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ABSTRACT. Mean values play important roles in the theory of inequalities. and even in
the whole of mathematics, since many norms in mathematics are always means. Study
of the extended mean values E(r,s;x,y) is not only interesting but important, both
because most the two-variable mean values are special cases of E(r. s:r. y). and because
it is challenging to study a function whose formulation is so indeterminate.

In this expository article, we summarize the recent main results regarding the study of
E(r,5;2.y). including its definition, basic properties, monotonicities, comparison, log-
arithmic Sch ities

of concepts of mean values, ap-
plications to quantum, to theory of special ions, to i

pairs, and to g ization of Hermite-Had: d's i

of

2000 Mathematics Subject Classification. 05A19, 26A48, 26A51, 26B25, 26D07, 26D10, 26D15,
26020, 33820, 41A55, 44A10, 60E15.

Key words and phrases. Extended mean values, generalized weighted mean values, generalized ab-
stracted mean values convex, Sch icil

3 3 definition, for-
gamma function, Steffensen pairs, Hermite-Hadamard
inequality, absolutely (completely, regularly) monotonic (convex) function, arithmetic mean of function,
quantum, Bernoulli's numbers, Bernoulli's polynomials.

The author was supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of
Henan Provinee, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800),
SF for Pure Research of Natural Science of the Education Department of Henan Province (#1999110004),
Doctor Fund of Jiaczuo Institute of Technology, China.

The original manuscript is a seminar report giving at the RGMIA on December 10, 2001.

mula, integral gamma function, i

N 00 e



64 The Extended Mean Values

Contents

1 Definition and Expressions of the Extended Mean

alues 64

1.1 Definition of the extended mean values . . . 64
1.2 Integral expressions of the extended mean values . . . .. ... ... . . . . . 65
1.3 Inequalities and recurrence formulae for g(t;z,y) . . . . . . ... ... ..., 66

2 Monotonicities of the Extended Mean Values 67
3 Comparison of the Extended Mean Values 67
4 Convexities of the Extended Mean Values 68
4.1 Definitions of convexities . . . . . . . .. .. : i B s e R ]
4.2 Convexity of the arithmetic mean of a function . . . . . . B LAty 69
4.3 Logarithmic convexity of the extended mean values . . . . . . . . . S
4.4 Schur-convexity of the extended mean values . . . .. ... .......... 7l
4idt] S chur=eonyexity witilati( s) I S U S 71

48419/ S ehurscenyexi byawa i (e 7l

5 Generalizations of Mean Values 2
5.1 Generalized weighted mean values . . . . . ... ... 72
51.1 Integralcase . . ............. ST st Ay o)

50112 DiIRCIEHCYCASEI Al Al Tl PRl v R 8 S SRR T K@

5.2 Generalized abstracted meanivaluesi .o i o cae Lo )
5.3 More absolutely ic (convex) functions . . . . . . ... ... ... .. 79

6 Applications and Related Results 80
6.1 Application o) quantumi . . . S SR e ) 80
6.2 Generalizations of Bernoulli’s numbers and polynomials . . . . . .. ... .. 80
6.3 Generalization of Hermite-Hadamard's inequality ¥ W by 0 80
6.1 Monotonicity results and inequalities involving ganuma functions . . . . .. . 81

6.5 Establishment of Steffensen paivs . . . . . .. . s e A R




Feng Qi

1 Definition and Expressions of the Extended Mean
Values

The histories of mean values and inequalities are long [9]. The mean values are related to
the Mean Value Theorems for the derivative or integral, which are the bridge between the
local and global properties of functions. The arithmetic-mean-geometric-mean inequality is
probably the most important inequality, and certainly a keystone of the theory of incqualitics
[2]. Inequalities of mean values are one of the main parts of the theory of inequalities, they
have explicit geometric meanings [14]. The theory of mean values plays an important role
in the whole mathematics, since many norms in mathematics are often means.

1.1 Definition of the extended mean values

In 1975, the extended mean values E(r,
follows

a.y) were defined in [51] by K. B. Stolarsky as

I:‘(,_\..n:[i rs(r = s)r - y) # 0 ()

3

3 1 L I

h(r.ﬂ:r.y):[ h"’uﬁ] 1 p) # 0: (12)
1 (" =y")

f;(.;,;,‘w:m[;;] i (= y) #0: (1.3)

E(0.0:x,y) = \/:_:/ Ry (1)

E(r.sirr) = T=y;

where vy > 0 and r.s € R.

1t 15 casy to see that the extended mean values £(r, s:.. y) ave continmons on the domain
{(r.sca.p)|r s € Rix,y > 0}.

They are symmetric between r and s and hetween . and g

Many basic properties have bheen researched by 1B Leach and M. C. Sholander in
{19} in 1970's

Many mean values with two variables are special cases of E, for example,

E(r2rir,y) = M,(a,y), (power means or Holder means) (1.5)
E(L px,y) = Sp(x,y), (extended logarithmic weans) (1.6)
E(L:x.y) = I(z.y), (identric or exponential mean) (1.7)
E(1.2:x.y) = Az, y), (arithmtic mean) (1.8)
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The Extended Mean Values

E(0.0;z,y) = G(x,y), (geometric mean) (1.9)
E(-2,-1;z,y) = H(z,y), (harmonic mean) (1.10)
E(0,1;z,y) = L(z,y). (logarithmic mean) (L.11)

Study of E(r,s;x,y) is not only interesting but important, both because most of the

two-variable mean values are special cases of E(r,s:z,y), and because it is challenging to
study a function whose formulation is so indeterminate [26].

1.2 Integral expressions of the extended mean values

y .
9(t) £ g(t:z,y) = { TR (1.12)
Iny—Ina. t=0.

Define a function U, (x:t) such that

Up(w;t) = t*,
20U, (x:t) (1.13)
oz

Unia(zit) = = (n + 1)Un(z;t)

for n being a nonnegative integer and t > 0.

The direct calculation of the i-th order derivative of g(t) for i € N is complicated.

However, it is easy to see that

v
9" (1) =/ (Inu)'u'~'du, y>z>0, ieN. (1.14)

Recently, a new expression for the i-th order derivative of g(f; ., y) with respect to the

variable ¢ was obtained by the author as follows

(1) )= DO l,—llny)"—“r(t+ L ~ting) s

where 1 is a nonnegative integer, and I'(z, z) denotes the incomplete gamma function defined
for Rez > 0 by

I(z,x) = /x t==1e=tdt. (1.16)

The expressions (1.12), (1.14). and (1.15) of g(t:x.y) look simple. but they are im-
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portant for us, The expression (1.14) can be used to rewrite the extended mean values
E(r.siz,y) as

)\ M=)
E(r,s:2,y) = (%E:Z—:Z;) : (r—s)(z-y) #0; (1.17)
E(r.riz.y) = exp (%), (z~g) 0. (1.18)

Taking logarithm in (1.17) and (1.18) yields

1 * dg(t; x, 1
s—_—r/ %~ gt -E-u A0
InE(r,s:x,y) = g( ') 1 gty (1.19)
Tm r=s.x—-y#0.

Note that. the integral expressions (1.14). (1.17). (1.18). and (1.19) of the function ¢
and the extended mean values E(r, s:x.y) play key roles in our sequent contents

1.3 Inequalities and recurrence formulae for g(t:x,y)

Using Tchebysheff's integral i lity, Hermite-Had. d's inequality for convex functions

and the mathematical induction, some relationships between g(«) and U, (. t) are deduced,
and some recurrence formulae and inequalities of them are given. For examples

Theorem 1.1 ([46]). The function g(t) satisfies

(1) = U;.(';yi;]U..U:I)_ (1.20)
6—"’:,)(‘”") = " ()= (1.21)

Theorem 1.2 ([46]). The function -"1,:(—:%1 is increasing (or decreasing) in x fory > 0 (or

"7t

2 < ). Aud ['.—',”] L 130, is increasing with t.

Theorem 1.3 ([46]). The function g(t) is absolutely and regularly onR fora >
Loor on (0,0) forb> 1 >1, letely and regularly onR for0<a<b<l,

oron (=0¢,0) for 1 < b < L. Furthermore, g(t) is absolutely conver on R.
Theorem 1.4 ([46, 47]). For k.i.j being nonnegative integers, we have

,,li\“‘I'I)“)”('Z(I*k‘bl)(,) 2 ”1‘2““)”!2H~rol«!ll(” (1.22)



68 The Extended Mean Values
The ratio %ﬂ 1§ increasing i t.
For 1 we list definiti of absolutely (regularly, letely)

(convex) function as follows.

Definition 1.1. A function f(t) is said to be absolutely monotonic on [ if it has derivatives
of all orders and f*)(t) >0,t € I, k € N.

Definition 1.2. A function f(t) is said to be completely monotonic on / if it has derivatives
of all orders and (—1)*f*)(¢) >0, t € I, k € N.

Definition 1.3. A function f(t) is said to be regularly monotonic if it and its derivatives
of all orders have constant sign (+ or —; not all the same) on I.

Definition 1.4. A function f(t) is said to be absolutely convex on [ if it has derivatives of
all orders and f¥)(t) >0, t €I, k€ N.

The absolutely (completely, regularly) monotonic (convex) functions are useful in La-

palce transform |

2 Monotonicities of the Extended Mean Values

When studying a function, we always consider its icity first. The mean

values E(r y) are increasing with respect to its all variables. That is

Theorem 2.1. The extended mean values E(r, s;z,y) is increasing in both x and y and in

both r and s.

This theorem was verified by E. B. Leach and M. C. Sholander in [20].

Later, using expression (1.17), (1.18) and (1.19), monotonicity of the arithmetic mean
of function, Tchebysheff’s integral inequality, Cauchy-Schwarz-Buniakowski’s inequality and
other analytic technique, some simple and new proofs for monotonicity of the extended mean
values are provided in [15, 42, 44, 47).

3 Comparison of the Extended Mean Values

y) is a difficult problem. It was

vesearched in [20]. Five years later, more general results were obtained by Z. Pales in [26]

The comparison of the extended mean values E(r

29 as follows.

and restated in [25

. Y\
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Theorem 3.1 ([20, 26]). Let r,s,u,v be real numbers with r # s and u # v, then the
mequality
E(r,s;a,b) < E(u,v:a,b) (3.1)

is satisfied for all a,b > 0 if and only if
r+s<utuv and e(r,s) < e(u,v). (8.2)
where

In§ (33)

Bl forxy >0 and z # y,
e(z,y) =
0 Joray =0

if either 0 < min{r, s, u,v} or max{r,s,u,v} <0, and

e(z,y) =

|z| = Ly| foraz,yeRandx #y (8

=
if minfr,s.u. 0} < 0 < max{r,s.u,v}.
4 Convexities of the Extended Mean Values

After considering the monotonicity and comparison, it is natural to investigate the convex-
ities of the extended mean values E(r, s;z,y).

4.1 Definitions of ities

The concepts of ities of functions are ifold, for instance, the logarithmically convex
and the Schur-convex.

Definition 4.1 ([24]). A positive function f defined on an interval I is logarithmically
convex (concave) if its | ithm In f is convex )s

Definition 4.2 ([6, 28]). A function f with n arguments on /" is Schur-convex on " if
J(x) € f(y) for each two n-tuples & = (x1,...,,) and y = (v1...., Un) in I such that
& < y holds, where [ is an interval with nonempty interior.

The relationship of majorization @ < y means that

& k n n
Yz Y=Y (4.1)
=1 =1 =1 =1

where 1€ k< n ~ 1 and 1 denotes the ith largest component in

L /AR



70 The Extended Mean Values
A function f is Schur-concave if and only if — f is Schur-convex.

4.2 Convexity of the arithmetic mean of a function

The convexities of the (weighted) arithmetic mean of a function (integral arithmetic mean)
are important to our proofs for convexities of the extended mean values E(r, s;z,y).
The following results can be verified easily.

Lemma 4.1 ([47]). If f(t) is an increasing integrable function on I, then the arithmetic
mean of function f(t),

1 s
A= / f(t)dt, r#s,
f(r), T=3s,

is also increasing with both » and s on I.

(4.2)

If f is a twice-differentiable convex function. then the function ¢(r,s) is also conver
with both v and s on 1.

In [6], N. Elezovi¢ and J. Pecarié¢ proved the following

Lemma 4.2. Let f be a continuous function on I. Then the integral arithmetic mean ¢(r, s)
is Schur-convex (Schur-concave) on I* if and only if f is convez (concave) on I.

The following necessary and suffici dition is well-k

Lemma 4.3 ([6] and (28, p. 338]). A continuously differentiable function f on I* (where
I being an open interval) is Schur-conves if and only if it is symmetric and satisfies
(%—%)(y—x)>0 forallz,yel, x#y. (4.3)

Using Lemima 4.3, we can obtain the Schur-convexities of the weighted arithmtic mean
of a function.

Lemma 4.4 ([45]). Let f be a continuous function on I. let p be a positive continuous
weight on 1. Then the weighted arithmetic mean of a function f with weight p defined by

[ pt)f(t)dt

Playy) = [ pndt
S(x), r=y

(4.4)
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1 Schur-convex (Schur-concave) on I 2 if and only if the inequality

[ pOf()dt < P@)f@) +pw)f(v)
[ptdt = pla) +ply)

(4.5)

holds (reverses) for all x,y € 1.

4.3 Logarithmic convexity of the extended mean values

By formula (1.19) and Lemma 4.1, we can see that, in order to prove the logarithmic
convexity of the extended mean values £(r, s;x,y), it suffices to verify the convexity of the
function

g'() o giltiv,y) o Q9(tizy) 1

o) ity ot gltrw (6)
with respect to ¢
Straightforward computation results in
(y,,—((,'—))) ” gu(t)g(;m[g OF o
( (')) _ g3(0g" (1) = 89(t)e/ (9" (1) + 2lg'(1)]* e
g(t) 3 (1)

By a long intricate and standard argument, we obtain the following

Proposition 4.1 ([33]). Ify >z = 1, then, for t > 0, we have
ALl = Bkl ygtlyel Ly + 2Lyl < 0. (49)

The combination of Proposition 4.1 with equality (4.8) proves that 2#”—5)1 is concave on
[0,00) with ¢ for fixed y > = = 1. Thus, it follows that the extended mean values E(r, s;1,y)

are logarithmically concave on [0,00) with respect to either r or s for y > z = 1.

By standard arguments, we obtain

E(rsia,y)=FE (r. sl = (4.10)
BE(=r,=siw,y) = 52(1—2”1$ (4.11)

Hence, E(r, s:x.y) are logarithmically concave on [0,50) with either r or s and logarithmi-
cally convex on (~c.0] in either r or s, respectively. That is
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72 The Extended Mean Values

Theorem 4.1 ([33]). For all fived ¢,y > 0 and s € [0, 00) (or r € [0,00), respectively), the
extended mean values E(r, s;z,y) are logarithmically concave in r (or in s, respectively) on
[0,00). For all fized z,y > 0 and s € (—00,0] (or r € (—00,0], respectively), the extended
mean values E(r, s;,y) are logarithmically convez in r (or in s, respectively) on (—oo,0].

4.4 Schur-convexity of the extended mean values

The Shur-convexities are parted into two cases: convexities with respect to (r, s) and (z,y),
respectively.

4.4.1 Schur-convexity with (7, s)

By the same procedure as the proof of the logarithmic convexity of E(r, s;z,y) and using
Lemma 4.2, we obtain the following

Theorem 4.2 ([36]). For fized @,y > 0 and = # y, the extended mean values B(r, s;x,y)
are Schur-concave on R and Schur-convez on R? with (r.s), where R2 and R* denote
[0,00) x [0.00) and (—o0,0] X (—00,0], the first and third quadrants, respectively.

Taking (ry,s1) = (0,2r) andl (r2,82) = (r,7) for r # 0, as a direct consequence of
Theorem 4.2, we obtain an inequality between the generalized logarithmic mean values
defined by (1.2) and the g lized identity (exp ial) mean values defined by (1.3) as
follows

Corollary 4.2.1 ([36]). Let z,y > 0 and z # y. Then, for r >0, we have

1 y2r_m2r 1/(2r) e s 1/(="—y") W
2r lny-Ia = el/m \yv" ' o

For < 0, inequality (4.12) revenses.

4.4.2 Schur-convexity with (z,y)

The results on the Schur-convexities with respect to variable (z,y) are not very perfect.
From Lemma 4.4, using the following Theorem 4.4 about inequalities of the arithmetic
mean, harmonic mean and logarithmic mean, we have

Theorem 4.3 ([45]). For fired point (r,s) such that r.s £ (0,3) (or 1.5 € (0.1). resp).
the extended mean values B, s w,y) are Schur-concave (or Schur-convez, vesp.) with (.y)
on the domam (0, 00) x (0,00).
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As by-products. some inequalities of mean values were established.

Theorem 4.4 ([45]). Let z,y be positive real numbers and r € R.

L Ifr <0, then
L(".y") 2 [G(x,y)]" 2 Alz.y)H(«" . y""). (4.13)

the equalities in (4.13) hold only if yorr=0.

o

Ifr > 3, we have
Lia"y") 2 Aw,y)H ("t =), (4.14)

the equality in (4.14) holds only if w = y.

=

If r € (0. 1), inequality (4.14) reverses without equality unless x = y.

Otherwise, the validity of inequality (4.14) may not be certain.

-

The results of Theorem 4.4 imply inequalities between the extended mean values and
the generalized weighted mean of positive sequence.

Theorem 4.5 ([45]). Let 2.y > 0. Then
1oafrs € (0,1], we have
E(r,s;x,y) < Ma((1,1); (. y)ir = 1,s = 1), (4.15)

where Ma((1,1): (z,y)ir — 1,5 — 1) denotes the generalized weighted mean of positive
sequence (r,y) with two parameters r — 1 and s — 1 and constant weight (1,1) defined
in Definition 5.2;

2418 #(0.3), megquality (4.15) reverses;

3 otherunse, the validity of mequality (4.15) may not be certain.

5 Generalizations of Mean Values

From (L.11), it is clear that the extended mean values can be rewritten as

(s=r)
STTAE
E(r.sia,y) = (__fz” PRSI
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74 The Extended Mean Values

5.1 Generalized weighted mean values

One of generalizations of mean values, the generalized weighted mean values Mj, s(r, 5;z,y),
are classified into two cases.

5.1.1 Integral case

It is natural to generalize the concept of the extended mean values BE(r,s:z,y) through
replacing ¢ by a positive function f(t) and considering a weight in the integrands in (5.1).

Definition 5.1 ([32, 35]). Let @,y,7,s € R, and p(u) £ 0 be a nonnegative and integrable
function, f(u) a positive and integrable function on the interval between x and y. The
generalized weighted mean values, with weight p(u) and two parameters » and s, is defined
by

(r = s)(z —y) #0: (5:2)

i ‘ 1/(s=r)
My (r i) = (M> :

T p(w)fr (w)du
v T
M, y(r.riw,y) = exp (%%) (@ —y) #0: (5.3)
u r(w)d 1/r
My 5(r,0:5,y) = (%) A o-y)#0  (54)

x—y#0; (5.5)

'V
My (0,052, ) = exp (M) 3

JY p(uw)du
My y(r, sz

= f(x).
The following lemma is called the revised Cauchy mean value theorem in integral form

Lemma 5.1 ([32, 85, 47]). Suppose that f(t) and g(t) > 0 are integrable on [a,b] and the
ratio L8 has finitely many removable discontinuity points. Then there exists at least one
point 0 € (a.b) such that

Iy fydt
TPyyar

f(t)

=0 (1)

(5:6)

Using Lemma 5.1, some basic properties of the generalized weighted mean values
1

M, plrosteoy) were vielded as follows.

.
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Theorem 5.1 ([32]). M, (r.siz,y) have the following properties
m < M s(r,s;x,y) < M, (5.7)
My g(rosiz,y) = My g(r,81y,2) = My g(s.mi2,y), (5.8)
My (rs) = My7 (8 )My (1), (5.9)

where m = inf f(u). M = sup f(u).

In [32) and [44], the monotonicity with @ and y of M, /(r, s: 2, y) was proved by three
approaches.

Theorem 5.2. Let plu) Z 0 be a nonnegative and continuous function. f(u) a positwe,
inereasing (or decreasing, respectively) and continuous function. Then M, ¢(r,six,y) in-
creases (or decreases. respectively) with respect to either v or y.

Using Cauchy-Schwarz-Buniakowski's inequality. we proved monotonieity of the gener-
alized weighted wean values My, f(r.sia.y) with (r.5) as follows

Theorem 5.3 ([48]). The generalized weighted mean values My, p(r.s:x.y) are mcereasing
with both r and s for any continuous nonnegative weight p and continuous positive function

/

Using Tehebysheff's integral inequality, we have the following two theorems.

Theorem 5.4 ([32]). Let py(u) # 0 and pa(u) £ 0 be 1we and integrable funct
on the interval between x and y, f(u) a positive and integrable function, the ratio % an

integrable function, E}(‘E{ and f(u) both increasing or both decreasing. Then
My, g (rys32,y) 2 My, (1, s:20,u) (5.10)

If one of the functions of f(u) or % s nonincreasing and the other nondecreasing, then
inequality (5.10) is reversed.

Theorem 5.5 ([32]). Let p(u) # 0 be a nonnegative and integrable function. and fy(u) and
falu) positive and mtegrable functions on the interval between x and y. If the ratio 5;_}-;
and fy(u) are integrable and both increasing or both decreasing, then

My, (ry80,) 2 My, g, (rysi2.y) (5.11)

holds forv.s > 0 orr > 0> 5. and At} 2 1. The inequality (5.11) s reversed for 1,5 < 0
ory 202 v, and ,::, <18

L AT
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If one of the functions of fa(u) or % is nonincreasing and the other nondecreasing,
then inequality (5.11) is valid for 1,5 > 0 or s > 0> 7, and 22 > 1; the inequality (5.11)

reverses for s > 0 or7 > 0> s, and 48 < 1.

5.1.2 Discrete case

The discrete analogue of the generalized weighted mean values, the generalized weighted
mean of positive sequence @ = (a1, ,@y), was defined in [31] by

Definition 5.2. For a positive sequence a = (ay,- - .ay) with a, > 0 and a positive weight
p = (pr.o-- .pa) with p; > 0 for 1 < i@ < n, the generalized weighted mean of positive

sequence a with two parameters 7 and s is defined as

n ey 1/(r=3)
(Z._ p.:;) % ¢ e
M(prain, s) = Yie P

iy Piay Ina

(5.12)

Remark 5.1. For s = 0 we obtain the weighted mean ML (a:p) of order r (sce [24)); for
s = 0.r = —1. the weighted harmonic mean; for s = 0. r = 0. the weighted geometric mean:

and for s = 0. r = 1, the weighted arithmtic mean.

The mean M, (p; a; 7, s) has some basic properties similar to those of M), s(r, s;,y). for
instance
Theorem 5.6 ([31]). The mean My (p;a;r,s) is a continuous function with respect to
(r.s) € R? and has the following propenties
m < My(pia;rys) < M,
My(pya;r, s) = My (pia;s,r), (5.13)
M (pyasrys) = M3~ (prast, s) - M (p ai ),

where m = miny<;<n{@i}, M = maxi<i<n{ai}.
The inequality property in (5.13) follows from the following elementary inequalities in
[21. p. 204] which are due to Cauchy.

For an arbitrary sequence b = (b

have
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Equality holds in both of the above inequalities if and only if the sequences b and ¢ are
proportional.

Using Lemma 4.1 and by standard arguments, we obtain the monotonicity of M, (p; a; 7, 5)
with respect to variables r and s.

Theorem 5.7 ([81]). The mean M, (piair,s) of numbers a = (ay.
P (Procssy pn) and two parameters r and s is increasing in both r and s.

ay,) with weights

By math ical induction and i lities in (5.14), we obtain an inequality for dif-
ferent natural indices n of M, (piair.s).

Theorem 5.8 ([31]). For a monotonic sequence of positive numbers 0 < ay < ag < ++-
and positive weights p = (py.pa,...), if m <n, then

My (prazrs) € My, (prazr.s) (5.15)
Equality holds if ay = ay = -
Using the discrete Tehebysheff's inequality. the following are obtained.

Theorem 5.9 ([31]). Let p = (pr,...,pn) and g = (q1.-... qu) be positive weights, a =

@y, ay) o sequence of positive numbers. If the sequences (Lul A
g or both de g, then
M, (piair,s) 2 My(g:air, s). (5.16)

If one of the sequences of (ﬁ
the inequality (5.16) is reversed.

or a is nonincreasing and the other nondecreasing,

Theorem 5.10 ([81]). Let p = (py,...,pn) be positive weights, a = (ay,. .., ay) and b =
(G by) two sequences of positive numbers. If the sequences (§*
mereasing or both decreasing, then

and b are both

M, (prair,s) > M, (p:b:r,s) (5.17)

2hu2i21, andr,s >0 orr >02s. The inequality (5.17) is reversed for
2i2l andr.s<0ors>0> 7

If ane of the sequences of (B o ) orb is nonincreasing and the other nondecreasing,
then inequality (5.17) 1s valid for B2ln>i>landrs>0o0rs>02r: the inequality

(5.17) reverses for $* <1, u>i>1, andr.s >0 0rr>0> 5.
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5.2 Generalized abstracted mean values

The following definition is an integral analogue of the Definition 3 in [24, p. 75].

Definition 5.3. Let p be a defined, positive and integrable function on [z, y] for @,y € R, f
a real-valued and monotonic function on [a, 8. If g is a function valued on [a, ] and fog
integrable on [z.y), the quasi-arithmtic non-symmetrical mean of function g is defined by

I v(t)f(g(!))dl)

Tt (5.18)

My(gipio,y) = /"(

where f~' is the inverse function of f.

Remark 5.2. For g(t) = t, f(t) = "=, p(t) = 1, the mean My(g:p;=,y) reduces to the
extended logarithmic means S (v, y); for p(t) = t7=!, g(t) = f(t) =, to the one-parameter
mean J, (z.y): for p(t) = f'(t), g(t) = t, to the abstracted mean M (x,y): for g(t) = 1,
plt) = =1 f(t) = 17", to the extended mean values E y): for f(t) = t". to the
weighted mean of order 7 of the function g with weight p on [x.y). If we replace p(t) by
pUt)fr (). FUt) by 1577, g(t) by f(t) in (5.18), then we get the generalized weighted mean
values M, s(r.sia,y). Hence, from Mjy(g;p;a,y) we can deduce a lot of the two variable

means
The following properties follow easily from Lemma 5.1 and standard arguments.
Theorem 5.11 ([31]). The mean My(g;p;z,y) has the following properties
a < My(gipi,y) < B, (519)
My (gipia,y) = My(gipiy.x).
where a = infig|z.,) 9(1) and B = supe(z,) 9(t)-

The function £ is the reciprocal function of f(x) = z. Further, we have

Lemma 5.2 ([31)). Suppose the ratio 4 is monotonic on a given interval, Then

(8- (8)°)

e
where (7x) is the inverse function of 4.

&
These hints remind us that, if replacing = by (44) " in Definition 5.2, then we can

obtain




S

Feng Qi 79

Definition 5.4 ([31]). Let fy and f, be real-valued functions such that the ratio ﬁ is
monotone on the closed interval [a,8]. If a = (a1,...,as) is a sequence of real numbers

from [a, 8] and p = (p1....,Pn) & of positive I the lized abstracted
mean values of numbers a with respect to functions fi and fa, with weights p. is defined by
f.)" (Z p.mn.;) 5
Mu(pia:fi.fa)= | + S 5.21
(pra: fr. f2) (/2 S pifa(ai) (5.21)

where (-2)_‘ is the inverse function of %

The integral analogue of Definition 5.4 is given by

Definition 5.5 ([31]). Let p be a positive integrable function defined on [r.y]. 2.y € R, fy
and f; real-valued functions and the ratio % monotone on the interval 3). In addition,
let g be defined on [y} and valued on [a. 3], and f, o ¢ integrable on [r.y] for i = 1.2. The

generalized abstracted mean values of function g with respect to functions f; and f; and
with weight p is defined as

i

-1
Mp:g: fr. faiay) = (_l) ( (5.22)

L p(t)fig(0)dt
2 ;

[ p(t) f2(g(t))dt

where (ﬂ) * is the inverse function of %

Remark 5.3. Set f; = 1 in Definition 5.5, then we can obtain Definition 5.3 easily. Replacing
I by k p(t) by plt)f2(g(t)) in Definition 5.3, we arrive at Definition 5.5 directly. Defini-
tion 5.3 and Definition 5.5 are equivalent to each other. Analogously, formula (5.21) is equiv-
alent to My (a;p). Similarly, so are Definition 5.4 and the quasi-arithmtic non-symmetrical
mean My(a;p) of numbers a = (ay, ..., a,) with weights p = (p1,....pn).

From inequality (5.14), Lemma 5.1, Lemma 5.2 and standard arguments, we have

Theorem 5.12 ([31)). The means M(pias fr, fa) and M(p: g: fi, fa; x,y) have the follow-
my properties
1. Under the conditions of Definition 5.4, we have

m < My(pia: fi, fa) € M,

5.23
M, (pai fr. f2) = M(pa: fa. fr). (8i28)

where m = miny <, e {as}, M = max,cicp{ai}:
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2. Under the conditions of Definition 5.5, we have
a < M(pigi . faiz,y) < B,
M(p;g; fr, faiw,y) = M(pi g fr, f2iu,2), (5.24)
M(p;gi fr, faix,y) = M(p: g: fa fri 2,y).

where a = infig(z ) 9(t) and B = supe(. ) 9(t).

By Lemma 5.1 and standard argument, it follows that

Theorem 5.13 ([31)). Suppose p and g are defined on R. If fy0g has constant sign and if
(k) og s mcreasing (or decreasing, respectively), then M(p: g: fi, fajz,y) have the inverse

(or same) monotonicities as k with both x and y.

The Tchebysheff's integral i y produces the following two theorems,

Theorem 5.14 ([31]). Suppose fa o g has constant sign on [z.y]. When g(t) mcreases on

[e.y). of B us increasing, we have
M(pyigifu, faiw,y) = M(pai gi fr. foi z.u);i (5:25)

if £ s decreasing. inequality (5.25) reverses.
When g(t) decreases on (a,y), if ﬁ: 15 increasing, then inequality (5.25) is reversed; if
"-:: is decreasing, inequality (5.25) holds.

Theorem 5.15 ([31]). Suppose fa 0 ga does not change its sign on [x,y].
1. When fo0 (%) and. (ﬁ) 0. ga are both increasing or both decreasing, inequalily
M(pigni fr, faiwy) 2 M(p:gai fr. faiv,0) (5.26)
holds for il being increasing, or reverses for ﬂ being decreasing.
2. When one of the functions fao (f’%) or (ﬁ) oya 15 decreasing and the other increasing,
inequality (5.26) holds for 4 being decreasing, or reverses for 4 being increasing.
5.3 More absolutely monotonic (convex) functions

I [31] and | some more general absolutely (regularly, completely) monotonic (conves)
functions were established, which generalize the related results in [16] restated in Theo:

rem 1.3 of Section 1.3
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Theorem 5.16 ([32]). Suppose that f(u) is positive and has derivatives of all orders on
the interval [a,b]. Define v(t) by

I'(b) = f'(a) i
u(t) = { t ! tA0 (5.27)
Inf(b) = Inf(a). t=0.

Then
u',('l)(') -
AUy(t,s)

s

Un(t, f(b)) = Un(t, f(a))

e 1
= " (Ing)"st", (5.29)
where U,, s defined in (1.13).

Theorem 5.17 ([32]). If f(u) > 1 and f'(u) > 0. then the function v(t) defined by (5.27)
w absolutely and regularly monotonie on the interval B. If0 < frur < 1 and flui =0 then

wlt) i completely and regularly monotonic on K. Moreover. v(t) i absolutely convex on .

Theorem 5.18 ([31)). Suppose F(t) = f,:'p(u))"(u)dm where t € K, plu) # 0 s a non-
negative and continuous function. and f(u) is a positive and continuous function on a given
mterval a,b). Then

b
F(t) = / p(u)f () [ In f(u)]"du. (5.30)

If f(u) 2 1, then F(t) is absolutely monotone on R; if 0 < f(u) < 1, then F(t) is completely
onR. M . F(t) is absolutely convex on R,

6 Applications and Related Results

The extended mean values and their generalizations have been applied not only to establish
mequalitios of the gamma function and the incomplete gamma function. to construct new
Steffensen pairs. and to lize the Hermite-
quantinn and to generalize the Bernoulli's numbers and polynomials

d’s inequality. but also to study

6.1 Application to quantum

The concepts of the generalized weighted mean values M, ¢(r.s:x.y) have been applied to
study of quantum in [49. 50].
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6.2 Generalizations of Bernoulli’s numbers and polynomials

The function g(tix,y) defined by (1.12) has been applied to generalize the concepts of
Bernoulli’s numbers and polynomials. For details, please refer to [12, 22].

6.3 Generalization of Hermite-Hadamard’s inequality

Using Tehebysheff’s integral inequality, suitable properties of double integral and the revised
Cauchy’s mean value theorem in integral form of Lemma 5.1, the following result is proved.

Theorem 6.1 ([18]). Suppose f(z) is a positwe differentiable function and w(z) # 0 an
mntegrable nonnegative weight on the interval [a, b, if f'(z) and H;’% are integrable and both
increasing or both decreasing, then, for all real numbers r and s, we have

My p(rs1a.b) < E(r + 1.s + 1: fla). £(b)): (6:1)

if one of the functions f'(x) or % is nondecreasing and the other nonincreasing, then
s

inequality (6.1) rever

This inequality (6.1) generalizes Hermite-Hadamard's inequality. See [3, 13].

In [27]. Hermite-Hadamard's inequality was generalized to the case of r-convex functions
with the help of the extended mean values. In [21], the results obtained in [27] were further
generalized to the case of so-called g-convex functions. Recently, it was further generalized
and refined in [30].

6.4 Monotonicity results and inequalities involving gamma func-
tions

It is well-known that the incomplete gamma function [(z, x) is defined for Re = > 0 by (1.16)

and define

¥(2,2) =/ le~tdt. (62)

with I'(z.0) = I'(z), called the gamma function, D(0.#) = £, (=) the exponential integral
In [34] using inequality (6.1) and some results on the monotonicitics of 'I".Iﬁ' n

¥ ri(a)| A
alized weighted wean values My, (r. s:2.y). it was verified that functions {,I,; y
5 ) (niay] M G=1) ¢ :
and [}l_—,,] are increasing in r > 0. 5 > 0 and & > 0. From this, some

.. Y\



Feng Qi 83

results and § lities for the gamma or the incomplete gamma functions are
deduced or extended, a unified proof of some known results for the gamma function is given.

1f taking p(t) = =" and f(t) = t for ¢ € (0,z) in Theorem 6.1, then we have

Theorem 6.2 ([34)). For fized « > 0, the function ““%%) is decreasing in s > 0.

From the monotonicity with the two parameters r and s of M, ;(r.s:x,y) in Theo-
rem 5.3, it follows that

1/(a=r)
Theorem 6.3 ([34]). The function [F{%] 5 increasing with r > 0 and s > 0.

Corollary 6.3.1 ([34)). The functions [I'(r))"/" ™" and the digamma function v(r) = {-H
the logarithmic dersvative of the gamma function I'(r). are increasing m r > 0. Hence I'(r)
18 a logarithmically convex function in the interval (0.>c).

Remark 6.1 In 18] and (23 among other things. the following monotomaty results were
obtaimed

P +m)* < [pE+k)Y*", keN:
[T (1 + l)] decreases with & > 0,
z

Clearly, our Theorem 6.3 and Corollary 6.3.1 generalize and extend these results for the
range of the argument

Corollary 6.3.2. The following inequalities hold for s > r > 0

exp(s - r)y(s)] > {E—:; > exp|(s — r)u(r)], (6.3)
e <D(r+1) < expre(r+1)], (6.4)

where ¢ = 0.6772- - i the Euler’s constant.

Remark 6.2. The ratio F(L?) has been researched by many mathematicians. W. Gautschi
showed for 0 < s < 1 and n € Nin [11) that

I(n+1)
T(n+s)

't <

< exp((1 = s)e(n+1)]. (6.5)

A strenghened upper bound was given by T. Erber in (7] as follows

Fin+1)  A(n+s)(n+1)'"*

T(in+s) i+ (s +1)2 0<s<l. neN (6.6)

B ———
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1. D. Kecki¢ and P. M. Vasié gave in (16) the inequalities below

(L | (N .
e "<r—én)5<m-¢° # 4 0% ot (67)

The following closer bounds were proved for 0 < s < 1 and z > 1 by D. Kershaw in [17).

- [(1 S s‘/’)] < ?ﬁ: : :; <exp [(1 —a) (1 ¥ %‘)] . (68
1-s
(:+§)H< ?E:Ii; < [:-%+(a—§)m] } (69)

It is easy to see that inequalities in (6.3) of Corollary 6.3.2 extend the range of arguments
of above inequalities (6.5)-(6.9) but (6.7).

As consequences of Theorem 5.2 and Theorem 5.3. we have

. ] 1/(x=r)
Theorem 6.4 ([34]). For s > r > 0 and = > 0, the functions [3—;;\;;] and
o 1/(s=r)
[H—:{: increase with either © or r and s. Therefore, Jf,'—:’;l decreases and L.‘.-ﬁq
mcreases with s > 0, respectively.

Corollary 6.4.1. The incomplete gamma functions ~(r, z) and I'(r,z) are logarithmically
1r ;
convex with respect to v > 0 for fived v > 0. The function [%‘.'(—:f] is increasing in r > 0

and = > 0. Therefore, the functions Hﬂl‘;{, ﬁ%{% and 2 ::"; are increasing with 0 for
fireds >r >0 andx > 0.

Remark 6.3. In the last week of November 2001, N. Elezovié reminded me of his joint paper
[5] with C. Giordana and J. Pecari¢. In their paper [5], among others, the convexity with
1/(t=s)

respect to variable x of the function [ng—I?)‘] 53 for |t — s] < 1 is verified, the best lower
bound for (6.8) and the best upper bound for (6.9) are obtained, some different approach
from Gautschi’s in [11] is given, several new simple inequalities for digamma function are
also proved

The ganuma and incomplete gamma functions and related functions have Doen investi:
gated using different approaches, for examples, see [1. 4, 38. 10, 41, 43).
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6.5 Establishment of Steffensen pairs

Let f and g be integrable functions on (a,b] such that f is decreasing and 0 < g(x) < 1 for
z € [a,b]. Then

b b awA
/,-x"""”s [ t@awas < [ gaa, (6.10)

where A = f:y(:)dx.

The mequality (6.10) is called Steffensen’s inequality.

In (8], a discrete analogue of the inequality (6.10) was proved: Let {r,}7_, be a de-
creasing finite sequence of nonnegative real numbers, {y, }/L, be a finite sequence of real
numbers such that 0 € y, < 1 for 1 <4 < n. Let ky,ka € {1.2.--- ,n} be such that
ky € Yiuy i £ ky. Then

DF Foils Z'u < i

vmn=hgel

(6.11)

As a direct consequence of mequality (6.11). we have: Let {# }/_ be nonnegative real
numbers such that 30 x, € A and 300 > B* where A and B are positive real
numbers. Let & € {1.2.--- .n} be such that
Lpitas iy whose sum is bigger than or equals to B.

> 4. Then there are & numbers among

The so-called Steffensen pair was defined by H. Gauchman in [10] as follows.

Definition 6.1. Let ¢ : [c,00) — [0,00) and 7 : (0, 00) — (0. ) be two strictly increasing
functions, ¢ > 0, let {z,}/., be a finite sequence of real numbers such that a; > ¢ for
1 £ < n Aand B be positive real numbers, and Y1, 2y < A, Y1, o(x:) > ¢(B). If,

for any k € {1.2.--~ . n} such that k > 7 (4}), there are k nnm_h(-rs among zi,.. ., &, whose
sum s not less than B, then we call (p, 7) a Steffensen pair on [c, )
The following Steffensen pairs were found by H. Gauchman in [10]
(,r". 1-'/(“'”). a>2 ze0.0) (6.12)
(rexpta® ~ 1), (14 ln:v)‘/") , a1, z€[lo) (6.13)

Let @ and b be real numbers satisfying b> a > 1 and Vab > ¢. Define

AN _ et
Plz) = e i (6.14)
Inb - Ina ife=1,
() = 2!/ 0V, (6.15)
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Then it was verified by H. Gauchman in [10] that (s.7) is a Steffensen pair on [1, 50) using
some results and techniques in (46].

With help of properties of the extended mean values E(r, s;x,y) and the generalized
weighted mean values M, ;(r, s; , ), some new Steffensen pairs were established in (37, 39],

Using the integral expression (1.14) of function 9'4:1. mathematical induction and
analytic techniques, we have

Theorem 6.5 ([37)). If a and b are real numbers satisfyingb > a > 1 orb> L > 1, and

Vab > e, then
b
(::/ nz=1g Iz/mmb)) (6.16)
a

is a Steffensen pair on [1,00). Ifa and b are real numbers satisfying b > a > 1 and Vab > ¢,

then

b me3 (100" in oy
5 c3 B TR RS T N
.r/ ()"t ==tde, x==* 2 (6.17)
Ju
are Steffensen pairs on [1.0c) for any positive integer n.

In [39]. considering the function fnbp(u)j'(u)du and its properties, we further obtam
more general Steffensen pairs as follows.
Theorem 6.6 ([39]). Let a,b € R, let p # 0 be a nonnegative and integrable function and

f a positive and integrable function on the interval [a, b].

1. If inequality

b b
/p(u)duS/ p(w)In f(u)du (6.18).
holds, then
b [N
(:u/ p(u)f (w)" *du, u.‘-'-n-m—-) (6.19)

is a Steffensen pair on (1,00).

If f(u) > 1 and incquality (6.18) holds, then

b
(.4»/ ) fC@)]™ = [ ()" du. T2 (6.20)

are Steffensen pairs on (1) for any positive aiteger

.. T
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