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Summany. In this paper o p discrete-ti model is
where the savings are proportional to income and the investment demand depends on
the difference between the current income and its exogenously assumed equilibrium
level. through a nonlinear S-shaped increasing function. The model proposed can be
seen s & particular case of a general class of business cycle models, known as Kaldor-
type models, which are characterized by the fact that the investment demand also
depends on the capital stock (and this assumption is usually considered the main re-

for the of ||t havi of income and capital). The
resulting model is described by a dynamical system in income and capital whose time
evolstion s given by the iteration a two-dimensional map of triangular type: this
means that one of the components of the map, namely the one driving the income
wvaltion. & an independent one-dimensional map. Due to the particular triangular
strvetare of the system, the asymptotic dynamic beh and the bifi can
be completely described starting from the properties of the associated one-dimensional
map. The dynamic behaviors of the model are explored under different ranges of the
main parameters, such as the firms' speed of adjustment to the excess demand and
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the propensity to save. Although our exercise shows that the basic dynamic scenario
is given by a situation of bi-stability, i.e. coexistence of two stable steady states, the
existence of more complex dynamics is proved, for sufficiently high values of the ad-
Justment, parameter. The offects of the switching to the regime of noninvertibility of
the map on the basing' structure are considered, together with the bifurcations which
modify the structure. Morcover, some bifurcations which change the qualitative prop-
erties of the attracting sets are analyzed, in particular a global (homoclinic) bifurcation
which causes the transition from a situation of bi-stability to a regime characterized
by wide chaotic oscillations of income and capital around their exogenously assumed
equilibrium levels, i.e. a typical situation of irregular business cycles,

1 Introduction

Since the early attempts, made in the years 1930s-1940s, to describe and understand the busi-
ness cycle, that is, the presence of self-sustained oscillations of the main economic variables
(income, capital, inflation rate, ...), several economists became aware that the complexity of
these phenomena could only be explained by the use of nonlinear models.

One of the first, and simplest, nonlinear models of the business cycle was proposed
by Kaldor [8], who assumed nonlinear investment and savings functions, and explained the
economic fluctuations as a consequence of the long term “shifting” of the investment demand
curve caused by changes in the capital stock (see also [6]). This kind of dependence of the
investment demand on the capital stock, together with the nonlinearity of the investment
function or the savings function, has generally been considered, in the literature on Kaldor's
model, as the basic structural requi for the exi of self- ining cycles (see [2],
(8-

Our starting point is a particular discrete-time Kaldor-type model, proposed in [18] and
investigated in its general dy beh in [5], where the savings are assumed propor-
tional to the income and the investment demand depends both on the income, through a
nonlinear S-shaped increasing function, and on the capital stock, through a linear decreas-
ing function. Such model, which can ultimately be redumd to a two-dimensional dynamical
fl jons for certain ranges

system in income and capital, is able to g
of the parameters.

In the present paper, we wonder what happens if the main Kaldorian assumption, |
e. the dependence of the investment demand from the capital stock, is neglected. As we
shall see, in this case we get a discrete-time dynamical system described by the iteration of
a map of the plane of triangular type. Its analysis constitutes a pedagogical tour through
the properties of triangular maps, i.e. two-dimensional maps which have the peculinrity
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that one of their components is decoupled from the other, so that it is an independent
one-dimensional map. As shown in (7], the particular structure of such maps implies that
the asymptotic dynamics, as well as the bifurcations, can be deduced from the associated
one-dimensional map.

We show that, for economically meaningful values of the parameters, the model has
thres steady states, and we study the infl of the main like the propensity
{0 save and the firms' speed of adjustment to the excess demand, on the local stability of
the equilibeia. The basic dynamic scenario of the model is given by a situation of bistability,
where two stable steady states coexist: one characterized by a low level of income and
capital (poverty steady state) and one by a high level of the dynamic variables (wealth

steady stote), each with its own basin of i In the of bistability, the
question of the delimitation of the basins of the isti ing sets lly arises.
The lar map d, whose i ion gives the time evolution of the model, is

invertible or noninvertible according to the values range of the parameters, and we show
how the dynamic behaviour of the system is deeply influenced by the switching to the
regime of posinvertibility of the map. This leads to an increasing complexity not only in
the nature of the attracting sets but nlao in the structure of their basins of attraction. In
fact, although in the li on ly ical systems applied to economic models
the term complenity is generally related to thu structure of the attractors, in this paper we
also stress the presence of a different kind of complexity, related to the structure of the
basins. This kind of complexity has been rather neglected in the literature, mainly because
It roquires an analysis of the global properties (i.e. not based on the linear approximation) of
the dynamical systems and the global bifurcations that change the qualitative structure of
the basine are usually detected through geometrical and numerical methods. Here we show
how the fact that the map driving the dynamics may be noninvertible for certain ranges of
the parameters plays an important role in the creation of complex topological structures of
the basins.

Finally, a particular global bify ion is analyzed, which marks the switching from a
dituation of bi-stability, where the phase-plane is shared between the basins of two coexisting
attracting sets (ludy states, periodic orbits or even chaotic attractors) to a regime of more

complex d ) 1 by chaotic oscil v behaviour. This proves
that endogenously driven oscillations can also be obtained without what is considered the
main kalds ie. the d ! of i on capital stock.

The paper is organized as follows. In section 2 we describe the model and discuss the
underlying sssumptions. In section 3 we analyze the main properties of the two-dimensional
map driving the dynamics, such as its triangular structure, its symmetry, the existence of
fixed points and the conditions for their local stability, the conditions for the invertibility
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or non invertibility of the map. In section 4 we discuss the role of noninvertibility in the
creation of complex topological structures of the basins of the attracting sets. In section 5 we
analyze the local and global bifurcations causing the transition to more and more complex
luding remarks are ined in section 6.

asymptotic dy ics. Some

2 The Model

The model we consider is a particular case of a Kaldor-type business cycle model proposed
in (18] and investigated in its general dynamic behaviour in [5]. The model studied in [18]
and [5] starts from a well known discrete-time version of the Kaldor model (see e.g. (3], [11],
[2)):
{ Yepr —=Ye=a(l. - S) (a) )
K =(1-8)Ke+ 1 (b)
where the dynamic variables Y; and K, represent, respectively, the income (or output) value
and the capital stock in period ¢, a (a > 0) rep: an adj measuring
the firm’s reaction to the spread between demand and supply, the pnmmnler d(0<d<1)
represents the capital stock's depreciation rate, I, = I(Y:, Ky) is the investment demand in
period £ and S; = S¢(}2) represents savings in period ¢.

In the seminal paper by Kaldor (8], as well as in many other papers which formulated
the same model in terms of dynamical systems (see, for instance, (2], [3]) the business
cycle is rey 1 by ly driven oscill: of income and capital, which are

L ially lained by the following }

(i) at least one of the functions / or S are nonlinear (in particular, sigmoid-shaped);
(i1) I is a decreasing function of K.

Let us discuss the role of assumptions (i) and (ii). As it is well known (see, for instance, [6]),
under the simple ion that the i demand /; is ind dent from the capital
stock Ky, ie. 01,/0K, = 0, and that both I, and S, are linear increasing functions of ¥y,
with dS/dY > 01/9Y, the system is globally asymptotically stable, while by introducing

I ities into the i demand curve, for example by assuming that /; is a
sigmoid-shaped function of Y;, we may have a situation of bi-stability: Figs. Ja and Ib
qualitatively represent the income adjustment process in case of disequilibrin (captured by

eq. (1a)), in the linear and nonlinear cases.

The essential dynamic feature that enables the model to display cyclical behaviour
is assumption (i), which causes the long term shifting of the investment function as a
consequence of changes in the capital stock, as qualitatively described by Kaldor in (8] By
assuming that the investment demand curve shifts downwards (resp. upwards) when the

Vi )



.

Roberto Dieci, Gian-Italo Bischi & Laura Gardini 371

{neome, and consequently the capital stock, i (resp. d ), eyclic of
the level of income and capital may occur, as qualitatively shown in Fig. 2 (for an economic
Justifieation of these assumptions, see again (6], pp.122-129).

linear investment function

~

S
/
¥ (a)

)

S-shaped investment function

(b)

) 4

Flgure 1: Effect of the itroduction of nonlinearities into the mvestment function.
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Figure 2: “Shifting” of the investment function causing endogenous oscillations i income
and capital.

In particular, in the form proposed in [18] savings are assumed, as usual, proportional
to income:

S =0oY:, (2)

(T
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where the coefficient @ , 0 < o < 1, represents the propensity fo save. On the other hand,
{nvestment demand s assumed to be an increasing and sigmoid-shaped function of income
and o linear decreasing function of capital stock:

L=ap+7y (% - I\',) -+ arctan(Y; — p) , (3)

where 4 ks & positive parameter, 4 (4 > 0) is the exogenously assumed equilibrium level of
Income and therefore op represents the equilibrium level of savings (and also of investment
demand), while o/ is the equilibrium capital stock. As usual in Kaldor business cycle
models, one or three steady states may exist: in this latter case, besides the exogenously
assumed equilibrium P = (p, 0p/8), two more steady states exist, a “wealth” equilibrium
Q. charaeterized by high equilibrium levels of income and capital, and a “poverty” equilib-
rum R, with low levels of income and capital. As shown in [5], a large variety of dynamic
behaviours can occur: in particular the model is able to generate regular endogenous oscil-
lations azound the equilibrium P,

In the present paper we are interested in what happens if we neglect assumption (ii),
by assuming that the investment demand curve is not affected by changes in the capital
stock, e @1/OK = 0. This assumption is usually described in the literature as leading to
a simple situation of bi-stability. However, as we shall see, complex dynamic phenomena
are possible also in this case, and the complexity is related, on one hand, to the asymptotic
dynamies, te to the nature of the attracting sets, and, on the other hand, to the structure
of their basins of attraction,

By setting 5 = 0 in eq. (3) and substituting into the system (1), the model ultimately
teduees to the following two-dimensional dynamical system in income and capital:

41 = Yy + aop + aarctan(Y; — p) — acY; (a) (1)
Kga = ap + arctan(Y, — p) + (1 = 8) K, (b)

The study of the dynamical properties of the system (4) allows us to explore the long-run
behavious of income and capital stock, starting from a given initial condition.

3 Some General Properties

As desenibed at the end of the previous section, the time evolution of income and capital is
obtained by the iteration of o two-dimensional nonlinear map T : (i, K¢) — (Yewr, Kiga)
glven by

T Y'= (1 = ao)Y + aop + aarctan(Y - ) (a) -
K'= (1= 68)K + au + arctan(Y — ) (o) " )
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where the symbol ' denotes the unit time advancement operator, that is, if the right-hand
side variables are income and capital at time £,then the left-hand ones represent income and
capital at time ¢ + 1.

We shall now describe some properties of the map T, that is, the triangular structure of
the map, the particular structure of the second component (5b), the existence of fixed points
and their local stability analysis, some symmetry properties and the role of non invertibility
of the map. In order to analyze these properties, we briefly recall the meaning of some
terms, which will be used in the following.

Let A be a subset of the plane. We say that A is a trapping set of T' (or T is trapping
on A) if T(A) C A (that is if A is mapped into itself by T); T is invariant on A (or A is
invariant by T) if T(A) = A, i.e. if A is trapping and for any y € A there exists x € A such
that T(x) = y. A p-cycle of T' is a periodic orbit of T of least period p, p > 1. A p-periodic
point of 7' is a point belonging to some p-cycle of T

In the following, by DT(Y, K) we shall denote the jacobian matrix of the map 7', by
T, n 2 1, the n-th iterated of the map T and by DT"(Y, K) the jacobian matrix of the
map T™.

3.1 The triangular structure of the map

We can observe that the first component of the map T does not depend on K the map is
therefore a triangular map, characterized by the following structure:

X Y'=F(Y) (a)
&g { K'=G(Y,K) (b) ©

This means that the dynamics of the income Y are only affected by income itself, being
Yier = F(Y}), whereas the time evolution of the capital stock is also influenced by the
income, being Ky = G(Y;, K¢). By using the terminology of the engineering systems (see
eg [19]) we may say that the one-dimensional system (6a) is the “driving system” and the
capital stock is “driven” by the income dynamics'. As a consequence, the dynamics of the
map T is deeply influenced by the dynamics of the one-dimensional map ¥’ = F(Y). In
particular, many of its bifurcations are associated to those of the one-dimensional map Y/ =
F(Y') and all the cycles of 7' stem from cycles of F. Moreover, since the jacobian matrix of
the map T, given by:

DT(Y,K),[“"THN oy —ao 0 ] ()

Y =) 1-§

o the physical and engineering literature triangular maps ase often referred 1o as shew products
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s lower trlangular, it can't have complex eigenvalues and thus the occurrence of regular
acillations, similar to those usually observed in Kaldor-type models, is ruled out.

Let us besefly recall some useful properties of two-dimensional triangular maps (for a
wider discussion see (0], [10], (7).

Property 1 The eigenvalues of DT'(Y, K) are always real, given by 2, = F'(Y) and
2= Gx(Y,K). Any fixed point of T'is therefore either a node or a saddle.

Property 2 The eigenvalues of DT™ (Y, K), for any integer n > 1, are real. Any cycle
of T ls therefore either a node or a saddle. If C, = {(Yi, Ky), i = 1,2,...,p} is a p-cycle of T,
the eigenvalues of the cycle (i.e. the eigenvalues of the jacobian matrix of 77 in any point
of the cycle) are given by: 2, =[]0, F'(Y) and 2 = [[f., Gk (¥i, KJ).

Property 3 Let G = {(Y;, K), i = 1,2,..., p} be a p-cycle of T; then {(Y1,Y2,..,, Y} is
& periodic orbit of the one-dimensional map F of least period r where r is such that rm = p
for some integer m > 1.

Property 4 Let (Y, K;), i = 1,2, ...,p, be a point of a p-cycle of T and (Y;, K) a point
on the vertical line ¥ = Y; then there exists some integer m > 1 such that 77 (Y;, K), where
£ = p/m, Is trapping on the line Y = Y, and may be considered a one-dimensional map of
the state variable K.

In pasticular Property 4 implies that:

11) no point on the vertical line Y = Y; can belong to the stable set of some other cycle
of T with periodic points all outside that line;

12) any p-periodic point of 7' must belong to trapping (for some 77, with rm = p, m > 1)
vertical lines ¥ = ¥, where Y| is a r-periodic point of the one-dimensional map F

13) G, = {(¥y, Y5, .., Y; ) is an r-cycle of the map F and a p-cycle C, of 7' exists, on the
vertical Bines Y = Y, i = 1,2, ...,7, of period p = rm for some integer 1o > 1, then the
eigenvalue 2, of the p-cycle Cp is related to that of the r-cycle C, of F' (let's denote it
by r) as follows: 3 = 7™,;

M) If & peycle G, of the two-dimensional triangular map T is a saddle with |z| =
[Ty FO%)] > 1 and [2] = |[T%, Gx(¥i, K| < 1., then the points of the local
stable set of C, belong to the vertical lines through the periodic points.

Property 5 1{C, = {(Y1,Ya, .., Y} is an r-cycle of the map F, then the restriction of
the map 7 to any of the vertical lines Y = ¥;, i = 1,2, . r, is trapping on that line. If the
rieyele of F i attracting (resp. repelling) then the vertical lines ¥ = Y, i = 1,2, ..., r, are
attracting (resp. repelling) for 7.
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As far as the bifurcations of the map 7" are concerned, it is easy to see from the above
properties that any bif jon of the di jonal map F gives a bifurcation of T
In particular, a fold bifurcation of F' creates a couple of cyclical trapping lines of T {one
repelling and one attracting). At a flip bifurcation of a cycle of F, trapping cyclical vertical
lines from attracting (for T) become repelling and new cyclical attracting lines are created.

Finally, it is well known that if the two-dimensional map 7 is an endomorphism, with F
and G continuously differentiable, the locus LC_; of T is generally given by det DT(Y, K) =
0. Therefore, for a triangular map the following property holds.

Property 6

The locus LC_; of the phase plane is made up of curves LC_; o, and LC_; 4 such that:
(i) LC_, 4, ure vertical lines of equation ¥ =c_; 5, , where ¢y o, satisfy F'(cy 0, )= 0;
(1) LC_y 4 is the locus G (Y, K) = 0.

The critical curves LC 4, = T"*'(LC-; 4,), for i > 0, belong to vertical lines z = ¢4,
where ¢ o, = F*(c_y 4,) are critical points of F(Y).

3.2 The structure of the second component of the map

It can be noticed that the second component of the map (5) is separable with respect to the
variables ¥ and K and linear in /X, i.e. it has the following structure:

K'=(1-8K+I(Y), (8)
where I(Y) = op+arctan(Y — p) is the investment demand function. This implies that also
the second component of 7-th iterated of the map T7, r > 1, has the same structure. More
precisely, it is easy to prove by induction that the map 77 (r > 1) has the following form:

o) ()
K= (1= 6K + $hoy (1= ) *1(F*-)(¥)) (b)

(9)

From the analytical expression (9) of the map 7™ we can easily conclude that the fixed
points and the cycles of the map (5) can only be stable nodes or saddles. This is due to the
fact that one of the cigenvalues of the Jacobian matrix of the map 77 is constant and equal
to(1-8)"<1.

Moreover the triangular structure, together with the lincar structure of the second
component, enables us to formulate the following

Pr ition 1 The stable fold W* of a saddle cycie of T 15 made up of the lines of
equation Y = Y,, where Y;, i = 1,2, ...,r, arc the periodic pownts of the corresponding cycle

P )
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of the one-dimensional map F, and of the lines of equation Y = Y_;, where Y_j, j=1,2,..,
e the preimages of any rank of the periodic points.

Proof Since T is o triangular map we know (from the implication 14 of Property 4)
that the points of the local stable set of a saddle cycle belong to the vertical lines through
the periodic points. We can conversely easily show that, for our particular map, any point
oo these vertical lines belongs to the stable set. In fact, let (Y*, K*) be a point belonging
10 » saddle eycle for the map T, where Y'* is a r-periodic point of the map F. Since Y* is a
fixed potnt of the one-dimensional map F7(Y), i.e. F*(Y*) = ¥*, we can see from (9) that
& point (¥*, K) is mapped, after r iterations into the point (¥, K') of the same vertical
line ¥ = ¥*, where:

r

K'=(1=8)"K + 3 (1-8) " I(F*~'(¥")) . (10)

aml
This means that the trajectory obtained by iterating the map T (which is constrained
10 move on the trapping vertical line Y = Y* due to Property 4) is driven by the one-
dimensional linear map (10), having the only fixed point:
Ko Zam (L= O I(FN(Y))
1=(1=8)" E

globally stable. The speed of the dynamics of the map 77 on the vertical line Y = Y* is
alfected by the depreciation rate §, 0 < § < 1: the higher is § the faster is the convergence
1o the fixed point.

Finally, the points with coordinates (Y. , where Y2, is a preimage of rank-j of Y* are
mapped, after ; iterations, into a point (Y*,e) on the vertical line ¥ = ¥"*. This completes
the proof. O

3.3 Fixed points

The equiliberam points (or steady states) of the map T are the solutions of the algebraic
system:
op+ arctan(Y — u) = oY =0
op -+ arctan(Y — p) = 6K =0
obtained by setting ¥’ = ¥ and K’ = K in (5). The system can be rewritten as:
{ K=%Y (a)

oY = ) = arctan(¥ — ) (b) (e

It i tzvwiad 10 realize that the steady states are independent from the firms’ adjustment
parameter o. The first equation says that the fixed points belong to the line K = §Y in the
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phase-plane, and from the second equation we have that the Y-values (which are the fixed
points of the one-dimensional map F) can be obtained s intersections of the two curves of
equation f(Y) = a(Y - p) and g(Y) = arctan(¥ — u). It follows that if o > 1, the system
(11) admits the point P = (u1,4%) as unique solution, while in the case 0 < o < 1 three
solutions exist, the point P and the points @ and R . which are symmetric with respect to
P. Of course, since o represents the propensity to save and the case 0 < o < | includes the
interval of values of interest for us, the case of three fixed points is the only one economically
meaningful. The explicit coordinates of the fixed points Q and R cannot be written. We
can numerically compute them as (Yg, §Yg) and (Yg, §Yr), where Yg and Yy are obtained
from the second equation in (11) and Yg = 2u — Yg due to the symmetry property, as
described in the next section.

3.4 Symmetry property

It is worth noting that the map T' is symmetric with respect to the fixed point P = (4, u%)
This means that symmetric points are mapped into symmetric points (with respect to F)
Denote by F(Y) and G(Y, K) the two components of the map 7'

F(Y)=(1-ao)Y + aou + aarctan(Y - ) ,
G(Y, K) = (1 - 8)K + op + arctan(¥ — p)

and observe that the symmetric of the point (Y, K) with respect to P is the point (2 -
Y,2% — K). The above property, which can easily be verified, can be formalized as follows

F(2u—-Y) =2u— F(Y)
GEp-Y,2% -~ K) =24 -GV, K) ,

or better, by denoting with S(Y, K) = (2u = ¥, 25 ~ K) the symmetry with respect to the
fixed point P = (i, u§):

S(T(Y,K)) =T(S(Y,K))  ¥(Y,K).

This implies that a cycle of T is either symmetric with respect to P or admits & sym-
metric cycle, as stated by the following

Proposition 2 Let C= {(Y1, K1), ..., (Y5, Kp)} be @ cycle of T of period p > 1. Then
- cither S(C)=C
- or S(C)=C'#C

where ' = (S(Y1, K1), ... S(Yy, K} s another different cycle of T, of the same period
p, with periodic points which are symmetric with respect to P of the periodic points in C.
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4.5 Local stability analysis of the fixed points

Lt us now turn to the local stability of the fixed points P = (3, u%), Q = (Yg, §Yq) and
R = (Yx. §¥n). The local stability analysis of a fixed point can be generally carried out by
studying the localization of the lues of the Jacobian matrix in the complex plane, and
it fs well known that a sufficient condition for the local stability &s that both the eigenvalues
are inaide the unit circle in the complex plane. The triangular structure of the map T'
simplifies our analysis, since the Jacobian matrix (7) of T has real eigenvalues, located on
the main diagonal, given by: z,(Y)-l+mﬂ_—m —~ao, m=1-6 with0< 2 <1,

The first eigenvalue of the fixed point P = (u,pu%), & 2(P) = 1 4 a(l - ¢). Since
2 (P) > 1 for the ranges of interest of the parameters, we can conclude that the fixed point
P s always & saddle. The results about the nature of the fixed points Q and R and their local
stability asalysis (it's enough to consider only one of them, since the symmetry property
Implies DTI(Q) = DT(R)) are summarized by the following proposition which defines the
stability region in the paramoters space Q= {(a,0) € R¥a > 0,0 <o < 1}.

Proposition 3 The equilibria Q and R are stable nodes for each (o, 0) in the region ,(Q)
defined as:
U(Q) = {(a,0) € Qla < ayla)} ,

where: agle) =2/ {0 = [1+ (Yo = p)*|~'} > 2. Outside this region, Q and R are saddles,
Proof. Let us consider the fixed point Q. We can rewrite the first cigenvalue as:
£(Q) = x(R) =1 -alo - u(¥g)] ,

where: u(Y) = (14 (Y = p)*)~'.

We already know that the fixed points of the map T are either stable nodes or saddles,
Sines 0 < 23 < 1, Q is stablo iff [2(Q)| < 1, i.e.:

a > u(Yy) (a)
{ o< 2/a+u(Yg) (b) (19)

Recalling condition (11b), we notice that for a fixed i the equation:
o(Yg - p) ~arctan(Yg - p) =0 (Yg>p 0<o<l) (13)

implicitly defines the income oquilibrium level Yo as a (differentiable) function of the pa-
tameter @ By denoting with (o, Yq) the left-hand side of (13), from the implicit function
theorems we have:

Qgrle(nle) | Yo—R

da hyg(a,Yg) o - u(Yg)

T e—
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Since it can be proved through simple geometrical considerations that the income equilibrium
value Yg is a strictly decreasing function of o, it follows that o — u(Yg) > 0 and therefore
condition (12a) is always satisfied.

Condition (12b) can be rewritten as:

s ; = ay(o)
o-u(Yg) !
Since 0 < u(Yg) = (1 + (Yo = u)*]~! < 1 and condition (12a) holds, it follows that
0 < ¢ — u(Yg) < 1 which implies: ay(a) > 2. Of course, for a > ay(a), the fixed point Q
is a saddle. O

It is worth noting that the only way the fixed point @ (and thus R) can lose stability
is through a bifurcation with z)(Q) = —1, i.e. a flip (or period doubling) bifurcation, where
the stable fixed point becomes unstable (a saddle in our case) giving rise to a stable cycle
of period two. The determination of the flip-bif ion curve of the fixed points Q and A,
in the parameters’ plane £, can only be done through numerical evaluation of the quantity
ay(o) = 2/[o — u(Yg)):

This curve and the region of local stability of @ and R in the parameters space () are
represented in Fig. 9.

3.6 Invertibility conditions

For some regions of the parameters’ space the map 7' is a noninvertible map of the plane. This
means that while starting from some initial values for income and capital stock, say (Yo, Ko).
the iteration of (5) uniquely defines the trajectory (¥; , Ky) = T'(Yp, Ko), ¢ = 1,2, .., the
backward iteration of () is not uniquely defined. In fact, a point (Y, K') of the plane can
have several rank-/ preimages.

As we already pointed out, many of the properties of the map at study are related to
those of the one-dimensional map:

Y' = F(Y) = (1 - a0)Y + aop + asrctan(y - 1)

it can be immediately proved that the two-dimensional map 7" is invertible if and only if
the one-dimensional map F is. It is worth noting that this property is not simply due to
the triangular structure of the map 7" but also to the fact that the sccond component of 7',
i.e. the function:

GY,K) = (1 =8)K +ap+ arctan(y - p) ,

is linear in K

T
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Turning to the conditions under which the one-dimensional map F()) is invertible, it
s eaay o show that a point Y’ has a unique preimage if and oaly if ao < 1, while in the
opposite case, oo > 1, a point may have one, two, or three different preimages. In fact, in the
ponlnvertibility case ao > 1, F is o bimodal map with a local minsmum point, critical point
of k0 denoted by €.y, and a local maximum point, eritical pownt of rank-0 denoted by

€.p 0, Where:
o a
r-u.--u-,/ﬁ—l: c-n,u-u+‘/w_|—l. (14)

The exitieal points of rank-1 are given by their images:

em = Fle-ym) i ear = Fle-yar)

Thus the points Y with Y < ¢,, or Y > ey have a unique preimage, the points satisfying
Cuw = ¥ < e have throe distinct preimages, each of the points ¥ = ¢, and Y = cp hos two
peeimages which merge in o critical point together with a second distinct preimage, called
cxtru-prevmage.

1f we comssder again the two-dimensional map T, we can immediatoly see that if Y s o
point with theee (resp. one, two) preimages for the one-dimensional map /', then the whole
vertical Bae for this point has three (resp. one, two) preimages for the il | map
T Thus, following the notation used in [15], we have that the map 7' is, for ao > 1, of the
so-called type 2, = Zy ~ Zy, which means that the phase plane s subdivided in different
reglons £, (5 = 1.3) oach point of which has j distinct rank-1 presmages. The critical curves
of rank- 1, desoted by LC, generally bound such Z; regions, and are defined ax the locus of
paints having at loast two merging rank-1 preimages; for the map 7, LC is thus given by
the two wertical lines:

Ymen Y =cy
The locws of merging rank-1 proimoges, which constitutes the critical curve of rank-0, de-
nated by L. s made up of the two lines:

Y=com,Y=cawn
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The region of noninvertibility of the map in the space £ of the paramotors o and o §
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4  Some Effects of Noninvertibility
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Flgure & Sunation of bi-stability with a simple bosins” structure occurring when the map
dirmwimg the system s invertible.

Iy oue msssserical explorations we shall fix the exogenous equilibsium level of the income
at the valwe = 100, and the depreciation rate of capital at the salve § = 0.2, This latter
Asumption s without loss of gencrality, because the stability property of the equilibrium
points and of the cycles of the map doesn't depend on § and the same qualitative dynamics



384 Routes to Complexity in a Macroeconomic Model ..

as those commented in this section can be obtained with a differont value of 4, 0 < § < §
In the space N2 of the parameters a and o we shall follow the particular path obtained
by assuming the propensity to save o as fixed at the value 0 = 0.25 and increasing the
adjustment parameter a,

In Fig. 4o, obtained with o = 3, we show the basins of attraction 5(Q) and B(R) of
the two stable nodes @ and R, separated by the stable manifold of the saddle P, which.
as we know from Proposition 1, is the vertical line of equation ¥ = ;. Fig. b shows how
this situation of bi-stability is related to the shape of the one-dimensional map £ here it
i evident that the initial conditions Yp, with ¥y < 4, originate trajoctories converging to
Y. while the initial conditions Yy, with ¥g > p, originate trajectories converging to Yy
This means that an cconomic system with a low (resp. high) initial level of income will
maintain these characteristics over time and will converge to the “poverty” steady state
(resp. “wealth” steady state).

The simple structure of the basins shown in Fig. Ja changes as soon as the map enters
the regune of noninvertibility, i.e. for a > 1/0 = 4. The basins of the two fixed points Q and
A become non connected and structured in vertical strips and the stable manifold of the
saddle P, which separates the basins of Q and R, is now made up of several vertical lines

see Fig 5a). In foct, in the regimes in which the d | map F is ke,
the fixed point P of the map T has three different preimages, P itsolf and two more points
symmetric with respect to P, say Py and P_y 3 (as well a8 ji, ji_ )y, pi-) 3 are the proimages
of the fixed point 4 of the one-dimensional map F: see Fig. 5b). Then by Proposition 1 the
stable manifold of the saddle point P is made up of the vertical lines of equation ¥ = 5,
Y = poga, Y o= poy and of the lines of equation ¥ = poyjand Y o= o5 n= 2,3,
where iy, 3 and iy, 3 are the preimages of rank-n of 4 (some of which are reprosonted in
Fig 58). The basins of the equilibria Q and R in Fig. Sa are then made up of infinitely
many disjoint vertical strips as well as in Fig. 55 the basin of each equilibrium is given by
infinitely many disjoint intervals.

From an economic point of view, the new structure of the basins created by the switching
to the noninvertibility regime means that also economies with a high (low) initial lovel of
income may become poor (rich) in the long run, and that this situation may bo reversed
many tunes during the transient dynamics.

The noninvertibility of F, i.e. the existence of two local extrema, also causes the
appearance of diverging trajectories, due to the appearance of a repelling 2-cycle {#],43)
separating the bosin of infinity from the basins of the attracting fixed points Precisely,
we notice that by increasing the speed of adjustment o for a fixed value of the propensity
to save o, two new repelling fixed points of the map F% = F o F (and thus a repelling
2-cyche {#7,83) of the map F) are created when o cromses the curve o,(0) = 2/o, which &

Ve AU
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Joeated in the nosisvertibility region of the space {2 of the parameters o and . To realize
this, it ls enough to observe that limy e g (F2(Y)) = (1 = ac)® and that s soon as
this slope becosses greater than one, i.¢. for a > 2/a, two new intersections of F? with
the line ¢(¥) = ¥ are created, as it is also evident from the compasison of Fig. b (where
=138 <8 =2/0) with Fig. 6a (where a = 9 > 2/0).

Wml00 8e02 =725 0=025
2 =

(a)
65 Ly, WY
Bl Ray p K
160 ok
o
F
yg (oA
. A // ®)
P
/ My, B
- Y.

.éhl iw

Figure 8 Efects of the nonmnvertibility on the structure of the basing of the cocristing
epusdsbryg.
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We can see from Fig. 6a that the points Y; € [, s3] have bounded trajectories, while
the points Yy @ (87, 83 have diverging trajectories. 1t is also evident that when o is further
increasod the points of the 2-cycle (and therefore the basin of infinity) approach the fixed
points P, Q and R

p=100 8=02 a=9 o=025

160

' =%

P

(a) K X F

enlargement

B B R

Figure 6: Appearance of divergent trajectories and mervamng complenity wn the topologioal
structure of the basins

TSR
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Fig 65 and s enlargoment show that the vertical strips constituting the basins of Q
sl R aceumalate on the vortical lines Y = s} and ¥ = &3, This is substantially due to the
fact that, being these vertical lines ropelling sots for the forward iterstion of T (see Property
4 of triangulas mags in section 3.1), they behave as attracting sets for the iteration of the
Jverses of T (sew, for instance, [1]). From an economic perspective, we could say that such
& situation causes & loss of predictability about the long run evolution of the system: if
the initial state i noar the line Y = &} or Y = &3, a slight change in the initial state may
give & completely differont long run evolution of the economy (the “wealth” equilibrium, the
“poverty” eq or even divergent beb ) if the change causes a crossing of some
baain boumdasy.

5 Local and Global Bifurcations Changing the Struc-
ture of the Attracting Sets

I this seetion we describe the local and global bifurcations which increase the complexity of
the asymptotic dynamic behaviour of the system. Again, we shall see that the bifurcations
and the dynassic bob of the two | map T can be completely described on
the basin of those of the one-dimensional map F driving the income evolution, thanks to the
triangnla strecture of T

To hastzate these bifurcations, wo shall fix the parameters g and 8 at the same values of
the previows section (s = 100, § = 0.2) and we shall follow, in the space £ of the parameters
o and ¢, o particular bify jon-route obtained by fixing the ad) parameter o ot
wifficiently bigh value, say o = 8.5, and increasing the propensity to save 0.

Lot us st with o == 0.26, In this case the equilibrium pownts Q and R are stable and the
strvetuee of thesr basing is vory similar to the one described Fig. 65 We already know from
the local stability analysis carried out in section 3.5 that the equilibria @ and R are stable
far ale ~ w(¥g)) < 2, where u(Yg) = (1 4 (Yg — #)%] "' (and where the equilibrium value of
ineotne ¥ i » fanction of o, implicitly defined by eq. (13)). Numerical computations show
that, whes o = 8.5 and ¢ is increased, the fixed points lose stability for 0 = o, ~ 0.2733:
lere n Hip bifsrcation occurs, where the stable nodes Q@ and R become saddles and two
symmetric stable cycles of period two appear. Fig. 7a represents these cycles, together with
their busiow of attraction, for o = 0.3, We point out that such a local bifurcation simply
teplaces each stable stoady state with an attracting 2-cycle, without modifying the basing
of the coexisting sttractors (which are given by the vertical strips represented in Fig. 7a:
more precisely. sach sot of vertical strips is the closure of the basin of the corresponding
cyele). What bappens by increasing further o can be casily understood by observing the
bifuecation dagras of the map F represented in Fig. 75 This diagram shows that F
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Figs & and 9 show the changes in the structure of the attractors sharing the phasc
plane when @ i incroased (for high values of a). In Fig

Se we observe two symmetric
chaotle attractons, oach one made up of two pleces, which increase in size as o increases and

et merge giving rise 1o two disjoint one-piece chaotic attractors (Fig. 8b). By increasing
further o, tl

atiracting sots of Fig. &b in turn merge into the sttractor shown in Fig. 9a,
whese shape & symmetric with respect to the saddle P.

100 502 a=8.5 0=0.35

Figure 8 Cocristonce of two symmetric chaotic attractors

T
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The merging of the two attractors into the unique attractor represented in Fig. 9a is
e to an hemeclinic ifurcation of the saddle P. Let's consider Fig. 10a (where ¢; 5, and
¢4t denote the images of ¢y and cyy, respectively). Before the Bomoclinic bifurcation value
4y = 04135 (Fig 106) the intervals Jy = (e, €1m] and Jy = e300, cp] are invariant.
We rematk that, as it is also evident from the bifurcation diagram of Fig. 7b, the map
¥ undengoes. for cach of the two disjoint invariant intervals Jyand J;, the same sequence
of bifurentions which characterizo the well known logistic map f(z) = ax(l — ) when
the parsmeter @ ranges botween the values 3and 4 (see, for instance, [14), [4)). After the
homoehnie bifarcation wo have a big qualitative change in the trajectories of the system:
the fntervals Jy and J; are no longer invariant intervals, but so s their union J = JyUJ; or,
better, the terval Jon, cxr] (Fig. 10b). Comparing again the dynamics of /7 with those of
the onedismensional logistic map, wo can notice that the described homoclinic bifurcation is
cquivalent 1o the one occurring in the logistic map when the parameter a crosses the value 4.
The ditference arises from the fact that, in the case of the logistic map, after this bifurcation
the points loeated in & neighborhood of the critical point, as well as their preimages of any
ok, belong fo the basin of infinity, so that the generic trajectory becomes divergent, while
here the tompectorios which escape romain bounded and span the whole invariant interval
J = e, enl)

We gesak also that the existonce of an homoclinic orbit, as already pointed out by
Puineasé o comtury ago, implies vory | | dy jcs (for an ive mathematical
treatment, see [16]): in fact, it implies the existence of an invariant Cantor set on which
the restriction of the map is chnotic in the sense of Li and Yorke. Sometimes, it indicates
the exitience of the o called “invisible chaos™: for example, chaotic trajectories certainly
exiat b the situation shown in Fig. 9b, even if the generic numerically observed trajectory

converges 1o & cyche of period-6.
The bossockaie bifurcation of the saddle P described above, produces o remarkable
I chasge in the asymp bel of the system, marking the switching from

o reghe of biatability (where the attractors may be fixed points, cycles or even chaotic
Alfractons) 4o a more complex rogime characterized by oscillations, although not regular
but chavtie, ssound the saddle point P. This can be seen from Figs. 1/a and 11b, which
fepeenent the wormus time trajoctories of the income Y before and after the bifurcation
(= 0075 asd @ = 0,425, rospoctively). More precisely, from Fig. 11b two different kinds
of fuctuations can be observed: short-term chaotic oscillations around the “wealth” steady
state Vg, or the “poverty™ stoady state Y, and long-term wider oscillations from “wealth”
to "poverty” ssd vico-versa. This kind of dynamic behaviour is well known in the literature
an ehaatiie dysasmical systoms, boing very similar to the one observed on the well known
Larens Adtractor (see, for instanco, [13], (17] ch.12)
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Flgure 14: Representation of the income as a function of time, before (a) and after the
homacisse bifurcation (b).

Wee stress that this kind of oscillations, which are observed in particular regions of the
paranieters space £ characterized by high values of the adjustment parameter o, occur even
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if we bave assumed that the investment demand is independent from the capital stock, Lo
we have ruled out the possibility of cyelical “shifting” of the investment demand function.

Remark The peculinr shape of the attractors shown in Figs. b (and its enlargement)
and % i typical of the so-called mized shsorbing arvas. An absorbing area of muzed type
i defined as & bounded region A of the phase-plane such that a neighborhood U 5 A
exists whose points enter A after o finite number of iterations and never escape, and whose
boundary is given by the union of critical curve segments (sogments of the eritical curve LC
and its images) and portions of unstable sets of saddles (see [15], Ch. 4). This is the case,
for instance, of the aren ining the chaotic d in the enl of
Fig 8% bere the lateral borders are given by segments the critical lines LC and LO; of
equation ¥ = cp and Y = ¢ pr, respectively, while the area i upper bounded by a portion
of the unstable manifold W¥(Q) of the saddle fixed point Q and lower bounded by portions
of the unstable sets of some saddle cycles. This feature determines the “fuzzy” shape of the
borders of the attractor observed in the enlargement. Similar reasons explain the shape of
the chaotic attractor shown in Fig. 9a.

6 Conclusions

In the present paper, starting from a discrete-time Kaldor-type business cyele model, pro-
posed in [18] and described by a two-dimensional dynamical system in income and capital,
we have focused on a particular case ob d by nogh the d d of the

demand from the capital stock. This Iatter feature has generally boon considered as the basic
structural for the of cyclical bek of income and capital (see,
for instance, [6], [2]). The resulting model has the peculiasity that both the savings and the
investment demands only depend on the income level (i particular the investiment demand
s & sigmosd-shaped incronsing function of income): this implies that the dynamics of the
system i driven by a two-d | map of type, since one of its components,
namely the one driving the income evol is an ind & di | map. Due
to the particular trinngular structure of the system, we have boen able to fully undorstand
the asymptotic dynamic behaviour and the bifurcations, starting from the proporties of the
associated one-dimensional map.

We have explored the dynamics of the model under different regimes of the main pa-
rameters, as the propensity to save and the firms' speed of adjustment to the excess demand
Our exercise has shown that the basic dynamic sconario i given by a situation of bistability,
L& coexistenco of two attracting sets (which may be fwed points or periodic orbits or even
chaotic attractors, for sufficiently high values of the adjustmment parameter): one charac
terized by poverty (low levels of income and capital) asd ome by wealth (high levels of the
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dynacsie vasiables), oach with its own basin of attraction. We have focused on the question,
which natually arises in the of bistability, of the del son of the basins of the
cwexiating attrsctors, and wo have shown that for particular ranges of the parameters the
basiis may be mos-connected sots. Bosides the bistability situstion, our analysis has shown

that different dymamic sconarios are possible, ch d by plex chaotic dy )
for high vabues of the . To we have shown the existence of
o different routes 1o complexity.

(8) Qualitative changes in the asymptotic bohaviour of the system, ie. in the nature of

the atfzscting sots. The main change consists in the transition from a regime of

bility 1o a | ied by wide chaotic fuctuations of income and

capital aound their exogenously assumed equilibrivm levels (a typical business-cycle

sitnation). This change is rolated to the of a global linic) bifurcation

and ing dy | bol proves that end dy driven oscill can

alio e obwerved without what Is considered the main Kaldorian assumption, i.e. the
dependience of mvestment demand on the capital stock.

(B) Qualitative changes of the topological structure of the basins, which change from con-
neetied o mon connected, related to the property of noninvertibility of the map. This
ol of s Joads to an i g e - We may say that, in
the cmse of connected basing, the initial situation of the economy (wealth or poverty) is
masatasmed over time, wherons n the presence of non conpected basins such a situntion
may be teversed many timoes (and even reversed in the long run). Thus; noninvert-
1hiliey gves more uncortainty about the fate of the system in the long run, whereas
Inwsrtibalty traps the Jong-run evolution, so that things seem to be determined since
the begsssing of the procoss,

Acksowledgmonts Tho authors wish to thank professors G. Rodano and B. Saltari
whe siggestied ws the exoroiso described in this paper. This work has been performed under
the nunpices of CNR. ltaly, and under the activity of the national research project “Nonlinear
Dynamics st Stockastic Models in Economics and Finance”, MURST, Ttaly.

References

I Ammamasms R GARDINI L. AND MIRA C., Chaas in Discrete Dynamical System (o
Vissd Strodection in 2 dimensions), Springer-Verlag, 1097

2 Cwane W.W. AXD SMYTH D.J., The Existence and Persistence of Cycles in a Non-
Linene Moded: Kaldor's 1940 Model Ry d, Review of E Studies, 38
(V070), pp. 37-44.




w

-

@

© =

Routes to Complexity in a Macroecosomic Model .

Daxa R.A. AND MALGRANGE P, The Dnnnhdn Discrote Version of a Growth
Cyele Model, in J.P. Ancot (ed.), Anak of Ex Models, The
Hagoe: Martinus Nijhoff (1984), pp. 205~ m

Davaney R.L., An I luction to Chaotic Dy Systems, 20d od., Addison-
Wesdey Publishing Company, Ine, 1959

Dmes R, GARDING L. AND Bisemt G 1L, Global Dynamics in a Kaldor-type Businos
Cycde Model, Quadorni dell'Istituto di Matematica “E. Levi®, Universith dogli Stadi
& Parma, n. 4, 1008,

Gamson G. AND Lonenz H.W., Business Cycle Theory, 2nd od., Springer-Verlag,
Berlin-Heidelberg-Now York, 1089,

Ganoi L. AND MIRA C On tuo,mmdmmam Prvwno Nazionale
di Ricerca M.U.RS.T. * woienze economiche
o sooali”, Quaderno n. 0300 1993

Kawpor N., A Model of the Trade Cycle, Economic Journal, 50 (1940), pp. 78-92

Kowvapa S.F. AND SHARKOVSKL A.N., On Topological Dynamics of Triangular Maps
of the Plane, in Procoedings ECITS9, World Scientific, Singapore (1901), pp. 177183

Kowvapa S.F., On Dynamics of Triangular Maps of the Square, Ergodic Theory &
cal Systems, 12 (1992), pp. 749-768.
Lonunz H.W., Strange A in a Mul B, Cyele Model, Journal of
Ei Bel and O 8 (1987), pp. 397411,
Loruwz H.W., Multiple Attractors, Complex Basin Boundu*- and Transient Mo-
Economic

tion in Dtmmnlnlaﬂc Economic Modols, in G. Feichtinger (ed.), Dynamic
Models and Optimal Control, North-Holland, Amstordam (1992), pp. 411430

Lonzwz H.W., Nonlinear Dynamical Economics and Chaotic Motion, 20d od., Springer-
Verlag, Berlin (1998), pp. 168-169.

Mira C., Chaotic D, fes, World S fic, St 1987

Mima C., GARDINI L., BARUGOLA A. AND Catsiara J.C., Chaotic Dynamics in
Two-Dimensional Nnnlnvurublo Maps, World Scientific, Shppon 1996,

Pam J., Takens F., Hyperbolicity and Chaotic Dy at H
Cunbrldgn u ty Pross, 1993

7. Purmcen, H-0,, JURGENS, H. AND SAUPE, D., Chaos and Fractals, Springer-Verlag,
1992

Robaxo G Lezioni sulle Teorie dells Cvl-au e sulie Teorie del Ciclo,
di Teoria B e Matodi Q i Roma “La Sapionza”,

Stanx J., Invariant Graphs for Foroed Systems, Physics D, 109 (1997), pp. 163179




