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Ansrract. Let /X = Y bo a moap between two spaces for which Y is stratified
such that /s & fibration over each open stratum. We find some spectral sequences to
compate the homology of X in terms of the homology of ¥ and that of the fibers. We
apply 1 10 give & Lefschotz theorem for the degeneracy loci of a morphism between
holossorphic bundles on a complex manifold.

1 Homotopy and Homology

To understand the topology of a space X, one of the primary issues is the computation of
the homotogy groups 7, (X). Even in the simplest examples of spaces, homotopy groups
furn out to be very difficult to compute. On the other hand, simplicial homology H,,(X) is
A good altersative being easy to compute due to the existence of & Mayer-Vietoris principle.
This allows to divide the space X and “glue” the homology of the pieces. The good news
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is that Hurewicz theorem relates both up to some extent, which may help us to compute
homotopy groups.

Let us first review the classical notions about homotopy from [Sp). Consider a topo-
logical space X with a fixed base point » € X. Then =,,(X) consists of equivalence classes
of maps a : 8" — X from the n-sphere sending a base point o € §" to », modulo the
equivalence relation > given by ag = ay if there is a homotopy H : 8" x [0,1] — X with
H(x,0) = ag(x), H(z,1) = ay(x), for all € 8" and H(xo,t) =+, for all t € [0,1]. A space
X is said to be n-connected if m;(X) = 0 for 1 < n. For the special case n = 0, we have that
mo(X) = 0if X is arc-wise connected. Also my(X) is the fundamental group of X, so that
X is I-connected means that it is simply-connected.

There is a relative version of the homotopy groups: if A € X is a subspace containing the
base point, then m, (X, A) consists of equivalence classes of maps a : (D", 8D") — (X, A),
this meaning that a is a map from the disk D" to X sending the boundary to A The
equivalence relation is through homotopies that send the boundaries into A.

For notions in relation with homology one can look at [Ma]. Let X be a topological
space. Let [ = [0,1] be the unit interval. A n-cube is a continuous map 7 : " — X, and it
is degenerate if it is independent of one of its variables. The complex of singular chains in X
is defined as the free abelian group Cy,(X) generated by the n-cubes, modulo the degenerate
ones. The boundary operator @ associates to every n-cube the (n — 1)-chain which consists
in the sum of its faces with an appropriate sign given by its orientation. The homology
H.(X) of X is given by the homology of (C.(X), ).

For the relative version, let A € X. Then the complex C. (X, A) is the quotient complex
C.(X)/C.(A) with the induced boundary operator. The homology of this complex is the
relative homology /. (X, A).

There is a morphism, the Hurewicz homomorphism,
(X, A) — Hu(X, A),
which sends the class of the map a : (D", 8D") — (X, A) to the cycle a € C.(X, A) using

the homeomorphism /™ & D" and since da € C.(A). For the following theorem see [Sp, §7

Hurewicz theorem. Let (X, A) be a pair of 1-connected spaces. Then m,(X, A) = 0 for
i < n—1 implies that m, (X, A) 2 Hn(X, A). In plamn terms, all the homotopy and homology
groups are zero up to the first non-zero ones, which are womorphic.
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This menss that (X, A) is n-connected, ie., m(A) = m(X), for 1 < n, and m,(4) —»
#a(X) 1F the spaces A and X are CW-complexes then, up to homotopy equivalence, X is
ed out of A by hing cells of d 1+ 1 and over.

2 Spectral Sequence for a Filtration

Suppose that X is o space and A C X, then we have the long exact sequence of the pair
= HalA) = Ho(X) = (X, A) 2 oo (A) = -

This comes from the exact sequence of chain complexes C.(4) — C.(X) — C.(X, A). The
connecting homomorphism 8, is defined as follows. Let [z] € H.(X, A) with a representative
2 € C.(X,A) Lift = to £ € C.(X), then 92 € C.(A) and set 8.[z] = [83].

W may think of this case 08 o two terms filtration Xy = A € X; = X. What happens
when we bave & longer filtration Xy € X; €+« Xg = X? Then C.(X) is a filtered complex
with Sltsation given by C.(X,) € C.(X). This gives rise to a spectral sequence. A spectral
sequence s f double lexes (£, d7) with differentials d” : EL, — By,
such that the bomology of the r-th term is the following one H(E™,d") = Er+!. We say
that it converges if for each fixed (p, ) the terms E}; stabilizes for r large enough. The
limiting one is denoted as E3. For specific material on spectral sequences, the reader is
tecommended the nico book [Mc] or (BT, §14].

I oue case we gonerate o spectral sequence with
Epy = CpiaXy)/Cpa(Xa-1) = Cpag( X, Xg-1).

Thin haw s isduced differentinl @ which is the standard boundary in chains. The homology
s

By = Hpyo Xg, Xo-1)-
The general mackinery on spectral sequences tells us that the differential
d' s Hypo(Xay Xom1) = Hpaq-1(Xqm1, Xg-2)

8 aw follows: let (2] € Hipu (X, Xy-1). Select a representative = € Cyyo(Xg, Xo-1) and lift
18162 € €., { X,). Then consider the image of 85 € Cpsq1(Xg-1) in Cpyq-1(Xq-1, Xg-2),
and set dyfz] = (0] € Hysg-1(Xy=1, Xy=2). In particular, it follows that d'[z] = 0 means
that there exists 2 € Cpaq(Xg-1) such that 92 + 95, € Cu(Xq-2)

I gwmeral, & class (2] survives to E7, ie., d'[z] =0, . .4~

[ —
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Cpag(Xg—i) such that 8(Z + £, + -+ + 5—;) belongs 10 Cpag-1(Xg-¢). The Intter element
defines d”[z] € E". Morcover, the class [z] is zero in E7 if there are iy € Cpagui(Xgas) with
Ay + Wy + -+ + 1) = 2 € Cu(Xg-1)-

® —

The E*-term is the homology H.(X) in the following sense. There is a filtration of
the homology H.(X) given by the subspaces F H.(X) = im (H.(X,) — H.(X)). Then
£z FillpegX)
P Fe1Hpeg(X)
1f we work with homology over a field, e.g. the reals, we have @ ERoR H(X)@R
e
s vector spaces. € oo
Now we are going to look to the case of a pair (X, 8). For any A € X, we have an
exact sequence

<+ = Hu(A, AN B) » Hn(X, B) = Ha(X,AUB) — Hy_1(A, AN B) — -

This comes from the exact sequence of complexes
C(4) _ CX) C.(X)
C.(ANB) C.(B) C.(A)+C.(B)

For proving this we need that C.(A) + C.(B) € C.(AU B) induces isomorphism in homol-
ogy [Ma, page 151). This is termed as {A, B} is an excisive couple, i.e., that the Mayer-
Vietoris holds for AUB, A and B. This is true when the interiors of A and B cover AUS in
the relative topology of AU B. The proof consists on a process of subdivision of the cycles
in AU B. But also it is true when A and B are CW-subcomplexes of & CW-complex X,
since then there are open sets U D A, V D B in AN B such that U retracts to A, V' retracts
to B and U NV retracts to AN B.
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Theorem (spectral soquence for a filtration). Let (X, B) be a pair of CW-complexes,
Xy € Xy € Xy = X afiltration by CW-subcomplezes. Then there is a spectral sequence
with B, = Hyog(Xgs Xo-1 U (BN X,)) converging to Ha(X, B).

We look at the filtration given by
C.(Xy) C.(X)
C.(B)

C.(BNXy) (B)

The B term i the cokernel in
ClXg-) _CuXy) C.(Xq)
Gi(BNXga1) = Ca(BINXy) " Ca(Xymn) + Co(BOXG)'
Under the sssumptions, the various couples are excisive, so we get a spectral sequence as
before

3 Spectral Sequences for Quasi-Fibrations

Let s now tmm our attengion to o different issue. Very typically spectral sequences are
used for o Bbewtion f : B < B with fiber F. Suppose that B is l-connected. Then
the homology of the different fibers are identified in a canonical way. Therefore H.(F)
1 & aystiems of (constant!) coefficients over the base B. We have the following standard
rulationship between the homology of the base B and fiber £ and that of the total space
(see [Me] and [BT]).

Leray-Serre spectral sqquence, Suppose that B is 1-connected. There is a spectral
sequence whewe second tery iy E,’,q = H,(B; Hy(F)) and converging to H,(E).

We prove this result for CW. I Take a CW-di P for B2 and consider
the skeleta B, = B, This is o filtration of the space B. (It may be an infinite filtration
B = Ui, but the tgory works because B has the weak topology with respect to
skeleta). Now for any o0 G of coefficients, the homology H.(8:G) can be computed
a8 the homology of the H,(8B,, By-,) ® G. This is true since the spoctral sequence E,',,, =
Hywi(By, By G) i only non-sero for n = p+q=q, e, for p=0 Therefore the only
nan-trivial diflerential is qf 5,‘,., - E;I'_,. All the other ones have 1o vanish and hence
H(B\G) = 1, (8" ).

Clonnier now the follywing filtration E,, = f~1(B,) of the total space £ and the corre-
Sponding spectral sequency for the filtration. The fbration over each n-cell in (B, £,_;) is

D —
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trivial. This means that the complexes C.(E,, E,_;) and C.(B,, B,;)® C.(F) are almost
the same, in the sense that their homologies coincide, H.(E,, E,-) = H.(B,,B,.,) &
H.(F), which is the E'-term of the spectral sequence of the filtration. The E%-term
is the homology H.(B;H.(F)). Note that the first non-zero differentinl will be a map
d" : Hy(B; Hy(F)) = Hyr(B; Hpsr-1(F))-

Instead it is more common to have a map f : X — ¥ which is not a fibration but can
be decomposed into pieces where it actually is. We want to extend the Leray-Serre spoctral
sequence to this case, relating the homology of X with that of ¥,

Definition. A map f: X — Y between two spaces is called a quasi-fibration if there is &
filtration Y, of Y by closed subspaces such that denoting by Xg = f=!(Y;) the corresponding
filtration for X,

1. the restriction of f to X, — Xg—1, fg : Xg = Xgo1 — ¥, = Yo, is a fibration with fiber
F,, for every q.

2. For each g, there is an open neighborhood U of ¥, in Y, that retracts to Y., such
that f=!(U) is a neighborhood of Xg- in X, that retracts to X,_).

Before going on further, let us say some words on the hypothesis on f. The condition
of U being a neighborhood of Y,y in Yy ing to Y, is technically referred to as
NDR=Neighbourhood Deformation Retract. It occurs very often, for instance when Y, s
a CW-subcomplex of a CW-complex Y; (e.g. a submanifold, even singular, in a differentiable

manifold).

If we are dealing with CW- il (the filtration given by CW-sul lexes) and
£ is cellular, then condition (i) above is satisfied assuming f is proper: Take a retracting
neighborhood U of Y,y in ¥;,. We consider the neighborhood f~*(U) of X,-; and take &
retracting neighborhood V C f=!(U) of Xy, in X;. Then since f is proper, f is closed, s
there exists U’ (in fact, U' C Y — f(X = V)) with U’ € U and f~}(U") € V. Morcover we
may assume (since X, is a CW-complex) that U also retracts to U Let H:Ux[0,1) = U
be the map with H(y,0) =y, H(V/,t) = for y' € U7 and H(y,1) € U7 for y € U. Easily
we may also assume that H(y,t) € U = Yo, for any y € U = Yoy, t € [0,1].

By the fibration property, we lift the retraction to H: (f7N(U) = Xo-y) % [0,1) =
F7HU) = Xg-1 with H(z,0) =z, and H(z,1) € f~(T7). Now take a continuous function
u: U — [0,1) which is 0 in a neighborhood W € U" of Xy and 1 in S='U = U'). Then
K(x.t) = H(z,u(x)t) is a retraction of f~'(U) = Xyoy to SN ) = Xq-y which is the

S
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identity fn £~ (W) = Xo-1- Therefore it may be extended with K(x.1) = z for 7 € X—1.
Follow this retrsction with the retraction form V' to Xg-1 to get a retraction from f=!(U)
10 Xyt a8 required.

Theorem. Let [ X = Y be a quasi-fibration with all of the Y, being 1-connected. Then
Jor @ fiaed integer g, there 1s a spectral sequence whose E? term is H. (Y, Yo-1; Hu(£y)) and
conerping to Hu(Xq, Xg-1)-

Under the assumptions we have
Hu(Xg, Xog=1) = Ha(Xq, f71(U)) = Hu(Xy = Xgur, f7HU = Y1),

the last eqquality by excision. Also H, (Y, Yy-1) = H.(Yy,U) = Ho(Yg = You1,U = Y1)
Since
(Xy = Xo=1, /7 (U =¥3-1)) = (g = Yo-1,U = Yo1)

s & fibeation with fiber £, we have the result from the Leray-Serre spectral sequence.
Fur pades we bave & similar result which we state in the context of CW-complexes:

Theorem. Let [ - X — Y be a proper map between CW-complexes and let (X, B) be a pair
of OW-complenes. Let Yy be a fillration of Y by CW-subcomplexes and let X, = f~'(Y,),
By = MY, 008 be the corresponding filtrations of X and B. Suppose that (X, X,-1, B, ~
Byi) = ¥, = Yoy s a fibration (of a pair of spaces) with fiber (F,,G,). Then for fived
4 there & & speetral sequence with £* = H, (Y, Yy-1; H.(F;, Gy)) and converging to B> =
Hu(Xip Xy U By)

4 The Fundamental Group on a Quasi-Fibration

The Levay-Serre spectral sequence (at least in the simplified version we have stated it in
Seetion 3) hewwes aside an important issue of the behaviour of the topology of spaces under
A (quasi- Sbeation, namely the question relative to the fundamental group. Let us deal with

this by hased

Theorems. Let £: X = ¥ bea quasi-fibration between O-connected spaces, such that the
Bbers £, ae commected. Then

—

Jo i mi(X) = m(Y)
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is surjective.

To see this, take a loop 7 : [0, 1] = ¥. Consider a sub-interval [0, ¢;] such that ~({0,4:)) x
is included in ¥, — Yy and 7(t1) € Y,—1. This allows to write 5 = 7, » 73 as a juxtaposition
of 11 = jo,0,) a0d 7 = i )

Now consider a neighborhood U of Y5y in ¥; that retracts to Y,_; such that f~(1/)
retracts to X,-;. Choose some & > 0 with 7 ([t — &,4;]) C U. Then we use the fibration
property for Xy — X1 = Yy = Yy—1 to lift mjor,—¢) to a path ;. With the retraction, we
may join 4, (t; — ) with a point in X, by a path & in f=*(U). Let § = 08 be the induced
path. The path 6~ « Yiljey=e,ty) 18 in U with end-points in Yo, so it is homotopic (via the
retraction) to a path a in ¥,_;. This means that § « a = 9]i;, _ (). So we decompose

= ((mljo.cye)) *8) = (@ *72).
The first loop is lifted to a path 5; = 8 with end-point in Xo-1

We perform the above construction simultaneously in every portion of 4 in ¥, Specif-
ically, suppose 7([0,1)) C Y. Write 7 = 73 ¢ =< 5 with o = 4|, (| satisfying that
either % ([ti-1, &) C Yg-1 or %i((ti=1,t)) € Yo = Youu and 5({tizy, t:}) € Yooy (except for
possibly 7 (0) and 7,(1)). Let I C {1,...,r} be the set of indices of those 4, satisfying the
second condition.

The method above allows to change 5 by 7 = 9] » - # 5/ such that 5] is liftable to 5/
for i € 7, and ] is in Y-y for i ¢ I. Since 5; is included in Y,_;, for i ¢ I, by induction
on g we may suppose that they are liftable to 5/. If the end points of consecutive 4{ do not
match then we use that the fibers are arc-wise connected to join them.

Therefore there is a loop 7 = 4] -+« « 4, such that f o5 = 4, ns required to have
surjectivity of f,.

Obviously the condition on the fibers F, being O-connected is necessary. Just think of
the projection

fi8 = {@ I+ =1} — [-1,1)

(x9) - =

which is a quasi-fibration, but not surjective in the fundamental groups
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5 Degeneracy Loci

An mp: point of a h ical theory is to have applications which prove its use-
fulness. Our application touches the world of algebraic geometry. Start with a complex
wanifold M of (complex) dimension n. This means that M is covered by charts which are
apen sets of € and the change of charts are bi-holomorphisms. A holomorphic vector bun-
dle B~ M of rank ¢ is a complex vector bundle which admits local trivializations where
the transition functions are holomorphic (We].

Fur two holomorphic vector bundles £ and F over M, of ranks e and f respectively, let
¢ B~ F be a holomorphic morphism. This means that ¢ is holomorphic as a section of
Hom(E, F) The r-degeneracy locus of ¢ is the subset

Dy (¢) = {z € M| rké(z) < r}.

This ls & complex submanifold of M but it is not smooth in general. It is usually said
that D, () bas & determinantal structure (ACGH], which forces D, (¢) to be singular along
Decy(0)

The way 1o understand the degeneracy loci is the following. Construct the grassmannian
bundle & = Grle = r, E) over M. This consists of putting the grassmannian Gr(e — r, By)
of (¢ = r)asbupaces of the fiber B, over every = € M in a differentiable varying way. The
canonieal projection of this fibration to M will be denoted by =. There is a universal bundle
U over G Bwery point V € G is actually an (e — r)-dimensional subspace V C B for
&= n(V) Sothe bundle & has fiber over V € G the space V itself. Since V ¢ Erv), we
gt U € "B Composing this inclusion with the map #*(¢) : #*E — 7°F we get a map
& Vo n*F Now ¢, is zero at o point V € G if and only if ¢(V) = 0. This means that at
&= (V) there & an (e ~ r)-dimensional subspace of E; in the kernel of ¢(z) and therefore
th{@(z)) € . So denoting by Z(¢) C G the zero set of ¢, we have

m(Z(¢r)) = Dr(9).

Moreover 1his map is one to one over Dy(¢) — Dy—y(¢). We have an obvious filtration of
D) igven by those D, _,(¢) with i > 0. Over Dy—(¢) — Dy—~1() the fiber of the map
t: &(év) ~ D,(0) is Gr(c = r,e =~ r +1). So

w1 Z(é¢) = De(9)
0 & quanh Sbention.
When the section ¢, of Hom(U, =* F) is transversal, Z(¢,) are smooth subvarieties of

P —
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G, so that they can be lored as o desingularization of D,(¢). M dimG =
dim M + 2r(e - r) and ranke(U* @ #*F) = f(e — r), so that the dimension of Z(&,) is
2n — 2(e = r)(f = r). If this is negative then D, (¢) is empty. Finally let

plr)=n—(e-r)(f-r).
Note that it must be r < e and r £ f since otherwise we have D, (¢) = M.

We pose ourselves a question: what can be said about the topology of the degeneracy
loci D, (6)?

6 A Lefschetz Theorem

Let M be a complex manifold and let £ — M be a rank ¢ holomorphic vector bundle. For
a holomorphic section § of /2, let W = Z(s) be the zero set of 5. The topology of W can be
controlled under an extra assumption on £.

We say that /2 is a positive vector bundle [We, page 223)(Gr, Chapter 0] if there exists an
hermitian metric g in the fibers of £ such that the curvature © associated to the hermitian
connection induced by the holomorphic structure satisfies that /=16 is a positive 2-form
(5, v=18(u, Ju)s) > 0 for any non-zero u € T,M and non-zero s € E,, where Ju is the
vector obtained by multiplying u by i in the complex space T,M & C". To go into details
of the definition of curvature and consequences of positivity see [We]. When £ is of rank 1
this produces a Kihler form for M.

Lefschetz theorem on hyperplane sections. Let E be a rank e positive vector bundle
over a compact complez manifold M and let s be a holomorphic section of E. Let W = Z(s)
be the zero set of s and p =n — e. If the section 5 s transverse then W has dimension 2p.
In any case, the pair (M, W) is p-connected.

The result is originally given in [AF][Bo]. We also have a Lefschetz theorem for degen-
eracy loci given in [MP] (see [De] for the homology wersion built up on considerations of
connectedness of degeneracy loci in [FL]).

Lefschetz theorem for degeneracy loci. Let ¢ be o morphism between the holomorphic
vector bundles E and F, of ranks ¢ and f respectively, over a compact complex manifold
M, such that Hom(E, F') is positive. Let W = Z(6,) € G = Gr{e ~ r, E) and p = n ~ (e =
?)(f = r). Then (G, W) is p-connected.

t’—-\‘
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The theoresn docs not follows from the previous Lefschetz theorem, since the positivity
of Hom(E, F) does not imply that Hom(U, =* F) is positive. Actually the proof of the
thearem i [MP] goes through the way of proving that Hom(U, =*F) keeps “part of” the
ponitivity of Hom(E, F), namely the positivity along the section &,

Ous application i the following information on the topology of D, (6), using the map
G- M

Theorom. Let ¢ be o morphism between the holomorphic vector bundles B and I over a
compoet complex manifold M, such that Hom(E, F) is positive. Suppose that p(r -+ k) > 0,
Jor vome k 2 0. Lete =0 ifp(r+k) > 0 ande = 1 if p(r + k) = 0. Then the pair
(M, Dy(0) & (2 + 1 = £)-connected.

Proof. We prove this by induction on k. For k = 0 it is very easy: if p(r) = 0
then (G, Z(0y)) is O- d, 1.0, every 4 of G has at least a point of
Z210,) Smee the connected components of G are in 1-1 correspondence with those of M and
200, ) sujeets onto D (¢), the same happens to (M, D.(¢)). If p{r) > 0 then (G, Z(4,)) is
Leonnected The commutative dingram

m(Z(é)) —~ m(G)
m(Dr(9)) = m(M)

implien that the arrow in the bottom row is a surjection. Therefore (M, D,(¢)) is also
l-connected.

(1)

Now et ws turn to the caso & > 0. We may suppose that M is connected from now
o, worlisg on every connocted component of M if necessary. If p(r — 1) > 0 then p(r) >
() e (f <r) 4122 unless ¢ = [ = r in which case D,(¢) = M and there is nothing
to prove. M lr) > 2 then (G, Z(¢y)) is 2-connected. Then the top row in diagram (1)
I8 a0 osmorphisn. By the result in section 4, my(Z(8,)) —= =1 (D.(¢)) is a surjection,
This lmplies that the bottom row in (1) must be an isomorphism. So the fundamental
groups of Z = Z(9,), G, M and D, = D,(¢) all coincide. Let now p: M — M be the
universal covering space. Also i i p*G — G is a universal covering space, and Z = p~1(2),
b, = (D) ate the universal covering spaces of Z and D respectively. Pulling back all
SUr conutruction by p we soe that to prove that (M, D,(#)) is n-connected is equivalent to
prove that (34, D, (6) ks n-connected.

“.Qﬁun comsiderations imply that we can work on M. To simplify notation, we
denate M by A1, Le., we assumo to start with that Af is simply-connected and keep the

e
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notations without tildes. Under this condition, Hurewicz theorem in section 1 says that
(M, D,) is (2k + 1 — £)-connected if we manage to prove that

H(M,D,)=0, i<2%k+1-¢

By Lefschetz theorem (G, Z) is p(r)-connected. Now p(r — k) > 0 implies that p(r) =
(e =r)k+(f = r)k+k?® > 2k + 1 (ogain if either € = r or f = r then D,(¢) = M and there
is nothing to prove). So H, (G, Z) =0 for n < 2k + 1.

Let us stratify M with M D D, 2 D,y D -+ D D, and let G be stratified with
Gy =7 Y(Dyy) and Z,—; = ZN G,—,. With this notations in place, we have that

(Crai = Graim1y Zr—i = Zr—i1) = Dyei = Dy_iy

is a fibration with fiber (Gr(e — r,e),Gr(e = r,e — r 4+ 4)). Let i > 0. The last theorem in
section 3 implies that there is a spectral sequence with E? = H,(D,_,, D, )@ H,(Grle ~
r.e),Gr{e = r,e = r + 1)) converging to E= = H.(G,_,,G,-y UZ,,). (We can take the
homology of the grassmannian out of the ‘coefficient group’ since it is free.) Now the pair
(Gr(e — r,¢),Gr(e = rye = r 1)) is (20 + 1)-connected. By induction hypothesis, the pair
(M, D, ) is (2(k = i) - 1 = )-connected. Therefore by the long exact sequence of the pair,
H(Dy—iy Dy—io1) = 0for n < (2(k—i)—¢). Hence EZ, = 0for pi-q < 2(k—i)~e+(2i4+1)41
This implies that /,(Gr-y, Grai-1 U Z,—) =0 forn € 2k +2 - ¢.

The spectral sequence for the filtration G 5 G, 5 G,y D -+ D G,y has

B gy = Hama(GG));

BR o m Hipto(Grot/Grii=y UZ): 420,
and converges to £ = Hy(G,Z). By the above considerations Ex = 0 for g < r and

p+g < 2k+2—¢. Looking at the limit, H,(G, Z) = 0 for n < 2k 4 1. We have that it must
be dy = 8, : H,(G,G,) = Hy-1(Gy, G-y U Z) an isomorphism, for n < 2k + 2

q

1 . . .
] !

r . . .
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Now there are two spectral sequences: E;'J = Hy(M,D,) ® H,(Gr{e - r,e)) converg-
ing to the H,(G.G,), and E}y = Hj-1(Dy,Dr-1) ® Hi(Gr(e — rye),pt) converging to
Ho1(Gr, Goy U Z), whero pt is the base point. Here we have ‘moved” the sccond spectral
wquence one unit 1o the top so that f = &, induces a map of bidegree (0,0) between the
fwo pectral sequonces, fe., a map f7 : BT — E for every step, such that [ = H(/").
T the Bt f* - B — E* must be an isomorphism.

Look at f7, « B}, — B}, For i-+j < 2k +2~ e it is surjective, since H;(M,D;) —
Hyi(Dy, Dyey) s surjective for j < 2k — €. Also J 18 injective for i > 0, j < 2k~ 1 —¢,
sinee Hy(M,D,) — Hy (D, Dr—y) I8 injective for j < 2k — 1 — & Now let us prove that
[ B, ~ B b somorphism for i -+ j € 2k + 1~ ¢, i > 0 and an epimorphism for
%) % 2% +2 - ¢ by induction on r. We consider the diagram

E-..u-- e 4 == E--r-l.)—r
Rersrgsr | oAl feaerd
By re1g4e LBy - Bixr-14-r

For i = 0 we have £ = 0, 6o it must be d, : By, — E}

0 1< the zero map for
1€ %42~ Hemoe g & EF,.

Por i s )« 2ksl-candi>0 i#r~1, the vertical arrows are isomorphisms, so
[i*" s aas wossorphism. For i = r ~ 1 the result also holds using that d, : By — Br_y 4-n
I the sero magp For i+ 5 = 2k 41~ ¢, i > 0, the first vertical arrow is an epimorphism, the
secund aned thsed ase ssomorphisms, 8o f{j*! is an isomorphism. Finally for i+ = 2k+2—¢,
£} 18 an epismerphiem and Jlirei1,jr 18 an isomorphism, hence /-’;I is an epimorphism.

Looking st the £ stage, /67 : B} — E5 = 0 is an isomorphism for j < 2k -1 — €.
Thhm.lhﬁ',‘,-ﬁg,-H,(M.D,)-Dforj52k+l—-eudeumd. (8]
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