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ABSTRACT. This review is an attempt to systematically present the problem of various
N-person Prisoners’ Dilemma games and some of their possible solutions. Thirteen
chnrsclerlstlcs of the game are discussed. The role ol‘ payoﬂ' curves, personalities, and

is investigated. We report i based on our
new agent-based simulation tool to model social situations for the case of large numbers

of not rational decisi kers. Our model has a number of usepdeﬁned
lati the

of neighborhood, the payoff (reward/penalty) functions, the learning rules, the agents’
personalities, and the initial iti ‘We have a series of si ion ex-

periments with various inations of these igations of realistic

parameters such as the size and shape of the

(non-dyadic) situations in which agents have various personalities show interesting new
results. For the case of Pavlovian agents the game has two non-trivial but remarkably
regular solutions. For a wide range of initial conditions, the number of cooperators
oscillates around a relatively small value. When the initial aggregate cooperation prob-
ability is above a certain value, the solutions tend to reach well-defined constant values
that are dependent on the initial values. For other types of agents the solutions show

haos-like behavior. les of iform distributi and mixed per-
sonalities are also presented. All solutions strongly depend on the choice of parameter
values. The paper provides some insight into the conditions of decentralized coopera-
tion in spatially distributed populations of agents.
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470 N-Person Prisoners’ Dilemmas
1 Introduction

Prisoners’ Dilemma is usually defined between two players (Rapoport and Chammah 1965)
and within game theory that assumes that the players act rationally. Reali

of collective behavior, however, require a multi-person model of the game (Schelling, 1973)
that serves as a mathematical formulation of what is wrong with human society (Hardin,
1968). This topic has great practical lmportance because its study may lead to a better

understanding of the fau:ors i or i i ive behavior within social

1 o e

systems. It r i ics I to almost every social intercourse.

Various aspects of the multi-person Prisoners’ Dilemma have been investigated in the
literature (Bixenstine et al. 1966, Weil 1966, Rapoport 1970, Kelley and Grzelak 1972,
Hamburger 1973, Anderson 1974, Dawes 1975 and 1980, Bonacich et al. 1976, Goehring and
Kahan 1976, Fox and Guyer 1978, Heckathorn 1988, Liebrand et al. 1992, Huberman and
Glance 1993, Okada 1993, Komorita and Parks 1994, Schulz et al. 1994, Schroeder 1995,
Nishihara 1997, Hegselmann 1998, Szilagyi 2001, Szidarovszky and Szilagyi 2002, Szilagyi
and Szilagyi 2002) but there is still no consensus about its real meaning.

The participants of a Prisoners’ Dilemma game may be persons, collectives of persons,
organizations, any other decisi king entities, or even computer programs. They are
usually called agents. The individual agents may cooperate with each other for the collective
interest of their society or may defect, i. e., pursue their selfish interests. Their decisions
to cooperate or defect will accumulate over time to produce a resulting collective order that
will determine the success or failure of the society.

Formal models have been proposed to simulate collective phenomena (Oliver, 1993).
Some of the models include computer s)mulatlon Feinberg and Johnson (1990) slmulnted

the effects of alternative ies on achieving for action. A
of temporary gatherings was presented by McPhail et al. (1992) Glance and Huberman
(1993) used a thermodynamical model to i i of P ion in a social

system. Epstein and Axtell (1996) demonstrated that it is possible to build complex artificial
societies based on simple participating agents.

Thousands of papers have been published about the two-agent iterated Prisoners’
Dilemma game (Axelrod 1984, Marinoff 1992, Macy 1995, Messick and Liebrand 1995).
The interest in i igating various ies for pair-wise i ions in multi-agent Pris-
oners’ Dilemma computer tournaments is amazing because — as Rapoport (1994) rightly
noted - these “tournaments demonstrated neither evolution <nor> learning because noth-
ing evolved and nothing was learned” in the succession of two-person games. Nevertheless,
the obsession with these tournaments continues (Hoffmann, 2000). Even papers that claim
the simulation of multi-agent games are usually based on dyadic interactions between the
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agents. A stochastic learning model was developed by Macy (1991) to explain critical states
where threshold effects may cause shifting the system of agents from a defective equilibrium
to a cooperative one. Nowak and May (1992) and Lloyd (1995) wrote simple computer pro-
grams that demonstrate the dynamics of deterministic social behavior based on pair-wise
interactions between the participants.
Akimov and Soutchansky (1994) i a multi-agent simulation (not a

of two-person games) but their experiment was limited to six agents. Our own simulation
tool (Szilagyi and Szilagyi 2000) was designed to simulate social dilemmas with a wide range
of user-defined parameters. It is suitable for an unlimited number of agents with various
personalities. We were able to perform i ing non-trivial experi with this tool
(Szilagyi 2001, Szilagyi and Szilagyi 2002).

This paper is an attempt to systematically present the problem of the N-person Pris-
oners' Dilemma and some of its possible solutions.

2 N-person dilemmas

The N-person Prisoners’ Dilemma considers a situation when each of N agents has a choice
between two actions: cooperating with each other for the “common good” or defecting
(following their selfish short-term interests). As a result of its choice, each agent receives a
reward or punishment (payoff) that is dependent on its choice as well as everybody else’s
(Figure 1).

The dilemma can be formulated by the following two statements (Dawes, 1980):

(1) Regardless of what the other agents do, each agent receives a higher payoff for
defecting behavior than for cooperating behavior.

(2) All agents receive a lower payoff if all defect than if all cooperate.

1f 1 of the N agents are cooperating and C(m) and D(m) are the payoffs to a cooperator
and a defector, respectively, then the above conditions can be expressed as

D(m) > C(m+1) (1)
and
C(N) > D(0) @)

C(0) and D(N) are undefined; therefore, the value of m is between 0 and N-1 in Eq. (1).
The game has N+1 distinguishable outcomes: 0, 1, 2,
cooperation.

.,N-1, N participants may choose

P e
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N-Person Prisoners’ Dilemmas

At a first glance, it looks a well-defined problem. However, at least the following

questions arise immediately:

o
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. Are the choices and actions of the agents simultaneous or distributed in time?
. Can individual agents see and adapt to the actions of others?

. Can they form coalitions?

What are the agents’ goals in the game: to maximize their payoffs, to win a compe-
tition, to do better than their neighbors, to behave like the majority, or any other
goal?

Is it a one-shot game or an iterated one? If it is an iterated game, how will the next
action be determined?

. What are the personalities of the agents? (Surely, different people react quite differ-
ently to the same conditions.) Can they change their personalities?

Can an agent refuse participation in the game?

Are the payoff curves the same for all agents?

. What are the payoff curves?

. How is the total payoff to all agents related to the number of cooperators?
. How are the agents distributed in space? Can they move?

. Do the agents interact with everyone else or just with their neighbors?

13. How is neighborhood defined?

cati
ga
gam
the

With so many open questions it is obviously quite difficult to create a general classifi-
on scheme for the N-person Prisoners’ Dilemma and there is a great variety of possible
nes. It is, in fact, a whole family of quite different games. Even in the case of a uniform
ne the number of possible variations is infinitely large because of the infinite variety of
payoff curves. In a uniform game the payoff curves are the same for all agents, they are

monotonically increasing functions of the number of cooperators, and there is some min-
imum number of cooperators that can gain by their cooperative choice (Schelling, 1973).
It is, however, desirable to investigate at least the most characteristic cases because each

possible variation may represent an important social situation.

Let us first take a closer look at each of the thirteen questions listed above.

‘Gl N
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1) There is a huge difference between simultaneous actions and actions distributed in
time. In the first case all agents see the same environment at the moment of their
simultaneous action. In most social settings, however, agents act at different and non-
correlated times. Therefore, each agent sees a slightly different world than another
agent who acts at a slightly different time (Huberman and Glance, 1993). Simulation
of this case is a more sophisticated task than that of the previous case.

—

Even if the agents’ actions are distributed in time, they may or may not have informa-
tion about the actions of others. You may look out of the window and see how many
cars are on the road before deciding if you are going to drive your car or take a bus
but you do not know how many children will be born next year before deciding if you
are going to have another child.

3) Obviously, if you do not know the other participating agents, you cannot form coali-
tions with them. Even if you know all of them, it is not certain that you can commu-
nicate with them, let alone forming a coaliti However, liti may drasticall

change the outcome of the game.

4) The agents’ goals in the game is a critical issue. The game is totally different if the
goals are different. Note that in real-life situations different agents have different goals.
It is also possible that the agents simply react to their and their neighbors’ payoffs
without specific goals.

5) The one-shot game is less interesting than an iterated one where the agents act re-
peatedly on the basis of their lities, their neighbors’ si

and the payoffs
received for their previous actions. The next choices are determined by updating
schemes that are different for different agents.

6) The lities of the agents i one of the most important characteristics
of the game. The psychological literature on the impact of personalities in social
dilemmas is summarized in Komorita & Parks (1994). It is possible but not easy
to quantify personality profiles in the traditional psychological sense. We will use the
term “personality” in the sense of decision heuristics (repeated-game strategies) in this
work, to represent the fact that different agents react differently to the same stimulus
from their environment. This is a rather primitive approach but it is still much better
than the unjustified assumption of uniform response.

F ities are usually in the literature. Szilagyi (2001) has considered
N-person Prisoner’s Dilemmas with various p lities of the participating agents.
Different agents may have quite different personalities in the same experiment. The
agents' personalities may also change in time based on the influences by other agents.
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Personalities of the agents may represent genetic as well as cultural differences between

them. The simplest and probably most important personality profiles are the following:
1. Pavlovian: its probability of taking a certain action p changes by an amount proportional
to its reward or penalty from the environment. This personality is based on Pavlov’s exper-
iments and Thorndike’s (1911) law: if an action is followed by a satisfactory state of affairs,
then the tendency of the agent to produce that particular action is reinforced.
2. Stochastically predictable: p is a constant. Such an agent is not influenced by the
environment at all. Special cases:

a) Negatively stubborn: never takes this action (p=0)

b) Positively stubborn: always takes this action (p=1)

¢) Unpredictable: acts randomly (p=0.5)

Accountant: p depends on the average reward for previous actions.

i A

Conformist: imitates the action of the majority of its neighbors.

Greedy: imitates the neighbor with the highest reward.

o

Other profiles may include properties like aggression, sensitivity, devotion, etc.

7) The iterated game may considerably change if an agent may refuse participation in some
iterations.

8) It is usually assumed that the game is uniform; therefore, the payoff curves are the same
for all agents. This condition is, however, not always guaranteed.

9) When everything else is fixed, the payoff curves determine the game. There is an infi-
nite variety of payoff curves. In addition, stochastic factors can be specified to represent
stochastic responses from the environment. Zero stochastic factors mean a deterministic
environment. Even in the almost trivial case when both payoff curves are straight lines and
the stochastic factors are both zero, four parameters specify the environment. Attempts to
describe it with a single variable are certainly too simplistic (Nowak & May 1992, Komorita
1976). As we will see, the relative position of the two payoff curves with respect to each
other does not always determine the outcome of the game. Ordinal preference is not enough
to represent the payoff functions: the actual amounts of reward and punishment may be as
important as the relative situation of the two curves.

The N-person game is a compound game (it can be reduced to a series of two-person
games) if and only if both payoff functions are linear (Hamburger, 1973). Therefore, a dyadic
tournament where every agent plays 2-person games against each of the N-1 other agents
represents only a very limited subset of the N-person game.

10) The total payoff to all agents is related to the number of cooperators but the maximum

T
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collective payoff is usually not at maximum cooperation.

11) The agents may be distributed in space in many different ways. If there are fewer agents
than locations in space or if more than one agent may occupy one location, then it is possible
that the agents move around in space and their neighborhood constantly changes.

12) The agents may interact with everyone else or just with their neighbors. In the latter
case they behave like cellular automata (Wolfram, 1994).

13) The number of neighborhood layers around each agent and the agent’s location determine
the number of its neighbors. The depth of agent A’s neighborhood is defined as the maximum
distance, in three orthogonal directions, that agent B can be from agent A and still be in
its neighborhood. An agent at the edge or in the corner of the available space has fewer
neighbors than one in the middle. The neighborhood may extend to the entire array of
agents.

To make our task manageable, in the following we will assume that the game is uniform
and iterated, the agents are distributed in and fully occupy a finite two-dimensional space,
the updates are simultaneous, the agents have no goals, know nothing about each other,
and they cannot refuse participation in any iteration. This restriction leaves the problem of
payoff curves, personalities, and neighborhood open for investigation. These are the factors
that are mostly neglected in the literature.

We will use to the role of these factors in the outcome
of the game. If the parameters are selected appropriately, the simulation will exhibit behavior
that is close enough to the behavior of real people when they are placed in a similar situation.
It should be noted that even if only three factors are considered there is a huge number of
different variations. Therefore, we can only show some characteristic examples in this paper.

3 The Model

We have developed an agent-based model for the investigation of social dilemmas with a
large number of decision-makers operating in a stochastic environment (Szilagyi and Szilagyi,
2000). Our model has three distinctive new features:

(1) It is a genuine multi-agent model and it has nothing to do with repeated two-person
games.

(2) It is a general framework for inquiry in which the properties of the environment as well
as those of the agents are user-defined parameters and the number of interacting agents is
theoretically unlimited.

(3) Although the analysis of rational agents may predict their behavior in some areas (e.g.,
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economics), biological objects and even human beings are not always rational. It seems to
us that human behavior can be best described as hastic but infl 1 by li
characteristics. In view of this hypothesis, it becomes crucially important to investigate the
role of personalities in Prisoners’ Dilemma. Our agents have various distinct, user-defined
personalities.

The participating agents are described as stochastic learning cellular automata, i.e.,

as of cellular (Wolfram 1994, Hegselmann and Flache 1998) and
stochastic learning automata (Narendra and Thathachar 1989, Flache and Macy 1996). The
cellular format describes the envi in which the agents interact. In our

model, this environment is not limited to the agents’ immediate neighbors: the agents may
interact with all other agents simultaneously. Stochastic learning rules provide more powerful
and realistic results than the deterministic rules usually used in cellular automata. Stochastic
learning means that behavior is not determined but only shaped by its consequences, i.e.,
an action of the agent will be more probable but still not certain after a favorable response
from the environment.

Szilagyi and Szilagyi (2000) describe the model in detail. We will only briefly explain
its most important features here.

A realistic simulation model of a multi-person game must include a number of param-
eters that define the game to be simulated. Our model in its present form has the following
user-defined parameters:

1) Size and shape of the simulation environment (array of agents).

2) Definition of neighborhood: the number of layers of agents around each agent that are
considered its neighbors.

3) Payoff (reward/penalty) functions.

4) Updating schemes (learning rules) for the agents’ subsequent actions.

5) Personalities.

6) Initial probabilities of cooperation.
7) Initial actions of the agents.

Our simulation i is a two-di ional array of the participating agents.
Its size is limited only by the computer’s virtual memory. The behavior of a few million
interacting agents can easily be observed on the computer’s screen.

There are two actions available to each agent, and each agent must choose between
cooperation and defection. Each agent has a probability distribution for the two possible
actions. The agents as stochastic learning cellular automata take actions according to their
probabilities updated on the basis of the reward/penalty received from the environment

e 2
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for their previous actions, their neighbors’ actions, and of the agents’ personalities. The
updating occurs simultaneously for all agents.

The updated probabilities lead to new d by the agents that are rewarded /penalized
by the envi ‘With each i the software tool draws the array of agents in a
window on the computer’s screen, with each agent in the array colored according to its most
recent action. In an iterative game the aggregate cooperation proportion changes in time,
i. e, over subsequent iterations. The experimenter can view and record the evolution of
the society of agents as it changes in time. The outcome of the game depends on the per-
sonalities of the agents. For example, agents with short-term rationality will always choose
defection, benevolent agents will ignore their short-term interests and will all cooperate, etc.

The updating scheme is different for different agents. Agents with completely different
personalities can be allowed to interact with each other in the same experiment. Agents
with various personalities and various initial states and actions can be placed anywhere in

a two-dimensional array. A variety of personality profiles and their arbitrary combinations
can be represented in the model.

The payoff (reward/penalty) functions are given as two curves: one (C) for a cooperator
and another (D) for a defector. The payoff to each agent depends on its choice, on the
distribution of other players among cooperators and defectors, and also on the properties
of the environment. The payoff curves are functions of the ratio of cooperators to the
total number of neighbors (Figure 1). The freedom of using arbitrary functions for the
determination of the reward/penalty system makes it possible to simulate a wide range of

dilemmas and other social situations, including those where the two curves intersect each
other

The number of neighborhood layers around each agent and the agent’s location deter-
mine the number of its neighbors. We do not wrap around the boundaries; therefore, an
agent in the corner of the array has fewer neighbors than one in the middle. The neighbor-
hood may extend to the entire array of agents.

We wish to emphasize again that this is a genuine multi-agent model and it has nothing
to do with repeated two-person games (Axelrod, 1984). It is well suited for simulating the
behavior of artificial societies of large numbers of agents.

4 Pavlovian agents

It s realistic and interesting to consider Pavlovian agents first. Their response is stochas-
tic but their probability of cooperation p changes by an amount proportional to their
reward h from the i (the coeffici of proportionality is called the

AT
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learning rate). These agents are primitive enough not to know anything about their rational
choices but they have enough ‘intelligence’ to learn a behavior according to Thorndike’s law.
Kraines and Kraines (1989), Macy (1995), Flache and Hegselmann (1999) and others used
such agents for the investigation of iterated two-person games. We will show below that it
is possible to accurately predict the solutions of the multi-person Prisoners’ Dilemma for
such agents.

A linear updating scheme is used for these agents: the change in the probability of
choosing the previously chosen action again is proportional to the reward/penalty received
from the environment (payoff curves). Of course, the probabilities always remain in the
interval between 0 and 1. 3

Let us assume that in a society of N Pavlovian agents the ratio of cooperators is x=m/N
and the ratio of defectors is (1-x) at a certain time. The cooperators and the defectors are
distributed randomly over the lattice. Then mC + (N-m)D is the total payoff received by the
entire society and xC + (1-x)D is the average payoff to a single agent where C and D are the
reward /penalty functions as defined earlier. This latter quantity is the so-called production
function for the collective action of the society(Szilagyi, 2000). When the average payoff is
zero, it is easy to think that nothing will happen and an equilibrium is reached. This is,
however, not true. Indeed, this situation can only happen if either C = D = 0 or C and
D have opposite signs. The first case means the two curves are crossing which contradicts
the definition of Prisoners’ Dilemma. In the second case evidently D is positive and C is
negative; therefore, the defectors are rewarded and the cooperators are punished. As a
result, the number of cooperators will decrease and we do not have an equilibrium.

Let us investigate what happens when the cooperators receive the same total payoff as
the defectors, i.e.,
2C(z) = (1 - 2)D(x) (3)

(Szilagyi and Szilagyi, 2002). This may happen if C and D are both negative or both
positive. In the first case, a small number of cooperators are punished big and a large
number of defectors are punished little. This leads to a stable equilibrium at this point. In
the second case, a large number of cooperators are rewarded slightly and a small number of
defectors are rewarded greatly. This point corresponds to an unstable equilibrium.

If C and D are both linear functions of x, then the equilibrium equation is quadratic; if
C and D are quadratic functions, then it is a cubic equation, etc. The equation generally has
up to two real solutions. If both solutions are in the interval 0<x<1, then both equilibria
are present. We will denote these equilibrium solutions p; and p;, so that 0<p; <p; <1.
The initial cooperation probability (which is set as a constant and uniform across all the

agents) is po.

e
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Let us consider the payoff curves shown in Figure 1. Suppose first that po <p;. Then
there are few agents cooperating and many agents defecting. Those agents that happened to

cooperate will be heavily punished, and their probability of ion will ly go
down substantially. As a result, some of the cooperators will become defectors. The agents
that happened to defect will be ished hat, and their bability of

will consequently go up. Because there are so many more defectors than cooperators, the
aggregate effect is that the overall cooperation probability goes up toward p;. A systematic
formal analysis of equilibria of the Pavlovian learning model in the N-person game shows
that in case of linear payoff functions and low initial cooperation rate py the value of py
cannot exceed 50% (Szidarovszky and Szilagyi, 2002).

If py <po <pa, three regions must be distinguished. Near the lower limit, the defectors
and the cooperators are still both punished but there are more cooperators now who become
defectors; therefore, the aggregate effect is that the overall cooperation probability goes down
toward p;. If the value of pg is chosen higher, we are in the region where the cooperators

are punished but the defe are ded. As a result, more will defect and the aggregate
probability of cooperation again goes down toward p;. When the value of p is even higher,
the defectors and the coop: are both ded, but the d are rewarded more

than the cooperators, so the proportion of cooperators will decrease and an equilibrium
will be reached in this region or, if the aggregate probability reaches the region of mutual
punishment, the equilibrium will occur at p; again.

The two cases above work together to keep the long-term aggregate cooperation pro-
portion stable at p;. However, since none of the agents are rewarded for always taking the
same action (always cooperating or always d ing), the probability of ion for an
individual agent varies according to the agent’s own hlstory of actions (and hence rewards)
Over the long term, every single agent acquires a distinct ion probability d
on its own history of random actions. The amplitude of the aggregate oscillation depends
on the size of the population: the larger the lation, the more effectively the oscill
of each agent's actions is 1 for by the oscillation of all the other agents’ actions.

When p; <pg there are many agents cooperating and a few agents defecting. The
agents that cooperated are rewarded; at each iteration their cooperation probability tends
toward 1. Since their cooperation probability is high, most of the cooperators continue to
cooperate. After a few iterations their cooperation probability reaches 1, and they continue
to be rewarded so they can never again defect. The few agents that happened to defect are
also heavily rewarded; this encourages them to defect. The defectors still have a fairly high
probability of cooperation, so at each iteration several of the defectors start to cooperate.
(Note that there are defé with high probability of ion and vice versa. What we
cannot have is a defector with probability of cooperation consistently = 1 or a cooperator

< AT
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with probability of coop i i ly = 0.) The few defectors that still continue to

defect will be rewarded greatly for their defection; they reach a probability of
for the duration of the 1

cooperation = 0 after which they will never
After a while, the net result is that most of the agents are cooperating with probability 1 and
are being continuously rewarded for doing so, and a few of the agents are always defecting,
have cooperation probability 0, and are being continuously rewarded for doing so. Thus, a
steady state is reached.

The two solutions are different from each other in three important ways:

1) The solution at p; is a stable equilibrium (attractor) with respect to the aggregate
cooperation proportion while the solution at py is an unstable equilibrium (repulsor).

2) The solution converges toward p; as an oscillation while it stabilizes exactly in the
p2 <po case. This is because around p; the agents are punished no matter what
they do and tend to change their cooperation probabilities over time. Therefore, these
probabilities do not converge to zero or one for any individual agent. In the latter case,
each agent in the steady state has a probability of cooperation of 0 or 1, and it is just
the proportion of agents cooperating that determines the final aggregate cooperation
proportion.

Initial aggregate cooperation proportions of pg >p2 do not result in the aggregate
cooperation proportion converging to 1, as you would expect if you think of p, as
an unstable equilibrium. This is because, for an individual agent that started off
as a defector, there is always some likelihood that the agent will continue to defect.
This probability is initially small but continues to increase as the agent is always
rewarded for defecting. If the number of agents is sufficiently large and py is not
too close to 1, then there will be some agents that continue to defect until their
cooperation probability reaches zero due to the successive rewards they have received,
and these agents will defect forever. The exception is if you start off with the aggregate
cooperation proportion equal to 1. Then no agent starts as a defector and there is no
chance of any of them defecting in the steady state.

&

The solutions can be predicted in a similar way for any situation. We have developed
for any L ion of

an algorithm that accurately predicts the final
Pavlovian agents and any payoff functions (Szilagyi and Szilagyi, 2002).

Let us define the aggregate cooperation proportion x(t) for iteration t as the ratio of
the number of agents cooperating to the total number of agents. The algorithm computes
x(t) for any value of t when the array consists of a large number of agents and each agent is
every other agent’s neighbor. The initial value of x(0) is given. If there are N agents, then
Nx(0) agents are initially cooperating and N[1-x(0)] agents are initially defecting.

e



Laszlo Kapolyi & Ferenc Szidarovszky 481

First, we take all of the agents in a given iteration of the simulation and distribute them
into a set of groups called “rows,” where each row represents agents that have exactly the
same state. Two agents have the same state if and only if they have the same probability of
cooperation and the same current action. We define a “Row” as an ordered triple indicating
the proportion of the agents described, the probability of cooperation for these agents, and
a Boolean value for the action of cooperation (1) or defection (0). Then we define a “Table”
as an array containing all of the rows for certain iteration. Table(t) returns the table that
describes iteration t. The sum of the proportions from each row of a table of course always
equals 1, so that each agent is described exactly once. A Table is essentially a complete
description of the state of all the agents in an iteration with the locations of the agents
neglected.

To compute x(t) for any t, first compute Table(t). From Table(t), we can compute x(t)
by summing up the proportions of agents in each row that describes cooperating agents.

Table(0) is as follows, based on the given information:

Row  Proportion of Agents (PA) Probability of Cooperation (PC)  Action
1 x(0) x(0) 1
2 1-x(0) x(0) 0

We can compute Table(t+1) from Table(t). This will give us Table(1) based on Table(0),
Table(2) based on Table(1), and so on, then we compute x(t) as described above. For each
Row in the old Table(t), construct two Rows in the new Table(t+1). Denote the ith Row
in Table(t) as Row(i](t). The two new Rows in Table(t+1) will then be Row(2i](t+1) and
Row[2i+1)(t+1). To create them, we first the probability of ion PC(t+1)
for both new Rows from that of the old Row by using the given update function. Denote
the proportion of agents in Row[i](t) as PA[i](t). The two new Rows of Table(t+1) then will

look like this:
Proportion of Probability of
Row Agents (PA) Cooperation (PC) Action
Row[2i](t+1) {PAG](t)H{PC(t+1)} PC(t+1) 1
Row[2i+1)(t+1) {PA[i](t)}{1 - PC(t+1)} PC(t+1) 0

Repeat this procedure for all values of i from 1 to the number of Rows in Table(t), and
we obtain Table(t+1). As noted above, creating the series of Tables for an arbitrary number
of iterations is sufficient to find the aggregate cooperation proportion x(t). As Table(0) has
2 Rows, and the number of Rows doubles whenever t is incremented, Table(t) has 2" (t+1)
Rows. Therefore, this is an exponential algorithm but we were able to compute the value of
x(t) for t=20 iterations in a couple of minutes.
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The predictions are exact for an infinite number of agents but the experimental results
of the simulation approximate the predictions very closely even for a few hundred agents
and they are in complete agreement with the above qualitative explanation.

For the experiments reported in this paper the simulated societies have 10,000 agents
each. The graphics output of Figure 2 shows the initial configuration for the case when the
initial actions of all agents are random and their initial probability of cooperation is equal
to 0.5. We see an approximately equal number of black (cooperator) and white (defector)
spots. The initial state of the system is the decisive factor that determines its future state.
This can be clearly seen from Figures 3 and 4 that show the evolution of a society for the
case when the payoff curves are given by Figure 1. The graphs show the proportions of
cooperating agents as functions of the number of iterations for different initial cooperation
ratios.

For the payoff functions of Figure 1 the solutions are p; = 0.180 (stable attractor) and
p2= 0.695 (unstable repulsor). Figure 3 refers to the case when the neighborhood is the
entire collective of agents. When the initial cooperation ratio is below p, the solution of
the game converges toward p; as an oscillation while it stabilizes exactly when the initial
cooperation ratio is above py. As explained above, the latter case does not result in the
aggregate cooperation proportion converging to 1.

The situation is different when the neighborhood is only one layer deep. In this case
each agent has maximum eight neighbors whose behavior can influence its reward/penalty.
Accordingly, the result is a more gradual dependence on the initial convergence ratio (Figure
4)

These results certainly satisfy the definition of chaos as “sensitive dependence on initial
conditions” (Gleick, 1987). It means that a perturbation to the initial state of the system will
cause the system to evolve into a different future state within a finite period of time. Thus,
a very small difference in the initial cooperation ratio leads to totally different behaviors.
This phenomenon satisfies the discussion of Eq. (3) above.

Naturally, the results are strongly dependent on the payoff functions. In case of Pavlo-
vian agents the relative situation of the two payoff curves with respect to each other does
not determine the outcome of the game. It is equally important to know the actual values
of the payoff. For example, consider the simple payoff functions shown in Figure 1. If we
shift the horizontal axis up and down, the following cases are possible:

a) Both curves are positive for any value of x. In this case only the unstable equilibrium
is possible and the solution of the game depends on the value of this equilibrium and
on the initial ratio of cooperators. When the initial cooperation ratio is below pj, the
solution of the game stabilizes at a lower value between zero and pz. When the initial
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cooperation ratio is above pa, the final stable ratio has a higher value between p, and
one.

b) The D(x) curve is entirely positive but C(x) changes sign from negative to positive as
the value of x grows. The situation is similar to case a). The only difference is that
in this case the region where both C(x) and D(x) are positive may be too narrow to
produce a solution other than total defection.

o

The most interesting case is when both C(x) and D(x) change sign. In this case both
equilibria exist and we have the solutions discussed above (Figures 3 and 4).

The C(x) curve is entirely negative but D(x) changes sign from negative to positive as
the value of x grows. Only the stable equilibrium exists. However, the region where
both C(x) and D(x) are negative may be too narrow to produce a solution substantially
different from total defection.

Both C(x) and D(x) are negative for all values of x. In this case only the stable
equilibrium exists and the solution always converges to p;.

Our experiments totally confirm these findings.

5 Experiments with Agents of Various Personalities

We have simulated the behavior of artificial societies for the case of various personalities
of the participating agents. The stochastically predictable agents have, in fact, no person-
ality. Therefore, we will not consider them in this study. For the other personality types,
remarkably interesting patterns arise even when all agents have the same personality.

A) Conformist agents

The conformist agent imitates the action of the majority. If all agents are conformists
and the neighborhood extends to the entire society of agents, then the outcome depends on
the exact relationship between the initial number of cooperators and defectors: every agent
will immediately imitate the majority and stay there. The behavior becomes quite interesting
for the one-layer deep neighborhood. In this case, while the proportion of cooperators will not
change sut ially, their distribution will. Both coop (black spots) and defectors
(white spots) will form mutually intertwined clusters (Figure 5).

B) Greedy agents

The greedy agent always imitates the behavior of the neighbor with the highest reward
this is the case i i d for dyadic i ions by Nowak and May, 1992). If all agents
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are greedy and the neighborhood extends to the entire organization, they will all defect
immediately at the first iteration because they will all imitate the defectors who received
higher rewards for their initial action than the cooperators. The situation is not so hopeless
for a one-layer deep neighborhood but the behavior will stabilize with a relatively small
number of cooperators. Interesting oscillating patterns arise when the payoff functions are
those shown in Figure 6 (see Figures 7 and 8).

C) Accountants

The accountant’s payoff depends on the average reward for its previous actions. If
initially the number of cooperators is approximately equal to the number of defectors for a
layer deep neighborhood, the result is uni I defection because the d ’ payoff
is always higher than that of the cooperators. If, however, the initial distribution is unequal,
clusters will form. Agents situated at the borders of cooperative clusters will receive smaller
and smaller payoffs. As a result, they will eventually defect, these clusters become smaller

and smaller and after several t} 1 iterations 1 defe takes over.
D) Non-uniform distributions and mixed personalities
More realistic simul must take iform distributions of different agents into

account. Consider, for example, Pavlovian agents with the payoff functions of Figure 1 for
the case when the initial actions of all agents are random but the society is equally divided
into two parts: agents in the upper half initially defect, those in the lower half initially
cooperate. Figure 9 shows the graphics output of the initial configuration for this case.

If the neighborhood is one layer deep, the upper half will be gradually infected with
cooperators (Figure 10). As the neighborhood depth is increased, a protective layer is formed
where no cooperation occurs (Figure 11). The situation is completely different when the
neighborhood is the entire society of agents. In this case change starts in the lower region
(Figure 12) and it gradually spreads into the entire society (Figure 13).

Figure 14 shows a situation when a single defector sits in the middle of the society. If
all agents are greedy, the payoff functions are given by Figure 6, and the neighborhood is
one layer deep, beautiful symmetric fractal patterns arise (Figure 15) that oscillate around
a 29% cooperation rate. It is instructional to investigate the emergence of these patterns.
As the D(x) curve is always above the C(x) curve, a layer of defectors will surround the
lonely defector after the first iteration. After the second iteration, however, the further
development depends on the actual shapes of the payoff curves. Accordingly, the result may
be universal defection, a small stable defection pattern around the center, oscillation in the
same region, or the symmetric oscillating pattern of Figure 15. If we allow a small number of
individual defectors randomly distributed among cooperators, these patterns interact with
each other and can produce other interesting patterns (Figure 16)
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The number of variations is infinitely large. We can change all the parameters simul-
taneously and mix different personalities in arbitrary ways. Figure 17 shows situations
similar to that of Figure 7 but with mixed personalities. Szilagyi (2001) reported additional
interesting cases.

6 Conclusion

The multi-agent Prisoner’s Dilemma game has non-trivial but remarkably regular solutions.
The experiments performed with our new simulation tool for realistic situations when agents
have various personalities show interesting new results. For the case of Pavlovian agents we
found two distinctly different solutions. For a wide range of initial conditions, the number
of cooperators in the society oscillates around a relatively small value. When the initial
aggregate cooperation probability is above a certain value, the solutions tend to reach well-
defined constant values that are dependent on the initial values. Universal defection occurs
only when p;=0 and pg <py or when p; is the only solution and py <<ps.

For other types of agents the show i ing chaos-like behavior. All solutions
strongly depend on the choice of parameter values. Our results show that a viable model
for the study of N-person Prisoners’ Dilemmas must be based on a more careful selection of
parameters than that offered in the literature.

The paper provides some insight into the itions of d lized ion in
spatially distributed populations of agents. However, many questions remain open. Future
research will find answers to many of them. For example, we will learn the mechanism of
cluster formation and the interactions of clusters with each other, the explanation of os-
cillatory behavior of greedy agents, the role of group size in the emergence of cooperation,
ete. As a result, the study of N-person Prisoners’ Dilemmas may lead us to a better under-
standing of some basic social dynamics, the emergence of social norms, and even may give
us some insight into the possibility of changing human behavior.
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Figure Captions
Figure 1. Reward/penalty functions for d (D) and (C). The horizontal

axis (x) represents the ratio of the number of cooperators to the total number of neighbors;
the vertical axis is the reward/penalty provided by the environment. In this figure, D(x) =
-05+ 2 xand O(x) = -1 + 2x.

Figure 2. Graphics output of the initial configuration for the case when the initial actions
of all agents are random and their initial probabilities of cooperation are equal to 0.5. There
is an approximately equal number of black (cooperator) and white (defector) spots.

Figure 3. Evolution of the game for the case when all agents are Pavlovian, the payoff
curves are given by Figure 1, and the neighborhood is the entire collective of agents. The
graphs show the proportions of cooperating agents as functions of the number of iterations.
The initial cooperation ratios from top to bottom curves are 0.90, 0.80, 0.75, 0.73, 0.71,
0.69, 0.65 and 0.00, respectively.

Figure 4. Evolution of the game for the case when all agents are Pavlovian, the payoff
curves are given by Figure 1, and the neighborhood is one layer deep. The graphs show
the proportions of cooperating agents as functions of the number of iterations. The initia]
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cooperation ratios from top to bottom curves are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65 and
0.00, respectively.

Figure 5. Graphics output of the 100th iteration for the case when all agents are con-
formists, the payoff curves are given by Figure 1, and the neighborhood is one layer deep.
The black spots represent cooperators, the white spots are defectors. The initial ratio of
cooperation is equal to 0.50, the final ratio is 0.49.

Figure 6. Reward/penalty functions for the case of D(x) = 1.65x and C(x) = x.

Figure 7. Evolution of the game for the case when all agents are greedy, the payoff curves are
given by Figure 6, and the neighborhood is one layer deep. The graph shows the proportion
of cooperating agents as a function of the number of iterations. The initial cooperation ratio
is equal to 0.9

Figure 8. A snapshot of the 1000th iteration for the case when all agents are greedy, the
payoff curves are given by Figure 6, and the neighborhood is one layer deep. The black
spots represent cooperators, the white spots are defectors. The initial ratio of cooperation
is equal to 0.90, the final ratio is 0.29.

Figure 9. Graphics output of the initial configuration for the case when the initial actions
of all agents are random but the society is equally divided into two parts: agents in the
upper half initially defect while those in the lower half initially cooperate.

Figure 10. Graphics output of the 500th iteration for the case when the initial actions of
all Pavlovian agents are random but the array of agents is equally divided into two parts:
agents in the upper half initially defect while those in the lower half initially cooperate. The
neighborhood is one layer deep.

Figure 11. Graphics output of the 500th iteration for the case of Figure 10 when the
neighborhood is ten layers deep.

Figure 12. Graphics output of the 63rd iteration for the initial case of Figure 9 when the
neighborhood is the entire society of agents.

Figure 13. Graphics output of the 100th iteration for the initial case of Figure 9 when the
neighborhood s the entire society of agents.
Figure 14. Graphics output of the initial configuration for the case when a single defector

sits in the middle of the society.

Figure 15. Snapshot of the 1000th iteration for the case when initially a single defector
sits o the middle of a sea of greedy cooperators. The payoff functions are given in Figure
6. The neighborhood is one layer deep.

Figure 16. A snapshot of the 120th iteration for the case when all agents are greedy, the
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payoff curves are given by C(x) = 6x ~ 1 and D(x) = 5x - 0.5, and the neighborhood is one
layer deep. The initial ratio of cooperation is equal to 0.90, the final ratio oscillates between
0.91 and 0.92.

Figure 17. Evolution of the game for the case when the payoff curves are given by Figure
6 and the neighborhood is one layer deep. The graphs show the proportions of cooperating
agents as functions of the number of iterations. The lower solid curve corresponds to the
case when 97% of the agents are greedy, 3% are Pavlovian. For the middle dotted curve
97% of the agents are greedy, 3% are conformists. In case of the upper solid curve 45%
of the agents are greedy, 45% of them are conformists and 10% are Pavlovian. The initial

cooperation ratio is equal to 0.9.

References

— AKIMOV, V. & SOUTCHANSKY, M., Automata simulation of N-person social dilemma
games, J. of Conflict Resolution, 38(1), (1994), 138-148.

~ ANDERSON, J.M., A model for “The Tragedy of the Commons”, IEEE Transactions
on Systems, Man, and Cybernetics, (1974), 103-105.

AXELROD, R., The Evolution of Cooperation, New York: Basic Books, 1984.

— BIXENSTINE, V.E., LEVITT, C.A. & WiLsoN, K.V., Collaboration among six per-
sons in a Prisoner’s Dilemma game, J. of Conflict Resolution, 10(4), (1966), 488-496.

~ BoNAcICH, P., SHURE, G.H., KAHAN, J.P. & MEEKER, R.J., Cooperation and
group size in the N-person Prisoners’ Dilemma, J. of Conflict Resolution, 20(4), (1976),
687-706.

- Dawes, R.M., Formal models of dilemmas in social decision-making, In Human Judg-
ment and Decision Processes (M.F. Kaplan and S. Schwartz, Eds.), Academic Press,
New York, (1975), 87-107.

- DAwWES, R.M., Social dilemmas, Ann. Rev. Psychol, 31 (1980), 169-193.

EpsTEIN, J.M. & AXTELL, R., Growing Artificial Societies, Brookings Institution
Press-The MIT Press, Washington-Cambridge-London, 1996.

FEINBERG, W.E. & JOHNSON, N.R., Radical leaders, moderate followers: Effects
of alternative strategies on achieving consensus for action in simulated crowds, J
Mathematical Sociology, 15 (1990), 91-115.




Laszlo Kapolyi & Ferenc Szidarovszky 497

FLACHE, A. & stn.uANN, Ry R‘tiambty vs. learning in the evolution of soli-
darity ks: A ional and Math: ical Theory,
5(2), (1999), 97-127.

Fracue, A. & Macy, M.W., Weakness of strong ties: Collective action failure in a
highly cobesive group, J. Mathematical Sociology, 21 (1996), 3-28.

Fox, J. & Guver, M., “Public” choice and cooperation in n-person Prisoner’s
Dilemma, J. of Conflict Resolution, 22(3), (1978), 469-481.

GLANCE, N.S. & | AN, B.A., The outbreak of ion, J. of Math. Sociol,
17(4): (1993), 281-302.

Greick, J., Chaos: Making a New Science, New York: Viking, 1987.

Goesring, D.J. & KAHAN, J.P., The uniform N-person Prisoner’s Dilemma game,
J. of Conflict Resolution, 20(1), (1976), 111-128.

Hamsurcer, H., N-person Prisoner’s Dilemma, J. of Mathematical Sociology, 3
(1973), 27-48,

Haroe, G, The tragedy of the Commons, Science, 162 (1968), 1243-1248.

Hecxatnors, D.D., Collective sanctions and the creation of Prisoner’s Dilemma
norms, American Journal of Sociology, 94(3), (1988), 535-562.

Hecsermany, R., Modeling social d) ics by cellular In C Mod-
eling of Social Processes (W.B.G. Liebrand, M.A. Nowak and R. Hagselmann, Eds.,
Sage, London), (1998), 37-64.

Heasermany, R. & FLACHE, A., Understanding complex social dynamics: A plea
for cellular automata based modelling, J. of Artificial Societies and Social Simulation,
1 (1998), 3.

Hosrmans, R., Twenty years on: The Evolution of Cooperati isited, J. of
Artificial Societies and Social Simulation, 3 (2000), 2.

Husesman, B.A. & GLANCE, N.S., Evolutionary games and
Proc. Natl. Acad. Sci. USA, 90 (1993), 7716-7718.

Keteey, HH. & GrzevAk, J., Conflict between individual and common interest
in an N-person relationship, J. of Personality and Social Psychology, 21(2), (1972),
190-197



498

N-Person Prisoners’ Dilemmas

~ Komorima, S.S., A model of the n-person dilemma-type game, Journal of Experi-

|

I

mental Social Psychology, 12 (1976), 357-373.

KomoriTa, S.S. & PARKS, C.D., Social Dilemmas, Brown & Benchmark, Madison,
WI, 1994,

Krames, D. & KRAINES, V., Pavlov and the Prisoner’s Dilemma, Theory and De-
cision, 26 (1989), 47-79.

Liesranp, W.B.G., Messick, D.M. & WiLke, H.A.M. Ebs., Social Dilemmas:
Theoretical Issues and Research Findings, Pergamon Press, Oxford - New York, 1992.

Lroyp, A.L., Computing bouts of the Prisoner’s Dilemma, Scientific American, 272(6),
(1995), 110-115.

Macy, M.W., Chains of cooperation: Threshold effects in collective action, Am.
Sociol. Rev. 56 (1991), 730-747.

Macy, M.W., Pavlov and the evolution of cooperation. An experimental test, Social
Psychology Quarterly 58(2), (1995), 74-87.

MARINOFF, L., Maximizing expected utilities in the Prisoner’s Dilemma, J. of Conflict
Resolution 36(1), (1992), 183-216.

McPHAIL, C., Powers, W.T. & TUuckeR, C.W., Simulating individual and collec-
tive action in v gatherings, Soc. Sci. Ci Rev, 10 (1992), 1-28.

Messick, D.M., & LiEBRAND, W.B.G., Individual heuristics and the dynamics of
cooperation in large groups, Psychological Review, 102 (1995), 131-145.

NARENDRA, K.S. & THATHACHAR, M.A.L., Learning Automata (An Introduction),
Prentice Hall, Englewood Cliffs, NJ, 1989.

NISHIHARA, K., A lution of N-f i " dil Ex ic Theory, 10
(1997), 531-540.

- Nowak, M.A. & MAy, R.M., Evolutionary games and spatial chaos, Nature, 359

(1992), 826-829.

OKADA, A., The possibility of cooperation in an N-person Prisoners’ Dilemma with
institutional arrangements, Public Choice, 77 (1993), 629-656.

Ouiver, P.E., Formal models of collective action, Ann. Rev. Sociol, 19 (1993),
271-300.

Famie .\



Laszlo Kapolyi & Ferenc Szidarovszky 499

Raporort, A., N-Person Game Theory, University of Michigan Press, Ann Arbor,
MI, 1970.

RaroroRT, A., Editorial J. of Conflict Resolution, 38(1), (1994), 149-151.

Rarorort, A. & CHAMMAH, A.M., Prisoner’s Dilemma, University of Michigan
Press, Ann Arbor, MI, 1965.

SeneLLinG, T.C., Hockey helmets, concealed weapons, and daylight saving, J. of
Conflict Resolution, 17(3), (1973), 381-428.

Scuroeper, D.A., Ep., Social Dilemmas: Perspectives on Individuals and Groups,

Praeger, Westport, CT, 1995.

Seuvrz, U, ALBERS, W. & MUELLER, U., EDS., Social Dilemmas and Cooperation,

Springer-Verlag, Berlin - Heidelberg — New York, 1994.

S2IDAROVSZKY, F. AND SZILAGYI, M.N., An Analytical Study of the N-Person Pris-

oners’ Dilemma, Southwest Journal of Pure and Applied Mathematics, 2002.

Iationghi i

Sziacyl, MN,, Q between action and Prisoners’
Dilemma, Systems Research and Behavioral Science, 17 (2000), 65-72.

Sziacyl, M.N., Solutions to Realistic Prisoners’ Dilemma Games, Proceedings of
the 2001 IEEE Systems, Man and Cybernetics Conference, TA12/2 (2001), 841-846.

SziLaGyr, M.N. AND Sz1LAGYI, Z.C., A tool for simulated social experiments, Sim-
ulation, 74:1, (2000), 4-10.

S2ILAGY1, M.N. AND SzILAGYI, Z.C., Nontrivial Solutions to the N-Person Prisoners’
Dilemma”, Systems Research and Behavioral Science, 19 3, (2002), 281-290.

THORNDIKE, E.L., Animal Intelligence, Hafner, Darien, CT, 1911.

WeiL, R.L., The N-person Prisoner’s Dilemma: Some theory and a computer-oriented
approach. Behavioral Science, 11 (1966), 227-234.

Worrram, S., Cellular Automata and Complexity, Addison-Wesley, 1994.



