite intersection property and let A be the
collection of all finite intersections of memember of A’. For A € A, let pa € A.
Define ¢: A — X by ¢(A4) = ps. Now A is ordered by reverse inclusion and
is thus a directed set, so that ¢ is a net in X. We have that ¢ —f> p for some
p € X. Suppose that p € X\A for some A € A. Then there exists B C 4,
B € A, such that ¢(B) € X\ A, since X\A is open and ¢ s p. Now ¢(B) € B
and hence BN (X\A) # @. This contradicts B C A, so that p € A for each
Ac A NA =NA#Q. From 4.2, X is compact. ]

8.6 Theorem. Let f: X — Y be a function and let p € X. Then these
are equivalent:

(a) f is continuous at p;

(5) If ¢ 5 p, then f¢ = f(p); and

(©) 16 % p, then 165 £(p).

A net ¢: D — X is said to be a universal net if for each A C X, either
pec Aor et X\A

Note that if ¢: D — A is a universal net, A C X, and ¢ €/ A, then ¢ €° A.

8.7 Theorem. If ¢: D — X is a universal net in a space X and p € X
such that ¢ 5 p, then ¢ 5 p.

8.8 Theorem. Each subnet of a universal net is a universal net.

g A
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8.9 Theorem. If ¢: D — X is a universal net in a space X, and f: X —
Y is a function, then f¢: D — Y is a universal net in Y.

8.10 Lemma. Let ¢: D — X be a net in a space X. Then there ezists a
family A of subsets of X such that:

(a) p€l A forall A€ A;

(b) If A,B € A, then ANB € A; and

(c) If S C X, then either S € A or X\S € A.

Proof. Let C = {A: A is a family of subsets of X satisfying (a) and (b) }.
Then C is nonempty, since {X} € C, and C is partially ordered by inclusion.
Let C' be a maximal chain in C, and let A = {A: A € A for some A € C'}.
Then A is a maximal member of C. Let S C X. We consider two cases.

Case 1. ¢ ¢! S. In this case ¢ €° X\S, so that ¢ €/ (X\S) N A for each
A€ A Thus AU{AN(X\S): A€ A} U{X\S} is a member of C containing
A. The maximality of A yields that X\S € A.

Case 2. ¢ €/ S. We consider two subcases.

Subcase 1. ¢ €/ SN A for each A € A. In this case we obtain that S € A.

Subcase 2. ¢ ¢/ SN A for some A € A. Then ¢ € X\(SNA) =
(X\S)U(X\A), so that (X\S)U(X\A) € A (as in case 1). But AN[(X\S)U
(X\4)] = AN(X\S) € A Let C € A Now ANC € A implies that
(ANC)N[(X\S) U (X\A)] = (AN C) N (X\S) € A. Then ¢ €/ C N (X\S)
and AU {X\S} satisfies (a) and (b), so that X\S € A. [

8.11 Theorem. FEach net in a space X has a universal subnet.

Proof. Let ¢: D — X be a net in X, and let A be a family of subsets of
X satisfying 8.10. Let E = {(d, A) € D x A: ¢(d) € A} and define (dy, 4;) <
(d2,A;) on E if dy < dy in D and A; C A;. Then (E, <) is a directed set.
Define A\: E — D by A(d, A) = d and let ¢ = ¢ o A\. Then 9 is a subnet of ¢.

Let A € A. Then ¢(d) € A for some d € D. Suppose (d,A) < (e, B) in E.
Then (e, B) = ¢pA(e,B) = ¢(e) € B C A, so that ¢ €° A for each A € A.
For § C A either § € A or X\S € A, so that either ¥ €° S or ¢ €° X\S, and
hence ¥ is universal.

8.12 Theorem. A space X is compact if and only if each universal net in
X converges.

8.13 Exercise. Construct a proof of the Tychonoff Theorem using univer-
sal nets.

9 HOMOTOPY

If X and Y are spaces and f: X — Y and g: X — Y are continuous functions,
then f and g are said to be homotopic (denoted f ~ g) provided there



| e,
98 John A. Hildebrant

exists a continuous function H: X x I — Y such that H(z,0) = f(z) and
H(z,1) = g(z) for each z € X, where I = [0,1] is the unit interval with
the relative topology of the reals. The continuous function H is called a
homotopy.

9.1 Theorem. Let X be a space. Then any pair f: X - R™ and g: X —
IR™ of continuous functions from X into R™ are homotopic.

9.2 Theorem. Let X be a space and f: X — S™ a continuous function.
Then either f is surjective or f is homotopic to a constant map.

If X and Y are spaces, then C(X,Y) denotes the set of all continuous
functions from X into Y.

9.3 Theorem. Let X and Y be spaces. Then ~ is an equivalence relation
on C(X,Y).

The equivalence classes of ~ on C(X,Y) are called homotopy classes.

A subspace E of a space X is said to be contractible in X if the inclusion
map i: E < X is homotopic to a constant map E — X.

A space X is said to be contractible if the identity map 1x: X — X is
homotopic to a constant map X — X, i.e. X is contractible in itself.

9.4 Theorem. Fach proper subspace of S™ is contractible in S™.

9.5 Theorem. A product of contractible spaces is contractible.

If X and Y are spaces and f: X — Y is a continuous function, then f
is said to be a homotopy equivalence if there exists a continuous function
g: Y — X such that go f ~ 1x and fog ~ ly. We say, in this case, that
X and Y are homotopically equivalent and denote this fact by writing
X~Y.

9.6 Theorem. Homotopy equi
of spaces.

A property of spaces is called a homotopy property if it is preserved by
every homotopy equivalence.

9.7 Theorem. Contractibility is a homotopy property.

9.8 Theorem. Every homotopy property is a topological property.

9.9 Theorem. Let R be the component equivalence on a space X and let
T be the component equivalence on a space Y. If f: X =Y is a continuous
function, then there ezists a continuays function f such that the diagram:

] 7,

e is an equy

e relation on any set

Xx/R L v/
b Ay
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commutes, where the vertical maps are projections.
Iff: X Y asin 9.9, then fdenotes the induced map as in 9.9.

9.10 Theorem. If two continuous functions f,g: X — Y are homotopic,
then f = 3.

Proof. Let R and T be the component equivalences on X and Y respec-
tively, and let H: X x I — Y be continuous such that H(z,0) = f(z) and
H(z,1) = g(=) for each z € X. Then each of the diagrams:

X/R-Ly y/T X/R-Lv/T
S o] e
i - Y o et

commute, where o and 3 are natural projections. Let p € X/R, and let
A be a component of X such that a(A) = p. Then A x I is a component,
of X x I so that H(A x I) is contained in some component B of Y. Thus

f(A) = H(A x {0}) € B and g(A) = H(A x {1}) € B. We have that
F(p) = Fa(4) = B(B) = Bg(4) = Go(A) = §(p) and f =3. L]

9.11 Theorem. If f: X — Y is a homotopy eguivalence, then £ is bijec-
tive.

Proof. Let g: Y — X be a continuous function such that gf ~ 1x and fg ~
ly. Let R and T be the component equivalences on X and Y, respectively.
Then each of the diagrams:

X/R -4 v/ Y/T -2 X/R
Tyif 7l
X Wiy iyl #0ks Sy

commutes, where a and f are natural projections. Observe that 1x and Ty are
the ldenuty maps on X/R and Y/T respectively. By 9.10, we have gf =1x
and jg = 1y. We will show that gf gf Consider the diagrams:
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X/R L yyr & xR

and il

X/R% x/R

] ]a

X e B
and both diagrams commute, so that gf = gf. Similarly, E = fﬁ, and we
have that gf = 1x and fg = ly. It follows that f is bijective. [ ]

9.12 Theorem. Connectedness is a homotopy property.

Proof. Suppose that X ~ Y and that X is connected. Let f: X — Y bea
homotopy equivalence, and let R and T be the component equivalences of X
and Y, respectively. Then the dia.grag::

X/R-L y/T

Y T
commutes. Since X is connected, X/R is degenerate, and since fis surjective
(9.11), Y/T is degenerate. It follows that Y is connected. [ ]

9.13 Theorem. Let X be a space. Then X is contractible if and only if
for each space Y and each pair of continuous functions f,g: Y = X, f ~g.

Proof. Suppose that f,g: ¥ — X implies that f ~g. Let Y = X, f = 1x,
and g: X — X a constant map. Then f ~ g, so that X is contractible.

Suppose, on the other hand, that X is contractible. Let Y be a space
and let f,g: ¥ — X be continuous functions. Let ¢ € X. Then 1y ~ c. Let
H: X xI — X denote this homotopy with H(z,0) = 1x(z) = z and H(z,1) =
(3
Define F: Y x I = X by
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e H(f(y),2t) foro<t<i
YT Hw),2-2%) frisi<t

Then F is continuous, and F(y, 0) = H(f(¥),0) = f(v) and F(y,1) = H(g(y),0)
= g(y) so that F': f ~ g.

10 PATHS

A path in a space X is a continuous function o: I — X. We call ¢(0) the
initial point and o(1) the final point of the path.
10.1 Theorem. Let X be a space and R = {(a,b) € X x X: there exists
a path a: I — X such that 0(0) = a and o(1) = b}. Then R is an equivalence
relation on X.
| A equivalence class of R in 10.1 is called a path component of X and
R is called the path component equivalence on X. If X has exactly one
path component, then X is said to be pathwise connected.
| 10.2 Theorem. Each pathwise connected space is connected.
| 10.3 Theorem. The continuous image of a pathwise connected space is
pathwise connected.
10.4 Theorem. A contractible space is pathwise connected.

10.5 Theorem. The product of a family of pathwise connected spaces is
pathwise connected.

10.6 Theorem. Let f: X — Y be a continuous function and let K be a
path component of X. Then f(K) is contained in ezactly one path component
of Y.

10.7 Theorem. Let R be the path component equivalence on a space X
and let T be the path component equivalence on a space Y. If f: X - Y isa
continuous function, then there ezists a continuous function f: X/R — Y/T
{ such that the diagram:

X/R L v/r

e

PN
commutes, where the vertical maps are projections.
If f: X = Y as in 10.7, then f* denotes the induced map.

 m—
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10.8 Theorem. If f,g: X — Y are homotopi: ti; functions, then
fll = gﬂA

10.9 Theorem. If f: X — Y is a homotopy equivalence, then f* is bijec-
tive.

If X is a space and p € X, then X is said to be locally pathwise con-
nected at p provided each neighborhood of p contains a pathwise connected
neighborhood of p. If X is locally pathwise connected at each of its points,
then X is said to be locally pathwise connected.

10.10 Theorem. Let X be a space and p € X such that X 1s locally
pathwise connected at p. Then p is an interior point of its path component in
X.

10.11 Theorem. Pathwise co: ted; and local pathwi ted;
are topological properties.

10.12 Theorem. Let X be a space and p € X such that X is locally
pathwise connected at p. Then X is locally connected at p.

10.13 Theorem. Let X be a locally pathwise connected space, p € X, and
let K denote the path component of p in X. Then K is both open and closed
in X and K = C(p).

10.14 Theorem. If a space X is connected and locally pathwise connected,
then X 1is pathwise connected.

11 THE FUNDAMENTAL GROUP

A loop in a space X is a continuous function o: I — X (where I = [0,1]
with the usual topology) such that (0) = o(1). The point b = ¢(0) = o(1)
is called the base point of the loop . The collection of all loops in X with
basepoint b is denoted L(X,b).

If X is a space, then two loops 0,7 € L(X,b) are said to be equivalent
provided there exists a homotopy H: I x I — X such that H(s,0) = o(s) and
H(0,s) = 7(s) for each s € I, and H(0,t) = H(1,t) = b for each t € 1. We
use o =~ 7 to denote that o and 7 are equivalent.

11.1 Theorem. If X is a space and b € X, then =~ is an equivalence
relation on L(X,b).

If X is a space, b € X, and o € L(X,b), then [o] denoted the ~ equivalence
class of o, and m (X, b) = L(X,b)/ =.

11.2 Theorem. Let X be a space, b € X, and o,7 € L(X,b). Define

or: I = X by
o(2t 0 <

— Nl

<t
T(2t—1) }<t
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Then ot € L(X,b).

11.3 Theorem. Let X be a space, b € X, and 0 € L(X,b). Define
o7 : I = X byo~'(t) =o(1 —t) fort € I. Then o~ € L(X,b).

11.4 Theorem. Let X be a space and b € X. Then m(X,b) is a group
under [o][7] = [o7].

Proof. We first show that multiplication is well defined. Suppose that
o~¢ and 7 ~ 7' in L(X,b). We claim that o7 ~ o'7'. Let F: I x I - X
be a homotopy with F(s,0) = a(s), F(s,1) = &’(s), and F(0,t) = F(1,t) = b.
Let G: I x I = X be a homotopy with G(s,0) = 7(s), G(s,1) = 7'(s), and
G(0,¢) = G(1,t) = b. Define H: I x I = X by

H(s,t) = {

F(2s,t) for0<s < % and all ¢
G(2s —1,t) for % <s<landallt

Since for s = 1, P(1,t) = b= G(1,t); H is continuous. Now

F(23,0) = o(2s) for0<s

<3
G(2s-1,0)=7(2s—1) for}<s<1

H(s,0) = {

= o7(s), and
=0 <
) = F(23,1) = o'(2s) for (3 <s
G(2s-1,1)=7'(2s—1) for3<s
= o'7'(s), H(0,t) = F(0,t) = b, and H(1,t) = G(1,t) = b. Thus H is a
homotopy between o7 and o'7’, so that multiplication is well defined.

To see that multiplication is associative, let a, 8,7 € L(X,b). We claim
that a(fy) ~ (af)y. Note that

1
=0
<1

a(ds) for0<s<j
(eB)y(s) = { B(4s —1) forf<s<i
7(2s = 1) for%5351
and

a(2s) for0<s<}
a(By)(s) = { B(4s—2) forl<s<?d
Y(4s—3) forl<s<1

Define F: I x I - X by
a(#r) for0<4s<t+1

F(s,t)=(B4s—t—1) fort+1<4s<t+2
7(%‘—_‘,‘—2) fort+2<4s<4
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Then F is a homotopy between (af)y and a(87), and hence multiplication is
associative.

To see that m1(X,b) has an identity, define e: I — X be e(t) = b for all
t € I. Now let o € L(X,b) and define F: [ x I = X by

o(2s) for0<2s<t
F(s,t)=qo(2) fort<2s<2-t
b for2—-t<2s<2

Then F is a homotopy between o and e, i.e., [0][e] = [o€] = [0], and [¢] is a
right identity.

To see that right inverses exist, let o € L(X,b) and define o~ € L(X,b)
as in 11.3. Then

1 o(2s) forOSSS%
go ' (s) = 1
g(2-2s) forz<s<1
Define F: I x I —+ X by
o(2s) for0<2s<t
F(s,t) = S oft) fort<2s<2-t

o(2—2s) for2—-t<25<2

Then F is a homotopy between oo~ and e. We conclude that m;(X,b) is a
group.

The notation f: (X,z) — (Y,y) means that f: X — Y is a continuous
funtion from the space X into the space Y,z € X, y €Y, and f(z) = y.

11.5 Theorem. If f: (X,z) = (Y,y), then the function m(f): m(X,x)
— m(Y,y) defined by m(f)([o]) = (fo] is @ homomorphism.

11.6 Theorem. If f: (X,z) — (Y,y) is a homeomorphism, then
m(f): m(X,z) = m(Y,y) is an isomorphism.

11.7 Theorem. If X is a space and b € X, then m(lx) is the identity
homomophism on m (X, b).

11.8 Theorem. If f: (X,z) = (Y,y) and g: (Y,y) = (Z, 2), thenm (9f) =
mlg)m(f):

11.9 Theorem. Let X and Y be spaces, z € X, and y € Y. Then
m(X x Y,(z,y)) is isomorphic to the direct sum m (X, z) @ m (Y, y).

11.10 Theorem. Let X be a pathwise connected space and let a,b € X.
Then m(X,a) is isomorphic to m (X, b).

fame A
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Proof. Let a: I = X be a path such that a(0) = a and a(1) = b. Define
a”'(t) = a(l - t) and

aal(t) = {a(2t) for

0<t<y
a'(2t—1) forf<t<1

Then aa™ € L(X,a) and aa™! ~ a. Also a~'a € L(X,b) and o 'a ~ b.
For o € L(X,a) define

a'(3t) for0<t<}
(@ oa)(t) = { o(38t —1) for j<t<d
a(3t-2) for2<t<i1

(1) We claim that if ¢ ~ 7 in L(X,a), then a~'ga ~ a~'7a in L(X,b).
Let F: I x I — X be a homotopy such that F(s,0) = o(s), F(s,1) = 7(s),
and F(0,t) = F(1,t) = a. Define H: I x I = X by

a~(3s) for0<s<}
H(s,t)=(F(3s—1,t) for}<s<?
a(3s —2) for 3 <s<1
Then H is a homotopy between a~'oa and a~'ra.
For ¢’ € L(X,b) define
a(dt) for0<t<}
ad'al ={o'(3t-1) forj<t<}
a~1(8t-2) for%gtsl

Then ac’a™! € L(X,a) and

(2) If o' =~ 7' in L(X,b), then ac’a™! ~ ar’a! in L(X,a). The proof of
(2) is similar to the proof of (1).

(3) We claim that if o € L(X, a), then a(a~'oa)a™ ~ (aa™!)o(aa™!) in
L(X,a). The desired homotopy is G: I x I — X defined by:

a(‘“ for0<18s<3t+2
o1 (18423=3)  for 3t+3 <185 <2t +6
G(s,t) = (!-'5:-‘;_1) for 2t +6 < 18s <12 -2t

a(l8ef2212)  for 12— 2t < 18s < 15 — 3t
a!(84H8)  for 15-3t <185 < 18
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(4) a(a toa)a! ~ g for o € L(X,a)

(5) a~}(ad’a)a ~ o' for each o' € L(X,b)

Now define ¥: mi(X,a) = m(X,b) by ¥([o]) = [ 'oa]. Then ¢ is well-
defined by (1).

To see that 1 is surjective, let o' € L(X,b). Then ¢(jac’a"!]) = [a " (ad’a)a) =
[¢'], by (5), so that 1 is surjective.

To see that v is injective, suppose that ¥([o1]) = ¢([o2]). Then a™ ‘o1 =~
a~lopa in L(X,b), and so a(a'o1a)a! ~ a(aloza)a! by (2), and hence
by (4) and the transitivity of ~, we have have 1 ~ o5 and ¥ is injective.

Finally, to see that 1 is a homomorphism, observe that t([o1][o2])
Y([o102]) = [@ to1020] = [a loaataza] = [a loa] = [a loa][a oza] =
Y([o])¥([o2))- L]

If X is a pathwise connected space and b € X, then m(X,b) is denoted
m1(X) and is called the fundamental group of X.

A space X is said to be simply connected provided X is pathwise con-
nected and 7 (X) is trivial.

11.11 Theorem. Each contractible space is simply connected.

Proof. Let X be a contractible space.

To see that X is pathwise connected, let a,b € X. In view of 9.13, we have
that 1x ~aand 1x ~ b. Let H: X x I = X be a homotopy with H(z,0) = a
and H(z,1) = z, and let F: X x I — X be a homotopy with F(z,0) = z and
F(z,1) = b. Define a: I - X by

H(a,2t) for 0
1) =
! {F(a,Zt -1) for}

1

Since H(a,1) = a = F(a,0), « is continuous, and a(0) = H(a,0) = a, a(1) =
F(a,1) = b. Thus X is pathwise connected.

To see that m(X) is trivial, let b € X, o € L(X,b), and let e: T — X be
e(t) = b. Then o: I — X is continuous with o(0) = o(1) = b. We want to
show that ¢ ~ e. Now o ~ e from 9.13. Let H: I x I — X be a homotopy
with H(s,0) = o(s) and H(s,1) = e(s) = b. Define F: I x I — X by:

H(s,2s) for0<2s<t
F(s,t) = ¢ H(s,t) fort<2s<2-t¢
H(s,2-2s) for2-t<2s<2
Then F is continuous with F(s,0) = a(s), F(s,1) = b, F(0,t) = b = F(1,t)

and hence o =~ e. L]
11.12 Theorem. Simple connectivity is a topological property.

(T
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Let S' be endowed with the multiplication it inherits as a subset of the
complex plane. Then S' is a group. The reals R under addition is also a
group. The exponential map ¢: IR — S' is defined by ¢(t) = exp(2rit) for
t € IR, and is a continuous surjective homomorphism. We use Z to denote
the additive subgroup of IR consisting of the integers.

11.13 Theorem. The kernel of ¢ is Z, i.e., ¢ (1) = Z.

11.14 Theorem. ¢|(3},}) is a homeomorphism onto S'\{~1}.

11.15 Lifting Lemma. Let o: I — S* be a path such that o(0) = 1. Then
there ezists a path 0*: I — IR such that 0*(0) = 0 and ¢o* = o, i.e., the

diagram:
L
I—5 8!
commutes.

Proof. Let ¢ = (¢|(3}, %))_l. Now there exists a real number § > 0 such
that if |t — s| < 4, then ||o(t) — o(s)|| < 1, since ¢ is uniformly continuous
from 6.30. Thus if |t — s| < 4, then o(t) # —o(s) and hence o(t)/o(s) # —1.
Let n € IN such that |t| < nt for all t € I, and define:

2 (2
0= (n)

Then o*: I — R is the desired path. [ ]

11.16 Covering Homotopy Lemma. Leto: I — S' and 7: I — S* be
paths and F: o ~ T a homotopy such that F(0,t) = o(0) = 7(0) = 1 and
F(1,t) = o(1) = 7(1) for all t € I. Then there exists a unique homotopy
F*: o* ~ 7* such that F*(0,t) = ¢*(0) = 7*(0) = 0 and F*(1,t) = o*(1) =
7(1) for allt € I, and pF* = F.

Proof. Now F(s,0) = o(s) and F(s,1) = 7(s) for all s € I. Let
Y= (¢|(—%,%))_1. Now, from 9.13, F: I x I — S' is uniformly contin-
uous, and hence there exists § > 0 such that if ||(s,¢) — (s',¢')]| < 4, then
||F(s,t) — F(s',t')|| < 1. Let n € IN such that ||(s,¢)|| < né for all (s,t) € I'xI,

and define:
" F(i(s,1)
F*(s, ‘)‘Z"’(—“‘_p(z__(, t)))

for (s,t) € I x I. Then F*: I x I - R is continuous, and ¢F* = F.
It is simple to establish that F*(s,0) = o*(s).

. 3
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To see that F*(s,1) = 7%(s), observe that ¢F*(s,1) = F(s,1) = 7(s) and
F*(0,1) = 0, so that F*(s, 1) = 7%(s).

Now ¢F*(0xI) = F(0xI) = 1, so that F*(0xI) C Z, and hence F*(0x I)
is constant. Now F*(0,0) = 0, so that F*(0 x I) = 0 = o*(0) = 7*(0).

Since F*(s,1) = 7*(s), we have that F*(1,1) = 7*(1). Now ¢F*(1 x I) =
F(1 xI) = o(1) = 7(1), and hence F*(1 x I) C ¢o(1) (discrete), so that
F*(1 x I) = 6*(1), and we obtain that F*(1 x I) = o*(1) = 7*(1).

To establish uniqueness, suppose that ¢F' = F and F'(0,t) = 0, F'(1,t) =
o*(1) = 7%(1). Then ¢(F* — F')(I x I) = 0 and hence F* — F' is constant.
Since (F* — F')(0,t) = 0, we have F* — F' = 0 and hence F* = F'. (]

If o € L(S*, 1), then the degree of ¢ is defined deg o = o*(1).

11.17 Lemma. If o and T are equivalent loops in L(S',1), then dego =
deg 7.

Define deg: m1(S?,1) — Z by deg([0]) = deg 0.

11.18 Theorem. deg: m1(S*,1) = Z is an isomorphism.

Proof. For o € L(S*,1), ¢a*(1) = o(1) = 1, so that o*(1) € Z and hence
the codomain of deg is Z. Now deg is well-defined by 11.17.

To see that deg is surjective, let n € Z. Define 7: I — R by 7(t) = nt.
Define o: I — S by 0 = ¢7. Then o(0) = ¢7(0) = $(0) = 1 and o(1)
¢7(1) = ¢(n) = 1, so that o € L(S,1), and 7 = o*. Thus o*(1) = (1) =
and deg [o] = n.

To see that deg is injective, suppose that deg o = deg 7. Then o*(1) =
7*(1). Define H: I x I = IR by H(s,t) = to*(s) + (1 — t)7*(s) and define
F:Ix1I— S"by F(s,t) = ¢(H(s,t)). Then F(0,t) = ¢H(0,t) = ¢(ta*(0) +
(1 =8)7(0) = ¢(0) = 1, F(1,t) = pH(L,t) = ¢(to*(1) + (1 = t)r*(1)) =
¢7*(1) = 1, F(s,0) = ¢r*(s) = 7(s), and F(s,1) = ¢o*(s) = o(s), so that
7=~ ¢ and [o] = [7]. We conclude that deg is injective.

To see that deg is a homomorphism, first observe that deg [01](02] =
deg [0102] = (0102)*(1) and deg [01] + deg [02] = of(1) + o3(1). Define
m: 1 = R by 7(t) = of(t) + o}(t), and define o: I — S by o = ¢r.
Then 7(0) = 0, and hence 7 = o* Define H: I x I — IR by H(s,t) =

n

{(alaa) s)+ (1 —t)7(s) and define F': I x I — S by F = ¢H. Then we have
F(0 0(0)=' (0102)(0) = 0(0), F(1,t) = ¢(0) = 1 = (0102)(1) = o(1),

(q (]) o7(s) = o(s), and F(s,1) = ¢(0102)*(s) = (0102)(s). It follows
that (0102)*(1) = o*(1) = 7(1) = (1) + o3(1). [ ]

11.19 Theorem. The fundamental group of S* is ZZ.
If f: X = X is a function and p € X, then p is called a fixed point of f

provided f(p) = p.
A space X is said to have the fixed point property if each continuous

e A
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function f: X — X has a fixed point.
11.20 Theorem. The fized point property is a topological property.
11.21 Lemma. The space S' is not a retract of B*.
11.22 Theorem. The space B® has the fized point property.

12 THE CANTOR SET

A space X is said to be perfect if each point of X is a limit point of X.

A point p in a space X is called an isolated point provided p is not a
limit point of X.

Note that a space is perfect if it contains no isolated points.

109

12.1 Theorem. No locally compact Hausdor{f space is both countable and

perfect.

Proof. Let X be a locally compact Hausdorff space. Suppose that X is
both countable and perfect. Let p € X. Then {p} is not open, since p is a
limit point of X\{p}. Hence X\{p} is not closed and {p}° = @. Thus X is a
countable union of nowhere dense sets. This contradicts the Baire Category
Theorem. ]

Let X,, = {0,1} with the discrete topology for each n € IN. The Cantor
Set is the space [] X.

neN

an(

)" : ap = 0or a, = 2} with the relative

Gim

®
Let K={z€[0,l]: 2=}
n=1
topology of [0,1].
12.2 Theorem. The space K is homeomorphic to the Cantor set.
Proof. Now the Cantor set is X = 1'[ Xy, where X,, = {0,1} discrete.
Define ¢: X — [0,00) by ¢(z E 2z; (3 ) where m;(z) = z; for each i € IN.

Note that K = ¢(X). Smce X i |s compact and K is Hausdorff, we need only
show that ¢ is continuous and injective. It is clear that ¢ is injective, so we
show that ¢ is continuous.

Let z € ¢~(a,00). Thena < f 2:.(%)' = ¢(z). There exists n € IN such
i=1
that a < 2:21.'(%)". Let W = {z1} x {z2} x -+ x {zn} X ﬁ X;j. Then
=1 j=n+1
zeW, andWIsopen in X. We claim that W C ¢ !(a,00). Let t € W. Then
0 3
(t)-):m.(s) —EZt D+ E 2t( )' = Eh( ) +VE“21.»(:‘;)'>
i=n
a, and henoe é(t) € (a,oo) and W C ¢ !(a, ).

N. 3
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o
Let « € ¢71(0,5). Then Y (3)' = ¢(z) < b. Let 0 < e such that ¢(z) <
i=1
€ < b. Then there exists m € IN such that § 2(}) <b—e Let W =
i=m
o
{z1} % -+ x {&m_1} x ]'I Xi. Then z € W and W is open in X. We claim

that W C ¢71[0,b). Let t € W. Then ¢(t) = z)zz.( e 22t( i
€+ (b—€) = b, and hence ¢(t) € [0,b), and W C ¢71[0,b). We have that
$~!(a,0) and ¢~1[0,b) are both open, and hence ¢ is continuous. [ ]

12.3 Theorem. The set K is nowhere dense in [0, 1].
Proof. Let a,b € K with a < b. We show that there exists » € [0,1] such

© : o !
that a < r < band r ¢ K. Let a = Y ai(}) and b = 3 b;(})’, where
i=1 i=1
a;,bi =0o0r2.
() S (1) _ 1 S (1)i_ 1(1)n
Note that Z =11-@3)", ;(5) = 3, and i_%l(i) =3(3)"
Let n be the least positive integer such that a,, = 0 and b, = 2 (n exists,

since a < b) and a; = b; for i < n.

- : n—1 ;
Let m = 5 b(L)f + S(3)° Dhenio = > 0i(L) 5t
=1 i

=1 1

lﬂ-'(%)i <
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3

1) i)

"Z_:[b,'(g)'. +(3)" < andb:v‘glb,»(é) (L) + f: o

+
i=1 i=n+1
To show that r ¢ K, we show that 7 = § (%) where r; = 0 or 2 is not
possible. 4

We first claim that § = ip;(%)i, where p; = 0 or 2 is not possible. If

0 R \
p1 =0, then 3 = > pi(3)' < 3 2(3)" = §; a contradiction. If py = 2, then
i= =2
oo
5=3+ Y p(})", and again we have a contradiction.

Suppose that 7 = b (1) -+ 601 (3)" + §(3)" = pa(3) +pa(}) 4+
(n > 1). We will first show that b; = p; for i = 1,2,...,n — 1 (by induction
on n), where b;, p; = 0 or 2 for all j.
We first claim that b, = py for all n. Suppose that b5 = 0and p; = 2. Then
1(3) + (;)74 > 3. On the other hand, r = by(3)" 4 - + b, 1(5)"“*—

3 . 1, 2 2 -

(D" <2 42"+ )" =207+ 2™ vy~
3(3) i-3 s whn h is a contradiction. Suppose that by = 2 and

—

P

1
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p1 = 0. Then by = 2 yields that r > % + (3)(3)" and hence r > 2. Since

n
b =p m a.ny case

Suppose that 2 c,(i)l + )" = cf:d.-(l)' implies that ¢; = d; for

1}

0, Ep( !) 5, so that we have a contradiction and conclude that

=1,2,...,n—1; where ¢;,d; = 0 or 2. Assume that zb (%) (5)@)"'H =

; n 3
§P-( ). Then, as we have observed, by = p;, and hence 3 b;(})" +

=1 1=2

%)(I n+1 L1 ):p ( ) . We obtain that %rilb.,x(i)”' (%)(%)"] 5

—

00
i};'lp‘“( 1)’ o that Eblﬂ( )+ @)@ = ):Pul( )'. Thus big1 = pia
folr-' =R, n—15 l e by = p; fori = 2,. n Smce we already have that

by = p1, we have establlshed that b; = p; for B 1ER
n-1 ; n-1 o g
Nowr = 3 W(3)' .+ @B @E)" = Z 5(3)" + X pi(3)'s we bave that
B = Enl) = £ pund)*", so that B = 3 E pen(d)

1
3
and § = -Zl pi+"(%)i, which , as we first observed, is not possible. We conclude

that r ¢ K. [ ]
124 Theorem. The Cantor set is pact totally di. ted perfect
metric space.

If z and y are points of a space X, then X is said to be separated between
z and y provided X = A|B, where z € A and y € B.

12.5 Theorem. Let X be a compact Hausdorff space, z,y € X, and
{Ha: @ € A} a tower of closed subsets of X such that z,y € H, and Hy is
not separated between z and y for each @ € A. Then [\ Hy is not separated

acA

between z and y.
12.6 Theorem. Let X be a compact Hausdorff space and let z,y € X.
Then these are equivalent:
(1) X is not separated between x and y;
(2) = and y are connected in X; and
(3) There exists a compact connected subset of X containing both & and y.
12.7 Theorem. Let X be a pact totally di. ted Hausdorff space,

p € X, and let U be an open neighborhood of p. Then there exists an open and
closed set H such thatpe H C U.

.
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Proof. By 12.6, for each t € X\U, there exist open and closed sets A; and
B; such that p € A; and ¢t € By with X = A¢|B;. Now {By: t € X\U} is an
n
open cover of X\U. Let By,,. .., By, be a finite subcover, and let H = [ Ay,.
j=1

Then H is open and closed, and p € H CU. [ ]

If (X, d) is a metric space and E is bounded subset of X, then the diam-
eter of E is defined diam E = sup{d(z,y): z,y € E}.

12.8 Theorem. Let X be a compact metric space and {F,} a sequence
of non-empty closed subsets of X such that Fnyy C Fy for each n € IN and

o
diam F, = 0. Then () F, is degenerate.
n=1

12.9 Lemma. Let X be a compact metric space, a an open cover of X and
let 0 < €. Then there ezists a finite refinement B of & such that diam G < e
for each G € B.

12.10 Lemma. Let X be a compact totally disconnected metric space.
Then there ezists a sequence {an} of finite open covers of X such that each
ay, is a collection of disjoint open and closed sets with diameter less than "-I,
and ap+1 1s a refinement of oy for each n € IN.

Proof. We first show that if « is an open cover of X, then there exists a
finite refinement B of a consisting of disjoint open sets. If view of 12.7, for
each p € X, there exists an open and closed set H, such that p € H, C A for
some A € a. Now {Hp: p € X} is an open cover of X. Let Hy,, Hp,,..., Hy,

i-1
be a finite subcover. Let K; = Hp, and K; = Hp \ |J Hp, for 2 < j < n.
i=1

Then 8 = {K1, K1,..., Ky} is the desired refinement.

Let §; be a finite open cover of X such that diam B < 1 for each B € f3
(12.9). Let a; be a finite refinement of ; consisting of disjoint open and closed
sets. Clearly, diam A < 1 for each A € ;. Let 3, be a finite open refinement
of a; such that diam B < % for each B € 5. Let a; be a finite refinement
of 3, consisting of disjoint open and closed sets. Again, diam A < % for each
A € ay, and ay is a refinement of a;. Continuing recursively, we obtain the
desired sequence {ap}. [ ]

12.11 Lemma. Let X be a compact totally disconnected perfect Hausdorff
space, U a non-empty open and closed subset of X, and let n € IN. Then U
is a union of n disjoint non-empty open and closed sets.

Proof. We can assume that 2 < n. Since X is perfect, U contains at least n
distinct points zy,23,...,Zn. In view of 12.7 and the fact that X is Hausdorff,
there exist disjoint open and closed sets M;, My, ..., Mn_y with z; € M;cU

A
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n-1 n-1
forj=12,...,n-1andz, ¢ U M;j. Let M, = U\ U M;. Thenz, € M,
=1 =1

and M, is open and closed, so that U = 0 M; is the desired union. [
e

j

12.12 Characterization of the Cantor Set. Each compact totally dis-
connected perfect metric space is homeomorphic to the Cantor set.

Proof. Let {a,} be a sequence of open covers of X such that each oy is a
collection of disjoint open and closed sets with diameter less than ,‘1 and oy 4
is a refinement of ay, for each n € IN (12.10). Let m; be a sufficiently large
positive integer so that o consists of 2™ disjoint non-empty open and closed
sets {U(zy,22,...,2m,): ¢j = Oor 1} (12.11). Let my < my be a sufficiently
large positive integer so that 2 < m3 and ay consists consists of 2™ disjoint
non-empty open and closed sets {U(zy,22,...,Zmy,Tmy41y-- 1 &my): Tj =
Oor 1} labeled so that U(zy,...,Zm,) C U(zy,...,Zm,). Continuing recur-
sively, we obtain an increasing sequence {m,} of positive integers so that
n < my and ay, consists of 2™" disjoint non-empty open and closed sets
{U(z1,22,--++Zm,): @j = 0or 1} with U(zy,...,Zmey) C U1, Tm, ).

Define ¢: T[] {0,1}n = X by é(z1,22,...) = N Ulz1,22,...,Tm, ),
N neN

n
where (zy,23,...,Zm,) is the first my, terms of (zl,zz. .). Now ¢(zy,z3,...)
is a point in X (12.8). To see that ¢ is continuous, let V' be an open subset of
X such that ¢(zy1,23,...) € V. Now {U(z1,22,...,Zm,)} is a tower of com-
pact sets whose intersection is ¢(z1,23,...), so that U(zy,z2,...,2m,) C V
for some k € IN. Thus ¢({z1}x - x{zm, } x{0,1}x---) CU(zy,...,z) C V,
so that ¢ is continuous.

To see that ¢ is injective, let (zy,23,...) and (y1,y2,...) be distinct points
of n {0,1},. Then z, # yn for some n € N. Thus since n < my,

U(z,. yZm,)and U(y1,. . ., Ym, ) are disjoint, ¢(z1,z2,...) € U(z1,...,Zm,)
and ¢(v1,v2,...) € Uy, ¥m,), S0 that ¢(z1,22,-..) # é(y1,42,-..), and
$ is injective.
To see that ¢ is surjective, let p € X. Then p is in some member of ap
for each n € IN, and hence in ﬂNU(z,,zz,m,z,,‘,) for some (zy,23,...) €
ne

[T {0, 1}, so that ¢(zy,xa,...) = p.
neN
Since ¢ is a continuous bijection from a compact space onto a Hausdorff
space, ¢ is a homeomorphism. [ ]

12.13 Theorem. Each compact totally disconnected metric space is home-
omorphic to a subspace of the Cantor set.

113



114 John A. Hildebrant

12.14 Theorem. Each compact metric space is a continuous image of the
Cantor set.

Proof. Let X be a compact metric space and let {U,: n € IN} be a
countable base for the topology of X. For each n € IN define Fy: {0, 1} = 2%
by Fn(0) = U, and F,(1) = X\U,. Let @ denote the Cantor set and let
H={(p1,p2,-..) €T ann(Pn) # 0}

ne

To see that H # @, let z € X, and select m; < mp < --- such that
T € Up; and © € X\Up, for m # m;. Let p = (p;) € Csuch that p; = 0 if
i = my for some k, and p; = 1 otherwise. Then z € Fy,(pn) for each n € IN,
and hence () F,(pn) # @, so that p € H and H # 0. 5

nelN

We next claim that H is a closed subset of @ Let ¢ € ®\H, with g = (g;).
Then () Ful(gn) = @. Now each Fy(gn) is compact and hence {F,(gn): n €

neN
IN} does not have the finite intersection property. Thus there exists m € IN
such that ﬂ Fo(gn) = @. Note that ¢ is in the open set {gi} X -+ % {gm} X
n=1

{0,1} x --- and this set does not meet H. It follows that @\H is open, H is
closed, and hence H is a compact totally disconnected metric space.

Next we claim that if () Fn(pn) # @, then it is degenerate; for p = (pn) €

neN

@ Let @ € [ Fu(pn). Now there exists a sequence U,,J of basic open sets

containing z such that diam U,.) == ;’7 and U, (& U,.) for each j. Thus

41
Pn, = 0 for each j € IN, and () Fu(pn) € ) U,.,J. Since diam U,., = 0,
e nelN neN
[ U, is degenerate and hence () Fy(pn) is degenerate.
JEN neN
Now define ¢: H = X by ¢(p) = ﬂ Fy(pn), where p = (pn). The

argument that H # @ shows that ¢ is surjectxve
We claim that ¢ is continuous. Let p = (p,) € H and W and open subset
of X such that ¢(p) € W. In view of 4.14, there exists m € IN such that

é(p) € N Fulpn) CW. Let V = {p1} x -+ X {pm} x{0,1} x---. Thenp € V
n=1

m
and ¢(V) € N Fa(pn) € W. It follows that ¢ is continuous.
n=1
Since H is a compact totally disconnected metric space, H x @ is homo-
morphic to @ (12.12). Then H x € ™ H -, X is the desired surjection.
]

——
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13 QUASICOMPONENTS

If X is a space and p € X, then the intersection of all open and closed subsets
of X containing p is called the quasi pont of X
denoted Q.

13.1 Theorem. If Q is a quasicomponent of a space X and A is a compact
subset of X such that QN A = @, then there exists an open and closed subset
N of X such that Q C N C X\A.

Proof. Let Q = Q, for p € X, and let K be the collection of all open and
closed subsets of X containing p. Then Q = N{K: K € X}.

Suppose that K N A # O for each K € K. Since K is closed under
finite intersections, the collection {K N A: K € K} is a collection of closed
subsets of the compact space A with the finite intersection property, and hence

r] (KNA)# O and n KNA=QNA#®. Thus K C X\A for some
K e Kand QCK.

13.2 Lemma. Let X be a locally compact Hausdorff space and A and B
disjoint compact subsets of X. Then there exist disjoint open sets U and V
such that ACU,BCV,Uis compact, V is compact, and U NV = Q.

Recall that if X is a space and U C X, then 8U = U N X\U is the
boundary of U in X.

13.3 Theorem. Let X be a locally compact Hausdorff space and Q a
compact quasicomponent of X. Then Q is a component.

Proof. Let Q be the quasicomponent of p € X. We first show that Q is
connected. Suppose that @ = A|B with p € A. Since Q is compact and A
and B are closed in @, A and B are disjoint compact subsets of X. Using
13.2, there exist open sets U and V in X such that A C U, B C V, U and
V are compact, and UNV = @. Let W = UUV. Then Q C W and 8W
is compact. By 13.1, there exists an open and closed set N in X such that
QC N C X\8W. Thus NNU is an open and closed set containing p. Since
NNUNB = @, we have that B = @, and hence Q is connected.

Let C, denoted the component of p. Then, since Q is a connected set
containing p, we have Q C Cp. Suppose C,\Q # O, and let z € C;\Q. Since
{z} is compact, there exists an open and closed set M such that Q C M C
X\{z} (13.1). We see that M N Cp is a proper open and closed subset of Cy,
and this contradicts that C, is connected. We conclude that C,\Q = @, and
Q=0G;. [

13.4 Boundary Bumping Theorem. Let X be a locally compact con-
nected Hausdorff space, U a proper open subset of X such that U is compact,
and let C be a component of U. Then CNaU # @.

p and is
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Proof. Suppose that C N oU = @.

Suppose that Cn(X\U) # @, and let p € CN(X\U). Thenp € CO(X\U)
and hence p ¢ U, since U = (X\U) NU. But C C U implies that C C U,
and p € U. This contradiction yields that C N (X\U) = @ and it follows that
GRS

Since C is a component of U, C is closed in U, and hence C' = C, since
C CU. Also C=C CU and U is compact, so that C is compact, and hence
C is closed in X.

Now since U is compact, U is compact. Since X is regular, C is closed
and C N AU = O, there exist open sets G and V such that C C G, 8U C V,
and GNV = 0.

Let W =GNU. Then W isopen, CC W, WNV =@, 8U CV,and V
is open. Since W C U, we have W C U, and hence W is compact.

Let p € C, and let @, be the quasicomponent of p in W. Since W is
compact and Q,, is an intersection of closed (and open) subsets of W, we have
that Q,, is compact. Note that C C W C U and C'is a component of W, since
W CU=UUdU and W N8U = @, we have W C U. Thus @p = C (13.3).

Since OW is compact, there exists M which is open and closed in W such
that C C M C W\OW = W (13.1). Since W is compact, we have that M is
compact, and hence M is closed in X. Since M is open in W, there exists H
open in X such that M = W N H. Since M CW, M = W N H and hence M
is open in X. We now have that M is open and closed in X; and since M C U
and U is a proper subset of X, M is a proper subset of X. This contradicts
that X is connected. [ ]

13.5 Theorem. No locally compact connected Hausdorff space is the count-
able union of pairwise disjoint compact sets.

Proof. Let X be a locally compact connected Hausdorff space and assume
that X = |J Ay, where each A, is compact and A; N A; = @ if i # j.

neN

Let U; be an open set such that A; C U; and U, is compact. Let Cy be
a component of Uy. Then C; N AUy # @ (13.4). Let p; € C; NdU;. Then
p1 ¢ A1. We can assume that p; € A;. Let U, be an open set such that
A; CU, CU; C X\A; and U, is compact. Note that p; € 8U; N Uy, so that
U,NU; # 0.

Let C; be a component of Uy N Uy and let p, € C N 8(Uy N Up). Then
p2 & A; U Ay. We can assume that p2 € A3.

Let U3 be an open set such that A3 C Uy C U3 C X\(4; U Az), and Us is
compact. Note that py € d(Uy N Uz) NUs, so that Uy N U, N U3 # @.

Let C3 be a component of Uy NUz2 N U3 and let p3 € C3 N &(U; NU; N U3).
Then p3 ¢ A; U A, U A3.

T\
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Nt
Let H, = ﬂ U; for each n € IN. Then {H,: n € IN} is a tower of compact

sets, and hence ﬂ Hy, # @. Note that (| Hp, = ﬂ Up # 0.
neN

Let p € n U,l Then p € A, forsomenelN ButhU,H.l C
X\(A1U A4z U UA ) € X\Ap. This contradiction proves the theorem. m

14 ARCS

If X is a connected space and p € X, then p is called a cutpoint of X provided
X\{p} is not connected.

14.1 Theorem. Let f: X — Y be a homeomorphism of a space X onto
a space Y and let p € X. Then p is a cutpoint of X if and only f(p) is a
cutpoint of Y.

14.2 Exercise. The space IR is not homeomorphic to S*.

If < is a total order on a set X, then for a < b in X:

(a,0) ={z€X:a<z<b}

[a,0) ={z € X:a<az<b}

(e, ={z€X:a<z<b}

[a,))={z€X:a<z<b}

14.3 Theorem. Let < be a total order on a nondegenerate set X and let
B ={(a,b): a <bin X}U{(a,sup X]: a # sup X} U {[inf X,b): b # inf X}.
Then B is a basis for a unique topology on X.

The topology generated by 3 in 14.3 is called the order topology on X
induced by <.

If < is a total order on a set X, then X is said to be order dense if for
each ¢ < y in X, there exists z € X such that z < z < y. We say that X is
order complete provided each nonempty subset of X has a sup and inf.

An arc is a space X with a total order such that X has the order topology,
X is order dense, and X is order complete.

A continuum is a compact connected Hausdorff space.

14.4 Theorem. An arc is a continuum.

If X is an arc, then sup X and inf X are called the endpoints of X.

If X is a space and a and b are distinct points of X, then X is said to be
irreducibly connected between a and b if X is connected and no proper
subset of X containing both a and b is connected.

14.5 Lemma. Let X be a continuum which is irreducibly connected between
a and b, and let p € X\{a,b}. Then X\{p} has ezactly two components C,
and Cy. Moreover, C, = Co U {p} and Cy = Cy U {p}.
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Proof. 1t is immediate that p is a cutpoint of X and that a and b lie in
different components of X\{p}. In view of the Boundary Bumping Theorem,
we see that Co N (X \{p}) # @. Since 8(X\{p}) = {p}, we have that p € Cj,
and similarly p € Cj. Thus C, U C} is a connected subset of X containing a
and b, and hence X = C, UCy. Now C,NCy =0 = CyNC,.

We claim that C, N Cy = {p}. Suppose that ¢ # p and g € C, N Cj. Then
g ¢ C, UG, so that in particular ¢ # a and ¢ # b, and hence g is a cutpoint of
X, and X\{q} _A|B with C, C A and C, C B. Now C, C 4 and C; C B.
Thus p € A and p € B. From p € 4, we have that p ¢ B, since AN B = @,
and similarly p ¢ A. But since p # ¢ and X\{q} = AU B, we must have
that p € A or p € B. This contradiction proves that C, N Cy = {p}. Thus

C, = C, U {p} and C}, = Cy U {p}, and C, and C} are the two components of
n

X\{r}-

14.6 Lemma. Let X be a continuum which is irreducibly connected between
distinct points a and b. Then each p € X\{a,b} is a cutpoint of X. Define
z <y in X if either z = y or x lies in the comp t of X\{y} containing a.
Then < 1s a total order on X.
The order < in 14.6 is called the cutpoint order.
14.7 Lemma. Let X be an arc, a = inf X, and b = sup X. Then X is
ducibl; ted bet a and b and the order on X is the cutpoint order.
14.8 Lemma. Let X be a separable arc with E a countable dense subset of
X such that inf X, sup X ¢ E. Let Q denote the set of all rational numbers in
(0,1). Then there ezists a strictly order preserving function f: E — Q from
E onto Q.

Proof. Let E = {ey, e, ...
of all pairs (A, g4) such that:

(a) AC E;

(b) e1 € 4;

(c) if en € A, then {ej,e3,...,€n} C 4;

(d) ga: A = Q is a strictly order preserving function;

(e) ga(e1) = r1; and

(f) for 1 <m in IN and e,, € A, g(em) = 7%, where
k =min{i: gal{e1,e2,...en} and ga(em) = i} is strictly order preserving Y,

To see that A # @, let A = {e1} and define ga(e;) = 1.

Define (A,g4) < (B, gp) on A provided A C B and gg|A = g4. Then <
is a partial order on A.

Let A" be a maximal chain in A, and let H = [J{A: (A,94) € A'}.

We claim that H = E. Suppose that E\H # @ and let e, € E\H. Then
e ¢ H for s <t € N and hence H is finite. Let H = {e1,€2,...,em}, with

(T T

T

} and let @ = {ry,72,...}. Let A denote the set
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em € A for some (4,94) € A'. From (c), we have that H = A. Let r; € Q
such that g(em+1) = rj and g|H = gg, 9: HU {em+1} — Q is strictly order
preserving. Then (H U{en+1},9) € A; contradicting the maximality of A’. It
follows that E\H = @, and H = E.

Define f: E — Q so that f|A = g4 for each (4,94) € A’. Then f is
strictly order preserving and hence injective. That f is surjective follows from
(f). [ ]

14.9 Theorem. A separable arc is an interval, i.e., homeomorphic to
I1=00,1].

Proof. Let X be a separable arc, a = inf X, b = sup X, E a countable
dense subset of X with a,b ¢ E, and let Q be the set of rational numbers in
(0,1). Let f: E — @ be a strictly order preserving function from E onto @
(14.8). Define g: X — I by g(z) = inf f([z,b] N E) and g(b) = 1.

We claim that g is strictly order preserving. Let u < v in X, and let
u<t<v forteE. Letv € [v,5)NE. Thent < v’ and f(t) < f(v'), so that
f(t) < g(v). Now let t' € E such that u < ¢’ < t. Then f(') < f(t), so that
g(u) < f(t) and hence g(u) < g(v).

It follows that g: X — I is injective.

We claim that g is surjective. Let ¢ € I and let p = inf f~([g,1] N Q).
Then g = g(p) and hence g is surjective.

To see that g is continuous, observe that g~1(c,d) = (97*(¢),g7(d)), and
hence g is a homeomorphism.

14.10 Lemma. If p is a cutpoint of a continuum X and X\{p} = A|B,
then AU {p} is a continuum.

Proof. Let o € A and let C; be the component of X\{p} containing .
Then C2N3(X\{p}) # @, so that p € C,. Since ANB = @, C> C 4 = AU{p}
(Note that B is open), so that AU {p} = U C, is connected, since p € Cy

and z € A. Since B is open in X\{p} (and hence in X). AU{p} = 4 is closed

and hence compact. n
14.11 Theorem. FEach non degenerate continuum has at least two non
cutpoints.

Proof. Let X be a non degenerate continuum. If X has no cutpoints, then
X has at least two non cutpoints, since X is non degenerate.

Suppose then that X has at least one cutpoint and let p be a cutpoint of
X. Then X\{p} = A|B.

Suppose that each cutpoint of A is also a cutpoint of X. For z € 4, let
X\{z} = P:|Qz withp € Py. Then Qz U {z} = Q, is a continuum containing
z and not p, so that Q, S

—
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Now {Q;: = € A} is partially ordered by inclusion. Let {Q,: z € Ay C A}

be a maximal chain, and let Q = () @,. Then Q is a nonempty continuum.
z€Ao

We claim that if a € Qp, then @, C Q. Let a€ Qp- Then E,, is a
connected subset of X\{a} containing p, and hence Py C F,. Thus Q, is a

connected subset of X\{b}, and since a € @, N Qp, we have Q, C Qp.
We now have that Q = ) @, = (] Qa- Let r € Q. Then, for z € 4y,

z€Ao z€AQ
r € Qz @, C Qs, and hence @, C @, for all z € Ap; contradicting the
maximality of the chain. It follows that A contains a non cutpoint of X, and
similarly so does B. [ ]

14.12 Theorem. Let X be a continuum. These are equivalent:

(a) X has ezactly two non cutpoints a and b;

(b) X is irreducibly connected between a and b; and

(c) X is an arc with endpoints a and b.

Proof. (c) implies (b) follows from 14.7.

(b) implies (a). Suppose that X is irreducibly connected between a and b.
Let p € X\{a,b}. Thena,b € X\{p} C X and hence X\{p} is not connected.
It follows that p is a cutpoint of X. Then X\{a} = A|B, b € B, B is open in
X\{a} (which is open) and hence B is open. Also ANB =@ = ANB. Let
C' be the component of B containing b. Then C C B, and hence CN A = @.
Also by the Boundary Bumping Theorem, C N 8B # @. Let p € C N dB.
Then p ¢ A since p € C and p ¢ B, since p € OB and B is open. Thus p = a,
so that C is a connected subset of X containing a and b, and C = X. Since
CNA= 0, we have A = @, and X\{a} is connected. Similarly, X\{b} is
connected.

(a) implies (b) is immediate.

(b) implies (c). Suppose that X is irreducibly connected between a and
b. Let < be the total order on X defined in 14.6. We need to show that:

(1) X is < dense;

(2) X is < complete; and

(3) X has the < topology.

We first show (3): X has the < topology.

Let 7 be the given topology on X and let <; be the topology on X inducted
by <. Let j: (X,7) = (X, <;) be the identity map. Observe that <, is a
Hausdorff topology on X, and that j is bijective. We need only show that j
is continuous. In view of 14.5, for p € X\{a,b}, we have that Co = [a,p],
where Cj, is the component of X\{b} containing a. Thus [a,p] is 7-closed, so
that (p, b] is T-open. Likewise, [a, p) is 7-open, so that for ¢ < p, we have that
(g,p) = [a,p) N (g, b] is T-open, and j is continuous.

(T
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To prove (1): X is < dense,letz<yin X. f{zeX:z2<2<y} =0,
then X = [a,y)U(z, b] is a separation of X; contradicting that X is connected.
Thus X is < dense.

To complete the proof of 14.10, we prove (2): X is < complete.

First we show that if K is a connected subset of X, u € K, v € K, then
[u,v] € K. Suppose to the contrary that there exists ¢ € [u,v] which is not in
K. Then u < t < v, so that u is in the component T of X\{t} containing a.
Since K is a connected subset of X\{t} containing u, we have that K C T.
Thus v € T and v < t; contradicting ¢ < v. We conclude that [u,v] C K.

Let A be an open subset of X. We will show that inf A exists in X. If
a € A, then a = inf A, so we assume that a ¢ A. Let C be the component
of a in X\4, and let p € CNJ(X\A) = CNIA. Now C C X\A4, so that
C C X\A4, since X\A is closed. Since a,p € C, by the preceding argument,
we have [a,p] C C C X\4, and hence p < z for all z € A. Now let t € X
with p < t. Then p € [a,t) and since p € 9A C A (p & A), [a,t) is an open set
containing p and hence [a,t)NA # @. It follows that z € [a,t) for some = € A,
i.e., ¢ <t and ¢ is not a lower bound for A. We conclude that p = inf 4, i.e.,
if A is open, then inf A exists.

Let T C X. We will show that sup T exists. Now if b € T', then b = supT,
s0 we assume that b ¢ T. Let B = {z € X: t < z for all t € T}. Now if B is
not open, then there exists € B such that (e,b) N T # @ for all e such that
e < @, so that z = sup7". Assume then that B is open. Then inf B = c exists
from the paragraph above, and ¢ = sup 7.

If T C X, to see that inf T exists, again we can assume that a ¢ T', and
let D={z e X:z<tforallte T} TheninfT =supD. [ ]

Let (A, <4a) and (B, <p) be totally ordered sets. Define (a,b) < (c,d) on
A x B if either (a,b) = (c,d); ora <qc;ora=cand b<pd Then<isa
total order on A x B called the lexicographic order.

14.13 Exercise. Let X = I x I with the topology induced by the lexico-
graphic order on X. Then X is an arc which is not an interval.

Let < be a well ordering of IR\IN, let r ¢ IR and let R=RU {r} and
extend < to IR by defining:

(a)1<2<3<:;

(b) n <z when n € IN and = € R\IN ; and

(c) z < r for each z € R.

Note that < is a well ordering of R. For each a € R, let L(a) = {z € R: « <
a}. Note that L(r) is uncountable. Let Q = inf {z € R: L(z) is uncountable
}, w=inf{z € L(Q): IN C L(z)}, and let © = L(Q) U {Q}.

14.14 Exercise.

| amm—
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(a) © is uncountable;

(b) L(z) is countable for each « € L(Q);

(c) w = inf {z € ©: L(x) is infinite }; and

(d) L(w) = IN.

Define < on © by z < y if either z = y or z < y, and observe that < is a
total order on ©. Give © the topology induced by <.

14.15 Theorem. The space © is a compact Hausdorff space and is not
first countable at Q.

14.16 Theorem. The space L(f) is a tably pact normal subsp
of ©.

Proof. That L(2) is countably compact is a consequence of 14.15.

To see that L(f2) is normal, let A and B be disjoint closed subsets of L(f2).
For each z € L(R), define % = inf{y € L(Q): ¢ < y}. Now for each a € 4,
let @4, pa € L(R) such that a € (z4,ps) € X\B. Then z, < a < at < pg, so
that a € (zq4,a™) C (%a,pa) € X\B. Let U = J (zq,a™). Then U is open

A

a€
and A C U. Also: for each b € B, let y, € L(f) such that b € (ys,b") C X\A.
Let V = | (ys,6"). Then V is open and B C V. It ramains to show that U
b
and V' areegisjoint.

Suppose that U NV # @ and let 2 € UN V. Then z € (z4,a*) N (y5,y™)
for some a € A and b € B. We can assume that a < b. Now z, < z < a*, s0
that z, < z < a and likewise y; < z < b. We have that y, < z < a < b, so that
a € (yp,b) C (b, b"); contradicting that (ys,bt) € X\A. Thus UNV = @.

n

The space (L(Q) x [0,1)) U {(2,0)} with the topology induced by the
lexicographic order is called the long line.

14.17 Exercise. The long line is an arc.

The space [0 x (INU{w})]\{(2,w)} with the relative product topology on
© x (INU {w}) is called the Tychonoff plank.

14.18 Theorem. The space © x (IN U {w}) is a compact Hausdorff space.

14.19 Theorem. The Tychonoff plank is a locally compact Hausdorff space
which is not normal.

Proof. Let X = [© x (IN U w)]\(Q,w) be the Tychonoff plank. Then,
since X is open in © x (INUw), X is locally compact and Hausdorff. Let
A={Q} x N and let B = (6\{Q2}) x {w}. Then A and B are disjoint closed
subsets of X.

Suppose that U and V are disjoint open subsets of X with A C U and
B C V. For each a € N, let a = inf{z € ©: [2,9] x {a} C U} and let
P = sup,c 4 a. Now, since A is countable, {a: a € A} is countable, and hence

(T T
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p< Q. Letp<g<Qin®. Then {g}xIN C U and hence {g} x (NU{w}) C U.
But (qw) e BC V. [ ]

15 PEANO SPACES

If a and b are points of a set S, then a simple chain from a to b is a finite
collection of sets {Hj: j = 1,2,...,n} of subsets of S such that a € Hj,
b€ Hy, and H; N Hj # @ if and only if | — j| < 1.

15.1 Theorem. A space X is connected if and only if for each a and b in
X and each open cover U of X, there exists a finite subcollection of U which
is a simple chain from a to b.

Proof. Suppose that the condition holds and X is not connected. Then
X = AU B, where A and B are disjoint nonempty open subsets of X. Let
a € Aand b€ B. Then {A, B} is an open cover of X which contains no simple
chain from a to b.

Suppose that X is connected and let a € X. Let U be an open cover of
X and let K = {z € X: there is a finite subcollection of & which is a simple
chain from a to }. We claim that K is both open and closed.

Let p € K, and let Hy, Hy, ..., H, be a simple chain in ¢/ from a to p. For
z € H,\Hp—1, we have that Hy, Hy, ..., Hy is a simple chain in ¢/ from a to
x; for ¢ € H, N Hy—1, we have that Hy, Ha, ..., Hy,—1 is a simple chain in U
from a to = and hence z € K. Thus H,, C K and K is open.

Let p € X\K and let U € U such that p € U. Suppose that UN K # @,
and let ¢ € UN K. Let Hy,..., Hy, be a simple chain in ¢/ from a to ¢, and
let k = min{i: H; NU # @}. Then Hy, Ha, ..., Hy,U is a simple chain in U
from a to p; contradicting that p ¢ K. Thus UNK = @ and p € U C X\K,
X\K is open, and K is closed. Since X is connected, we have X = K, since

K #0. [ ]
Let E be a subset of a metric space (X,d), a,b € E, and let ¢ > 0. An
¢e-chain from a to b in E is a finite set {@1,2,...,2,} of points of E such

that a = 1, b = 2, and d(z;,z;11) <eforj=1,2,...,n— 1.

A subset E of a metric space (X, d) is said to be well-chained if for each
a,b € E and each € > 0, there exists an e-chain from a to b in E.

15.2 Theorem. Each connected subset of a metric space is well-chained.

If X is a metrizable space, then a metric d on X is called an M-metric
provided the topology on X is determined by d and Ny(z) is connected for
each z € X and each r > 0.

15.3 Theorem. Let X be a metrizable space. Then X admits an M-metric
if and only if X is connected and locally connected.
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Proof. Suppose that X admits an M-metric p. Then for each p € X and
each € > 0, Ne(p) is connected and hence X is locally connected. To see that
X is connected, let z and y be distinct points of X, and let r = 2p(z,y). Then
N;(z) is a connected set containing both = and y.

Suppose that (X, d) is a connected and locally connected metnc space and
let Y = {U: U C X and U is open and connected }. Then U is a basis for a
topology on X (5.19). For a,b € X, define p(a,b) = inf{diamU: U € U, a,b €
U}. Then p is the desired M-metric on X.

Recall that I = [0, 1] with the usual topology.

A Hausdorff space X is called a Peano space if there exists a continuous

surjection f: I — X.
15.4 Theorem. Each Peano space is compact connected locally connected

and metrizable.
A space X is said to be arcwise connected if for each pair a, b of distinct
points of X, there exists an embedding g: I — X such that g(0) = a and

9(1) =¢b.

If A= {A,...,As} and B = {B,..., By} are simple chains in a space
X, then B simply refines A provided:

(1) Each B; is contained in some A,; and

(2) If B; UBy C Ay for i < k, then B; C A,/ for all i < j < k where
Irf'—r|<1.

15.5 Lemma. Let X be a space, p,q € X, and A= {A;,...,A,} a simple
chain of connected open sets from p to q in X. Let C be a family of open
sets such that each member of A is a union of members of C. Then there is a
simple chain of members of C from p to q which simply refines A.

15.6 Theorem. FEach locally compact connected locally connected metric

space is arcwise connected.
Proof. Let X be a locally compact connected locally connected metric

space and let p and g be distinct points of X. Let X be given an M-metric
(15.3).
Let C; be a simple chain from p to ¢ such that each link of C; is open,
connected, has compact closure, and has diameter less than 1.

Let Cn41 be a simple chain from p to ¢ such that each link is open, con-
nected, has compact closure, has diameter less than m, and such that Cn41

simply refines Cp,.
For each n € IN, let A, = (J{Z: L € C,}. Then A, is a compact connected

subset of X containing p and g for each n € IN. Also note that {4,: n € IN}
is a tower. Let A = () A,. Then 4 is a subcontinuum of X containing p
nelN

and g.

T\
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Let € A\{p,q}. We claim that z is a cutpoint of A. For each n € IN, let
P, = U{L: L € C, and L precedes the one or two links of C, containing =}
and let F,, = [J{L: L € Cy and L follows the one or two links of C, containing
z}. Let P= |J P, and F = |J F,. Then P and F are open, PN A # @,

N neN

FNA#0, mv;g A\{z} = (P ﬂ§)|(F N A), so that z is a cutpoint of A. Thus
p and g are the only non cutpoints of A (14.12), and hence A is an arc with
endpoints p and ¢ (14.10). Since A is compact and metric, A is separable and
hence an interval (14.9). [ ]

15.7 Theorem. Each Peano space is arcwise connected.

If (X, d) is a metric space and U is an open cover of X, then § > 0 is called
a Lebesque number for I if for each E C X with diam E < §, there exists
U € U such that E C U.

15.8 Theorem. Each open cover of a compact metric space has a Lebesgue
number.

Proof. Let X be a compact metric space and let ¢ be an open cover of X.

Suppose that & does not have a Lebesgue number. Then for each n € N,
there exists A, C X such that diam 4, < % and A, is not contained in any

member of U. Let p, € A, for each n € IN. Then p, e p for some p € X. Let
U € U such that p € U, and let r > 0 such that Ny(p) C U. Let k € IN such
that ,‘; < 5 and px € N;(p). Let y € Ax. Then d(p,y) < d(p, px) + d(px,y) <
Hols )'; = r, so that Ay C N,(p) C U; which is a contradiction. [ ]

15.9 Lemma. Let (X,d) be a compact locally connected metric space and
let € > 0. Then there exists § > 0 such that if z,y € X and d(z,y) < §, then
{z,y} is contained in an open connected set of diameter less than e.

Proof. For each p € X let U, be an open connected set containing p with
diam U, < e (since X is locally connected). Then U = {Up: p € X} is an open
cover of X. Let § > 0 be a Lebesgue number for &. Then for z,y € X with
d(z,y) < &, we have diam{z,y} < d so that {z,y} C U, for some p. [

15.10 Lemma. Let (X, d) be a compact connected locally connected metric
space and let € > 0. Then there exists § > 0 such that if p,q € X and
0 < d(p,q) < &, then there exists and embedding g: I — X such that g(0) = p,
g(1) = g, and diam g(I) < e.

Proof. Let 6 > 0 be as in 15.9, and let U be an open connected set of
diameter less than e containing p and g, where 0 < d(p,q) < 6. Then U
is locally compact, connected, locally connected and metric, and hence U is

arcwise connected (15.6). [ ]
15.11 The Hahn-Mazurkiewicz Theorem. A space X is a Peano space
if and only if X is pact ted locally ted and metrizable.

.
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Proof. If X is a Peano space, then X has these properties (15.4).

Suppose that (X, d) is a compact connected locally connected metric space.
Let {en} be a decreasing sequence of positive real numbers such that e, 50
and if p,q € X and 0 < d(p, q) < €y, then there exists an embedding h: I — X
such that h(0) = p, h(1) = g, and diam h(I) < L (15.10).

Let K C I denote the Cantor set and let f: K — X be a continuous
surjection (12.14). We claim that f can be extended to a continuous function
ORI

Since f: K — X is uniformly continuous (6.30), there is a decreasing
sequence {8} of positive real numbers converging to 0 such that if s, € K
and |s — t| < &, then d(f(s), f(t)) < én-

Let {P; = (aj,b;): j € IN denote the collection of open interval components
of I\K, and let @; = b; — a; for each j € IN.

Let Ay = {P;: 61 < a;} and for n € N, let A, = {P;: bnp1 < @ < On}.
Note that A and each A, is at most finite.

For each P; € Ay, define g;: P; = [a;, b;] — X so that 9;(P;) is an arc
from f(aj) to f(b;) if f(a;) # f(b;) (15.6), and g(P;) = f(a;) if f(a;) = L(bj)

For each P; € A, (n € IN), note that d(f(a;), f(b;)) < €n. Define g;: P; —
X so that g;(P;) is an arc from f(a;) to f(b;) with diam g;(P;) < & if
f(aj) # f(b;), and g;(P;) = f(ay) if f(a;) = f(b;)-

Now define g: I — X so that g|P; = g; and g|K = f. Note that if
z € P;N K, then gj(z) = f(z), so that g is well-defined.

Since g|K = f, and f is surjective, it follows that g is surjective. It remains
to show that g is continuous.

To see that g is continuous let p € I. We show that g is continuous at p.

If p € P; for some j, then g|P; = g; and P; is open, it is clear that g is
continuous at p.

Suppose that p € K and consider two cases:

Case 1. p ¢ P; for all j € N.

Let € > 0 and consider the open set N¢(g9(p)) in X. Let n € IN such
that €, < 5 and ﬁ < 5. Let U be an open interval containing p such that
diam U < "—2'1 and such that if diam ?j > 0n, then P, NU = @. We claim
that g(U) C Ne(g9(p)). Let t € U. Ift € K, then |t — p| < Jp, so that
d(f(t), f(p)) < €n < € and thus, since in this case f(t) = g(t) and f(p) = g(p),

d(g(t),9(p)) < € and g(t) € Ne(9(p)): On the other hand, if ¢ € I\K, then
t € P, for some i € IN, and diam 9i(P;) L L1 Now either a; or b; is in U. We
can assume that b; € U. Now |p = bi| < 15,., so that d(f(p), f(bi)) < €n, i.e.,
d(g(p),9(by)) < e < § and d(g(b),9(8)) < 5 < §, and hence d(9(p), 9(1)) < &,
so that g(t) € Ne(g( p)) Thus g(U) € Ne (9(p)-
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Case 2. p e P for some j € IN. Then either p = a; or p = b;. We can
assume that p = b_., Let V = (s b;] be open in P so that g(V;) € Ne(9(p))
and let n € IN such that €, < and e ¢ and let U be an open interval
containing p such that diam U < % and such that diam P; > &, implies
PNU=0ifi#j. Let W= (UnNV)U([b;,1] NU) and proceed as in Case
i1 [ ]

16 LIMIT SPACES

A projective system (Xa, ff, D) is a directed set D with a collection {X4: a €
D} of Hausdorff spaces, and continuous functions f,f : Xg = X, such that if
a < B <yin D, then fJ = f£°f7, and f¢ = 1y, for each a € D. Each X,
is called a factor space and each ff is called 2 bonding map.

Let (Xa, fg,D) be a projective sysem of spaces and let P = [] X,. For
a€D
a<BinD,let S5 = {z € P: ff omp(z) = mal(z)}, where ms: P - Xp is
projection. Let Sg = ﬂ{Sg: a < B} for each B € D, and let X =({Sp: B €
D}. The space X with the relative topology of P is called the projective
limit of the system (Xa, s D) and is denoted liln e

16.1 Theorem. If (X4, fg, D) is a projective system of spaces, then li‘x_n X
is a closed subspace of ] Xa.
a€D
16.2 Theorem. The projective limit of nonempty compact spaces is nonempty
and compact.

16.3 Theorem. The projective limit of compact connected spaces is com-
pact and connected.

16.4 Theorem. Let {(Xa,7): a € A} be a family of disjoint spaces, let
= U Xa, and let 7 = {U: U C X and UN X, € 7, for each a € A}.
atA
Then (X, 7) is a space.
The space (X,7) in 16.4 is called the topological sum of the spaces
{(Xa,7a): a € A} and is denoted X = ¥~ X,.

Q€A
16.5 Theorem. Let {X,: a € A} be a family of disjoint spaces and let
= ¥ Xa. If f: X 2 Y is a function from X into a space Y, the f is

acA
continuous if and only if f| X, is continuous for each a € A. Moreover, each
inclusion jo: Xo — X is an open and closed embedding of X, into X.

_ ([
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16.6 Theorem. The sum of a family of paracompact Hausdorff spaces is
a paracompact Hausdorff space.

16.7 Theorem. Let X be a locally compact Hausdorff space. Then X
is paracompact if and only if X is the sum of a family of locally compact
o-compact Hausdorff spaces.

Proof. Suppose that X is the sum of a family A of locally compact o-
compact Hausdorff spaces. Then each member of A is paracompact (4.30),
and hence X is paracompact (16.6). |

Suppose that X is paracompact. Since X is locally compact, there exists
and open cover {Uy: a € A} of X such that U, is compact for each o € A.
Let {Va: @ € A} be a locally finite open refinement such that V, C U, for
each a € A. Now for each a € A, V, is compact, so that F, = {8 €
A: VaNVz # @} is finite (or @ in the case that V, = @). Let R = {(z,y) € X x
X': thereexistsVa,, Vay, ... Vo, Witha € Va,, y € Va,, and Vo, NV, # O for
J=1,2,...,n—1}. Then R is an equivalence relation on X. Let {X,: vy €T}
be the family of R-classes in X. Then each X, is open (and hence locally
compact) and X = Y X,. It remains to show that each X, is o-compact.

€r

2

Note that X, is also closed, since X\ X, is open. Now choose V;;, C X, let

Q1 =U{Va: a € Fy,} and for n > 2, let Q, = U{Va: Va N Qn-1 # @}. Note

that @y is a finite union, so that @,, is compact, X, = |J Qn and hence X,
neN

is o-compact. [ ]
16.8 Theorem. Let X and Y be disjoint spaces, A a closed subspace of
X, f: A = Y a continuous function, S = X +Y, and let p = {(a,b) €
S x S:eithera = b, f(a) = b, f(b) = a, or f(a) = f(b)}. Then p is an
equivalence relation on S.
The quotient space S/p in 16.8 is called the adjunction space obtained
by adjoining X to Y with f. It is denoted X (J Y.
(f,4)
16.9 Theorem. Let X and Y be disjoint spaces, A a closed subspace of
X, f: A=Y a continuous function, S=X |J Y, and letm: X +Y — S be
(£,4)

the natural quotient map. Then:
(1) @Y : Y — S is a closed embedding;
(2) If X and Y are compact, then S is compact; and
(3) If X and Y are connected, then S is connected.
If X is a space and {A4: a € D} is a net of subsets of X, then:

lim A, = {z € X : if U is an open set containing z, then U N A, #/ 0}

T
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and
lim A, = {z € X: if U is an open set containing z, then U N A, #° @}

If lim A, = lim A, then we say that the limit of the net A, exists and
write lim 4, = lim 4, = lim 4,.

If X is a space, then lim A, C lim A,. If X is a compact Hausdorff space
and A, is a net of closed nonempty subsets of X, then lim A, # @.

Let X be a compact Hausdorff space and let X* denote the family of all
closed subsets of X. For U and V open in X, let K(U,V) = {T € X*: T C
UandT NV # @}. Then {K(U,V): U and V open in X} is a subbasis for a
topology on X* called the Vietoris topology.

16.10 Lemma. Let X be a compact Hausdorff space and let A, be a net
in X*. Then A = lim A, if and only if Ax = A in the Vietoris topology on
0,08

16.11 Theorem. Let X be a compact Hausdorff space. Then X* with the
Vietoris topology is a compact Hausdorff space.

17 FUNCTION SPACES

If X and Y are spaces, then Y¥ denotes the set of all functions from X into
Y. Let f, be anet in YX and let f € YX.

Starting with some concept of convergence of nets in ¥* one can induce a
topology on Y by declaring that a subset C in YX is closed if whenever fg
is a net in C and f, = f, then f € C.

The net f, is said to converge pointwise to f provided fa(z) % f(z) in
Y for each z € X. This is denoted fq 3 f. The topology on Y induced by
pointwise convergence is denoted 7, and is called the topology of pointwise
convergence.

The net f, is said to converge continuously to f provided that for each
net-zs < « in X, fa(zg) = f(z) in Y. This is denoted fo <5 f. The
topology on Y¥ induced by continuous convergence is denoted 7. and is call
the topology of continuous convergence.

It is clear that if fo <5 f, then f, 5 f. A simple argument can be used to
establish that 7pc C 7ec.

Let X and Y be spaces. For A C X and B C Y, define N(A,B) = {f €
YX: f(A) C B}.

The topology on YX for which {N(z,U): € X and U isopen in Y} is a
subbasis is denoted 7, and is called the point-open topology.

__
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The topology on YX for which {N(K,U): K is a compact subset of X and
U is open in Y} is a subbasis is denoted 7, and is called the compact-open
topology.

It is a simple exercise to show that 7, C 7co-

17.1 Theorem. Let X and Y be spaces. Then 7, is the product topology
on YX.

17.2 Lemma. Let X and Y be spaces and let f, be a net in YX. Then
S f if and only if fo < f in the topology of pointwise convergence on YX,

17.3 Theorem. Let X and Y be spaces. Then 7y, = Ty, i.e., the topology
of pointwise convergenece, the point-open topology and the product topology on
YX are all the same.

If X and Y are spaces and z € X, then the function e;: YX — Y defined
by ez(f) = f(z) for f € YX is called the evaluation map determined by x.

17.4 Theorem. Let X and Y be spaces and let T be a topology on Y.
Then e, is T-continuous for every x € X if and only if 1, C 7.

Observe that e;: YX — Y is re,-continuous for each z € X.

If X and Y are spaces, then C(X,Y) denoted the set of all continuous
functions from X into Y. We will consider this in the relative topology on ¥ X
for the compact-open and point-open topologies.

17.5 Theorem. Let X and Y be locally compact Hausdorff spaces. Then
7| C(X,Y) = 7|C(X,Y), i.e., the topology of continuous convergence and
the compact-open topoolgy on YX are the same on C(X,Y).

If X is a space and (Y, d) is a metric space, then a net f, in Y is said to
converge uniformly to f € YX provided that for each ¢ > 0, there exists 4
such that 8 < a implies d(fa(z), f(z)) < € for each z € X.

17.6 Theorem. Let X be a space, Y a metric space and fo a net of
continuous functions in YX which converge uniformly to f € YX. Then f is
continuous.

Proof. Let p € X and let W be an open set containing f(p). Then
there exists ¢ > 0 such that N¢(f(p)) € W. Now there exists 4 such that
fa(z) € Ne(f(2)) for all @ € X, ie., d(fp(z), f(z)) < § for all z € X. Thus
for each « € X we have d(f(z),f(p)) < d(f(z), fa(z)) + d(fs(z), fp(p)) +
d(fa(p), f(p)) < d(fs(z), fa(p)) + %e. Since fp is continuous, there exists
an open set U in X such that fg(U) € Ni(fﬂ(p)) with p € U. Thus
d(fs(z), f3(p)) < § for each z € U. 1t follows that d(f(z), f(p)) < € for
each z € U, so that f(U) € N.(f(p)) € W, and f is continuous. [ ]

17.7 Lemma. If (X,d) is a metric space, A is a compact subset of X, and
B is a closed subset of X such that ANB = @, then d(A,B) > 0.

17.8 Theorem. Let X be a space, Y a metric space, fo a net in C(X,Y),
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and f € C(X,Y). Then fa - f in the 7., topology on C(X,Y) if and only if
falE converges uniformly to f|E for each compact subset E of X.

Proof. Suppose that fa|E converges uniformly to f|E for each compact
subset E of X. We want to show that f, % f in the 7., topology. Let N(E,U)
be a subbasic 7¢,-open set containing f, with E compact and U open. Then
f(E) C U, sothat f(E)N(Y\U) = @. Since E is compact and f is continuous,
f(B) is compact, and hence d(f(E),Y\U) = € > 0. Now there exists 3 such
that 8 < o implies that d(fa(z), f(z)) < € for every z € E. Thus f,(z) ¢ Y\U
when 8 < a for every z € E. It follows that fs(z) € U for every = € E, when
B < a, so that fo(E) C U when 8 < ¢, i.e., fo €° N(E,U). We conclude that
fa = f in Teo

Suppose that fo = f in 7. in C(X,Y). Let E be a compact subset of
X and let € > 0. Then f(E) is compact. Let {p1,p2,...,px} be a finite §-
net for f(E). Define S; = N¢(p;) and G; = N:a_.(p,') for 1 < j < k. Then

{ k s
S CGjfor1<j<k Now f(E) C U Sj,sothat EC {J f7'(S;). Let
J=1 9=1

20 k
E; = EN f7(5;) for 1 < j < k. Then Ej is compact, E = |J Ej, and
=1
f(E;) CS; C G;. Now f(E;) C Gj, so that f € N(E;,G;) for 1 < j < k. Let
k
K = [ N(Ej,Gj). Then K is open in 7,-topology and f € K. Thus there
j=1

exists 3 such that fo € K when 8 < a, and hence fo(E;) C G for 1 <j <k.

Now let z € E and let 8 < . Then @ € E,, for some 1 < m < k, so that
fa(@) € fa(Em) C Gm and d(fa(z),pm) < %; Also f(z) € f(Em) C Sm, so
that d(f(z),pm) < §. We obtain that d(fa(z), f(z)) <e. [ ]

In view of 17.8, the compact-open topology on C(X,Y) is sometimes re-
ferred to as the topology of compact convergence.

If X is a space and Y is a metric space, then a function f: X — Y is said
to be bounded provided f(X) is a bounded subset of Y.

17.9 Theorem. If f: X — Y is a continuous function from a compact
space X into a metric space Y, then f is bounded.

17.10 Exercise. Let X be a compact space and f: X — IR a continuous
function. Then there exists p,q € X such that f(p) = sup f(X) and f(q) =
inf f(X).

If (X,d) and (Y, e) are metric spaces, and f: X — Y is a function, then f
is said to be uniformly continuous if for each € > 0, there exists § > 0 such
that e(f(a), f(b)) < € whenever a,b € X and d(a,b) < 4.

An equivalent formulation for uniform continuity of f: X — Y is that for

_
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each € > 0, there exists § > 0 such that f(Ns(z)) € Ne(f(z)) for each z € X.
17.11 Theorem. Let X be a compact metric space and Y a metric space.
Then each continuous function f: X — Y is uniformly continuous.
Proof. Let € > 0. Since X is compact and f is conti , f(X) is t

n
Let {y1,2,--.,un} be a finite §-net for f(X). Then f(X) C U N: (y;) and

3 (N¢(y;)): 1 < j < n} is an open cover of X. For p € X let 6, > 0
such that Nas,(p) C f7!(Ne(y;)) for some j. Now {N,(p): p € X} is an
open cover of X. Let Ny, (pl),...,N‘g“ (px) be a finite subcover, and let
§ = min{dy,,...,0p, }.

Suppose that a,b € X and d(a,b) < §. Now a € Ng, (pi) for some i, so
that d(a,p;) < &p, and d(a,b) < d,. We obtain that d(a,b) < 26, and a,b €
Nas,, (pi). Thus f(a), f(b) € Ng(y;) for some j, and hence d(f(a), f(b)) < e.

| |

17.12 Theorem. Let X be a compact space, (Y,d) a metric space. For
f,9 € C(X,Y), define p(f,g) = sup{d(f(z),g(z)): = € X}. Then p is a
metric on C(X,Y).

The metric p on C(X,Y) in 17.12 is called the sup metric and the topol-
ogy on C(X,Y) induced by this metric is denoted 7, and is called the sup
metric topology.

17.13 Theorem. Let X be a compact space, Y a metric space, f, a net in
C(X,Y), and f € C(X,Y). Then fo converges uniformly to f if and only if
fa 5 f in the sup metric topology Tsm on C(X,Y).

17.14 Theorem. Let X be a compact space and Y a metric space. Then
Tooi=Tem 100G (X, X5);

Proof. We first show that 7o € Tem. Let N(K,U) be a subbasic 7~
open set, with K a compact subset of X and U an open subset of Y. Let
f € N(K,U). Then f(K) C U. For each p € f(K), there exists ¢, > 0
such that Na,(p) C U. Let Ne,, (P1); -1 Ney, (pn) cover f(K), and let € =
min{ep,,. .-, €p, }. We claim that Ne(f) C N(K,U). Let g € N,(f). Then

d(f,g) < e We want to show that g € N(K,U), i.e., g(K) CU. Let z € K.
Then f(z) € (p,) for some j, so that d(f(z),p;) < €,. Now d(f,g) < €
implies that d(/(r) g(z)) < € < ¢, and hence d(g(z),p;) < 26, so that
9(x) € Nag, (p;) € U. Thus 7eo C Tam:

We need to show that 7ym C Tcor Let Ne(f) for € > 0 be a basic open
sel in Tym. Let (pl,pz,”.,p,.} be an §-net for f(X) We claim that f €

n (f' (N2 (p;), N3 (p;)) € Ne(f): Now, f € ﬂ N(f~ (N5 (), N (b)),

since f[f~}(Ng(py)) = Ny (p;) € Ny (ps) for 1 <J <n.
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Letg € ﬁlN(f"(Ni(Pj))»N}(Pj)), andlet ¢ € X. Since f(X) € leN%(p,),
s 1=

we have that z € f"(N- (Pm)) for some m = 1,2,...,n, so that g(z) €

Ny(pm) and f(z) € Ne(pm) (Pm) C N:(pm) and we obtain d(9(c),Pm) <%
d(¥(z),pm) < §, and hence d(g(e), 1(x)) < 5. Since d(g(z), f(2)) < £ for
eachz € X,d(g,f) < 5<e

18 DECOMPOSITION SPACES

A decomposition of a topological space X is a collection D of pairwise dis-
joint subsets of X whose union is X.

A decomposition D of a space X is said to be upper semi-continuous
at D € D if for each open set U in X containing D, there exists an open set
V in X such that D C V C V, and if D' € D such that D' NV # @, then
D' C U. If D is upper semi-continuous at each of its members, then D is called
an upper semi-continuous decomposition of X.

Observe that a decomposition D of a space X determines an equivalence
relation on X by declaring that each element of the decomposition is an equiv-
alence class. We let X/D denote the quotient space and ¢: X — X/D the
natural map.

If D is a decomposition of a space X and V is a subset of X, denote
Dy(V)=U{D € D: D C V}. If A C X, then Sat (4) = ¢ '¢(A) = U{D €
D: DNA# 0} = X\Do(X\A).

If D is a decompostion of a space X, then the graph of D is defined
Graph(D) = {(z,y) € X x X: ¢(z) = 6(y)}.

18.1 Lemma. Let D be a decompositon of a space X. These are equivalent:

(1) D is upper semi-continuous;

(2) For each open set W in X, Do(W) is open; and

(3) ¢: X = X/D is a closed map.

If further, X is a compact Hausdorff space and each D € D is closed, then
these are equivalent to

(4) Graph(D) is closed in X x X; and

(5) X/D is Hausdorff.

A decomposition D of a space X is said to be lower semi-continuous
at D € D if for each p,q € D and each open set V such that p € V, there
exists an open set W with ¢ € W such that if D' € D and D'NW # O,
then D' NV # @. We say that D is lower semi-continuous if it is lower
semi-continuous at each of its members.

.
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18.2 Theorem. Let D be a decomposition of a space X. Then D is lower
semi-continuous if and only if the natural map ¢: X — X/D is open.

A decomposition D of a space X is continuous at D € D provided D is
both upper and lower semi-continuous at D.

Let X be a space, I' a directed set, and let {A,: @ € T'} a collection of
subsets of X. Define

limsup Aq = {& € X: @ € V open = V N A, £/ O}

and
liminf A, = {z € X: z € Vopen = V N A, #° 0}

Note that liminf A, C limsup A, and that both are closed in X.

If D is a decomposition of a space X, then for each = € X, let D, denote
the member of D containing .

18.3 Theorem. Let D be a decompositon of a space X into closed subsets:

(1) If X is a compact Hausdorff space such that for each net zo Sz in
X, limsup D, C D, then D is a upper semi-continuous decomposition.

(2) If X is a T3-space and D is upper semi-continuous, then for each net
Ta 2z in X, limsup D;, C Dy.

18.4 Theorem. Let D be a decomposition of a space X. Then D is lower
semi-continuous if and only if for each net o = z, Dy C liminf Dy, .

18.5 Corollary. Let D be an upper semi-continuous decomposition of
closed subsets of a Ty-space X. Then D is continuous if and only if for each
net T, = z in X, limsup D,, = Dy = liminf Dz, .

Let X be a space and let C'(X) denote the set of all closed nonempty
subsets of X. For open subsets U and V of X let

N(U,V)={A€C(X): ACU, ANV # O}.

Then {N(U,V): U,V (open) C X} is a subbase for a topology on C(X) called
the Vietoris topology.

We will hereafter (for the remainder of section 18) assume that C(X) is
endowed with the Vietoris topology.

If A, is a net of subsets of a space X, then we write A = lim A, to denote
that A = liminf A, = limsup A,.

18.6 Theorem. Let A, be a net of closed nonempty subsets of a space X.
Then A, = A in the Vietoris topolgy on C(X) if and only if A = lim Ag.

Recall that a continuum is a compact connected Hausdorff space.

18.7 Theorem. Let X be a space

(1) If X is Ty, then C(X) is Hausdorff;
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(2) If X is a compact Hausdorff space, then C(X) is a compact Hausdorff
space;

(8) If X is a locally compact Hausdorff space, then C(X) is a locally com-
pact Hausdorff space; and :

(4) If X is a continuum, then C(X) is a continuum.

If (X,d) is a metric space, ¢ > 0, and A C X, then N(4) = {z €
X:d(z,A) <€}

For subsets A and B of X, we define d*(A4, B) = inf{e: A C N(B) and
BCN(A)}.

18.8 Theorem. Let (X,d) be a compact metric space, then d* is a metric
on C(X) such that the metric topology is the same as the Vietoris topology.

The metric d* in 18.8 is called the Hausdorff metric on C(X).

19 FILTERS

If X is a set, then a family of nonempty subsets F of X is called a filter in
X provided:

(1) f A€ F and B € F, then AN B € F and

(2)If Ac Fand AC BC X, then B F.
A filter is closed under finite intersections and supersets.

If X is a space and F is a filter in X, then F is said to converge to z € X
provided that each neighborhood of z is a member of F.

19.1 Theorem. If X is a space and U is a subset of X, then U is open if
and only if U is a member of each filter which converges to a point of U.

19.2 Theorem. Let X be a space, A C X, and let z € X. Then z is a limit
point of A if and only if A\{z} is a member of some filter which converges to
o,

19.3 Theorem. Let X be a space, z € X, and let ®, be the collection of
all filters which converge to x. Then (\{F: F € ®.} is a local basis at z.

19.4 Theorem. Let X be a space, = € X, and F a filter in X which
converges to z. If G is a filter in X which contains F, then G converges to z.

19.5 Theorem. If X is a set and =, is a net in X, then F = {A: AC X,
and z, €° A} is a filter in X.

19.6 Theorem. Let X be a set, F a filter in X, and let D = {(z,F): F €
Fandz € F}. Define (z,F) < (y,G) in D provided G C F. Let f(z,F) = z.
Then F is precisely the family of all sets A such that the net {f(z, F): (z,F) €
D} is eventually in A.

19.7 Theorem. Let X and Y be spaces, and f: X — Y a function. Then
f is continuous at a € X if and only if for each filter F in X which converges
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to A, the filter f(F) converges to f(a).

An ultrafilter is a maximal filter.

19.8 Theorem. Let F be an ultrafilter in X.

(1) If AUB € F, then either A€ F or B€ F.

(2) If AC X, then either A € F or (X\A) € F.

19.9 Theorem. A space X is compact if and only if each ultrafilter in X
converges.




