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1 Introduction

The concept of a matroid is so natural that it is only to be expected that many branches of
mathematics have significant connections with this theory. The interplay between matroid
theory and graph theory has led to exciting developments in both fields (see [d1, 42));
likesise, matroid theory has benefited from and contributed to linear algebra, optimization,
urrangements of hyperplanes, knot theory, coding theory, rigidity theory. and many more
branches of mathematics and its fields of application.

Correspondmgly. a wide variety of points of view can be used to motivate matroid the-
ory. The perspective we take in this introduction is matroid theory as a Jogical extension
of affine and projective geometry. To set the stage for the geometric approach to matroid
theary, Section 2 cutlines some elementary, although perhaps less familiar, aspects of geom-
oty with a particular emphiasis on finite geometries. The introduction to matroid theory
proper begins in Section 3

This article does not aim to provide a comprehensive survey of this diverse and rapidly
expanding field. Rather, after showing how matroid theory is a natural outgrowth of geom-
CIIY, e present & small mumber of results and open problems in a few of the many facets of
l||-|~ ficld that, we hope, convey to the reader the flavor of the subject and hint at its power
While, many of the resuits and problems we discuss reflect the current research interests of
the author, it i hoped that the reader is induced to explore the full richness of this field;
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126 An Introduction to Matroid Theory

toward this end, the concluding section and the generous list of references suggest the grest
breadth of the field and include many possible entry points for readers who seek more depth

2 Geometry

While affine geometry has been studied, in varying degrees of generality, for thousands of
years, and projective geometry grew out of investigations into perspective during the He
naissance, chiefly by Givard Desargues (1591-1661), the study of finite affine and projective
geometries largely began in the 1930’s and 1940's with the work of such mathematicians
as Marshall Hall, Jr., Richard H. Bruck, and Herbert Ryser. We focus on basic aspects of
affine and projective geometries; this part of the article is not meant as an introduction to
current research in finite affine and projective geometry, which continues to be a subject of
intense research activity.

At its most fundamental level, geometry is concerned with such simple notions as pouts
lines, planes, and their higher-dimensional counterparts. We can consider such concepts eves
if we do not have a notion of distance (which would be made precise by a metric). Ths
is exactly what we consider: nonmetric geometry. Thus, we do not have angles, curvature
or even the notion of “between”. At first it may seem that such a minimalistic version of
geometry would be too linited to be interesting, but this is far from the case.

2.1 Affine geometries

We start with affine geometry, which abstracts the familiar properties of R".
Definition 2.1. An affine geometry 1s a set S of points and two collections of subsets of
S, the set of lines and the set of planes, subject to these azioms:
(A1) each puiv A, B of distinct points is contained in a unique line, which is denoted
A, B),
(A2) each triple of noncollinear points 1s contained in a unique plane,

(A8) if P is a point not in a line €, then there is a unique line £* with P in (* and(
parallel to * (parallel lines are coplanar and disjoint),

(A4) the relation “parallel or equal™ is an equivalence relation, and

(A5) each line has at least two points.

Axiom (A3) is the parallel postulate. Note that the reflexive and synunetric properties
automatically hold for the relation i axiom (A4): thus, the only issue is the transitive
property. Axiom (A5) excludes certain degenerate cases
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The interpretation of these axioms in R" is familiar: points are n-tuples in R", lines
are ffine lines in R® (i.e.. lines that need not go through the origin), and planes are affine
planes in R" (e, planes that need not go through the origin). It is useful to think of these
from o slightly more alget ive: points are transl s (or cosets) of the zero
subspace, lines are the translations of the 1-dimensional (linear) subspaces, and planes are
the lations of the 2-di ional (linear) suk

To get more examples of affine geometries, we could replace R by the elements of
auny division ring F (a structure that satisfies all the axioms of a field except perhaps the
law of multiplication). All basic results of linear algebra (in particular, all

theorems about dimension and subspaces) are valid for vector spaces over arbitrary division
rings. The case of most interest for us is that in which F is a finite field, the Galois field
GF(q) for some prime power g. If ¢ is prime, this field is Z,, the integers 0.1....,¢ — 1 with

arithmetic modulo ¢

Thus, let F be a division ring. Let AG(n, ') be the affine geometry with the following
points, lines. and planes: the points are the n-tuples of F". i.¢. the translations of the
2010 subspace of £, the lines are the translations of the l-dimensional subspaces of F™,
and the planes are the translations of the 2-dimensional subspaces of F". Of course, F"
could be replaced by any n-dimensional vector space over F. Verifying axioms (A1)-(A5) is
straightforward: for instance, the unique line that contains vectors A and Bis {A+a(A-B) |
a € F), the ! of the 1-di ional sul {a(A-B)|a€ F} by A.

Consider AG(2,3), the affine plane over GF(3), the field of three elements (i.e., {0, 1,2}
under arithmetic modulo 3). (The notation AG(n, GF(q)) is shortened to AG(n,q).) There
are nine points, (0.0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), and (2,2). Note that
{(0.0),(0, 1), (0.2)} is a subspace; its translations are {(1,0), (1,1). (1.2)} and {(2,0), (2,1),
(2.2)}. Note that these three lines are parallel. In this manner, we get three other equiva-
lence classes of parallel lines,

{(0,0), (1,0, (2,0)} and its cosets {(0, 1),(1,1),(2,1)} and {(0.2).(1,2),(2,2)},

{(0,0),(2,1).(1,2)} and its cosets {(1,0), (0, 1), (2,2)} and {(2,0).(1.1),(0,2)},

and

{(0,0), (1,1).42.2)} and its cosets {(1,0), (2, 1), (0.2)} and {(2.0).(0.1),(1,2)}.

127



Ve ‘

128 An Introduction to Matroid Theory

These sets are shown in Figure 1. Together these give the points and lines of AG(2,3) as
shown in Figure 2.

AP - P

100 o o 1
1

[ b

Figure 1: The four families of parallel lines in AG(2,3). Subspaces are depicted with heavy
lines: the cosets are dotted.

Figure 2: The affine plane AG(2,3)

The affine geometry AG(n,q) has @™ points since this is the number of n-tuples over
the g-element field GF(q). There are ¢ points on each line of AG(n,g) since the lines are
the translations {v + au | a € GF(g)} of the 1-dimensional subspaces {au | a € GFlg)}
Likewise there are ¢* points in each plane of AG(n,g) since the planes are the translations
{v+ou+ dw|a,B8 € GF(q)} of the 2-dimensional subspaces {au + duw | o, 4 € GF(g)}

The examples of affine geometries that we have scen so far suggest basic structural
features of affine geometries. In particular, there is a bijection hetween the points on any
two lines of an affine geometry. and between the points in any two planes. The proofs of
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these statements are easy excrcises:

If all lines in an affine geometry are finite and have exactly g points, we say that g is
the order of the affine geometry. Thus, AG(n, ) has order ¢

We have mentioned points, lines, and planes. There may be affine subspaces of higher
dimension. Must we list these separately or are they somehow determined by the points,
lines, and planes? The notion of a flat, which is the geometric term for subspace, shows how
to capture all subspaces using only points and lines.

Definition 2.2. In an affine geometry in which there are at least three points on cach line,
o flat 15 a subset X of the sct of points that satisfies the line-closure condition: if A, B € X,
then £(A, B) € X

Figure 3 gives a generic picture of the condition of line-closure. Figure 4 shows a subset
(the circled points) of AG(2.3) that is not a flat.

X X
Not line-closed Line-closed

Figure 3:

Nate that Definition 2.2 uses only lines. Apart from affine geometries in which all lines
lave exactly two points, the only role planes have is in allowing us to taik about parallel

Figure 4:
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lines. (Recall that parallel lines are coplanar lines that are disjoint, so this relies on knowing
what planes are.) Planes have a more important role in affine geometries in which lines have
exactly two points, but we gloss over this.

Next we discuss three important properties that are satisfied by the flats of an affine
geometry on a set S of points; these are the properties that are abstracted to yield the
definition of a matroid. In property (F3), we use the notion of one flat covering another.
we say that flat Y is a cover of a flat Z if Z is a proper subset of Y, denoted Z C Y, and
there is no flat W with

< W c Y. Since the finite case is ultimately our main interest,
we assume here that S is finite; the general case uses the same ideas and only slightly more
cumbersome notation for the third property.

The flats of an affine geometry on a set S of points satisfy the following three properties
(F1) The set S is a flat
(F2) The intersection of any collection of flats is a flat
(F3) If X is a flat and X,, Xp,..., X, are the flats that cover X, then the differences
X, -X ~ X,.... Xt = X partition § - X

Properties (F1) and (1'2) are immediate from Definition 2.2. Property (F3) is more
complicated and would require a distracting digression to prove in this setting, We justify
it indirectly later in two ways: in the first justification, we assert that our model AG(n, £}
covers almost all instances of affine geometries, and one can check (F3) directly for this
model; in the second justification, we prove the analogous property for projective geometries
and cite a connection that allows us to translate between the two settings.

Rather than proving (I'3) here, we focus on what it is saying. It is the natural gener-
alization of the observation that given a line and a point not on the line, the point and the
line determine a unique plane; in other words, the planes through a line partition the set of
points that are not on that line. This special case of (F3) follows casily from axioms (A2)
and (A3)

One can easily show that the flats of AG(n, F) are the translations of the linear sub-
spaces of F"'. Note that property (F3) holds for an i-dimensional linear subspace X of F*:
this is simply saying that cach vector u not in X is in a unique (1 + 1)-dimensional subspace
that contains X, namely span(X U {u}). To get the general case for AG(n, F) from this
just translate: pick « in a flat X; the translation Z = {y ~ = | y € X} is a linear subspace,
so the flats covering it partition the set of points that are not in Z; the translations of these
flats by x are the covers of X and the partitioning property is preserved

Property (F2) has wn important consequence: Given a set T of points of an affine
geometry. there is a unique smallest fAlat that contains 7, namely the intersection of all flats
that contain T. By property (F1), this is the intersection of a nonempty collection of sets

.



4
T |

Joseph E. Bonin 131

Thus, the following definition makes sense.

Dofinition 2.3. The closure cl(T) of a set T of points in an affine geometry is given by

d@= () X

wilhr8x

One can think of the closure cl(7) of T as the flat spanned by T'. In any affine geometry,
¢l(0) = @; in particular, @ is a flat.

The closure of the set of circled points in Figure 4 is the entire plane, AG(2,3).
The notion of closure allows us to define the rank of a flat.

Definition 2.4. The rank r(X) of a flat X in an affine geometry is gien by

r(X) =min{|T| : T C X and cl(T) = X}

The rank of » flat captures how many points it takes to determine the flat. For instance,
It takes two pomts to determine a line, so lines have rank two: likewise, it takes three points
to determine a plane, so planes have rank three. The rank of an affine geometry is the rank
of its ground set

Rank is closely linked to dimension. One can show that in AG(n, F). the affine geometry
constructed from F, the flats of rank i are precisely the cosets of the (i — 1)-dimensional
subspaces of F*. In particular, F, and hence AG(n, F), has rank n + 1. Because of this
we prefer to shift the notation; we focus on AG(n — 1, F), the rank-n affine geometry that
In constructed from F-1,

It is natural 1o ask: Are there affine geometries in addition to the examples AG(n—1, ')
we constructed from division rings? The following important theorem says that all affine
geometries of rank 4 and greater are of the form AG(n — 1, F). (This is one of several
different theorems that various authors cite as the fundamental theorem of affine geometry.)

Theorem 2.5 (The Fundamental Theorem of Affine Geometry). Every affine ge-
ometry of rank n, where n > 4, is isomorphic to AG(n = 1, F) for some division ring F.

Thus, apart from affine geometries of low rank (specifically, affine lines and affine
planes), nonmetsic affine geometry is essentially the study of the cosets of the subspaces
of o vector space over a division ring. Of course, when additional structure such as a metric
Is assummed, & wider range of issues enter into the study of affine geometry:.

Rank two affine geometries, i.e., affine lines, obviously are not very interesting and have
no fi d

with any structure. Rank three affine geometries,
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Le., affine planes, are the subject of intense research, largely through the corresponding
projective planes. We end this section with a brief mention of some intriguing aspects of
affine planes. For more about this fascinating area, see, e.g., [31].

There are many algebraic structures (e.g., near fields, Veblen-Wedderburn systems) that
are much less constrained than division rings that, nonetheless, have enough structure to
give rise to affine planes.

Recall that the order of a finite affine plane is the number of points in each line. Thus,
for a prime power ¢, the affine plane AG(2, g) has order g. It is known that for every proper
prime power g = p* (“proper” means k > 1) apart from g = 4 and ¢ = 8, there are at least
two nonisomorphic affine planes of order ¢g. The following question has resisted all attacks
for well over half a century.

Open Problem 2.6. Must the order of a finite affine plane be a prime power?

The Bruck-Ryser theorem is a powerful tool for showing that a particular number i
not the order of any affine plane; however this theorem addresses only numbers that are
congruent to 1 or 2 modulo 4 and the implication is valid in only one direction.

Theorem 2.7 (Bruck and Ryser, 1949). If q is congruent to 1 or 2 modulo 4 and there
15 an affine plane of order q, then q is a sum of two squares.

This theorem rules out affine planes of order 6, for instance, since 6 is congruent to 2
modulo 4 but is not a sum of two squares. (Tarry’s proof on the nonexistence of 6 by 6
orthogonal Latin squares, given around 1910, also shows that affine planes of order 6 do not
exist.) Note that 10 is congruent to 2 modulo 4 and 10 is 3% + 1. However, in 1958 it was
shown that there is no affine plane of order 10. (The proof involved a massive computer
search.) Thus, the converse of the Bruck Ryser theorem is false. The smallest positive
integer for which we currently do not know whether there is an affine plane of that order is
12.

The most important things to remember from this section are properties (F1)-(F3)
since abstracting these gives the definition of a matroid. The affine geometries AG(n - 1.q)
also play an important role in what follows, so we close this section by summarizing the
basic properties of these geometries.

AG(n - 1.q)
AG(n — 1,q) has rank n.
AG(n - 1,9) has "~ points.
Lines of AG(n = 1,4) have g points.
For i > 0, rank-i flats of AG(n ~ 1.¢) have '~ points,
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2.2 Projective geometries

According to Theorem 2.5, for ranks exceeding three nonmetric affine geometry is the study
of the cosets of the subspaces of a vector space over a division ring. Since the subspaces
themselves, rather than their cosets, are the main focus of linear algebra. you might wonder
what geometric structures arise from subspaces. Subspaces give rise to projective geometries.

Let's start with (GF(2))*, the 3-dimensional vector space over the two-clement field
GF(2). There are eight vectors in this vector space:

(0.0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0).(1,0,1). (1,1,0). (1.1, 1).

There s & unique O-dimensional subspace, {(0,0,0)}. There are seven 1-dimensional sub-
spaces, corresponding to the seven nonzero vectors in (GF(2))*:

{(0,0.0).(0.0.1)}.  {(0,0,0).(0,1,0)}, {(0.0,0).(0.1.1)}. {(0.0.0).(1,0,0)}.

{(0,0.0).(1.0,1)},  {(0.0,0),(1,1,0)}, and {(0.0.0).(1.1.1)}.

There are seven 2-dimensional subspaces:
{(0,0,0),(0,0,1), (0,1,0), (0. 1.1)}.

{(0,0,0),(0,0,1),(1,0,0), (1,0.1)}.
{(0,0,0),(0,0,1),(1,1,0). (1, 1.1)},
{(0,0,0),(0,1,0),(1,0.0), (1,1,0)}.
{(0.0,0),(0,1,0), (1,0,1), (1,1,1)},
{(0.0,0),(0,1,1),(1,0,0), (1,1,1)},
{(0,0,0),(1,0,1),(1,1,0), (0. 1,1)}.

Of course, the eight vectors of (GF(2))* form the unique 3-dimensional subspace of this
vector space.

We can draw a diagram of these subspaces, just as we drew diagrams for affine ge-
ometries. Since (0,0,0) is in all subspaces, we lose no information by suppressing it in the
diagrams. The resulting diagram is given in Figure 5.

Notice that this geometry has some properties quite unlike those of affine geometries
In particular. every pair of lines has a point of intersection: there are no parallel lines, This
Property holds i general for coplanar lines if we take as points the 1-dimensional subspaces
of a veetor space, as lines the 2-dimensional subspaces of the vector space, and as planes

Al —
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Figure 5: The Fano Plane, F; or PG(2,2).

the 3-dimensional subspaces of the vector space. This follows from the familiar dimension
theorem of linear algebra:

dim(U) + dim(Ua) = dim(Uy + Uz) + dim(Uy N U3).

Letting U; and U be lines £; and €3 (i.e., 2-dimensional subspaces) in a plane (ie, a
3-dimensional subspace), we have

dim(6y) +dim(£2) = dim(£, + £3) + dim(£, N fy),
so dim(£, N&y) is 1, that is, £; N £, is a 1-dimensional subspace, or a point.
With this motivation, we can now define projective geometries.
Definition 2.8. A projective geometry is a set S of points and a collection of subsets of
S. the set of lines, subject to these azioms:

(P1) each pair A, B of distinct points is contained in a unique line, which is denoted
(A, B),

(P2) if A, B,C, and D are distinct points for which {(A, B)NE(C, D) # 0, then £(A,C)N
(B, D) #0, and

(P3) each line contains at least three points.

Axiom (P2) is the Pasch axiom. It is a way of saying coplanar lines intersect without
mentioning planes; intuitively (and in a sense we could easily make precise), since £(A, B)0
{C. D) # 0, all four points A, B,C, and D lie in a plane, so the lines £(A,C) and £(B, D)
are therefore coplanar and so should intersect nontrivially. This is illustrated in Figure 6.

Notice that the axiom system for projective geometry is considerably simpler than for
affine geometry; there

e three axioms, rather than five, and we aention only points and
is typical: projective geometry is simpler than affine geometry, evel
though. as we will see, it encompasses affine geometry. The reason is that, as we mike
precise later, projective geometry is the natural completion of affine geometry.

.. W

lines, not planes, Thi
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Figure 6: The configuration in the Pasch axiom

Observe also that if the projective geometry is a plane, we have a beautiful symmetry in
‘pans a unique line and any pair of lines intersects in a unique
mblance to duality in linear algebra: this s no accident.

the axioms: any pair of poi
point. This has & striking res

It should eome as no surprise now that we get a projective geometry out of every vector
apace over a division ring: shnply take the points to be the 1-dimensional subspaces wid
the lines to be the 2-dimensional subspaces, viewed as sets of the points. Alternatively, pick
precisely one nonzero representative vector out of each 1-dimensional subspace, and let the
|>mmn be the chosen vectors and the lines be the sets of these chosen vectors that are in 2-

bspaces. The proj geometry constructed in this manner from (GF(g))"
i denoted PGn ~1.q) More generally, the projective geometry constructed in this manner
from an n-dimensional vector space over a division ring F is denoted PG(n — 1, F).

Nate that this i precisely how the real projective plane PG(2, R) is formed from R® in
topology and geometry. The standard constructions of the real projective plane take one
of the following three equivalent approaclies, each of which illustrates what is stated in the
Inst paragraph. Take as the points of PG(2,R) the lines of R? through the origin, with
the origin deleted: each plane of RY through the origin gives rise to the line of PG(2,R)
that consists of all points of PG(2,R) that lie in this plane, and all lines of PG(2,R) are of
this form. Altesnatively. choose as the points of PG(2, R) precisely one out of each pair of
antipadal points on the unit sphiere in R® (for example, the points on the upper half sphere,
With half of the edge included), and let the lines of PG(2,R) be the sets of these points of
PG(2,R) that are intersections of the set of points of PG(2,R) with planes of R? through
tho origin Altematively, take as the points of PG(2.R) the pairs of antipodal points on
tie unit sphere in RY, and lot the lines of PG(2, R) be the sets of these points of PG(2, R)
that are intersections of the set of points of PG(2,R) with planes of R* through the origin;
fually, identify antipodal points

As with affine geometries, we focus on finite projective geometries. We illustrate the con-
struction above with a second finite example (Figure 5 being the first example, although too

T N
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small to illustrate the choice of representative vectors): Figure 7 shows the projective plase
PG(2,3) formed from the 3-dimensional vector space (GF(3))* over the field GF(3). In thy
diagram, the point (1, 1, 2) represents the I-dimensional subspace {(0,0,0), (1.1,2), (2.2,1));
the line

{(0,1,2).(1,2,1),(1.1.2),(1,0,0)}

1

presents the 2-di

{(0,0,0),(0,1,2). (0,2, 1), (1,2,1),(2,1,2),(1.1,2),(2,2,1),(1,0,0), (2,0,0)}

Figure 7: The projective plane PG(2,3).

Notice that while AG(2,3) has three point on each line, PG(2,3) has four points on
each line.

The geometry PG(n — 1,q) has (¢" — 1)/(g — 1) points since the points correspond to
the 1-dimensional subspaces of (GF(g))", and there are ¢" — 1 nonzero vectors in (GF(g))"
with ¢ — 1 nonzero vectors in each 1-dimensional subspace. Alternatively, by choasing s
a representative vector of a subspace P = (v) the unique multiple of v that has a | in the
first nonzero position (as shown in Figure 7), we see that there are (¢" — 1)/(g = 1), o
g™ 4 ¢" % 4 ... 4 g + |, points since the first nonzero position could be the first (leaving
4"~! ways to fill in the other n — 1 entries) or the second (leaving ¢"~* ways to fill in the
other n — 2 entries), and so on.

The notion of a flat is cssentially the same as in affine geometries.

Definition 2.9. A flat i a projective geometry s a set X of points in the geometry that
satisfies the line-closwie condition: of A, B € X, then {{A, B) C X.

In keeping with our observation that projective geometry is simpler than affine geometsy
there is no exceptional case like the case of two-pomt lines in affine geometries. Obserss
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that Definition 2.9 is simply the geometric formulation of the familiar algebraic definition
of & linear subspace. Thus, the flats in the projective geometry arising from a division ring
are precisely the subspaces (or the sets of the representative vectors in the subspaces).

The flats of & projective geometry on a set S of points have the following important.
properties that we also saw for the flats of an affine geomerry and that we will see again
in the definition of a matroid. (As was the case for affine geometries. we are implicitly
assuming S is finite since this is ultimately the case of greatest interest.)

(F1) The set S is a flat.
(F2) The intersection of any collection of flats is a flat

(F3) If X is a flat and Xy, Xa,..., X, are the flats that cover X, then the differences
Xy =X, X3 - X.....X; = X partition S — X.

Properties (F1) and (F2) are nnmediate from Definition 2.9

Given that the fiats in the projective geometry ansing from a vector space are (sets of

pr from) the sul property (F3) has this familiar interpretation: for an

sdimensional linear subspace X of a vector space, each vector u not in X is in a unique
{1+ 1)-dimensional subspace that contains X, namely span(X U {u}).

It s easy to justify property (F3) in general (again, we focus on the case in which §
s finite). Note that property (F3) trivially holds if X is the empty set (which is a flat by
Definition 2 9), for then the covering flats Xy, Xa, ..., X, are just the singleton sets of points
(which are also flats). So assume that X is a nonempty fat. The key to proving property
(F3) 18 to identify the flat that covers X and contains a point P that is not in X. We claim
that the fiat thar covers X and contains a point P that is not in X is

Xp= | 4 P). (1)
Aex

that fs, the set of all points that are collinear with P and a point of X. Clearly any flat
that contains X and P contains all of Xp, so all we need to show is that Xp satisfies the
Iine-closure condition that defines flats. Toward this end assume C and D arc in Xp. By the
definition of Xp. there are points €’ and D! in X with C € £(C". P) and D € (D!, P). If
€= [, then €lC, D) = ((P. "), hence £(C, D) C Xp as desired, so assume C' # D', (See
Figure 8.) Let E be in {C. 1); we need to show that £ is in Xp, ve., that there is a point
E'in X with E € (E'. P). Now (skipping the applications of the Pasch axiom that fully
Justify this) note that since £(C’, D') and £(E, P) are coplanar lines, they intersect at some
point £, which is necessarily in X since X is o flat that contains both C’ and D’. Thus
E v indeed in Xp. 50 Xp is a fint. Now to verify property (F3). note that we have shown
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Figure 8:

that each point P not in X is in a smallest flat Xp that contains X and P and equation
(1) gives an explicit expression for this flat. Assume that for two points P and @, the sets
Xp — X and Xq — X arc not disjoint, say both contain the point R. Since Xp is a flat
that contains X and R. we have X C Xp; on the other hand, since R is in Xp, we know
that R and P are collinear with a point of X, so P is in Xg, and so Xp C Xp; therefore
Xp = Xpg. Similarly, X = Xg. Therefore Xp = Xq. Thus we have shown that the only
flats that cover X and intersect in a proper superset of X are identical, which is the required

partitioning property.

Several more ideas we saw for affine geometries carry over to projective geometries.
In particular, as a consequence of property (F2), for each set T' of points in a projective
geometry there is a unique smallest flat containing T, namely the intersection of all flats
that contain T. By Property (F1), this is the intersection of a nonempty collection of sets.

Definition 2.10. The closure cl(T) of a set T of points in a projective geometry is given by
dim= (] ¢
flats X
with TC X
Again, closure gives rise to the notion of rank.
Definition 2.11. The rank r(X) of a flat X in a projective geometry is given by
#(X) =min{|T| : T C X and cl(T) = X}.
In the projective geometry arising from a vector space, the flats of rank i are (the sets
of representatives of) the i-dimensional subspaces. Thus, rank is the projective geometry
counterpart of dimension in linear algebra. Note that PG(n — 1,¢) has rank 7, and the

rank-i flats of PG(n — 1,¢) have (¢' — 1)/(g — 1) points. In particular, lines of PG(n ~ 1.q)
have (g2 — 1)/(q = 1), or ¢ + 1, points

(T



Joseph E. Bonin 139

Figure 9: Remove the points of a hyperplane (dotted) of PG(2,3) to get AG(2,3).

In linear algebra, the sub of di ion n — 1 in an n-di ional vector spaces
are called the hyperplanes. Analogously, the flats of rank n — 1 in a projective geometry of
rank n are called hyperplanes.

We have alluded to the fact that projective geometry is the natural completion of affine
geometry. This is exemplified by the connection between AG(2,3) and PG(2,3) suggested
in Figure 9. The precise formulation of this is the following theorem, which is easy to prove.

Theorem '2.12. Let H be a hyperplane of a projective geometry on the set S of points and
let £ and P be the set of lines and the set of planes (i.c., flats of rank 3) of the geometry.
We get an affine geometry with S'

S = H as the set of points by taking as the set of lines
£'={¢nS'|€e L with € Z H}
and as the set of planes
P'={rnS'|meP withn Z H}.
Conversely, assume that L' is the set of lines of an affine geometry on a set S', and
that P" is the set of planes of this geometry. Let {L} | i € T} be the set of equivalence classes
of parallel lines. With each equivalence class L}, let A; be a point not in S'. Let S be the

set S'U{A, |i € ). With each line €' of L', let € be € U{A;} where € is in L!. With each
plane © of P'. let £, be {A, | x contains a line in £!}. Then S together with the set

L={€|l¢eL}U{lx|meP)
of lines 15 a projective geometry.

Thus, affine and projective geometry are intimately linked. To get an affine geometry
from a projective geowetry, remove all points in a hyperplane and consider the induced

L ———
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sets of lines and planes. (The operation of deletion that this illustrates is a basic matroid
operation.) To get a projective geometry from an affine geometry, add one point to all lines
in each equivalence class of parallel lines and let the lines of new points correspond to the
planes of the affine geometry.

As there are affine planes that do not arise from our construction based on vector spaces
over a division ring, there are projective planes that do not arise from our construction
based on vector spaces over a division ring. Such planes may have some rather unexpected
properties. For instance, with a projective plane that does not arise from a division ring, it
may be possible to remove different lines and get nonisomorphic affine planes. Thus, while
each affine plane has a unique completion to a projective plane given by the construction
in Theorem 2.12, many nonisomorphic affine planes can have the same completion to a
projective plane.

Given Theorems 2.5 and 2.12, the next theorem should come as no surprise.

Theorem 2.13 (The Fundamental Theorem of Projective Geometry). Every pro-
jective geometry of rank n, where n > 4, is isomorphic to PG(n — 1, F) for some division
ring F.

Thus, apart from planes, at its most basic level projective geometry is the study of the
subspaces of a vector space over a division ring.

Given that projective geometry is simpler than affine geometry, although the two sub-
jects are equivalent in the sense made precise in Theorem 2.12, the problems mentioned at
the end of Section 2.1 are typically studied for projective planes rather than affine planes.

As in the last section, the most important things to remember from this section are

properties (F1)-(F3). The projective geometries PG(n — 1, g) also play an important role in
what follows, so we close this section by summarizing the basic properties of these geometries

PG(n—1,q)
PG(n — 1,q) has rank n.
PG(n—1,q) has (¢"—1)/(g—1), or ¢"~'+¢"~2+---+q+1, points.
Lines of PG(n — 1,¢) have q + 1 points.
Rank-i flats of PG(n — 1, q) have (g' — 1)/(g - 1) points.

2.3 Coordinates

To motivate some of the topics we will see in matroid theory, it is useful to sketch some of
the elements that go into the proofs of Theorems 2.5 and 2.13. These ideas go back well

over a hundred years: they are used in Hilbert’s book [30]. which first appeared in 1899,
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although they were known well before then. For a complete, elementary presentation from
a modern perspective, see [3].

The problem of realizing the flats of a projective geometry as the subspaces of a vector
space over a division ring is the problem of coordinatizing the geometry. This is equivalent
to coordinatizing the corresponding affine geometry. We will shift freely between affine and
projective geometry.

We mentioned that not all projective planes arise from division rings. It is natural to
ask: Is it possible to characterize the projective planes that arise from division rings? This
is precisely what Desargues’ theorem does.

Theorem 2.14. A projective plane is isomorphic to a projective plane arising from a divi-
sion ring if and only if it satisfies the following condition:

DESARGUES” THEOREM. Given any triples A, B.C and A'. B'.C" of noncollinear
points, if the lines (A, A"), ((B.B'), and ((C,C") are concurrent (i.c., meel
in a point), then the three pownts ((A. B) N (A" B'), ((A.C) N LA".C"), and
UB.C)NEB'.C") are collinear.

Thus, Desargues’ theorem (which, in some form, dates back to the 1600’s) is, for us.
1ot a theorern: it is a condition, or axiom, that characterizes the projective planes that avise
from division rings. (With the earlier, more limited view of geometry, this was indeed a
theorem since the only geometries considered satisfied this condition.)

Figure 10: Desargues’ configuration.

Briefly, Desargues’ theorem says that two triangles that are perspective from a point

Ateperspective from a line. What this means is the following. The two triangles A, B, C' and
' ’

ALBlLE heing perspective from the point O (see Figure 10) has this physical interpretation

e ——
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in Euclidean spaces: if one places one’s eye at point O, the two triangles A, B,C and
A’ B',C" line up exactly. The triangles being perspective from a line is the dual notion:
instead of saying “the lines through corresponding points are concurrent,” interchange points
and lines to get “the points at the intersection of corresponding lines are collinear.”

Although Theorem 2.14 deals with planes, Desargues’ Theorem can be interpreted as
describing a configuration in a plane or in rank 4. Note that if this is a configuration in rank
4. then Py, P, and P; are in the plane cl({A, B,C}) and in the plane cl({A’, B/, C"}); since
the intersection of flats is a flat by (F2), the points Py, P, and Ps, being in cl({4, B.C})n
cl({A’, B',C'}), must indeed be on a line. This begins to suggest why Theorems 2.5 and 2.13
apply when the rank is at least four.

It is an easy exercise to show that Desargues’ Theorem is equivalent to its converse, as

is stated next.

Theorem 2.15. A projective plane satisfies Desargues’ Theorem if and only if it satisfies
the following condition:

Given any triples A, B,C and A',B',C" of noncollinear points, if the points
LA, B) N A", B'), (A, C)NEA",C"), and £(B,C) N £(B',C") are collinear,
then the lines €(A, A"), &(B, B'), and {(C,C") are concurrent.

We have mentioned several times that projective geometry is simpler than affine geom-
etry. This is in part because one projective configuration such as Desargues’ configuration
can give rise to many affine configuration. For instance, if none of the points in Desargues'
configuration are in the hyperplane of a projective geometry that is deleted to form an affine
geometry, then we get the identical configuration in the affine geometry. However, if O is
collinear with Py, P, and Py in the projective geometry, and these are all in the hyperplane
that is deleted, the corresponding affine configuration is given in Figure 11. The affine
interpretation of this configuration is the following:

Given triangles A, B,C and A’, B',C" with the lines £(A, A’), £(B, B'), and
£(C,C") all parallel, if £(A, B) || £(A’, B') and £(A,C) || £(A",C"), then £(B,C) ||
/(B'.C").
In the Euclidean plane, this statement is obvious: it follows immediately from basic results
on parallelograms. There are two other affine cases of Desargues’ configuration (it is a good
exercise to identify them), but the two we have mentioned are the most relevant for us.

Theorem 2.14 suggests that we should be able to define the operations of addition and
me division ring in any affine plane m which Desargues’ theorem holds

multiplication of s
steh this so we can see the role Desargues’ theorem plays. (See Figure 12.)

Let’s briefly

T
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A A
P Py
2
B
C @

Figure 11: One affine version of Desargues’ configuration.

(i)
0 A B A+B

Figure 12: Addition in Desarguesian planes.

To ndd points 4 and B on a line on which a zero has been designated, construct a parallel
auxiliary line and choose a point D on it. Construct £(0, D) and let the parallel line through

Aintersect the auxiliary line at D'. Construct ¢(B, D) and the parallel line through D':

where this parallel line intersects the original line is A + B.

This construction has the obvious interpretation in the Buclidean plane of using parallel
i to translate the distance from 0 to A up to the second line and then back down to the
otiginal line, but starting at B rather than at 0. However the construction makes sense in
any affine plane since it uses only parallel lines. The issue is: When is this operation well-

i

defined? Specifically, when is this construction independent of the choice of the auxiliary

line and the auxiliary point? This is the role that Desargues’ theorem plays.

To see that this operation is well-defined, consider A+ B as constructed from an auxiliary
noint D, and consider an auxiliary point £ on a different auxiliary line. (See Figure 13.) By
applying Desargues’ theorem to triangles 0,0, E and D', A, B', we conclude that {(E, D) is
parallel to (. D'). This allows us to apply Desargues’ theorem to triangles D, B, E and
DA+ BLE*, so we can conclude tliat 6(2, B) is parallel to £(E', A + B), which says that

W e
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D D'
P Py
s
0 B A+B
E E'
Figure 13:

Figure 14: Multiplication in Desarguesian planes.

computing A + B using B gives the same result as using 0. The remaining case is that
of using two auxiliary points on the same line parallel to the original line, but this follows
from what we have shown by comparing these with the result obtained by using an auxiliary

point on a second auxiliary line.

Having that this operation of addition is well-defined, it is an interesting series of
clementary exercises to show that the points on a line form an abelian group under this
operation and that the groups defined by a different choice of 0 or a different line are

isomorphic.

The operation of multiplication is defined similarly. except that the auxiliary line is one
that goes through the additive identity. (See Figure 14.) Starting with the additive identity
0. the multiplicative identity 1, and two points A and B on the line £(0, 1), to multiply A
and B choose an auxiliavy line through 0 and a point 22 on this line. Construct £(1, D) and
the parallel line through A, meeting the auxiliary line at D’. Next construct (3. D) and
the parallel line through 1, mecting the original line at AB:

T\
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Figure 15:

In the Euclidean plane, an elementary argument using similar triangies shows that this
gives the correct product. However. the definition uses only parallel fines and so makes
sonse in any affine plane. The issue is whether this product is well-defined. For this, one
of the other affine realizations of Desargues’ theorem comes into play. (See Figure 15.)
Construct AB using D and consider and auxiliary point E on a different auxiliary line. By
applying one version of Desargues’ theorem to triangles D. 1, E and D', A, E', we conclude
that £(£, D) is parallel to £(E', D'). This allows us to apply Desargues’ theorem to triangles
D, B,E and D'. AB, E', so we can conclude that £(E, B) is parallel to £(E’, AB), which says
that computing AB using E gives the same result as using D. As we saw for addition, the
general case follows from this.

Having that this operation of multiplication is well-defined, it is another sequence of
elementary exercises to show the remaining properties for a division ring, namely that mul-
tiplication is associative, that 1 is a multiplicative identity, that each nonzero element has a
multiplicative inverse, and that multiplication distributes over addition. Elementary argu-
ments also show that the resulting division ring is, up to isomorphism, independent of the
Ine chosen and the points 0 and 1 chosen on any line. One can then use this division ring
to coordinatize the plane.

Theorem 2.14 states that Desargues’ theorem characterizes the projective planes that
avise from 3-dimensional vector spaces over division rings. What characterizes the projective
planes that arise from 3-dimensional vector spaces over fields? I.e.. how can we geometrically
cnpture the axiom that multiplication is commutative? This is provided by Pappus’ theorenn,
sonie form of which dates back to around 300 A.D. (See Figure 16.)

Theorem 2.16. A projective plane is isomorphic to a projective plane arising from a field
if and ondy of it satisfies the following condition:

ol
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z s
Figure 16: Pappus’ configuration.

Pappus’ THEOREM. If a hewagon is inscribed alternately on two lines, then the
three points of intersection of the opposite sides are collinear.

Like Desargues’ theorem, from the modern perspective Pappus’ theorem is not a the-
oreni: it is a condition. or axiom. that characterizes the projective planes that anse fron
fields. It is an elementary exercise to prove Theorem 2.16.

As a covollary of Theorems 2.14 and 2.16, it follows that Pappus’ theorem implies
Desargues’ theoreni: it is an interesting elementary exercise to prove this directly, without
using Theorems 2.14 and 2.16. In general, the converse of course is not true since there are
division rings that are not fields, but there is an important case in which the converse holds.
Recall Wedderbuwin's theorem: Every finite division ring is a field. Thus, for finite projective
planes. Desargues’ theorem implies Pappus’ theorem. It seems there should be a geometric
proof of this fact that dees not simply geometrically encode the known algebraic proofs of
Wedderburn’s theorem; presently no such proof is known.

3 Matroids

We now generalize the two classical spaces, projective and affine geometries, that we exam-

ined in the first part of this introduction to matroid theory.

Definition 3.1. A matroid M is a finite set S and a collection F of subsets of S. the flats
of M. such that:

(F1) the set S is a flat.

(F2) the interseetion of any collection of flats is a flut. and

(F3) of N us a flat and Xy. Xoo.oo . Xy are the flats that cover X then the differcnces X
NN = Xoo Xy = X pantition S = X
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B C G

Figure 17: The non-Fano matroid. F7.

The set S is often called the ground set of the matroid

Thus. a matvoid is simply a set together with a collection of subsets. the flats. that
satisfies the three properties we observed for the flats of projective and affine geometries
Matioids weve introduced by Hassler Whitney, and. although the subject has subse-

quently developed in more directions than could be imagined in the 1930’s. his founding

| is still an excellent entry point into the subject. Although Whitney gave several
different equivalent formulations of a matroid, that in Definition 3.1 is not among them. It
is partly a reflection of the large number of branches of mathematics in which matroids play
a role that there are now over fifty different equivalent formulations of a matroid: about
a dozen of these are frequently used while others were devised for very special purposes.
When working with matroids it is typically very useful to shift freely between several differ-
ent approaches. However, what makes for efficiency and insight for researchers in the field
nay be confusing to those new to the subject, so we restrict ourselves to the approach in
Definition 3.1

In low rauks, we can draw the types of diagrams we drew for projective and affine planes.
For instance. in the matvoid Fy in Figure 17, the flats are the empty set, the seven points.
the nine lines {D. A, E}. (D, B,G}, {E,C,G}, {E,F,B}, {D,F,C}, {A,F.G}, {A. B},
{A.C'}. and {B.C}, and the plane consisting of all seven points. Note that when a line such
as {A. B} contains just two points, we do not bother to draw a line between the two points
sinee it is understood. Such lines are called trivial lines.

To give a concrete example of axiom (F3). consider the flats that cover {A}. These are
{D. A EY A F.G). {A. B}, and {A,C}: the resulting differences, namely, {D. E}. {F.G}.
{B}. and {C}. indeed partition {B,C, D.E, F.G}, the set of points not in {A}.

While in projective and affine geometri

s, the flats were specified by the lines together
with the line-closure condition, this is not the case in arbitrary matroids: in general we

need to list all fats. Indeed, if we start with the points and lines of F; and consider
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the resulting line-closed sets (the sets that satisfy the line-closure condition), these violate
axiom (F3). For instance, the smallest line-closed set that contains the line {A, B} and
the point D is the entire set {A, B,C,D,E,F,G} yet {A,B,C} is a line-closed set with
{A.B} c {A.B.C'} Cc {A.B,C, D, E, F,G}, so the partitioning property fails. This prompts
the first of the open problems we mention.

Open Problem 3.2. Characterize the collections of points and lines for which the resulting

line-closed sets are the flats of a matroid.

Although for most matroids, the line-closed sets are not the same as the flats, when these
two collections agree, certain arguments become considerably simpler. (See, e.g., [4, 12].
See [29] for more on this topic.)

As in projective and affine geometries, the flats give rise to the notion of closure.
Definition 3.3. The closure cl(T) of a set T of pownts in a matroid is gwen by

= (0] s

flats X
with TCX

By axiom (F1), this is the intersection of a nonempty collection of sets. By axiom (F2).
cl(T) is a flat.

Closure. in turn, gives rise to the notion of rank. It is useful to generalize this a bit,
and consider the rank of any set of points, not just flats.

Definition 3.4. The rank r(X) of a set X in a matroid is given by

#(X) = min{|T| : T C cl(X) and cl(T) = cl(X)}.

By axiom (F2) there is a unique smallest flat, the intersection of all flats. (Indeed, by
axioms (F1) and (F2), the collection of flats forms a lattice.) This unique smallest flat las
rank 0 and it is the only flat of rank 0.

We borrow even more terms from projective and affine geometry: points are flats of
vank 1. lines ave flats of rank 2, planes are flats of rank 3, and hyperplanes are flats of rank
1 — 1 in a matroid of rank 7.

Nothing in Definition 3.1 forces the empty set to be a flat: it need not he a flat. Likewise.
singleton subsets of S need not be a flat. (We will see examples of this avising naturally
soon.)  For some purposes (e.g.. some of the extremal problems we mention later). it is
useful 1o have the points correspond exactly with the clements of S, To capture this. we

introdnee the notion of a geometry.

s = T
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Figure 18: The restriction of PG(2,2) to {1,2.3.4.5.6} gives M(K4).

Definition 3.5. A combinatorial geometry, simple matroid. or geometry s a matroid in
which the empty set and all singleton subsets of the ground set are flats.

We now turn to a construction with which we can to produce many matroids.

Definition 3.6. Let Al be a matroid on the set S and let T be a subset of S. The vestviction
UT of M to T s the matroid on T that has as flats the sets F 0T as F ranges over th
flats of M.

It is an easy exercise to show that the flats of M|T indeed satisfy axioms (F1) (F3) of
Definition 3.1.

For example, in the restriction of PG(2.2) in Figure 18. the flat {1,2.4} of PG(2.2)
restricted to the subset {1.2.3.4.5.6} gives the same flat. {1.2.4}, while the flat {1.6.7} of
PG(2.2) yields the flat {1.6} in the restriction. This restriction of PG(2.2) is the matroid
M(Ky): the notation comes from a connection (which we will not pursue) with the complete
araph K.

If we focus instead on what is being removed, the restriction M|T is called the deletion
M\(S = T). Thus. M(K,) is PG(2,2)\{7}.

In Figure 19. the nal matroid is one in which rank-1 flats are not all singletons (so
this is not a geometry): the rank-1 flats are {1, D, E}, {2.B,C}. {3, F}. {4, A}. {5}, and
{G.Ci 11T}, However. by restricting this matroid to {1,2.3

5.6} we obtain a geometry
that is intimately related to the original matroid — in some sense it contains the same
seometrie information without the multiple representatives. What we see in this example is
similar to choosing a single representative vector out of each 1-dimensional subspace when
forming a projective geometry. These are both instances of the simplification of a matroid

Definition 3.7. Let M be a matroid on a set S and let T be a subset of S that contains
no clements of the rank-0 flat and precisely one element of each rank-1 flat. The restriction
MIT is the simplification of M.

(AT
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Figure 19: The simplification of a matroid.

Up to isomorphism, a matroid has a unique simplification, so calling this the simplifi-
cation is appropriate.

Using restriction, we can now give many examples of matroids: PG(n — 1,q) and its
restrictions (or subgeometries). Note that AG(n — 1,q) is one of these restrictions. Such
watroids. generalized mildly in the next definition. form a very important class of matroids

Definition 3.8. A matroid M is representable over GF(q) if the simplification of M s

isomorphic to a restriction of PG(n — 1,q) for some n.

We could define matroids representable over any field F, but the case of finite fields is
of chief interest.

The matroid A (K;) in Figure 18 is representable over GF(2), as is the matroid in
Figure 19.

Note that a matroid is representable over GF(g) if it is basically a subgeometry of
PG(n —1.q), for some n. perhaps with multiple copies of points added, possibly more copies
of a point added than the number of scalar multiples of a vector over GF(g). One might
want to assign vectors in (GF(¢))" to the elements of the matroid and represent the elements
of the matroid by the columns of a matrix over GF(q¢); matrices naturally allow for repeated
colunms. (Indeed, the word “matroid” is intended to suggest a generalization of a matuix.)

The next section examines representable matroids in more detail.

4 Representable Matroids

It is natural to ask the following questions. Which matroids are representable over a given
ficld?  Which matroids are representable over every field? For which matroids do there
exist fields over which the matroids are representable? Such guestion are central to miatioid

theory. They are different aspects of the bhasic question: How do we capture our motivating
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Figure 21: The Pappus configuration and the non-Pappus matroid

examples. projective geometries and matroids easily obtained from them. within the class
of all matroids?

Our first issue is this: Are there matroids that are not representable over any field? De-
sargues’ theorem leads us to an example. (See Figure 20.) Since the condition illustrated by
the Desargues configuration characterizes the projective planes that arise from 3-dimensional
veetor spaces over a division ring, the configuration in which all lines are the same except
that P\, P, and Py are not collinear is not representable over any field (or any division
ting). One can easily check that this rank-3 configuration, the non-Desargues matroid. is
indeed a matroid. Note that this configuration cannot be interpreted as a matroid of rank
I'since the points Py. P, and P would then be in the intersection of two distinct planes.
A{AB.CY) and cl({A", B',C'}), and therefore collinear.

The same idea gives the non-Pappus matroid. a matroid that is not representable over
anyfield although it is representable over skew fields. (See Figure 21.)
Thus. matroid theory is not liniited to representable matroids: many matroids do not

avise from projective geometries. It is of great interest to characterize the matroids that are
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*—o—0o 0

Figure 22: Uy 4

representable over a field. Note that any such characterization must be more “sensitive”
than conditions such as Desargues’ theorem or Pappus’ theorem since the configurations in
these theorems are based on having certain lines actually intersecting (or parallel, in the
affine cases); there is no assumption that coplanar lines of a matroid intersect or that a
counterpart of the parallel postulate holds.

One immediate but very useful observation about representability is the following the-
oreni. (Since our interest is chiefly in the case of finite fields, we focus on that case: the
result holds for arbitrary fields.)

Theorem 4.1. If a matroid M is representable over GF(q), then every restriction of M is
representable over GF(g).

This is clear since the simplification of M is a restriction of a projective geometry
PG(n — 1.¢). so the simplification of a restriction of M is just a further restriction of
PG(n —1.q).

Recall that lines in PG(n — 1,q) have precisely ¢ + 1 points. In particular, lines in
PG(n —1.2) he
points. then M is not representable over GF(2).

ve exactly three points. Thus, if a matroid M has a line with four (or more)

The four point line is denoted Uz 4. (See Figure 22.) The matroid Us 4 has four elements,
four points, and rank two. The argument in the last paragraph shows that binary matroids
(those representable over GF(2)) cannot have Uz 4 as a restriction.

The matroid U, 4 is one of an infinite family of very basic matroids, the uniform ma-
troids. Let U, ,, be the matroid in which the ground set has m elements and the flats are
the entire set and all subsets of size less than . It is casy to check that axioms (F1) (F3)
are satisfied. The matroid U, ,, is called the uniform matroid of rank n on m elements;
U, . captures the idea of m points in general position in rank n. The matroid U 5 is shown
in Figure 23.

Note that Uy 5 does not have Us 4 as a re:

ry? No. The problem is
that the matroid Uy 5 contains Uy 4 as a projection or, in matroid terminology, a contraction,
as we see next. (See Figure 24.)  Consider the matroid Us 5 with ground set {A. B.C, D, X}.

If we could realize Uy 5 as a restriction of a projective geometry. then the points of U,

5 Spin

& plane of this geometry. so it suffices to view Uy as a restriction of PG(2.¢). The lines
(A X7 and (. X) of PG(2.q) must interseet the Tine ((C D) of PC
lines of a projective planc. These points of interseetion. A" and 73, are distinet sinee 1. X

) since these are

(T .
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[ J [ J
Figure 23: Us 5
and B are not collinear, and similarly neither A’ nor B’ can be either C or D. Therefore the

line £(C. D) of PG(2. ¢) has at least four points, that is, PG(2. q) has a restriction isomorphic
to Uy.y. Therefore ¢ cannot be 2. so Us 5 is not binary.

(]
X

Figure 24: U, 4 as a projection of Uy 5

If we focus on the line {A’.C, D, B'} in Figure 24 and relabel the points A’ and B’ with
the points A and B that projected onto these points, we get a geometry in which the flats
are precisely that flats of Uy 5 that contained X, but now with X removed. The flats of Uy 5
that contained X are {X}, {X, A}, {X, B}, {X,C}, {X,D}, and {X, A. B,C. D}: the flats
of the projection are 0, {A}, {B}. {C}, {D}, and {A, B.C.D}. The generalization of this
is the following very important operation.

Definition 4.2. Let M be a matroid on the set S and let Z be a subset of S. The contraction
M/Z of M by Z is the matroid on S — Z that has as its collection of flats

{F—Z|Fisaflat of M with Z C F}.

Ior more examples of contraction, Figure 25 shows the contractions of the non-Fano
watroid F by {X } and by {X. A}. Note that the contraction F7/{X } is not a geometry: the
nonsingleton sets {A. E} and {F.C} are points. This shows that applying a basic operation
to a peometry does not necessarily produce a geometry: to obtain a geometry, we would
need to take the simplification of the contraction. but there are sometimes good reasons for

not doing this

Note that there are only two flats in the contraction F7/{X. A} namely {E} as the

VY i
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Figure 25: The non-Fano matroid F7 and its contractions by {X} and by {X, A}.

ast flat and {£.B.F.C.D} as the sole rank-1 flat. The element E of the rank-0 flat of
/{X.A} is drawn as a hollow dot off to the side since it does not determine a point. The
contraction F7/{X.A} fails both conditions required of a geometry — the empty set is not
a flat and the points are not singletons.

Note that Fr/{X}/{A} = F7/{X,A}: this is true in general for contractions by a
sequence of disjoint sets. This and the corresponding result for deletions by a sequence of
disjoint sets follow immediately from the definitions of these operations.

While it was immediate that restrictions of representable matroids are representable. it
is perhaps somewhat less transparent that the corresponding statement about contractions

is also true.

Theorem 4.3. If a matroid M is representable over GF(q), then every contraction of M

is representable over GF(q).

This result holds for arbitrary fields, but, again, our chief interest is in finite fields. One
way of seeing Theorem 4.3 is to observe that contracting a subspace of a vector space is
essentially taking the quotient of the vector space by the subspace; in the process of taking
this quotient, a representation of a matroid in the vector space is carried to a representation
of the corresponding contraction in the quotient space.

The middle diagram in Figure 25 shows that the non-Fano matroid Fy contains the
I-point line Uy as a restriction of a contraction. Therefore, by Theorem 4.3, the non-Fano

matroid F; is not bin It is often useful to combine restrictions and contractions as

illustrated in this example.
Definition 4.4. A winor of a matroid M is any matroid that can be obtained from M by
repeatedly applying the operations of restriction and contraction.

It turns ont that the operations of restriction and contraction commmte. 5o every minor
of a matroid M amounts to a contraction of a restriction of A/

From Theorems 1.1 and 1.3, we get Theorem 1.5,

—
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Theorem 4.5. If a matroid M is representable over GF(q). then every minor of M s
representable over GF(q).

We can now state what has so far been the most successful of the several paths that
liave been pursued in the attempt to characterize representability. Since minors of matroids
that are representable over GF(g) are also representable over GF(g). one could character-
ize vepresentability by finding the minor-minimal matroids that are not representable over
GF(g). That is, one has characterized representability if one finds the minor-minimal ob-
structions to representability. The excluded minors for representability over GF(¢) are these
winor-minimal obstructions. the minor-minimal matroids that are not representable over
GF(g)

The first excluded minor characterization of representabili
1958, We have already seen that the four-point line is not binary: Tutte [48] showed that
(7, 1 is the only exclnded minor for representability over GF(2)

¢ was proven hy Tutte in

Theorem 4.6. A matroud is binary if and only if it has no menor somorphuc to Us |

There are a variety of proofs of Theorem 4.6; with the exception of the geometric proof
i (8], most are algebraic.
In [48]. Tutte also gave the following characterization of the matroids that are repre-

sentable over every field.

Theorem 4.7. A matroid is representable over every field if and only if it has no minor
isomorphic to any of Uy, PG(2,2). and a single-element deletion AG(3.2)\« of AG(3,2).

Affine and projective geometries have transitive automorphism groups, so there is, up to
isomorphismi. only one single-element deletion AG(3,2)\z of AG(3,2). The matroids that are
representable over all fields are called regular matroids: they are also known as unimodular
matroids since they are the matroids that can be represented by totally unimodular matrices
(matrices with entries among the integers 0, 1, or —1 in which all subdeterminants are 0. 1.
or =1). Unimodular matroids play an important role in optimization.

Since lines in PG (1 — 1, ¢) have ¢+ 1 points, the (¢+ 2)-point line U, ., is an excluded
winor for representability over GF(g), but for ¢ > 2. there are additional excluded minors
Theoreni 18, the characterization of ternary matroids, or matroids that are representable
over GE(3). illustrates this. Ternary matroids were characterized in 1971 in unpublished
work of R Reid. The first published proofs were by Bixby [5] and Seymour [45] in 1979
Sevionr’s proof introduced many new ideas that revolutionized work on representability

and other aspects of matroid theory.

w
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Theorem 4.8. A matroid is ternary if and only if it has no minor isomorphic to Uy 5. Us 5.
PG(2.2). or AG(3,2)\x.

As a corollary of Theorems 4.6, 4.7, and 4.8, we have the following theorem.

Theorem 4.9. A matroid is representable over every field if and only if it is representable
over both GF(2) and GF(3).

Recent work of Whittle [55] studies matroids that are representable over other pairs of
fields of relatively prime characteristic.

The excluded minors for matroids that are representable over GF(4) have been found
recently by Geelen, Gerards, and Kapoor [26]. There are seven excluded minors, the largest
two of which have eight points and rank four.

One of the outstanding problems in this area is the following conjecture due to Gian-
Carlo Rota

Conjecture 4.10. For cach prime power q. the number of excluded minors for representabil
ity over GF(q) is finite.

Rota made this conjecture in 1971, when there was barely any evidence for it. His
motivation for the conjecture came from invariant theory. Much work is currently aimed
at resolving Rota’s conjecture through ideas that arose in connection with the Robert-
son/Sevmour graph minors theorem: this will be an exciting area to watch.

Recently Oxley. Semple, and Vertigan [43] gave the following exponential lower bound
luded minors for r bility over GF(q).

on the nmumber of ex

Theorem 4.11. There are at least 29~ excluded minors for representability over GF(g).

Note that 2¢= is well below the number of excluded minors mentioned above for GF(2)
GF(3). and GF(4). Looking at the strategy in [43] reveals that their argument covers only
excluded minors of a relatively simple type; the excluded minors they count are all variations
on the (¢ + 2)-point line obtained by the exchange operations they develop. This suggests
that the actual number of excluded minors is extremely large.

We have seen that, apart from the case ¢ = 2, the (¢ + 2)-point line Uz 442 is 1ot the
only minor one has to exclude in order to characterize representability over GF(q). However.
as the following theorem from (8] shows. if there are enough points relative to the rank. then

2 as aminor is enough to gnarantee representability.

excluding only Us .
Theorem 4.12. Assume that g is a prime power and - creceds three. Ang rank-u geontiy

o minor and with at least ¢~ points is vepresentable over GF(q)

with no Uy,

o )
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Assume q is an odd prime power and n exceeds three. Any rank-n geometry with no
o minor and with at least ¢"=* = (¢"=% = 1)/(q = 1) points is representable over GF(g).

This result leads to the next major branch of matroid theory we glimpse, extremal
matroid theory. Theorem 4.12 and related results in (8] strengthen the result of Kung (35

that opens the next section.

5 Extremal Matroid Theory

Theoven 1.12 assumed that ¢ is a prime power because finite fields have prime power order.
Ilowever, it is possible to consider the effect of excluding the (g + 2)-point line minor even if
(s not a prime power. A basic result along these lines is the following theorem of Kung [3

Theorem 5.1. Rank-n geometrics that have no (g + 2)-pomnt line mnor have at most
q" L/t = 1 points. Thes upper bownd is attaned only by projectue geometries of order

i

Thus. this upper bound is strict if there is no projective geometry of rank n and order
( (e.g.. if ¢ is not a prime power and 1 is at least 4)

Theorem 5.1 captures the spirit of extremal matroid theory: a condition (excluding
('3 4~2 as a minor) is imposed on matroids and the effect on a parameter (the number of
points) is analyzed. Another result of this type is the following theorem from (8] that gives
a counterpart of Theorem 5.1 for affine geometries.

Theorem 5.2. Rank-n geometries that have no Uy gvo minor and have no (¢ + 1)-point

lines have at most q"=" points. This upper bound is attained only by affine geometries of

orderq.
It is natural to ask if the upper bound in Theorem 5.1 can be improved significantly
when ¢ is not a prime power. In (8] and [10], a number of such improvements are given,

hut those upper bounds ave not sharp. The only currently known sharp upper bound for a

problent of this type is the following theorem from [10], This addresses the smallest integer

Uhat is 1ot a prime power, g = 6, s0 ¢ -+ 2 is 8.

Theorem 5.3. Let n be greater than 3 and let M be a rank-n geometry with no 8-point line
minor. Then the number of points in M s at most (5" = 1)/(5 = 1). This upper bound is

sharp and is attained only by the rank-n projective geometry PG(u — 1.5).

Theorem 5.3 proves the fist case of the following conjecture of Kung [35).

pss———"
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Conjecture 5.4. Let g, be the largest prime power not exceeding g. For all sufficiently
large n. the greatest number of points in a rank-n geometry that has no Up o minor 1s
(¢ = 1)/(g. — 1). This upper bound is sharp and is attained only by the rank-n projective
geometry PG(n — 1.q.).

This conjecture, which appears to be very difficult, asserts that projective geometries
play an extremely central role in problems that have Uz ;.5 as an excluded minor. It would

be a solid advance to prove Conjecture 5.4 even for g = 10.

To relate these new topics to our motivating examples, we can now characterize classical
geometries through extremal matroid theoretic properties. Theorems 5.1 and 5.2 are results.
of this sort. and they have as further corollaries a number of additional characterizations
of projective and affine spaces: the following two theorems. from [12] and [16] respectively.

sample a few such results.

Theorem 5.5. A rank-n geometry with (¢" — 1)/(q — 1) points in which all lines have at

least g + 1 points is a projective geometry of order g.
A rank-n geometry with ¢"=" points in which all lines have q points and all plancs have

at least ¢* points is an affine geometry of order q.

n=1

Assume g > 2. A rank-n geometry with ¢~ points in which oll lines have g points and

all hyperplanes have ¢"=2 points is an affine geometry of order g.

Theorem 5.6. Let g > 1 be an integer. Let M be a rank-n geometry in which each hyper-
plane contains all but at most g"=" elements of M and in which all lines have at least g + 1
points. Then the number of points in M is exactly (q" — 1)/(g — 1) and M is a projective

gqeometry of order g.

Theorem 5.1 suggests other interesting questions. By excluding Us ;.2 as a minor. one
gets an upper bound of (¢" = 1)/(g = 1) on the nmumber of points. It follows that there are
upper bounds on the number of lines, the number of planes. and. in general, the number of

rank-/ flats, but what are the optimal upper bounds?

ently large.

Open Problem 5.7. Assume that  is a prime power and. if needed, n is suffi
Is the number of ank-i flats of PG(n — 1.q) an upper bound on the number of rank-i flats
i any rank-n geométry that has no Us 4—2 minor? If so. are projective geometries the only

qeonictries that attain these bounds?
I some extremal problems. one places restrictions on the subgeometries of a geonietry

vather than on all minors. An instance of this is the following theorem. which is a corollary

of Theorem 5.2,

T\
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Theorem 5.8. Rank-n geometries that are representable over GF(q) and have no lines with
(+ 1 points have at most q"~" points. Furthermore, AG(n —1,q) is the only such geometry
with ¢"~" points.

Observe that the (¢ + 1)-point line is PG(1. ¢): note also that AG(n — 1.¢) is PG(n —
1.g)\PG(n = 2.q). It would not be surprising if other deletions of the form PG(n —
1.¢)\PG(k ~ 1.¢) arose from excluding other projective geometries as subgeometries. The
following theorem of Bose and Burton [17] treats this.

Theorem 5.9. Subgeometries of PG(n — 1.q) that have no subgeometries isomorphic to
PG — 1.q) have at most
qn s llvx~m~—l
Dl
points.  Furthermore. PG(n — 1.q)\PG(n — m.q) is the only such geometry with (¢"

¢"="=1Y/(q = 1) points.

Note that Theorem 112 allows us to replace the hypothesis of representability over
GE() in Theorem 5.9 with the weaker hypothesis of no minors isomorphic to (7 ,.,. Thus,

vanken geometries that have no minors isomorphic to Up ,..» and no subgeowetries isomor-

phiic to PGl — 1.¢) have at most (¢" —¢"=""*1)/(qg=1) points. with the ouly example that

attains this bound being PG(n = 1.¢)\PG(n = m.q)

To end this brief look at extremal matroid theory. we mention a theorem and a conjec-
e of o very different flavor. We first establish some notation for dealing with the types of
problem encountered in Theorem 5.9. Let e, (M:n) be the maximum number of points in
i vanken geometry that is representable over GF(g) and that has no restriction isomorphic
to the geometry M. Thus, Theorem 5.9 determines ex,(PG(m — 1.¢):n). The following
thieorem appears in [14]

Theorem 5.10. Assume that M a subgeometry of AG(m —1.2). Then

i ather words. for any subgeometry M of AG(m —1,2). the “size function™ cup(M:n)
Is an order of magnitude smaller than 2" — 1, the number of points in PG(n — 1,2). This
15 the strongest bit of evidence to date for the following conjecture. which. although never
stated. appears between the lines in [35).

Conjecture 5.11. If the geometry M is representable over GF(q). then

g (Min) 5%
) o O
wmx (g = 1)/(g = 1)
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where ¢ is the minimum number of subgeometries of AG(m — 1,q) into which M can b

partitioned.

In general, it is extremely difficult to compute ex,y(M:in). (See [14] for all currently
known results on ewy(Min).) Conjecture 5.11 is an attempt to describe the asymptotic

behavior of e, (Alin).

6 Matroid Invariants

The final branch of matroid theory we outline is the theory of Tutte polynomials and oflier
invariants of matroids. The Tutte polynomial is a two-variable polynomial associated with
a matroid. For a matroid M on the ground set S, the Tutte polynomial t(A/; v, y) is defined
as follows:
HAMszy) = D (0 = 1)) =rlA) g — ldi=r(a); 2)
Acs
This polynomial generalizes many important invariants in mathematics. including the chio-
watic and flow polynomials of graph theory, weight enumerators in coding theory, the Jones
polynomial for alternating knots. and, in some cases. the partition function of the Ising
wmodel in statistical physics.
The Tutte polynomial contains much information about the matroid: for instance, from
the Tutte polynomial, one can determine the rank of the matroid, the cardinality of the

ground set. the cardinalities of sufficiently large flats of each rank, and many more paran-
ids can have the same Tutte

eters that we have not di 1. Still, i phic
polynomial. This is illustrated by the matroids in Figure 26. For these matroids, we have

HAM e y) = (M y) = (w = 1)3 the empty set
+6(x = 1)2 the six singleton sets
+15(x 1) the fifteen pairs
+18 eighteen of the 3-subsets have rank 3

+2(r—1)(y—1)  the other two have rank 2

+15(y = 1) the d-element subsets
+6(y —1)? the 5-element subsets
+ (y—1)* the entire set

There are several general techmiques for producing more examples of matroids witlh the

samme Tatte polynomial (see. e (9. 15 20]). Before turning 1o some complenentary results

(T
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M, M,

Figure 26: Two matroids with the same Tutte polynomial

(matroids that are determined by their Tutte polynomial). we sketch some of the reasons
that Tutte polynomials are so important.

A number of frequently-studied invariants satisfy “deletion-contraction” rules. One
of the oldest invariants of this type is the chromatic polynomial of a graph. The chro-
watie polynomial. \(Giz). of a graph G assigns to each positive integer & the number of
proper colorings of the vertices of G with @

colors” (which can be taken 1o he the integers
1.2, .): proper means that vertices that are joined by an edge must be assigned different
colors. Notice that for an edge ¢ of a graph G. we have

(G —eiz) = x(Giz) + x(G/e:) (3)

where G —¢ is the deletion. G with the edge e removed, and G/ is the contraction, the graph
formed from G by removing ¢ and identifying the vertices that e joined. (These operations
are intimately linked with the like-named matroid operations.) Equation (3) holds since any
proper coloving of G — ¢ either assigns the endpoints of ¢ different colors (giving a proper
voloving of ) or the same colors (giving a proper coloving of G/e). It is useful to write
Equation (3) in the form

\(Giw) = x(G - era) — x(G/er) (4)
This is a recursive expression for y(G; ). From this, one can induct to show that x(G:x)
iy indeed a polynomial function of .

One can show that the Tutte polynomial also satisfies a deletion-contraction rule. In-
deed, an alternative way of defining the Tutte polynomial is as follows. The Tutte polynomial
of matroid whose ground set is the empty set is 1. If e is an element of a matroid M. then

HANfe}: a.y) +H(M/{e}ix,y)  if r({e}) > 0 and r(M\{e}) = r(M).
HALroy) = S yt(M/{e):. ) if r({e}) = 0.
FHANe): . y) if r(M\{e}) < r(M)

J—-_—-‘?\
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From this formulation, it is not i diately clear that the Tutte polynomial is well-defined;
conceivably it could depend on the order in which the elements of M are deleted and con-
tracted. However, since this is equivalent to Equation (2), the Tutte polynomial is indeed

well-defined.

The Tutte polynomial is important in part because it satisfies the deletion-contraction
rule but more so because it is the universal invariant for all invariants that satisfy a deletion-
contraction rule; all other invariants of matroids that satisfy a deletion-contraction rule are
evaluations of the Tutte polynomial. The following theorem makes this precise.

Theorem 6.1. Let R be o commutative ring that has unity. For each choice of elements
w.v.0.7 of R, there is a unique function T from the class of all matroids into R that has

these properties.
(i) If M is the matroid on the empty set. then T(M) = 1.
(1) If ¢ 1s an element of M and r({e}) > 0 and r(M\{e}) = 7(M), then
T(M) =g T(M\{e}) + TT(M/{e}).
(iii) If e is an element of M and r({e}) = 0, then T(M) = v T(M/{e}).
(iv) If e is an element of M and vr(M\{e}) < (M), then T(M) = uT(M\{e}).

foll luation of the Tutte pol, Lt(M;x,y): for a matroid

Furthermore, T is the
A with a k-element ground set, we have

T(M) = ="M D40 u/r v/0).

Brylawski [19] proved this in the case of o = 7 = 1: Oxley and Welsh [44] observed that
the same arguinent yields the general case. That this result is very useful makes it all the
more striking that the proof is a simple induction based on the deletion-contraction rule.

To sketch (very incompletely) one relevant application of Theorem 6.1, note that in
Equation (4) we have 0 = | and 7 = —1. The chromatic polynomial of a graph that consists
of a single edge is w(x — 1) since one vertex can be colored with any of & colors and the
other vertex can be colored with any of the & — 1 other colors. A graph with an edge that
is incident with only one vertex (a loop) has no proper colorings. With a graph G. there is
an associated matroid, the cycle matroid M(G). Skipping many steps, one can argue fron
this that \(G:.r) is @(G) (= 1)"MCENYAL(G); (« - 1)/(~1).0/1), ot

@y MGNY AL (G): 1 = +.0)

(T e
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where w(G) is the number of components of the graph G

Before pursuing such specializations of the Tutte polynomial further. we mention more
results about Tutte polynomials. The example at the beginning of this section shows that
several matroids can have the same Tutte polynomial; we mentioned that there are general
constructions for producing more such examples. At the opposite end of the spectrum, some
matroids are determined by their Tutte polynomials. The next theorem is from [12].

Theorem 6.2. If n > 4 and t(M;x,y) = t(AG(n — 1,q);z,y), then M is isomorphic to
AG(n = 1,q). If t(M; 2, y) = 1(AG(2,q); z,y), then M is an affine plane of order q.

There are relatively few results of this type known. The corresponding result for
PG(n = 1.¢) was known earlier (see [20]) and has many simple proofs. To prove Theo-
1em 6.2, one can show that the hypotheses of the first characterization of affine geometries
i Theorem 5.5 can be veritied from the Tutte polynomial of a matroid. Uniform matroids
are also determined by their Tutte polynomials, as are the cycle matroids of complete graphs
and certain generalizations of such matroids (see [12]).

Recall that AG(x — 1.q) is PG(n ~ 1,¢)\PG(n — 2.¢). With this in mind. we see that
the following result from (2] in a natural follow-up to Theorem 6.2

Theorem 6.3. Assume n and k are integers with n > 3 and 1 < k < 1 — 2. Assume the
matrod M has the same Tutte polynomial as PG(n — 1,9)\PG(k — 1.q). Ifn > 4, then
M s wsomorphic to PG(n — 1.q)\PG(k — 1,q). If n = 3. then M is isomorphic to some
single-element deletion of some projective plane of order q.

One key element of the proof of Theorem 6.3 and related results in [2] is that the geome-
tries PG(n = 1.g)\PG(k — 1, ¢) are the unique geometries that attain the bound in a result
of extremal matroid theory, specifically, Theorem 5.9. Thus, the proofs of Theorems 6.2
and 6.3 are partly based on results in extremal matroid theory. The proofs of other results
of this type in 112] are based on axiomatic characterizations of certain matroids. A third
approach to proving such results is developed and applied in [11, 37]

I contrast to such results, it follows from lower bounds on the number of matroids
on & given muvber of elements, and upper bounds on the number of Tutte polynomials
such matroids can have, that most matroids are not determined by their Tutte polynomials
(see [22]). To get a better sense of how strong an invariant the Tutte polynomial is, it is of
nnterest to produce large collections of matroids that the same Tutte polynomial; in addition,
one may want to impose additional conditions on such matroids, such as being representable
over GF(g). I (9], techniques are developed to produce many families of such collections;
the following theorem is the tip of the iceberg in this area

Theorem 6.4. Assume that g is the t-th power of a prime. that g exceeds 5, and that g — 1
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is not a Mersenne prime. Let d be the largest proper divisor of g — 1. For each integer n
with n > 3, there are at least

(@d=-1)""g-1-d)(¢g=2-4d)
t

nonisomorphic 3-connected geometries that are representable over GF(q), that have rank
2n + 2, that contain
Pt
——— ==
=
points. and that have the same Tutte polynomial. In particular, if q is odd, then there are

(q—3 i
Z 2

We mention two open problems along these lines.

at least

such geometries.

Open Problem 6.5. Fuud more matroids that are uniguely determined by their Tutte poly-
nomials.
Open Problem 6.6. Funud more constructions that produce nonisomorphic matroids that

have the same Tutte polynomial.

The particular evaluation of the Tutte polynomial in Equation (5) arises so frequently
that it is singled out. The characteristic polynomaal of a matroid M is defined by

p(M;2) = (=1)7(M: 1 — 2,0).

Thus. up to a power of u, the characteristic polynomial p(M;z) is a generalization of the
chromatic polynormial of a graph.

The chromatic polynomial of a graph has the following simple property: the first so
many positive integers are roots of the chromatic polynomial and then there is never another
positive integer root of this polynomial. This is simply because if G canuot be colored with
k colors. then G cannot be colored with k — 1 colors. One can show that matroids that
are representable over GF(q) have an analogous property with respect to powers of g; the
first so many powers of g are roots of the characteristic polynomial and then there are no
more powers, of ¢ that are roots of this polynomial. Thus, in analogy with the chromatic
number of a graph, the smallest integer & which is not a root of the chromatic number
(equivalently. the smallest integer & such that the graph can be colored with k colors), we
define the critical exponent of a geometry that is representable over GF(g). (We could define
the critical expouent of a matroid in general but the critical exponent depends only on the

simplification of the matroid. Therefore the theory of critical exponents generally focuses

on geonietries.)

e



Joseph E. Bonin 165

Definition 6.7. Assume that M is a geometry that is representable over GF(q). The critical
exponent of M over GF(q) is the least positive integer k such that p(M: q*) #0.

The following theorem of Crapo and Rota [23] begins to hint at the importance of the
critical exponent.

Theorem 6.8. Assume that the rank-m geometry M is representable over GF(q) and has
critical eaponent ¢ over GF(q). For any n > m and any embedding of M in PG(n - 1,q),
the least codimension of a subspace of PG(n — 1,q) disjoint from M is c.

It is striking that this codimension does not depend on the embedding or even the
dimension in which the matroid is embedded! One can show from this that the critical
cxponent is also the smallest number of subgeometries of AG(n — 1. ¢) into which M can be
purtitioned. Thus, the ¢ in Conjecture 5.11 is the critical exponent of M.

The eritical exponent provides a new perspective on a number of very important prob-
lems, For instance, let by by..... by, be a basis of PG(n — 1.¢) and let Ej be the union of
all flats spanned by & elements among by, by, .. .. by, that is

Ee= 0 el b b D).

1€ << <ikEn

Readers familiar with the theory of linear codes will recognize that the points in Ej corre-
spond the vectors that cannot be in any linear code of weight & + 1 or more. It follows from
Theorem 6.8 that solving the fundamental problem of linear coding theory is equivalent
to determining the critical exponent of the restriction of PG(n — 1.¢) to Ej. (See [24].)
This suggests the way in which the “critical problem” of matroid theory can be used as a
framework to unify many important combinatorial problems. The interested reader should
consult Kung [36) for more on this major topic.

7 Conclusion

This introduction to matroid theory addresses only a very small number of the more imme-
diately accessible results in a small subset of the many facets of this field. It is hoped that
these snapshots of selected topics give you a taste for this subject that entices you to pursue
the theory of matroids further. Among the many topics that await you are the fundamental
and powerful operation of duality 40], maps between matroids (strong maps, weak maps.
comaps) (33, 34), constructions [21, 40}, basis exchange properties [32], structure theory and
conmectivity [40. 41]. the splitter theorem and its consequences [40. 41], submodular func-

tons (38,10, emumeration [23, 46. 47). simplicial complexes associated with matroids (6],
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and the entire field of oriented matroids (7] with its strong connection with the theory
of polytopes. We have also omitted the numerous applications, which include optimiza-
tion [25], transversal theory [18], coding theory (22, 24, 36, 46], differential geometry [1, 27,
structural rigidity [28, 52, 53], arrangements of hyperplanes [39], knot theory and statistical
physics [47]. and much more. In each of these areas, many tantalizing open problems remain,
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