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ABSTRACT. Matroids were introduced by Whitney in 1935 to try to capture abstractly
the essence of dependence. Whitney's definition embraces a surprising diversity ol
combinatorial structures. Moreover, matroids arise naturally in combinatorial opti-
mization since they are precisely the structures for which the greedy algorithm works.

This survey paper introduces matroid theory, presents some of the main theorems in

the subject. and identifies some of the major problems of current research interest.

1 Introduction

This survey of matroid theory will assume only that the reader is familiar with the basic
concepts of linear algebra. Some knowledge of graph theory and field theory would also
be helpful but is not essential since the concepts needed will be reviewed when they are
introduced. The name “matroid” suggests a structure related to a matrix and, indeed,
matroids were introduced by Whitney (51) in 1935 to provide a unifying abstract t;
of dependence in linear algebra and graph theory. Since then, it has been recognized that
aturally in combinatorial optimization and can be used as a framework for

¢ is far from complete
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and reviews only certain aspects of the subject. Two other easily accessible surveys have
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180 What is a Matroid?

matroids is referred to these papers or to the author’s book [29]. Frequent reference will be
made to the latter throughout the paper as it contains most of the proofs that are omitted
here.

This paper is structured as follows. In Section 2, Whitney's definition of a matrod
is given, some basic classes of examples of matroids are introduced, and some important
questions are identified. In Section 3, some alternative ways of defining matroids are given
along with some basic constructions for matroids. Some of the tools are introduced for
answering the questions raised in Section 2 and the first of these answers is given. Section 4
ial optimization by proving
that they are precisely the structures for which the greedy algorithm works. In Section 5,
the answers to most of the questions posed in Section 2 are given. Some areas of currently
active research are discussed and some major unsolved problems are described. Section 6
provides a brief summary of some parts of matroid theory that were omitted from the earlier

indicates why matroids play a fund al role in combi

sections of this paper along with some guidance to the literature.

2 The Definition and Some Examples

In this section. matroids will be defined, some basic classes of examples will be given, and
some fundamental questions will be identified.

Example 2.1. Consider the matri

i 121 =3f 4l 5 61 7
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Let E be the set {1,2,3,4,5,6,7} of column labels of A and let Z be the collection of subsets
I of E for which the multiset of columns labelled by / is linearly independent over the real
numbers R. Then T consists of all subsets of £ — {7} with at most three elements except for
{1.2.4}. {2,3,5}, {2,3,6}, and any subset containing {5,6}. The pair (£, ) is a particular
example of a matroid. The set £ and the members of T are the ground set and independent

sets of this matvoid.
Now consider some of the properties of the set 7. Clearly
(04 b\ R

In addition. 7 is hereditary:
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(12) Every subset of every member of T is also in T.
More significantly. 7 satisfies the following augmentation condition:

(18) f X and Y are inZ and |X| = |Y|+1, then there is an element x i X =Y such that
YU({z}sinT.

Whitney's paper [51), “On the abstract properties of linear dependence”, used condi-
tions (11)~(13) to try to capture abstractly the essence of dependence. A matroid M is a
pair (£, 7) consisting of a finite set £ and a collection of subsets of £ satisfying (11)~(13).

The name “matroid” has not always been universally admired. Indeed, Gian-Carlo
Rota, whose many important contributions to matroid theory include coauthorship of the
first book on the subject (7). mounted a campaign to try to change the name to “geometry” .

he

an abbreviation of “combinatorial geometry”. At the height of this campaign in 197.

wrote [18] veral other terms have been used in place of geometry. by the succe:

o
discoverers of the notion: stylistically, these range from the pathetic to the grotesque. The
only surviving one is “matroid”, still used in pockets of the tradition-bound British Com-

monwealth.” Today, almost thirty years since those words were written, both “geometry”

and “matroid” are still in use although “matroid” certainly predominates

What is the next number in the sequence 1,2,4,8....7 The next example suggests one
way to answer this and a second way will be given later.

Example 2.2, If E = (. then there is exactly one matroid on E, namely the one having
I = {0} If E = {1}, then there are exactly two matroids on E. one having I = {0}
and the other having 7 = {0,{1}}. If £ = {1.2}. there are exactly five matroids on
E. their collections of independent sets being {0}, {0.{1}}. {0.{2}}. {0.{1},{2}}, and
{0.{1):{2). {1.2}}. But the second and third matroids, My and My, have exactly the same
structure. More formally, there is a bijection from the ground set of M to the ground set of
My sueli that  set is independent in the first matroid if and only if its image is independent
i the second matroid. Such matroids are called isomorphic, and we write My = My, Since
1Wo of the five matroids on a 2-element set are isomorphic, we see that there are exactly
four non-isomorphic matroids on such a set. We leave it to the reader to show that there

are exactly vight s phic roids on a 3-els t set. So how many non-isomorphic
Hintroids are there on a d-element set? This question will be temporarily left to the curious
teader although the answer will be given at the end of this section.

Example 2.3. Let E be an n-clement set and, for an integer r with 0 < r < n, let Z be
the collection of subsets of E with at most r clements. Then it is easy to verify that (£,7)
IS0 matroid. 1t is called the uniforin matroid U, ,,. The three matr:
ost one are isomorphic to Uy o, Uy, and U, .

s on a set of size at
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182 What is a Matroid?

We have yet to verify that matrices do indeed give rise to matroids. We began with a
matrix over R. But we could have viewed A as a matrix over C and we would have obtained
exactly the same matroid. Indeed, A yields the same matroid when viewed over any field.
This is because, as is easily checked, all square submatrices of A have their determinants
in {0.1, -1} so such a subdeterminant is zero over one field if and only if it is zero over
every field. We shall say more about this property in Section 5. In this paper, we shall be
interested particularly in finite fields although we shall need very few of their properties
Recall that, for every prime number p and every positive integer k, there is a unique finite
field GF(p*) having exactly p* elements, and every finite field is of this form. When k = 1,
these fields are relatively familiar: we can view GF(p) as the set {0,1,...,p — 1} with the
operations of addition and multiplication modulo p. When k > 1, the structure of GF(p")
is more complex and is not the same as that of the set of integers modulo p*. We shall
specify the precise structure of GF(4) in Section 5 when the matroids arising from matrices
over that field are characterized.

Theorem 2.4. Let A be a matriz over a field F. Let E be the set of column labels of A
and T be the collection of subsets I of E for which the multiset of columns labelled by I 1
linearly independent over F. Then (E.T) is a matroid.

Proof. Certainly Z satisfies (I1) and (I2). To verify that (I3) holds, let X and ¥ be linearly
independent subsets of £ such that |X| = |Y|+ 1. Let W be the vector space spanned by
X UY. Then dim W, the dimension of W, is at least | X|. Suppose that Y U {x} is linearly
dependent for all @ in X — Y. Then W is contained in the span of Y, so W has dimension
at most |Y|. Thus [X| € dimW < |Y|; a contradiction. We conclude that X — Y contains
an element « such that Y U {x} is linearly independent, that is, (I3) holds. s]

The matroid obtained from the matrix A as in the last theorem will be denoted by
M[A]. This matroid is called the vector matroid of A. A matroid M that is
to M[A] for some matrix A over a field F is called F-representable, and A is
representation of M. 1t is natural to ask how well Whitney’s axioms succeed in abstracting

somorphic
called an F-

linear independence. More precisely:
Question 2.5. Is every matroid representable over some field?

Not every matroid is representable over every field as the next proposition will show
Matroids representable over the fields GF(2) and GF(3) are called binary and ternary,
respectively.

Proposition 2.6. The matroid Uz y 1s not binary but is termary.

trix A, Then, sinee the

Proof. Suppose that Uy y is represented over some field ¥ by a

T
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lrgest independent set in Uz 4 has two elements, the column space of A, the vector space
spunned by its columns, has dimension 2. A 2-dimensional vector space over GF(2) has
exactly four members, three of which are non-zero. Thus, if F = GF(2). then A does not
have four distinet non-zero columns so A has a set of two columns that is linearly dependent
and therefore A does not represent Uz 4 over GF(2). Thus Us ; is not binary. The matrix
[ ] represents Uz g over GF(3) since every two columns of this matrix are linearly
independent. Hence Uz 4 is ternary. o

In light of this proposition, we have the following:

Question 2.7. Which matroids are representable over every field?

Once we focus attention on specific fields, a number of questions arise. For
Question 2.8. Which matroids are binary?

Question 2.9. Wiich matroids are ternary?

All of Questions 2.5, 2.7, 2.8, and 2.9 will be answered later in the paper. a hint

that a matroid is vepre-

of what is to come, we note that a consequence of these answer:
sontable over every field if and only if it is both binary and ternary.

d

Figure 1: The graph G.

It was noted earlier that graph theory played an important role i motivating Whit-
tey's founding paper in matroid theory and we show next how matroids arise from graphs.

m
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184 What is a Matroid?

Consider the graph G with 4 vertices and 7 edges shown in Figure 1. Let E be the edge
set of G, that is, {1,2,3,4,5,6,7}, and let Z be the collection of subsets of E that do not
contain all of the edges of any simple closed path or cycle of G. The cycles of G have edge
sets {7}.{5.6}.{1,2,4},{2.3,5},{2,3,6},{1.3.4,5}, and {1,3.4,6}. It is not difficult to
check that T coincides with the set of linearly independent sets of columns of the matrix
A in Example 2.1. Thus this pair (E,Z) is a matroid. As we shall show below, we get a
matroid on the edge set of every graph G by defining 7 as above. This matroid is called the
cycle matroid of the graph G and is denoted by M(G). A matroid that is isomorphic to the
cycle matroid of some graph is called graphic. It is natural to ask:

Question 2.10. Which matroids are graphic?
We shall show next that every graphic matroid is binary. This proof will also show that

every graphic matroid is actually a matroid. It will use the vertex-edge incidence matrix of
a graph. For the graph G in Figure 1, this matrix Ag is

L2383 4,876 T
@ L0 0s 3000, 0
[R5 (S O TR
(D) L) o )
(o TR 8T (R L 1

We observe that the rows of A are indexed by the vertices a, b.c, and d of G; the columns
are indexed by the edges of G; the column corresponding to the loop 7 is all zeros: and, for
all other edges, the corresponding colurun is 1 if the edge meets the vertex and 0 otherwise

Theorem 2.11. Let G be a graph and Ag be its vertex-edge mcidence matriz. When Ag
is viewed over GF(2), its vector matroid M[Ag) has as its independent sets all subsets of
E(G) that do not contain the edges of a cycle. Thus M[Ag] = M(G) and cvery graphic

matroid is binary.

Proof. It suffices to prove that a set X of columns of Ag is linearly dependent if and only
if X contains the sct of edges of a cycle of G. Assume that X contains the edge st of some
cycle C. 1f C is a loop, then the corresponding columm is the zero vector, so X is linearly
dependent. When C' is not a loop, each vertex that is met by C is met by exactly two
edges of C. Thus the sum, modulo 2, of the columns of € is the zero vector. Hence X is
linearly dependent. Conversely, suppose that X is a linearly dependent set of colummns. Take
asubset D of X that is minimal with the property of heing lincarly dependent, that is. D
is lincarly dependent but all of its proper subsets are linearly independent. 15 contains &
t 1 does not contain a 2010

zero column, then D contains the edge set of a loop. Assume th

column. Now GF(2) has 1 as its only non-zero entry. As £ is a minimial linearly dependent

T
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set, the sum, modulo 2, of the columns in D is the zero vector. This means that every vertex
that meets an edge of G is met by at least two such edges. It follows that D contains the
edges of a cycle. To see this, take an edge dy of D and let vy and v, be the vertices met
by dy. Clearly vy is met by another edge da of D. Let vy be the other end-vertex of dy. In

this way, we define a sequence dy, da, ... of edges of D and a sequence vy, vy, ... of vertices.
Because the graph is finite, eventually one of the vertices v in the sequence must repeat.
When this first occurs, a cycle in D has been found that starts and ends at v. (m]

We noted earlier that the number of non-isomorphic matroids on an n-element set
behaves like the sequence 2" for small values of n. As Table 1 shows. the sequence 2"
persists even longer when counting non-isomorphic binary matroids on an n-element set.
Each of the matroids on a 3-element set is graphic and the reader is
graphs each with 3 edges such that the associated cycle matroids are non-isomorphic. We
note here that non-isomorphic graphs can have isomorphic cycle matroids. For instance.
the eycle matroid of any graph is unchanged by adding a collection of isolated vertices, that

encouraged to find 8

I, vertices that meet no edges. More significantly. the 3-vertex graph having a single loop
meeting each vertex has the same cycle matroid as the single-vertex graph having three loops
meeting the only vertex. In general, if a graph G has connected components G, G, ..., G
and v, is a vertex of G, for all i, then the graph that is obtained by identifying all of the
vertices v, has the same cycle matroid as G since the identifications specified do not alter
the edge sets of any cycles. In a paper that preceded and doubtless motivated his paper
introducing matroids, Whitney (50] determined precisely when two graphs have isomorphic
cycle matroids (see also [29, Theorem 5.3.1)).

All 16 of the binary matroids on a 4-element set are graphic. The one non-binary
matroid on & d-element set is the one that we have already noted, Up 4.

n 0J1[2[3] 4] 5] 6 it 8
matroids 1[2]4]|8([17]38] 98306 1724
binary matroids | 1 [ 2[4 [8[16[32 [ 68| 148 | 342
Table 1: Numbers of st phic ids and i phic binary matroids on an

neclement set

I spite of its early similarity to 2", the number f(n) of non-isomorphic matroids on
i -element set behaves much more like 22", Indeed, by results of Piff (33 and Knuth (19),
there are constants ¢; and ¢z and an integer N such that, for all n > N,

1= § logy 1 + ¢ logy logy n < logg logy f(1n) < n — logy n + 2 logg logy n.

185



186 What is a Matroid?

Let b(n) be the number of binary ids on an n-el it set. One
can obtain a crude upper bound on b(n) by noting that every n-element binary matroid can
be represented by an n x n matrix in which every entry is in {0,1}. Thus b(n) < 2", On
combining this with the lower bound on f(n), we deduce that most matroids are non-binary,
that is, lim, . Tt

For functions g and h defined on the set of positive integers, g is asymptotic to h, written
g ~ h, if lim, oo g/h = 1. Let [}], be the number of k-dimensional vector spaces of an
n-dimensional vector space over GF(2). Evidently [§], = 1 and it is not difficult to show
by counting linearly ind lent sets (see, for ple, [29, P ition 6.1.4]) that, for all
52 0

[n] _n=1)(2rnt =) (@R 1)
kf, (2K —1)(2x-1 =1)...(2-1)

In 1971, Welsh [47] raised the problem of finding the asymptotic behaviour of b(n). A
recent paper of Wild [52] claims to solve Welsh’s problem by proving the following theorem
Curiously. the asymptotic behaviour of b(n) depends upon the parity of n.

Theorem 2.12. The number b(n) of non-isomorphic binary matroids on an n-element set

satisfies
"

b(n) ~ %Z [;L']J

\
k=0
Moreover, if B(n) = 2n"/4=n 10k ntnlogz e=(1/2logman for all positive integers n, then there are

constants dy and dy such that
b(2n + 1) ~ d,3(2n + 1) and b(2n) ~ da3(2n).

Rounded to 6 decimal places, dy = 2.940982 and d; = 2.940990.

Wild sent a correction to the argument in his paper to Mathematical Reviews and this
appears in the review of the paper, MR2001i:94077. Lax [23] has found a different error
in Wild's argument and it is not clear how this should be corrected. Nevertheless, it is
believed that Wild's assertion is correct. Finally, it is worth noting, for the reader familiar
with coding theory, that b(n) equals the number of inequivalent binary linear codes of length
n. where two such codes are equivalent if they differ only in the order of the symbols

3 Circuits, Bases, Duals, and Minors

In this section, we consider alternative ways to define matroids together with some hasic

constructions for matroids. We also introduce some tools for answering the questions fron

e Y
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the last section and give three answers to Question 2.8. A set in a matroid that is not

lent is called d de The heredi , ploperty. (I2), means that a matroid is
uniguely ined by its collection of 1
or by its collection of minimal dependent sets, which are called circusts. Indeed, the cycle
matroid M(G) of & graph G is perhaps most naturally defined in terms of its circuits, which
are precisely the edge sets of the cycles of G.

sets, which are called bases,

By using (11)-(13), it is not difficult to show that the collection C of circuits of a
matroid M has the following three properties:

(C1) The empty set is not in C.
(©2) No member of C 1s a proper subset of another member of C.

(C3) IfC, and Cy are distinct members of C and ¢ € Cy NCy, then (Cy UCs) —{e} contains
a member of C.

These three conditions characterize the collections of sets that can be the circuits of a
matroid. More formally:

Theorem 3.1. Let M be a matroid and C be its collection of circuits. Then C satisfies
(C1)-(C8). Conversely, suppose C is the collection of subsets of a finite set E satisfying
(C1)~(C8) and let I be those subsets of E that contain no member of C. Then (B, T) is a
matrowd having C as ats collection of circuits.

We leave the proof of this result to the reader noting that it may be found in (29,
Theorem 1.1.4]. The next result characterizes matroids in terms of their collections of bases.
Its proof may be found in [29, Theorem 1.2.3].

Theorem 3.2 Let B be a set of subsets of a finite set E. Then B is the collection of bases
of a matroid on E if and only if B satisfies the following conditions:

(B1) B i non-empty.

(B2) If By and By are members of B and @ € By — By, then there is an element y of By~ B
such that (By — {z})U {y} € B.

It follows immediately from (I8) that, like the bases of a vector space, all bases of a
tiatrold A have the same cardinality, 7(M), which is called the rank of M. Thus the rank
of i vector matroid M[A] is equal to the rank of the matrix A. If G is a connected graph,
then the bases of M(G) are the maximal sets of edges that do not contain a cycle. These
sets are precisely the edge sets of spanning trees of G and, if G has m vertices, each spanning
tree has exactly m - 1 edges, so r(M(G)) =m~ 1.

187



188 What is a Matroid?

Let us return to the graph G considered in Figure 1 to introduce a basic matroid
operation. Evidently G is a plane graph, that is, it is embedded in the plane without edges
crossing. To construct the dual G* of G, we insert a single vertex of G* in each Jace or
region determined by G and, for each edge e of G, if e lies on the boundary of two faces,
then we join the corresponding vertices of G* by an edge labelled by e, while if e lies on
the boundary of a single face, then we add a loop labelled by ¢ at the corresponding vertex
of G*. This construction is illustrated in Figure 2. We observe from that figure that if we
had begun with G* instead of G and had constructed the dual of G*, then we would have
obtained G; that is, (G*)* = G. The last observation holds for all connected plane graphs
G, that is, for all plane graphs in which every two vertices are joined by a path.

Figure 2: (a) Constructing the dual G* of G. (b) G*.

Now the edge sets of the graphs G* and G are the same. The collection of circuits of the

cycle matroid M(G*), which is the collection of edge sets of cycles of the graph G*, equals

{{1,4),(1,2,3), {2,3,4}, {3,5.6}, {1,2.5.6}. {2,4,5,6}}.

What do these sets correspond to in the original graph G? They are the minimal edge
cuts of G. that is, the minimal sets of edges of G with the property that their removal
inereases the number of conmected pieces or components of the graph. To see this, the key
observation is that the set of edges of G corresponding to a cycle C of G* consists of the

edges that join a vertex of G that lies inside of C to a vertex of G that lies ontside of €

A minimal edge ent of a graph is also called a bond of the graph. We have seon liow the

Yaam O\



James Oxley 189

Donds of o graph G are the circuits of a matroid on the edge set of G in the case that G is
« plane graph, In fact, this holds for arbitrary graphs as can be proved using Theorem 3.1.

Proposition 8.3. Let G be a graph with edge set E(G). Then the set of bonds of G is the
set of circuits of @ matroid on B(G).

The matroid in the last proposition is called the bond matroid of G and is denoted by
M*(G). This matroid is the dual of the cycle matroid M(G). A matroid that is isomorphic
to the bond matroid of some graph is called cographic. Every matroid Af has a dual but
it is easier to define this in terms of bases rather than circuits. In preparation for the next
result, the reader is urged to check that the set of edge sets of spanning trees of the graph
@ in Figure 1 is

({1,238}, (1,25}, {1,2.6}, {1,3,4}, {1,8,5}, {1,3,6}, {1,4.5}.
{1,4,6, {213, 4}, {2.4,5). {2.4.6}. {3.4,5}, {3.4,6}}
The dual & of & which is shown in Pigure 2, has as its spanning trees every set of the
form (7} U X where X is in the following set:
{{1.2.5). {1.2.6).{1.3.5}, (1, 3,6}, {1,5,6}, {2.3.5}. {2.3.6}.
{2,4,5}, {2,4,6}, {2.5.6}, {3.4.5}. {3.4.6}. {4.5,6}}
Observe that the spanning trees of G* are the complements of the spanning trees of G
Theorem 3.4. Let M be a matroid on a set B and B be the collection of bases of M. Let

B* = (E~ B:B&B). Then B* is the collection of bases of a matroid M* on .

The praof of this theorem may be found in [29, Theorem 2.1.1). The matroid M*
I8 colled the dual of M. The bases and circuits of M* are called cobases and cocircuits,
respectively, of M. Evidently

36, (M) = M

1t can be shown that, for every graph G,

3.0, (M(G))* = M*(G).

For the uniform matroid Us,,,, the set of bases is the set of r-element subsets of the
uronnd set. Theorem 3.4 implies that the set of bases of the dual matroid is the set of
(1= r)-olement subsets of the ground set. Ience

T (V) 20

nern-
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The set of cocircuits of Uy, consists of all (n—r + 1)-element subsets of the ground set.
Thus, in this case, the cocircuits are the minimal sets meeting every basis. This attractive
property holds in general.

Theorem 3.8. Let M be a matroid.

(1) A set C* is a cocircuit of M if and only if C* is a minimal set having non-empty
intersection with every basis of M.

(11) A set B 1s a basis of M if and only if B 1s a minimal set having non-empty intersection
with every cocurcuit of M.

This blocking property suggests the following two-person game. Given a matroid M
with ground set F, two players B and C alternately tag elements of £. The goal for B is to
tag all the elements of some basis of M while the goal for C is to prevent this. Equivalently,
by the last result, C's goal is to tag all the elements of some cocircuit of M. We shall
specify when B can win against all possible strategies of C. If B has a winning strategy
playing second, then it will certainly have a winning strategy playing first. The next result
is obtained by combining some attractive results of Edmonds [9] one of which extends a
result of Lehman (25]. The game that we have described is a variant of Shannon's switching
game (see [26]).

Theorem 3.9. The followi: are for a matroid M with ground set
E.

(1) Player C plays first and player B can win against all possible strategies of C.
(11) The matroid M has 2 disjoint bases.

(iii) For all subsets X of B, |X| > 2(r(M) = r(M\X)).

Edmonds also specifies when player C has a winning strategy but this is more compli
cated and we omit it. If the game is played on a connected graph G, then B's goal is to tag
the edges of a spanning tree while C's goal is to tag the edges of a bond. If we think of this
game in terms of a communication network, then C’s goal is to separate the network into
pieces that are no longer connected to each other while B is aiming to reinforce edges of
the network to prevent their destruction. Each move for C consists of destroying one edge
ccuring an edge against destruction. By applying the last

while each move for B involve
theorem to the cycle matroid of G. we get the following result where the equivalence of (1)
and (iii) was first proved by Tutte [14] and Nash-Williams [27). For a partition  of  set,

we denote the number of classes in the partition by
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are for a d graph G.

Corollary 3.10. The foll
(1) Player € plays first and player B can win against all possible strategies of C.
(1) The graph G has 2 edge-disjoint spanning trees.

(it4) For all partitions = of the vertes set of G, the number of edges of G that join vertices
in different elasses of the partition is at least 2(|x| — 1).

In the last theorem and corollary, parts (i) and (iii) remain equivalent if, in each part,
we replace 2 by an arbitrary positive integer k .

We deduce from (3.7) that the sum of the ranks of a uniform matroid and its dual equals
the size of the ground set. This is true in general and follows immediately from Theorem 3.4.

8.11. For a matrosd M on an n-element set, r(M) + r(M*) = n.

Before considering how to construct the dual of a representable matroid, we look at
how one can alter & matrix A without affecting the associated vector matroid M([A]. The
next result follows without difficulty by using elementary linear algebra.

Lemma 3.12. Suppose that the entries of @ matriv A are taken from a field . Then M([A]
remains unaltered by performing any of the following operations on A.

(1) Interchange two rows.

(1) Multiply a row by a non-zero member of F.
() Replace o row by the sum of that row and another.

(1) Delete o zero row (unless it is the only row).

(1) Interchange two columns (moving the labels with the columns).

(1) Multiply & eolwmn by a non-zero member of F.

I A is & 2ev0 matrix with n columns, then clearly M|[A] is isomorphic to Up,. Now
Suppose that A is non-zero having rank 7. Then, by performing a sequence of operations
(512)(i)-(v), we can transform A into a matrix in the form [I,|D), where I, is the r x r
Wentity mateix. The dual of M({f,|D] involves the transpose D of D

Proposition 8.13. Let Af be an n-clement matroid that is representable over a field F.
Then M* is representable over F. Indeed, if M = M(I,|D). then M* = [-D7|1,_,]

191
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Again we shall omit the proof of this result, which may be found in 20, Theorem 2.2.5).
The last result provides an attractive link between matroid duality and orthogonality in
vector spaces. Recall that two vectors (vy,va, ..., vs) and (wy, ws,.. ., w,) are orthogonal if
7 f y vow; = 0. Given a subspace W of a vector space V', the set W* of vectors of V' that
are orthogonal to every vector in W forms a subspace of V' called the orthogonal subspace
of W. It is not difficult to show that if W is the vector space spanned by the rows of the
matrix [I,|D], then W+ is the vector space spanned by the rows of [~ D7|I,,_,].

G\4 G/4

Figure 3: Deletion and contraction of an edge of a graph.

Taking duals is one of three fund | matroid which

for graphs. The other two are deletion and contraction. If ¢ is an edge of a grnph G, then
the deletion G\e of ¢ is the graph obtained from G by simply removing e. The confraction
G/e of e is the graph that is obtained by identifying the endpoints of ¢ and then deleting ¢
Figure 3 shows the graphs G\d and G/4 where G is the graph from Figure 1. We note that
the deletion and contraction of a loop are the same. These operations have a predictable
effect an the independent sets of the cycle matroid M(G): a set I is independent in M(G\¢)
if and only if ¢ Z [ and [ is independent in M(G); and, provided ¢ is not a loop of G, a set
I is independent in M(G/e) if and only if 7 U {e} is independent in M(G). By generalizing
this, we can define the operations of deletion and contraction for arbitrary matroids.

Let M be a matroid (E.Z) and ¢ be an element of E. Let ' = {I C E ~ {¢} : 1 € T}
Then it is easy to check that (E ~ {¢}.Z’) is a matroid. We denote this matroid by A\e
and call it the deletion of ¢ from M. 1f ¢ is a loop of M, that is, {c} is a circuit of

ST i
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M, then we define M/e = M\e. If e is not a loop, then M/e = (E - {e}.7") where
1" = {1 C E~{e} : 1U{e} € I}. Again it is not difficult to show that A /e is a matroid,
“Thiis matroid is the contraction of e from M. If e and f are distinct elements of a matroid
M, then it is straightforward to check that

8.14. M\e\f = M\f\e: M/e/f =M/ f/e; and M\e/f = M/f\e
This means that, for disjoint subsets X and Y of E, the matroids M\ X, M/Y, and
M\X/Y are well-defined. A minor of M is any matroid that can be obtained from M

by o sequence of deletions or contractions, that is, any matroid of the form M\X/Y or,
equivalently, of the form M/Y\X.

The next result specifies the independent sets, circuits, and bases of M\T and M/T.
Proposition 3.15. Let M be a matroid on a set E and let T be a subset of E. Then M\T
and M/T are matrowds on E — T. Moreover, for a subset X of E - T,

(1) X s mdependent i M\T 1of and only 1f X is independent in M :
() X 15 a eovwt of M\T f and only if X s a circuit in M:

(i) X is a basis of M\T if and only if X is a mazimal subset of E =T that s independent
n M;

() X s mdependent i M/T if and only if XU By is independent in M for some maximal
subset By of T that is independent in M ;

() X is o corewst an M/T if and only if X is a minimal non-empty member of {C T :
Cec);

(1) X s a basss of M/T if and only if X U By is a basis of M for some mazimal subset
By of T that 1s independent in M.
Duality. deletion. and contraction are related through the following attractive result
which ean be proved, for example, by using (iii) and (vi) of the last proposition.
316, M /T = (M\T)* and M*\T = (M/T)".
Certain important classes of matroids are closed under minors, that is, every minor of

a member of the class is also in the class.

Theorem 3.17. The classes of uniform, graphic, and cographic matroids are minor-closed.
Morvover, for all fields ¥, the class of F-representable matroids is minor-closed. In particu-
lar. the classes of binary and ternary matroids are minor-closed.
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Proof. If the uniform matroid U, has ground set £ and ¢ € E, then

Upn=a if e < mj
Uropnr ifr=m;

and
U sy i 08

Upnfe &
il {u,_n_. ifr=0.

Hence the class of uniform matroids is indeed minor-closed.

To see that the class of graphic matroids is minor-closed, it suffices to note that if ¢ is
an edge of a graph G, then

M(G)\e = M(G\e) and M(G)/e = M(G/e).

On the other hand, the class of cographic matroids is minor-closed becaunse, by (3.16). (3.6).

and the last observation,
M*(G)\e = (M(G)/e)" = (M(G/e))” = M*(G/e)

and

M*(G)/e = (M(G)\e)" = (M(G\e))" = M*(G\e)-

Finally. to see that the class of F-representable matroids is minor-closed, we note that if
M = M[A] and ¢ is an element of M, then M\e is represented over F by the matrix that is
obtained by deleting column e from A. Thus the class of F-representable matroids is closed
under deletion. Since it is also closed under duality by Proposition 3.13, we deduce from
(3.16) that it is closed under contraction. Hence it is minor-closed. u]

From the last result, we know that, for all fields F, every contraction M/e of an F-
representable matroid M is F-representable. However, the construction of an F-representation
for M/e that can be derived from the last paragraph of the preceding proof is rather convo-
Iuted. There is a much more direct method, which we now describe. Let M = M{A]. If ¢ is
a loop of M, then ¢ labels a zero column of A and M /e is represented by the matrix that is
obtained by deleting this columin. Now assume that ¢ is not a loop of M. Then ¢ labels
non-zero column of A. Suppose first that ¢ labels a unit vector. For example, let ¢ be the
clement 3 in the matrix A in Example 2.1. Then ¢ determines a row of A, namely the one
in which ¢ has its unique non-zero entry. By deleting from A this row as well as the column
labelled by ¢, it is not difficult to check using elementary linear algebra that we obtain o
representation for AM/c. In our example, the row in question is the third row of A and, by

Yaame B
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doleting from A both this row and the column labelled by 3, we obtain the matrix
IR h T
(SIS S
) R
This matrix represents the contraction /3.
What do we do if the non-zero column e is not a unit vector? By operations (3.12)(i)~
(¥), we can transform A into a matrix A’ in which e does label a unit vector. Moreover,
M[A] = M[A'] and we may now proceed as before to obtain an F-representation for M/e.
Now that we know that certain basic classes of matroids are minor-closed. we can seck
1o deseribe such clusses by a list of the minimal obstructions to membership of the class. Let

M be o minor-closed class of matroids and let €X' (M) be the collection of minor-minimal
matroids not in M. that is, N € EX(M) if and only if N Z M and every proper minor of N

i M. The members of EX(M) are called excluded minors of M. While the collection of

excluded minors of & minor-closed class certainly exists. actually determining its members
wny be very difficult. Indeed, even determining whether it is finite or infinite may be hard
However, for the class U of uniform matroids, finding EX () is not difficult. To describe
EX(U), it will be useful to introduce a way of sticking two matroids together

Proposition 3.18. Let M, and Al‘)"ll‘ the matrowds (Ey.1,) and (E3.1;) where By and Ey
are disjomnt. Let

MeéMy=(BEyUE (LUly: I, €L,,1; € Th}).
Then My & My is & matroid.

We omit the proof of this proposition, which follows easily from (I1)~(13). The matroid
Ay My s calledd the direct sum of My and My. Evidently if G, and G are disjoint graphs,
e M) 0 MF(G ) s graphic since it is the cyele matroid of the graph obtained by taking
the disjoint union of G, and Gy. Thus the class of graphic matroids is closed under direct
suins. It is easy to check that, in general,

310, (M, @ My)* = M; & Mj.

From this. it follows that the class of cographic matroids is also closed under direct
sums. Mareover, the class of F-representable matroids is closed under direct sums. To see
this, nate that if A, and A, are matrices over F, then MA)) &
by the matrix whose block form is [t ,“’, l:

1[A3] is represented over F

One comsequence of the next result is that the class of uniform matroids is not closed
under direct swms
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Proposition 3.20. The unique excluded minor for the class U is Uy, @ Uy ;.

Proof. The matroid Uy, @ U\, is certainly not uniform since it has a 1-element independent
! d M , every proper minor of Uy, @ U, ,
is easily seen to be uniform. Thus Uy @ U, ; is an excluded minor for U/.

set but not every 1-el f set is i

Now suppose that N is an excluded minor for &. We shall show that N & Uy, & U,
Since N is not uniform, there is an integer k such that N has both a k-element independent
set and a k-element dependent set. Pick the least such k and let C be a k-element dependent
set. Then C is a circuit of M. Choose e in C and consider C' — {e}. This is a (k = 1)-clement
independent set of M. Since M has a k-element independent set, it follows by (I3) that Af
has an element f such that (C' ~ {e}) U{f} is independent. Now M/(C ~ {e}) has {c} as a
circuit and has {f} as an independent set. Since M is an excluded minor for &, we deduce
that M/(C — {e}) = M so C — {e} is empty. If we now delete from M every element except
e and f. we still have a matroid in which {e} is a circuit and {f} is an independent set. The
fact that M is an excluded minor now implies that E(M) = {e, f} and we conclude that
N = Uy, & Uy o

Finding the collections of excluded minors for the various other classes of matroids
that we have considered is not as straightforward. It is worth noting that once we know
the excluded minors for the class of graphic matroids, we simply take the duals of thes
excluded minors to get the excluded minors for the class of cographic matroids. Another
useful general observation is that if M is a class of matroids that is closed under both minors
and duals, then the dual of every excluded minor for M is also an excluded minor for M
In Section 5. we shall answer the following question:

Question 3.21. What is the collection of excluded minors for the class of graphic matroids?

We showed in Proposition 2.6 that Up 4 is not binary. In fact, Uy 4 is an excluded minor
for the class of binary matroids because if e is an element of Uy 4, then Uy 4\e & Uyy and
Ups/e = Uyy. Both Uyy and Uy are binary being represented by the matrices [}{ }]
and [111], respectively. Tutte [42] established a number of interesting properties of binary
matroids and thereby showed that Us 4 is the unique excluded minor for the class:

Theorem 3.22. The foll are equivalent for a matroid M.

(i) M is binary,
(1) For every circuit C and cocireuit C* of M, |COC*] s coen

(iii) If Cy and Cy are distinct circuits of M, then (Cy UC2) = (Cy NC) is a disjornt union

of circuits.
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(w) M has no mmor isomorphic to Uy 4.

The last theorem gives several different answers to Question 2.8, Since, in particular,
It specifies the collection of excluded minors for the class of binary matroids, it is natural to
ank:

Question 3.23. What is the collection of excluded minors for the class of ternary matrouds?

Many of the attractive properties of binary matroids are not shared by ternary matroids.
Nevertheless, the collection of excluded minors for the latter class has been found. As we
shall see in Theorem 5.11, it contains exactly four members. Motivated in part by the
Kuowledge of the excluded minors for the classes of binary and ternary matroids, Rota [34)
wade the following conjecture in 1971 and this conjecture has been a focal point for matroid
theory research ever since, particularly in the last five years

Conjecture 3.24. For every finite field GF(q), the collection of excluded mmors for the
class of matrouds representable over GF(q) 1s finite.

As we shall sev 1 Section 5, progress on this conje
Jias only been settled for one further case. By contrast, it is known that. for all infinite fields
¥ there are mfinitely many excluded minors for F-representability. Theorem 5.6 establishes
his for an important collection of fields including Q, R, and T

ure has been relatively slow and it

4 Matroids and Combinatorial Optimization

Matroids play an important role in combinatorial optimization. In this section, we briefly
indicate the reason for this by showing first how matroids oceur naturally in scheduling
problems and then how the definition of a matroid arises inevitably from the greedy algo-
ol A far wore comprehiensive treatinent of the part played by matroids in optimization
o be found i the survey of Bixby and Cunningham (3] or the book by Cook, Cunning-
lan. Pulleyblank, and Schrijver [6, Chapter 8). We begin with another example of a class
of watroids. Suppose that a supervisor has m one-worker one-day jobs Jy, Jy. ..., J,, that
tieed to be dove. The supervisor controls n workers 1,2,...,n, each of whom is qualified to
perform some subset of the jobs. The supervisor wants to know the maximum number of

Jobs the workers can do in one day. As we shall see, this number is the rank of a certain
matroid

Let A be & collection (A, Ay,..., A,,) of subsets of a finite set £ For example, let
A= ({1,2.4),{2.3.5.6). 5.6}, {7}). A subset {zy, 22.....x0) of E is a partial transversal of
Aif there is i oue-to-one mapping o from {1,2.....k} into {1.2 m) such that x, € A,
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for all 1. A partial transversal with k = m is called a transversal In our specific example.
{2.3.6.7} is a transversal because 2,3,6, and 7 are in Ay, Ay, Ay, and Ay, respectively.

1 /e

4 ‘e
5 13  se )
6 6

b @4 ey

(a) (b)

‘e

Figure 4: (a) A(A). (b) A matching in A(A).
Theorem 4.1. Let A be a collection of subsets of a finite set E. Let T be the collection of
wll partial transversals of A, Then (E,TI) is a matrowd.

and the empty

Proof. Clearly every subset of a partial | is a partial
set is a partial transversal of the empty family of subsets of .A. Thus (I2) and (I1) hold
To prove that 7 satisfies (I8), we associate a bipartite graph A(A) with A as follows. Label
one vertex class of the bipartite graph by the elements of E and the other vertex class by
the sets Ay, Az, ..., Ay, in A. Put an edge from an element ¢ of E to a set A, if and only if
« « A, As an example, the bipartite graph associated with the specific family listed above
is shown in Figure 4(a). A partial transversal of A corresponds to a matching in A(A), that
1s. a set of edges 1o two of which meet at a common vertex. The matching associated with
the partial transversal {2,3, 6,7} noted above is shown in Figure 4(b).

Let X and Y be partial transversals of A where |X| = || + 1. Consider the matchings
in AlA) corresponding to X and Y and colour the edges of these matchings blue and red.
respectively. where an edge that is in both matchings is coloured purple. Thus there are

X - blue edges and [ = X| red edges, and |X = ¥ = Y = X|+ 1. Focussing on the red
1 e see that each vertex of the subgraph H induced by these edges

weets asingle edge or meets both a red edge and a blue edge. It is o straightforward

el blue edges only,

exercise i graph theory to show that each component of /1 is a path or a cyvele where in

T
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cach case, the edges alternate in colour. Because A(A) is a bipartite graph, every cycle in H
1s even and 5o has the same number of red and blue edges. Since there are more blue edges
i red in H, there must be a component H' of H that is path that begins and ends with
blue edges. In H', interchange the colours red and blue. Then the edges of A(A) that are
ow coloured red or purple form a matching, and it is not difficult to check that the subset
of E that is met by an edge of this matching is Y U {z} for some r in X =Y. We conclude
that I satisfies (18) and so (E.7) is a matroid. (m]

We denote the matroid obtained in the last theorem by M[A] and call a matroid that is
omarphic to such a matroid transversal. We leave it to the reader to check that when A is
the family ({1,2.4}. {2,3.5,6}, {5,6},{7}) idered above, the t sal matroid M[A]
is fsomarphic to the cycle matroid of the graph G* in Figure 2. This can be achieved by
showing, for example, that the list of edge sets of spanning trees of G*, which was compiled
Just before Theoremn 3.4, coincides with the list of transversals of A

Returning to the problem with which we began the section, if we let A, be the set of
wurkers that are qualified to do job J;, then the maximum number of jobs that can be done
i day is the rank of M{A]. This is given by the following result. a consequence of a
thearem of Ore (28]

Theorem 4.2. Let A be a family (Ay, Ay, ..., An) of subsets of a fimite set E. Then the
rank of M[A] s
min{|Ujes 4| = |J| +m: J C {1,2,...,m}}.

@G, ®) G /7
Figure 5: (a) M(G)) is transversal. (b) M(G,/7) is not transversal

The class of transversal matroids differs from the other classes that we have considered
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i that it is not closed under minors.

Example 4.3. Consider the graphs Gy and G;/7 shown in Figure 5. The cycle matroid
M(G\) is transversal since, as is easily checked, M(G)=M[A] where A=({1,2,7},{3,4,7).
{5.6.7}). On the other hand, M(G,)/7, which equals M(G,/7), is not transversal. To see
this, we note that if M(Gy/7) is transversal, then there is a family A’ of sets such that
M(G,/T) = M[A’). BEach single-element subset of {1,2,..., 6} is independent but {1,2},
{3.4}. and {5,6} are dependent. This means that each of {1,2}, {3,4}, and {5, 6} is a subset
of exactly one member of A’ Let these sets be A}, A%, and A}, respectively. Then, since
{1.3}. {1.5}, and (3,5} arc all independent, A, A}, and Aj are distinct. Thus {1,3.5} isa
partial transversal of A’ and so is independent in M (G, /7): a contradiction. We conclude
that the class of transversal matroids is not closed under contraction, although it is clearly

closed under deletion.

While matroids arise in a number of places in combinatorial optimization, their most
striking appearance relates to the greedy algorithm. Let G be a connected graph and suppose
that each edge ¢ of G has an assigned positive real weight w(e). Let 7 be the collection
of independent sets of M(G). Kruskal’s Algorithm [20], which is described next, finds a
maximum-weight spanning tree of G, that is, a spanning tree such that the sum of the
weights of the edges is a maximum. It is attractive because, by pursuing a locally greedy
strategy. it finds a global maximum.

The Greedy Algorithm 4.4,

(i) Set Bg = 0.

(1) Wihale there exists ¢ Z Bg for which Bg U {e} € I, choose such an ¢ with wie)
mazimum, and replace Bg by Bo U {e}.

Now let M be a matroid (£,7Z) and assume that each element e of £ has an associated
positive real weight w(e). Then the greedy algorithm also works for M.

Lemma 4.5. Wihen the greedy algorithm is applied to M, the set Bg it produces s o
mazimum-weight independent set and hence a mazimum-weight basis of M.

Proof. Since all weights are positive, a maximum-weight independent set 5 of M must

e o basis of AL Morcover, the set Bg is also a basis of M. Let Bg = {er.ca....t)
where the clements are chosen in the order listed. Then wiey) = w(ez) = ... 2 w(e,). Lot
B = {fi-fa.. ., fi} where w(fy) = w(fa) > ... > wif,). We shall show that w(e;) 2

wif,) for all jin {1,2,....7}. Assume the contrary and Jet k4 1 be the least integer for

e T
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which w(ensr) < w(fasr). Let Y = {e,eq,...,ex} and X = {fy, f2,..-, fisa}. Since
|X| = [Y] + 1, (13) implies that Y U {f;} € 7 for some i in {1,2,....k + 1}. But w(fi) 2
w(fisr) > wleass). Hence the Greedy Algorithm would have chosen f; in preference to
¢h41; 0 contradiction. We conclude that we do indeed have w(e;) > w(f;) for all j. Thus
Z;_. w(e;) 2 57, w(f); that is, Bg has weight at least that of B. Since B has maximum
weight, so does Bg. (u]

While it is interesting that the Greedy Algorithm extends from graphs to matroids,
the particularly striking result here is that matroids are the only non-empty hereditary
structures for which the Greedy Algorithm works.

Theorem 4.6. Let T be a collection of subsets of a finite set E. Then (E,T) is a matroid
if and only if T satisfies (11), (12), and

(G) for all positive real weight functions w on B, the Greedy Algorithm produces a mazimum-
weight member of I.

Proof. If (B, Z) is s matroid, then it follows from the definition and the last lemma that
(I1), (12), and (G) hold. For the converse, assume that 7 satisfies (I1), (12), and (G). We
need to show that 7 satisfies (I8). Assume it does not and let X and ¥ be members of 7
such that |X| = [¥]+ 1 but that Y U{e} ¢ Z forallein X =Y. Now |[X —Y|=|Y - X|+1
and ¥ < X Is non-empty, so we can choose a real number & such that 0 < & < 1 and

0<(1+e)|Y - X[ <|X-Y]|
Define o weight function w on E by

2, ifee XNY;
et ifeeY - X;
e, fee X -Y;
w=yTE=rrory fe € B (XUY)#0.

The Greedy Algorithm will first pick all the elements of X 1Y and then all the elements
of ¥ = X By sssumption, it cannot then pick any element of X — Y. Thus the remaining
oloments of Be will be in £~ (X UY). Hence w(Bg), the sum of the weights of the elements
of g, satisfies

w(e) =

¥ Xl |E-(XUY)le
giBel S SO =)+ e=viiE = X U]

< 2XNY|+1+e
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But, by (I2), X is contained in a maximal member X’ of Z, and

1+2¢

w(X') > wX) = 2|XnY|+|X—-YI|X_Y|

= 2XNY|+1+2.

Thus w(X’) > w(Bg), that is, the Greedy Algorithm fails for this weight function. This
contradiction completes the proof of the theorem. (u]

A number of proofs of the last result have been published. Curiously, what seems to
be the first of these was obtained by Borivka [4] in 1926 nearly a decade before Whitney
introduced matroids.

5 Excluded-minor Theorems

In this section, we answer many of the questions that were raised earlier by giving excluded-
minor characterizations of each of the classes of ternary, regular, graphic, and cographic
matroids. In addition, a very important structural characterization of regular matroids is
described and some problems that are the focus of current research attention are identified.
Most of the results in this section concern matroid minors. For a more detailed survey of
this topic, see Seymour [41]. Very few proofs are included here but many may be found in
[29]. We begin this section by describing another way to represent certain matroids.

1 1
@ % ()R 2
2 2, 2 3
6 6

Figure 6: (a) The non-Fano matroid. (b) The Fano matroid.
Consider the diagram in Figure 6(a). Let E be the set {1,2,...,7} of points and let 7

be the collection of subsets X of E such that |X| < 3 and X does not contain 3 collinear
points. Then it is not difficult to check that (#,Z) is a matroid. Indeed, this matroid is

T
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represented over GF(3) by the matrix

—_—

1
1
Ar= |0

o = o N
- oo w
- -0 o

7
1
1
1

- o = o

0 0

Now suppose that we view A7 as a matrix over GF(2). Then M[A7] has {4, 5,6} as a circuit.
We can represent this new matroid as in Figure 6(b) where 4,5, and 6 lie on a curved line
a5 shown. This configuration of 7 points and 7 lines is known as the Fano projective plane,
PG(2,2). The corresponding matroid is called the Fano matroid and is denoted by F7.
The matroid in Figure 6(a), which does not have the curved line, is denoted by F; and is
called the non-Fano matroid. The Fano matroid has more symmetry than Figure 6(b) may
suggest. For example, if we add row 1 to row 2 in Az, then, modulo 2, we recover A7 with
its columns reordered. Thus F7 has a symmetry that interchanges 1 with 4 and 5 with 7. It
follows that, up to symmetry, all the points of F; look the same, as do all the lines.

In general, suppose we have a finite set E of points in the plane and a distinguished
collection of subsets of the points, called lines, such that any two distinct lines have at
most one common point. Then it is straightforward to check that we get a matroid on E
having as its independent sets all subsets of E of size at most 3 that do not contain 3 points
from the same line. Another example of such a matroid is the 13-point matroid shown
in Figure 7, which has 13 lines including {1,2, 4,5}, {5,6,8, 11}, {5,7,9,10}, {1,8,10, 13},
and {2,6,10,12}. The reader may recognize this diagram as the 13-point projective plane,
PG(2,3). It is not difficult to check that this matroid is the vector matroid of the following

matrix over GF(3):
L2 id L M6 w6 T 4.8 o0 010510 125 413
(58 00/l aplitagl 831 wu 0l o1 1 1
ONSIRR Ot =503 KOprlabe]® »f (515021 = =1
URUESIENORSOR S =1 "1 =1 17 r=0s se-a=)

The diagrams of the matroids that appear in Figures 6 and 7 are called geometric
representations of the matroids. If we delete the point 6 in Figure 6(b), we obtain the
diagram in Figure 8(a). It is not difficult to check that this is a geometric representation
for M(K,) where Ky is the graph labelled as in Figure 8(b). The symmetry of the Fano
matroid implies that all of its single-element deletions are isomorphic to M(Kj) and hence
are graphic.

If B is a basis of a matroid M with ground set E and e € E — B, then B U {e}
contains a circuit C(e, B). Moreover, by (C3), this circuit is unique. We call C(e, B) the
fundamental circuit of e with respect to B. Now suppose that M is represented over a field

el e
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Figure 7: A 13-point matroid with 13 lines.

F by the matrix [I.|D] where the first 7 columns by, by, ..., b, of this matrix correspond to
the basis B. Suppose e labels a column of D and let C(e, B) = {b;,,bis, .. ., bi,,e}. Then
some linear combination of the columns by, , by, . . ., b;, , e must be the zero vector. Moreover,
since C(e, B) is a minimal dependent set, no in this linear bi is zero.
1t follows that column e is non-zero in row j if and only if j € {i1,12,...,}. Hence the
fund: al circuits of B letely determine the pattern of zero and non-zero entries
in D. In particular, if F is GF(2), the fundamental circuits uniquely determine D because
GF(2) has a single non-zero entry.

‘We shall use the Fano and non-Fano matroids to show that there is a matroid that is
not representable over any field. The next result uses the notion of the characteristic of a
field F. This is the least positive integer m such that m -1 = 0 in F; if no such integer m
exists, then F has characteristic 0. Thus, for example, for all primes p, the field GF(p¥)
has characteristic p, while the fields Q,R, and C all have characteristic 0. Moreover, by
considering the elements that can be produced by sums, differences, products, and quotients
starting with 1, it is not difficult to see that every field of prime characteristic p has GF(p)
as a subfield, while every field of characteristic 0 has Q as a subfield.

Proposition 5.1. Let F be a field.
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(a)

Figure 8: (a) A geometric representation for M(Kj). (b) Kj.

(1) F; is F-representable if and only if the characteristic of F is two; and

(it) F; is F-representable if and only if the characteristic of F is not two.

Proof. Suppose that M € {F7, F; } and that M is F-representable for some field F. Because
we know that M is represented over some field by the matrix Az, it follows, from considering
fundamental circuits, that an F-representation of M has the same pattern of zeros and non-
20105 as A7. Thus we may assume that M has an F-representation A’ of the form

1234567
DR (/R ORI B S
0/ % 0 % 0% |}
00 0 *» = «

where each = represents some non-zero member of F and two different x-entries need not be
equal. Now, by multiplying columns of A’ by non-zero members of F, we may assume that
the first +-entry in each column is 1. Then, by multiplying rows 2 and 3 and then columns
2, 3, and 6 by non-zero elements of F, we can make all entries in column 7 equal to 1 while
maintaining the fact that the first x-entry in each column is 1. Hence we may assume that

o Pt S Sl il i 4

1A (Ut b )l
A=1010a01 1]

(1 W b B

where a, b, and ¢ are non-zero elements of F. Because M has each of {3,4,7},{2,5,7}, and
{1,6,7) as a circuit, it follows that each of a,b, and ¢ is 1. Thus A’ = A;. We conclude
that if M is F-representable, then M is represented over F by the matrix A;. Now the 3 x 3
matrix labelled by columns 4,5, and 6 has determinant —2. In F;, the set {4,5,6} is a
circuit, while, in F;, it is a basis. Thus if F; is F-representable, then —2 = 0 in F, so F
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has characteristic 2. Similarly, if F;~ is F-representable, then —2 # 0/so F has characteristic
not 2. By its definition, Fy is GF(2)-r so it is repr ble over all fields of
characteristic 2, and we deduce that (i) holds. To complete the proof of (i), we just need
to show that M|[A7) and F; have the same set of circuits when A7 is viewed over any field
of characteristic other than 2. But since we already know that M([A;] and F; share as
circuits all sets consisting of 3 collinear points in Figure 8(a), this leaves little to check and

(a]

Bl

(ii) follows without difficulty.

‘We are now able to answer Question 2.5.
Corollary 5.2. The matioid Fy & Fy; is not representable.

The corollary now follows immediately

Proof. Both Fy and F; are minors of Fy @ F; .
(8]

from the last proposition.

(@) (b)

Figure 9: Non-representable matroids with 11 and 9 elements.

One may ask whether 77@F; is a smallest non-representable matroid and that question
is easily resolved. If we stick F and F; together in the plane along a line as in Figure 9(a),
then we obtain an 11-element matroid having both F; and F; as minors. This matroid is
also non-representable. As an aside for the reader familiar with projective geometry, we note
that, by Pappus'’s Theorem, if the configuration shown in Figure 9(b) exists in a projective
geometry over a field, then the points 1, 2, and 3 must be collinear. It follows from this that
the 9-element rank-3 matroid for which Figure 9(b) is a geometric representation is non-
representable. But there are even smaller non-representable matroids and we now describe
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one of these. This ion will use the following result, which can be proved using
Theorem 3.2.

Proposition 5.3. Let M be a matroid with ground set E and collection of bases B. If C is
a circuit of M such that E — C is a cocircuit of M, then BU {C} is the set of bases of a
matroid Mg, on E.

The matroid Mg, in the last proposition is said to be obtained from M by relazing C.
Thus, for example, the non-Fano matroid is obtained from the Fano matroid by relaxing the
line {4,5,6}. The proof of the next result is not difficult.

Lemma 5.4. Let M be a matroid with ground set E and let C be a circuit of M such that
E - C is a cocircuit of M.

(i) If e € C, then Mg\e = M\e, and if |C| > 2, then C — {e} is a circuit of M/e whose
complement in M/e is a cocircuit of M/e, and M /e is obtained from M/e by relazing
c-{e}.

(ii) If f € E~C, then Mg/f = M/f, and if |[E — C| > 2, then C is a circuit of M\ f
whose complement in M\ f is a cocircuit of M\ f, and Mg\ f is obtained from M\ f
by relazing C.

Consider the matroid AG(3,2) that is represented over GF(2) by the matrix

IR 2RO BRSO R OB 8
R ORUMIORISET S SO
URRIBS OB ORISR
(1 (o 0] P T 0
W @ at M alaksal

Thus the columns of AG(3,2) consist of all the vectors (zy, z2, z3,z4)7 in the 4-dimensjonal
vector space over GF(2) such that z, + 23 + z3 + z4 # 0. Evidently AG(3,2)/4 &~ F,.
Moreover, {1,4,5,8} is a circuit C of AG(3,2) whose complement is a cocircuit. Thus we
can relax € to obtain AG(3,2); and, by the last lemma, AG(3,2);/2 = AG(3,2)/2 ~ F;.
Moreover, AG(3,2)/1 is the matroid that is obtained from AG(3,2)/1 by relaxing {4,5,8}.
But AG(3,2)/1 = F; and it follows, by the symmetry of Fr, that AG(3,2);/1 = Fy, We
conclude that AG(3,2); has both F; and F; as minors so it is non-representable. It is a
smallest non-representable matroid, for Fournier (10] proved the following:

Theorem 5.5. Every matroid on a set of at most 7 el is repr ble. M

every P matroid on an 8-el t set has rank 4.

B
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‘We noted at the end of Section 3 that, for all infinite fields, the set of excluded minors
for representability over that field is infinite. The next result shows this for all fields of
characteristic 0 and hence, in particular, for Q,R, and C. Let J; be the k x k matrix that
has zeros on the main diagonal and ones elsewhere. Lazarson [24] proved the following

result.

Theorem 5.6. Let F be a field of characteristic 0. For all prime numbers p, let L, be the
vector matroid of the matriz [[,41|J;4,] viewed over GF(p). Then Ly is an ezcluded minor

for F-representability.

The model for all theorems that characterize classes of matroids by excluded minors is
Wagner’s modification [46] of Kuratowski’s famous characterization of planar graphs [22].
The graphs K5 and K33 are shown in Figure 10. A minor of a graph G is a graph H that
can be obtained from G by deleting or contracting edges, or deleting isolated vertices.

(a) (b)

Figure 10: (a) K5. (b) K33.
Theorem 5.7. A graph is planar if and only if it has no minor isomorphic to Ks or K3 3.

Tutte [43] generalized this theorem to give an excluded-minor characterization of graphic
matroids. The fact that neither K5 nor K3 3 is planar means that the bond matroids of these
two graphs are not graphic although this is not immediate (see, for example, (29, Theorem
5.2.2]). These two bond matroids are among the five excluded minors for the class of graphic
matroids. Of the other three, one, namely U 4, has been shown in Proposition 2.6 to be
non-binary and so, by Theorem 2.11, is non-graphic. The other two excluded minors are
F; and F7. To see that Fy is non-graphic, recall from Figure 8 that every single-element
deletion of F7 is isomorphic to the cycle matroid of the complete graph K4. As Fy is simple
having the same rank as M(Kj), we deduce that F7 is non-graphic. If F; is graphic, then
it is isomorphic to M(G) for some connected 5-vertex graph G. Clearly G has 7 edges and
so has average degree less than 3. Thus G has a vertex of degree at most 2, so F; has a

{ " \ A
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cocircuit of size at most 2. This implies that F7 has a circuit of size at most 2, and this
dicti blishes that Fy is graphic.

Theorem 5.8. A matroid is graphic if and only if it has no minor isomorphic to
Uz g Fr, F7, M* (Ks), or M*(Ka).

Corollary 5.9. A matroid is cographic if and only if it has no minor isomorphic to
Uz, Fr, Fi , M(K5), or M(K3,3).

Finding a list of candidates for the excluded minors for the class of ternary matroids is
not difficult. We know that /% is non-ternary. Moreover, all its proper minors are ternary,
50 Fy is an excluded minor. Since the dual of every ternary matroid is ternary, Fy is also
an excluded minor. Two other excluded minors are Uz 5 and its dual Us 5 for as the reader

will easily show:

Lemma 5.10. The matroid U; , is representable over a field F if and only if F has at least

n =1 elements.

Although this lemma completely settles the question of when a rank-2 uniform matroid
is representable over a field, it is an open problem to determine all the fields over which
an arbitrary U, is representable. This problem has received considerable attention in
projective geometry where uniform matroids are called n-arcs. The history of the problem
and progress towards its solution are described in (14, 15]

The last lemma means that we have now identified four excluded minors for the class
of ternary matroids and these four were conjectured to be the only such matroids. In
1971, at a National Science Foundation Advanced Science Seminar held at Bowdoin College,
Maine, Ralph Reid gave a lecture in which he announced a proof of this conjecture that was
based on techniques introduced by Tutte [42]. However, Reid never published his proof. In
1975, Bob Bixby and Paul Seymour, working independently, obtained two different proofs
of the conjecture. Indeed, Bixby called his paper “On Reid’s characterization of the ternary
matroids”. Both proofs appeared in the same issue of the Journal of Combinatorial Theory
Series B in 1979, and several more proofs of this result have appeared since. None is

elementary enough for inclusion here.
Theorem 5.11. A matroid is ternary if and only if it has no minor isomorphic to Uy 5, Us 5, F7,
or Ff.

The matroid in Example 2.1 is representable over every field. Such matroids are called
regular and Tutte [42] proved several attractive characterizations of them.

Theorem 5.12. The foll tat are equi for a matroid M.

Y i
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(i) M is regular.
(i1) M is both binary and ternary.
(iii) M is representable over GF(2) and some field of characteristic other than 2.

(iv) M is representable over R by a matriz all of whose square submatrices have determi-
nants in {0,1,—1}.

(v) M has no minor isomorphic to U 4, Fy, or F7.

A matrix A that obeys the condition in (iv) is called totally unimodular. We note that
such a matrix simultaneously represents M over all fields where, of course, —1 = 1 over fields
of characteristic 2. The class of regular matroids contains the class of graphic matroids. To
see this, we observe that the matrix that is obtained from the vertex-edge incidence matrix
Ag of a graph G by changing the sign of one of the two ones in each non-zero column is
totally unimodular (see [29, P ition 5.1.3]). At the end of the section, we shall note a
deep structural theorem of Seymour [40] for the class of regular matroids.

One important feature of all the known proofs of Theorem 5.11 is that they rely on the
fact that a ternary matroid arises from an essentially unique matrix.

Theorem 5.13. Let A; and A, be matrices over GF(3) such that the
columns of these matrices are labelled by the same set E. If M[A)] = M[Ap] and A,
has no more rows than Ay, then Ay can be obtained from A, by a sequence of operations

(3.12)(i)~(vi).

This theorem fails, for example, if we replace GF(3) by GF(4). We noted earlier that
the latter does not have the same structure as the ring of integers modulo 4. We shall take
the elements of GF(4) to be 0,1,w,w + 1 where, in this field, w? = w + 1 and 2 = 0. This
field has an automorphism that maps each element to its square. If we replace every entry
in a GF(4)-representation of a matroid M by its image under this automorphism, we obtain
another GF(4)-rep ion for M. Two F-rep i A, and A; of a matroid are
equivalent if one can be obtained from the other by a of ions each isti
of one of (3.12)(i)~(vi) or the following:

(vii) Replace each entry of the matrix by its image under an automorphism of F.
The reader unfamiliar with field automorphisms should note that, when p is prime,

GF(p) has the identity map as its only automorphism. In general, for all positive integers
k, the field GF(p¥) has exactly k automorphisms, namely the maps that take each element

y AN
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o to o' for all i in {0,1,...,k — 1}. The following two matrices A; and A, are both
GF\(4)-representations of the same matroid M but they are not equivalent:

IR AN N6
11100405 (@
Ai= |01 w 1 1 0
0@ 0 1 w 1
and
284 B @
IS E R o) o)
Ay= 1o 1 w 1 1 ©
0 0 0 1 w+l 1

The matroid M can be broken apart in a simple way. In fact, M can be represented
geometrically as in Figure 11. Thus M can be obtained by sticking together two 4-point
lines at a common point and then deleting that point. To formalize this idea, let M; and M,
be matroids on sets By and By, each having at least three elements, and let By N B, = {p}.
Assume that, for each 7, the set {p} is neither a circuit nor a cocircuit of M;. Then the
2-sum My &2 M of My and M, is the matroid whose ground set is (Ey UE,) — {p} and whose
set of cireuits consists of all circuits of Mj\p together with all circuits of Ma\p and all sets
of the form (Cy UC2) — {p} where each C; is a circuit of M; containing p. We omit the proof
that Mj @, M, is actually a matroid, but note that the matroid M above is isomorphic to
Uy @2 Ua,s where the two copies of Uz 4 have ground sets {1,2,3,p} and {p,4,5,6}.

1

Figure 11: A geometric representation for Uz 4 @2 Us 4.

A matroid M is connected if it cannot be written as the direct sum of two non-empty
matroids. If M is connected and cannot be written as the 2-sum of two matroids, then
M is 3-connected. If G is a connected graph with at least 4 vertices, then M(G) is a 3-
connected matroid if and only if the graph G is 3-connected and G is simple, that is, G
cannot be disconnected by removing 2 vertices, and G has no cycles with fewer than 3
cdges. Extending Theorem 5.13, Kahn [17] proved the following:
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Theorem 5.14. If M is a 3-connected GF (4)-representable matroid, then all GF(4)-repre-
sentations of M are equivalent.

This theorem was a crucial tool in the proof of the excluded-minor characterization of
quaternary, that is, GF(4)-rep bl ids, which was obtained very recently by
Geelen, Gerards, and Kapoor ([12]. Although we have already met some of the excluded
minors, there are three others that have yet to be introduced here. The first of these, Pg, is
the matroid that is represented over GF\(3) by the matrix

(1 20 131 A6 T8
0@ @ W il =1
@ @@ e el
@@l @il @l
O Q@ il =il il ik

In Pg, the complementary sets {1,4,5,8} and {2,3,6,7} are both circuits and are both
cocircuits. If we relax both of these circuits, then we get the matroid Pg'. The matroid Ps
is represented geometrically as in Figure 12.
()
(] (]

o ——o—90
Figure 12: A geometric representation for Ps.
Theorem 5.15. A matroid is quaternary if and only if it has no minor isomorphic to
Un6,Uss, Fy , (Fy)*, Po, Py, or Fg'.

The last theorem means that Rota’s conjecture (3.24) has now been proved for g = 2, 3,
and 4. Comparing Theorems 3.22, 5.11, and 5.15, we see that, for ¢ < 4, the number
of excluded minors for the class of GF(g)-representable matroids increases with g. Oxley,
Semple, and Vertigan (31] showed that, in general, this number is at least exponential in q.
Theorem 5.16. For all prime powers g, there are at least 29~* excluded minors for the
class of GF(q)-representable matroids.

Rota’s conjecture remains open for values of g larger than 4. Consider the case when

q = 5. The matrix
(0O STS
(IS () I
(OISO D
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represents Uy s over GF(5) for all a and b in GF(5) — {0,1} such that a # b. There are

6 such matrices and they are all inequivalent. Since Uss is 3 i, the 1 of
‘Theorem 5.14 does not hold for GF(E)-represenuhle matroids. Kahn [17] conjectured thnt
for all g, there is a fixed number n(g) such that every 3 d GF(qg)-rep

matroid has at most n(g) inequivalent representations. Oxley, Vertigan, and Whittle [32]
proved this conjecture when g = 5 but showed that it fails for all larger values of g.

Theorem  5.17. Every 3 d GF(5)-rep bl matroid  has  at
most 6 inequivalent GF(5)-rep i For all integers N and all prime powers q > 5,
there 1s a 3-connected GF(q)-representable matroid that has at least N inequivalent GF(q)-
representations.

This theorem means that if further progress is to be made on Rota’s conjecture, then new
techniques will need to be developed. One direction in which some work has been done is in
sulvaging something from Kahn's conjecture by strengthening the connectivity condition [16]
with the hope of regaining control of the number of inequivalent representations. Another
direction that has been explored involves using the parameter branch-width, which was
introduced for graphs by Robertson and Seymour [36] as a relative of their better-known
tree-undth.  Loosely speaking, for each of these parameters, the smaller the value of the
parameter the more tree-like is the structure. Geelen and Whittle [11] have proved that,
for all finite fields GF(q) and all positive integers k, there are only finitely many excluded
minors for GF(g)-representability that have branch width at most k. This work is part of
an effort that is being made to extend Robertson and Seymour’s graph minors project (see,
for example, [35]) to matroids. Among the many important contributions of this project is
the following very deep result, which appears in the twentieth paper [37) of the series!

Theorem 5.18. In every infinite set of finite graphs, there is always one that is isomorphic
to a minor of another.

®
(a) (b) (c)

Figure 13: Geometric representations for (a) My, (b) My, and (c) Ms.

This theorem fails if we replace “graphs” by ids”. For le, the id:
Ly, in Theorem 5.6 are all excluded minors for R-rep bility and so none is a minor

TN
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of another. As another example, let M3, My, Ms, ... be the sequence of rank-3 matroids
for which geometric representations are shown in Figure 13. None of these matroids is
isomorphic to a minor of another. To see this, observe that, since these matroids all have
the same rank and contraction drops rank, if M; is a minor of M, then M; must be a deletion
of M;. But once we delete an element from M;, we destroy the ring of 3-point lines common
to all the My’s and this cannot be recovered by further deletions. Thus Theorem 5.18 does
not extend to the class of all matroids. Among the biggest unsolved problems in matroid
theory and one that has been the focus of much recent research attention is the following:

Question 5.19. Is there an infinite set of binary matroids none of which is isomorphic to
a minor of another?

For all prime powers g, the corresponding question for the class of GF(q)-representable
matroids is also open. Indeed, it is generally believed that the answer to this question will
be the same irrespective of which finite field is considered. Geelen, Gerards, and Whittle [13]
have answered this question negatively for all prime powers g provided that the branch-width
of all the matroids in the set is bounded above.

The last result that we note in this survey is a deep and important structural theorem for
regular matroids due to Seymour [40]. This theorem uses an operation for binary matroids
that corresponds to sticking two disjoint graphs together across a 3-edge cycle and then
deleting the edges of the cycle. Let M; and M be binary matroids with ground sets E;
and E, respectively, each having at least seven elements. Suppose that Ey N E; = T', where
T is a 3-element circuit in both M, and M, and T' does not contain a cocircuit in either
matroid. The 3-sum M @3 M, of My and M, is the matroid on (Ey U E;) — T whose set
of circuits consists of all circuits of M;\T, all circuits of M2\T, and all minimal non-empty
sets of the form (Cy U C3) — T where C; is a circuit of M; such that CyNT = CoNT # 0.
We omit the proof that this operation does actually produce a matroid.

We have already noted that the class of graphic matroids is contained in the class of
regular matrolds Since the latter class is closed under duality, it also contains the class of
ids. One dic regular matroid, which was found by Bixby (1], is the

vector matroid Rjg of the following totally unimodular matrix:

=1 @l " 00 gl

I | L e 0°L R0

Is = sl
[ i B 1

Rt Db oy

Among the special properties of this matroid are that it is isomorphic to its dual, every
single-element deletion is isomorphic to M(K33), and every single-element contraction is

’—~W\



James Oxley 215

isomorphic to M*(K33). Seymour [40] showed that every regular matroid can be built by
plecing together graphic matroids, cographic matroids, and copies of Ryo. Combining his
theorem with earlier work of Brylawski (5] gives the following result.

Theorem 5.20. The class of regular matroids coincides with the class of matroids that
can be constructed using direct sums, 2-sums, and 3-sums beginning with graphic matroids,
cographic matroids, and copies of Ryo.

We recall from Theorem 5.12 that a matroid is regular if and only if it can be repre-
sented by a totally unimodular matrix. Using this fact, the last theorem can be combined
with a result of Cunningham and Edmonds (8] to give a poly ial-time algorithm to test
whether a real matrix is totally unimodular. This is a very important result in combinatorial
optimization for, as Schrijver (38, p. 266] notes, “Totally unimodular matrices yield a prime
class of linear programming problems with integer optimum solutions.”

6 Conclusion

In terms of the research results highlighted, this paper has focussed mainly on representable
matroids. Another important and active research direction in matroid theory involves the
numerous links between matroids and graphs. A recent survey of this area, which concen-
trates particularly on connectivity results, appears in [30]. Yet another very active and rich
pur( of mnmd theory centres on the 'I\ltte polynomial, its properties, and its numerous

h h ics. A recent survey of work in this area ap-
pears in Welsh [49). For the history of matroid theory and a reprinting of some of the most
influential papers in the subject, the reader is referred to Kung [21]. Many mathematicians
in the 1930s and before were led to formulate abstract axiom systems for dependence. As

Kung [21, p. 15] notes, “it was an early testi to the \ and inevitability of
the concept of a matroid that all these axi i di: d independently by very
different math ici are all equivalent.” The fact that the concept of a matroid has

endured is & present-day testimony to its versatility and utility.
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