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Functions f : U € € — C might engender functions of square matrices, known as
functions of matrices. Examples are the matvices A*, A=!, sin A and the flow /1. These
functions, despite being an essential topic in Linear Algebra, are not usually covered by the
traditional presentation of the subject.

Usually, most of the attention is restricted to polynomial functions of a matrix or, when
A = P~'DP with D diagonal, f(A) is defined by P! f(D)P, where f(D) is obtained by
evaluating f in each of the diagonal entries of D.

At

Due to its overwhelming role in differential equations, e is usually defined by means

of the power series expansion, which demands the concept of uniform convergence and, in

makes the only to more advanced students. Morcover,

¢M is obtained just in some simple cases (mostly when A is in Jordan canonical form) and

At

the student gets the impression that et is a “theoretical” solution of the system a’ =
The fact that e** is a polynomial (with coefficients depending on t) in the matrix A is not

emphasized.

Not much attention is given to the function f(4) = A*. Of course, one would probably
find A* for large k by iterating powers A* already obtained. However, A* has particular
importance in problems where symmetry plays an essential role, thus making possible an
casy derivation of the eigenvalues of A and a much simpler obtention of A*.

The definition of the function f(A) = A= is rare, although the algorithm to obtain
the inverse by applyving Gaussian elimination simultaneously to A and I is given in every

texthook. In some problems. however, A is symmetric and has few eigenvalues. Also in this
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42 Functions of Matrices

case it is worthwhile to use another method to obtain the inverse.

Our exposition of functions of matrices could be summarized as a generalization of the
finite dimensional version of Dunford-Schwartz’s functional calculus (8] and goes back (at
least) to Gantmacher [9]. It is simple and has amazing consequences: every function f(4)
is a polynomial in the matrix, which can be easily obtained if one knows its eigenvalues
with multiplicities. (Of course, the coefficients of the polynomial depend on' the function
f). This method, a standard tool in Numerical Linear Algebra, has surprisingly sunk into
oblivion in the introductory texts of Linear Algebra. Well-set textbooks (see (2], (10, [11],
(12], [18]) or even more advanced monographs (see (3] or [13]) do not even mention it. With
this article we expect to contribute to the reappraisal of the functional caleulus method in
(basic) Linear Algebra.

We now describe briefly what is in the text. Section 1 is basically a theoretical remark
concerning the division of a function by a polynomial. We show that under natural hy-
potheses this division is euclidean. (The ultimate versions of this result are the Weierstrass
and Malgrange Preparation Theorems). The functional caleulus, which is a consequence of
this fact. is analyzed in section 2. The next section displays various examples of the use of
the functional calculus and section 4 is devoted to the (elementary) proofs of the Spectral
Mapping Theorem and the Spectral Theorem by the functional calculus method. Section §
is a little more advanced and exhibits a situation where the symmetry of a matrix ensures
the existence of few eigenvalues. An appendix shows that the functional calculus gives rise
to a continuous homomorphism between the algebra F* (of functions of class C*) and the
algebra of polynomials of matrices. This approach is basically the one used to establish the
functional calculus in its full generality (see (8], (14]) and makes it possible to find error
estimates in Numerical Linear Algebra.

1 The Interpolation Polynomial

Definition 1.1 A function f : U ¢ € — C (or f : I C R — R) is euclidean with respect
to the polynomial p if

(i) all roots of p are in U (resp., in I);

(1) if =g 15 @ zero of p with multiplicity k, then f has derivatives up to onder k at z.

(For reasons that will be clear later, we do distinguish between (complex) analytical and
liolomorphic functions, analytical meaning the existence of the (first) derivative, holomorphic

meaning that it is representable by a power series)

(O
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The terminology we have used in the above definition is suggested by the following
result, which is valid for functions defined either in / € R or in U C C. We define the degree
of the zero polynomial as —co.

Pr ition 1.2 Let f be lid with respect to the polynomial p. Then, there eist a
Junction g, continuous at each root of p, and a polynomial v such that f = gp + r. where
deg r < deg p.

Proof: Let 7 be an arbitrary polynomial. We consider the function ¢ defined (in the points
of the domain of f which are not roots of p) by

ooy = L2 =1()
»(2)
We will show that we can choose r with degree smaller than that of p. so that g has a
continuous extension at each root of p. We note that ¢ is as smooth as f at each point =

that is not a root of p.

Let =y be a root of p with multiplicity k. that is.

).

p(2) = (2 = 20)"s

where s is a polynomial such that s(zo) # 0. We want to find » such that the quotient

has a continuous extension at 9. According to the L'Hospital rule, this will happen when
f(z0) =r(20). f'(z0)=1"(z0), ... , S%V(z0) = r*V(=).
1t then suffices to show that there exists a polynomial 7 with degree smaller than that of p,

that satisfies relations as the above at each root zg of p. The existence of such a polynomial
will be shown in the lemma below. (8]

We denote f) = .

Lemma 1.8 Given a function f and the values

I(z) f(z) - SO=D(z)

SGO e e fE ()



34 PFunctions of Matrices

where =\, ...,z are distinct, let us denote n = dy + da + ... + de. Then there exists a
polynomial v, with degree not greater than n — 1, satisfying

A =iie)

for alli = 1

Proof: We may assume that one of the given values is not zero. The polynomial r we look
for satisfies a non-homogeneous linear system, which can be written as

Bz =b,

where z is the vector which has as coordinates the coefficients we seek for 7, b is a vector
whose n coordinates are the given values of f and B is the 7 x n matrix of the linear system
thus obtained.
If B is not invertible. the associated homogeneous system has a non-trivial solution
20 = (@, ... an-1) € C".
We consider the polynomial
1(2) = g+ @z ok O 2B

which has degree not greater than n — 1. Since zg satisfies the associated homogeneous

system, ¢ must be a multiple of

e ;[)d:y

which is absurd. since this last polynomial has degree 7. So, B is invertible and the system
o

Bz = b has the unique solution z.

The polynomial r is known as the interpolation polynomial.

The rest of this section will show how the results given here can be included in a basic
course of one complex variable.

If we consider an analytical function f : U € € — C, zp € U and p(z) = = ~ 2,
Proposition 1.2 shows that f(z) = h(z)(z — z0) + ¢, with h continuous in U and analytical
in U\ {z}. We clearly have ¢ = f(z9). Supposing additionally that [/ is conves. it is casy

ng that

to show that /i has a primitive in U (see (15], 10.14), thus imply

/l!(:'l/: = ()

(.
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for every closed path 4 € U. From this follows immediately the Cauchy Integral Formula in
convex sets:

z)dz dz ”
LO% _ [ s + S0 [ 225 = faW 0.,
by ) 9 el
where W(z,7) denotes the winding number. As a consequence, one shows that every

analytical function is holomorphic (see [6]. Theorem 2.8 or [15]. 10.16)

We now give a consequence of Proposition 1.2 that appears to be missing in our intro-
ductory courses of one complex variable: the algebra H of all analytic functions f: C — C
is euclidean with respect to each polynomial p. More generally. we have

Proposition 1.4 In the euchidean dwision
f=aqp+r, degr <degp

of an analytic function f U € C — € by a polynomial p whose roots are i U. the quotient
q 15 analytical

Proof: According to the proof of Proposition 1.2, the function

ik
= —
P
is analytic, since both the numerator and the denominator have roots at the same points and
the zeroes of the numerator have multiplicity greater or equal than that of the denominator.
Therefore, ¢ has a power series expansion at each point of U o

This result can be extended to functions f : / € R — R of class C™ and polynomials
whose roots are all in /: the L'Hospital rule will then imply that g € C>.

Now, let f : I/ € € — C be analytical on U and 5 be a closed path (chain) homologous to
0in U. The (global) Cauchy Integral Formula follows from the (global) Cauchy Theorem' by
the argument given above. Another application comes if we consider the quotient f(z)/(z —
zy)". For instance. if n = 2 we have f(z) = h(z)(z

20)? + a(z — z) + b for an analytical
function h on U/ and constants @ and b. Clearly b = f(zo) and (taking derivatives) a = f(zo).
So.

dz d=
= /h(;)u;+/'(:.,)/—_— +leu)/ e
Jy -0 o (2= 20)
= f'(z0)W(z0,7)-
10F course, we suppase that Dixon's proof of the (global) Cauchy Theorem has not been used to demon-

strate Lhis result. In this proof, the Cauchy Theorem is a consequence of the Cauchy Integral Formula, See

(6], (15]
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36 Functions of Matrices

2 The Finite Dimensional Functional Calculus

We sometimes write f(z) to distinguish the complex function from f(A).

‘We use some well known facts about the minimal polynomial 7 of a square matrix A. It
is defined as the polynomial of smallest degree and leading coefficient 1 such that m(A) = 0.
Any polynomial that vanishes at A is a multiple of m. The roots of 7n are the same as those
of the characteristic polynomial p of A (a result proved in section 4) and'form the spectrum
a(A) of A (i.e., the set of eigenvalues of A). If a matrix A is diagonalizable, m is a product
of distinct linear factors.

Functions of a matrix A are usually defined in two situations: the function f(z)
is smooth in the ej 1 of the di lizable matrix A and f(A) is then given by
P=1f(D)P or the function f(z) is analytical and f(4) is defined by a power series expan-
sion of f. (See section 3 for examples). In both cases the function f is euclidean with respect
to m.

So. in the cases above, by considering the euclidean division
f=qm+r, (1)
either ¢ is defined at each eigenvalue of the diagonal matrix D (by Proposition 1.2) and ¢(A)

is then given by P='q(D)P or g is analytical in the spectrum o:(4) (by Proposition 1.4) and
q(A) may also be defined (see below). It turns out in both cases that?

F(4) = r(4). @)

This is one of the deepest results of spectral theory: f(A) is a polynomial in A, which has
coefficients determined only by the values of f (and'its derivatives, according to the case)
in the spectrum o (A).

We now consider the inverse problem. Let be given a square matrix A.

Definition 2.1 Let m(z) = (z — A)# ++ (2 = Ae)% be the minimal polynomial of A. If the

values
SRSV SHES RO R Sl
sileh) O SR )
exist, we say that f is euclidean with respect to A and define
f(A) =r(4),

where v us the interpolation polynomial given by Lemma 1.3:

To be precise. one must show that (qm + r)(A) = g(A)m(A) + r(A). See the appendix.
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If we compare the definition above with the definition of an euclidean function f(z) w.r.t.
m(z), we see that the requirements on f are less restrictive. Why this difference?

The answer is simple: the consideration of the abstract division
f(z) = q(z)m(z) + r(z).

imposes some smoothness conditions on f(z), in order to define a function ¢(z) that makes
sense. If these requirements are fulfilled, we conclude that r(z) is the interpolation poly-
nomial, which happens to be defined under less severe conditions. But, since m(z) is the
minimal polynomial of A, we have f(A) = r(A) no matter how we define g(A).

Remark 2.2 Let A = P~'DP for a diagonal matrix D. The usual definition for f(A) is
P f(D)P. Writing C" = W) & -+ @ W, where W, is the eigenspace associated to the
eigenvector v, we see that f(D) = r(D). It follows that

r(A)=r(P7'DP) = P~'r(D)P = P~' f(D)P = f(A).

thus showing that both definitions coincide in the case of a diagonalizable matrix A. The
exponential of a generic matrix J in Jordan canonical form is explicitly calculated in [5],
(17]. The same procedure may be used to define f(.J) changing the exponential function for
any function f(z) smooth enough. The expression for f(J) thus obtained makes
f(z) must be euclidean with respect to A, if one wants to define f(J). As before, it can be
proved that the definition f(A) = P~ f(J)P is equivalent to the definition 2.1. <

ar that

However, Definition 2.1 lacks applicability: in most cases, once the characteristic polynomial
p(z) of A is known, the minimal polynomial m(z) still has to be computed. It would be nice
if we could use p(z) instead of m(z) to define the function f(A). We can do that: we can
deal with multiples of m(z) as long as the smoothness of f(z) permits. In fact, if f(z) =
q(z)m(z) + r(z), we have defined f(A) = r(A). If s(A) = 0 and f(2) = q1(2)s(z) + 71(2)
with deg s > deg m, the proof of Proposition 1.2 guarantees that

r1(z) = qa(z)m(z) + r(z). (3)
(IF A is & root of multiplicity d of m(z), we note that r{’(A) = fO()) = r®()), for
i=0.....d=1)

Equation (3) then implies that ry(A) = r(A), thus authorizing the use of any multiple
s(2) of the minimal polynomial m(z) of A instead of m(z) in the Definition 2.1.

We note that definition 2.1 has an important consequence: each function f(A) commutes
with the matrix A!

37



38 Functions of Matrices

3 Examples

3.1 The exponential

We start with the standard definition of the function e, ¢ € R. For this, we consider the
exponential function exp : C — C, whose power series representation

exp(zr) = €7 =

n=1

converges uniformly in compact sets. If || A|| denotes the usual norm in the space £(C",C")
of the linear operator A : C" — C", we claim that

s E AuTn

defines a linear operator. Indeed, the norm in £(C".C") has the property

[1ABI| < [lAIl 1181,

which implies [|A*|| < [|A|l". It follows that, for k =1.2....,
k k
AT A"
—_l £ e
1+§l o _H,.Zﬂ o (4)

For each fixed 7, the series on the right-hand side converges. Since the space £(C",C") is
complete, we have proved that

Ann

exp(Ar) = €7 i= I+Z

n=1

is a lincar operator. Choosing 7 = t € R, we have defined e'. We also note that (4)
shows that the convergence is uniform if 7 belongs to a compact set. Hence, term by term
differentiation produces its derivatives and

d JAL _ AL
T A.

Furthermore, when t = 0, we have

M=

These are the main properties of the exponential matrix e In particular we see that e
AX, X(0)=1

is a fundamental solution of the matrix system X'
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This definition of the exponential e”* is not very suitable for computation: usually one
has to obtain the Jordan canonical form J = P~!AP of the matrix A, then e’t and (at
last!) e = Pe’tP=1, The functional calculus makes it possible to compute et easily.

Furthermore, the properties of the flow e* follow i diately from the fi ional

calculus. For example,
9 - = d At _ AL
Sl =) = Zet=eta

Remark 3.1 Although the function f(z) = e satisfies the equation

et — gEoW
we can not deduce that eA*# = e4eB since the simul ly substitution of the variabl

z by A and w by B is not allowed by the functional caleulus. However, if A and B commute,
the simple knowledge that ¢ is a polynomial in the variable A allows us to conclude that
¢*B = Be?. The proof that ¢4 = eA¢P iff AB = BA then follows as usual (see [1]). <

16081318 A1
A=| 0 2 -5
071 ~2

The characteristic polynomial of A (which coincides with the minimal polynomial) is

Example 3.2 Let

p2) = (2= 1)(z +i)(= = i).

To compute ', we define the function f(zt) = e**. It is then enough to get a polynomial
r, with degree no greater than 2, such that (1) = f(1t) = €', r(i) = f(it) = cost + isint
and r(—1) = f(—it) = cost — isint. Substituting these relations in the polynomial r(z) =
az? 4 bz + ¢, we find a = (c!)/2 - (cost +sint)/2, b=sint and ¢ = (¢')/2 + (cost — sint)/2.
Thus,

e = [(")/2 ~ (cost + sint)/2)A? + (sint)A + [(e')/2 + (cost — sint)/2]1,

which is a real matrix (as expected), aithough A has complex roots. °

G R |
A=| -3 L T S
2 =32 =7

The characteristic polynomial of A is

Example 3.3 Let

p(z) = (= - 1)
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To compute e, we obtain the coefficients of 7(z) = az® + bz + ¢ so that 7(1) = e'* = ¢!,
7(0) = €% = 1 and 7/(0) = te® = t. Thus, ¢ =1, b=t and a = e' —t — 1. We conclude that

el = (et —t — 1)A? + tA+11. °

The examples above show the practical advantages of using the functional calculus to com-
pute the exponential e*. As a consequence, we can deduce that the predominant role given
to the Jordan canonical form in the study of the linear system z’ = Az is not intrinsic: all
the analysis of hyperbolic systems can be done without using it (see [4]).

3.2 Trigonometric functions

The study we have just completed is also valid for the exponential e (that is, the case
7 =1it, t € R, in the subsection before), which generates the trigonometric functions sin At
and cos At. These functions are usually defined by means of the power series expansion of
sin z and cos z, but are also easily obtainable through the functional calculus.

The same remarks also applies to other trigonometric functions.

3.3 Logarithm

A logarithm of a matrix A is usually defined by means of the Jordan canonical form. (Of
course, the hypothesis det 4 3 0 is necessary). Since all the eigenvalues of A are nonzero,
one usually takes logarithms of the Jordan blocks, which is accomplished through the power
series expansion of log(1 + =) (see (3]). However, according Remark 2.2, a logarithm of a
Jordan block can be directly defined. As before, the main shortcoming of this method is
that the Jordan form of a matrix is needed to compute its logarithm.

The functional calculus allow us to get a matrix B = log A, if det A # 0. We only have
to choose a branch of the function f(z) = logz that contains the spectrinn o(A) and then
evaluate B = log A through the interpolation polynomial. Of course. the matrix B depends
on the branch we have chosen, but the relation e? = A follows in any case from ¢!% =

If all the eigenvalues of the real matrix A are positive, we can consider the real function
f(x) = Inz and apply the same technique. The matrix B = In A thus obtained is then a
real solution of the equation ¢ = A

3.4 Square root

Let us suppose that all the eigenvalues of the real matrix A are real and non-negative.
Furthenmore, if 0 is an eigenvalue of A, we suppose that it is a simple root of the minimal

-
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polynomial m of A. In this case, we may use the function f : (0,00) — R, f(z) = &
to define vVA. We employ in this case the functional calculus to a function that is only
continuous at the simple eigenvalue A = 0.

However, we may define /A if the eigenvalues of A are complex and not equal 0. We
just choose a branch of the logarithm function f(z) = log = for which the square roots of
all the eigenvalues of A are defined. We apply then the functional calculus to the complex

function f(z) = y/z.

Remark 3.4 The definition of the function VA does not provide all solutions of the equa-
tion B® = A. If A is the 2 x 2 identity matrix,

(o 3) ()= (%1)

are also solutions of B® = I, besides B = I, the unique solution obtained by means of

the real square root function Furthermore, if A = —I. the equation B® = A has the real
solution

0 -1

Jise 50- f5°
which does not arise from the function v/A. <

3.5 The inverse

The classical way to obtain the inverse of a (invertible) matrix A through its chavacteristic
(or minimal) polynomial p(z) is the following: if p(z) = 2™ + ap— 12" ' 4 ...+ )z + ap,
then

0=A" +am1A™ " 4.+ @A+ agl

Multiplying by A~', we obtain
@A™ = —[A™+ ... +a;4)

Since ag # 0 (of course, ag = det A whenever p(z) is the characteristic polynomial), A~ is
thus obtained.

For a general invertible square matrix A this method usually brings no benefit, when
compared with the calculation of the inverse by Gaussian elimination. Also the functional
caleulus is not advantageous.

But. for instance, if the matrix A is symmetric and has few eigenvalues (as in the
examnple of the tetrahedron in R", given in the section 5). the use of the functional calculus
s belpful: for mstance, in that example A~ is computed by a polynomial of the first degree!
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4 The Spectral Theorem And The Decomposition
T=D+N

In this section we show how the functional calculus is useful in the proof of abstract results,
We begin with

Theorem 4.1 (Spectral Mapping Theorem) Let f be euclidean with respect to the nxn
complex matriz A. If A 15 an eigenvalue of A, then f()) s an eigenvalue of f(A). Every
eigenvalue of f(A) s of the form f()), where A is an eigenvalue of A.

Proof: Since f is euclidean with respect to A, f(A) = r(A4) = axA* + ... +ay A +apl
If v is an eigenvector relatied to A,
F(A)e = r(Ap = (@X + ...+ a1A + ag)u = r(A)v = f(A)v.

Let us suppose that y is an eigenvalue of f(A) = 7(A). We consider the polynomial

7(z) — p. which factors in € as
It
7(2) == ar [J(z = X)-
i=1

Consequently,

k
7(A) =l = ax [J(A= \J).-
i=1
Since the left-hand side of this equation is not invertible, at least one of the factors A~ A,/
is not invertible. Thus, J\, is both an eigenvalue of A and a root of 7(z) = y. Therefore,

SN =7(X) = p. =
We now prove the seminal Spectral Theoren.
Theorem 4.2 Let T': C" — C" be a linear operator, with characteristic polynomial
P()= (2= M)™ o (2 = )
where the ewgenvalues X, i = 1,..., are distinct

Then, there exist subspaces Wy, ..., W such that

=Wi@ - @ W

and T(W,) € W, The operator Ty, has only the eigenvalue A, dim W, = s, and m(z) =
(z=M\)* 2= A for 1 < dj < 8

Furthermore, T = D + N, with D diagonal(izable), N nilpotent and DN = N.D.

-
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Proof: For each A;, we consider an open set U, 3 A,, such that U, N Ui = 0, if i # k.
We define fi(z) = 1, if = € U,, fi(2) = 0, if z € Uj, for j # i. The functions fy,..., fe are
euclidean with respect to p and the relations

£
Jo =i ffy=0, A and > =1

=1

(!
are valid for each z € U U, Therefore, denoting f(T') by =,. we have

=1
¢
mmy=0,if i#j and ) 7 (5)
=1
hence showing that each 7, is a projection.
If W, stands for the image #,(C"). we obtain
Cl =Wy & -& Wy
Because =, commutes with 7. it is true that T(W,) € W,
Regardless of the choice of bases By,...,Be for the spaces Wy, ... W, respectively,
T can be represented as a block matrix A with respect to the basis B = {B...., B} of
C'=ws--.aW;:
Tty (i)
(0) e 1 P OO
A= q e
0 0, - T
We now claim that the chavacteristic polynomial of T; is
pi(2)
1. . thus implying that dimV; = s; and (according to the Cayley-Hamilton

) that the minimal polynomial of T} is (= — A%, for 1 < d; < s;. We can also
deduce the given expression for m.

Since p(z) = det(z] - A) = det(z] — Ty) -+ det(=I = T}), to prove the claim it suffices
1o show that the only eigenvalue of 73 is A,. We consider only i = 1, the remaining cases
being similar. For a fixed A # A,, we define the functions

S = ey S () e
S MWDy "‘-"{ i

(i
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for j = 2....,¢ In the construction of the projections 7; we can take the open neighborhood
Uy 3 \; as small as we wish. So, we may assume that A ¢ U;. This implies that

9(2)h(z) = L.
thus guaranteeing that g(A) has an inverse.

Now we calculate g(A). For this, we note that g(z) = Ef=lq,(z)f.(z). Therefore,
g(T) = (T — AI)my + ... + Im and, in the base B,

T MO
0 I
g9(A) = : 4

Since g(A) has as inverse, \ is not an eigenvalue of 7. This proves that the only eigenvalue
of Ty is Ay.

We now consider the “diagonal” operator D = Zf:] Aim;. (In each W; we have D, :=
Aim; = A1, where [ is the identity operator in W;. Because of this we call D diagonal. See,
however, example 4.3).

We define N = T — D. Clearly, for i = 1,...,£, it holds N = h(T), where

Wz)=z-X, zeU.
According to the Cayley-Hamilton Theorem, (T; — A;Z)* = 0, thus proving that N* = 0,
where k = max{sy,...,s¢}. SoT = D+ N, where D is diagonal and N nilpotent. (Actually,
(T; = \iI)® =0 for d; € {1,...,s;}. The integer d; is the index of the eigenvalue \;).

Since D = 3¢, A is a sum of polynomials in T, D commutes with T. Thus ND =
(T -~ D)D = D(T - D) = DN. o

Example 4.3 Let T : C! — C* be defined by

T(x1, w2, 25, 24) = (221 = 22 + T4, 32 — T3, T2 + Ty, —T2 + 3zy).

The characteristic polynomial of T is p(z) = (z — 3)(z — 2)® and one easily checks that
m(z) = (z — 3)(z — 2)? is the minimal polynomial of T.

We first exemplify the theorem 4.2 with respect to the canonical basis of C*. We call
A the matrix that represents 7' in this basis.

The projection 7, (attached to the eigenvalue 3) is obtained by solving the system®

r(z)=az?+bz+e, 7(8) =1, r(2)=0, 1'(2) =0.

*To simplify computations, we have used the minimal instead of the characteristic polynominl of 7.

()



H. Bueno 45

Thus,a=1, b= —4, ¢ =4 and

0 =2 1 1
mo= A2 - dA 44l = g g g g
0 =2 1 1
In the same manner,
1,2, =1 =1
_ e 1 e @
2= {01 "0
02 =1 0
The relations (5) follow immediately. So,
@) —2wg + w3 + 34 @) + 239 — X3 — Ty
@ L 0 Ty
ey =R" = 0 +
i —2uwa + @y + 2y

= W, & Wy,

The matrix D is defined as

) =Dl L
o 20 0
D =3m +2mp = i Ak
0 -2 1 3
and the nilpotent matrix N as
0) jlly =10 (0
01 -1 ©
L AS DF | atseiing
0 1 =00

One easily checks that N? =0 and ND = DN.

1f we choose, for example, basis By = {wy = (1,0,0,1)} and By = {w> = (1,0,0,0), ws =
(0,1,0:2), wy = (0,0.1,~1)} for the spaces W and W, respectively, then T is represented

by the matrix in block form

3 00
0 12 01 =1
Bl 0 013 | =
0 0 1 1
in the basis {wy, w2, wy, wy}. Now D stands for the diagenal matrix
3000 o 0 0. @
0200 ~ 2 e e 1t La
R mor and N=B=D= 0 g q ey
00 0 2 0 0 1 =1

e EEEEEEESREL
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also satisfies N2 = 0.

5 Symmetry and Eigenvalues

In this section we consider a situation where we make use of the symmetry of a matrix to
obtain its eigenvalues. In two of the three situations we will examine - namely, in the case
of the n-dimensional versions of the tetrahedron and octahedron - the matrix has very few

1 creating the opti: backg; d for the application of the functional calculus.

We start considering the problem of evaluating a high power of & matrix. One of the
best ways to motivate this problem is the introduction of the adjacency matrix in graph
theory. Although the subject now appears in some books of Linear Algebra with emphasis
on applications (see (2], [18]), we provide a brief exposition for the convenience of the reader.

A(n) (undirected) graph is defined as a set of points (the vertices) joined together
by some arcs (the edges). Two vertices are adjacent if they are joined by an edge. (See
Figure 1. below).

A path of length n joining vertices u and w is a finite sequence vp = u,vy,...,Vy =W,
with v; and v;;; adjacent. The path is closed if u = w. We consider the following problem:
how many paths of a given length joining v to v do exist?

It is somehow amazing that the use of matrices can help in solving such a problem. To
see how this is accomplished, we define the adjacency matrix A of the graph. We denote
the n vertices of a graph by vy, ...,v, and define the n X n matrix 4 = (a;;) by

= { 1, if the vertices v; and v; are adjacent;
i

0, if not.

‘We note that, by definition, the matrix A is symmetric.

Example 5.1 The adjacency matrix Ay of a square with vertices v;, vz, v3 and vy, which

are labelled counterclockwise, is

010 1
1.0 10

“a=1lg @ i
1.0 10

Proposition 5.2 Let A = (ay;) denote the adjacency matriz of « graph and ok the (i, j)-
entry of the matriz A%, L € {1,2,...}. Then, the number of paths of length L joining the

verter v; to the verte

Ll
vy 08 .

(.
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Proof: If vy is an arbitrary vertex, we note that a path of length L + 1 joining v; to v; is
nothing more than a path of length L joining v; to vy, followed by a path of length 1 joining
vy to v;. This suggests a proof by induction on the length L, the case L = 1 being true by
the very definition of the adjacency matrix. We suppose that the result is true for paths of
length L, i.e., aﬁ is the number of paths of length L joining v; to vx. Now there are only
two possibilities: if there exists an edge joining vx to v;, then a%ax; = a% is the number of
paths of length L + 1 joining v; to v; which have the form

o P

On the other hand, if aj; = 0, then it is not possible to join v; to v; passing through vi. It
follows immediately that

ahay; +abaz; + ...+ akan; (6)
is the number of paths joining v; to v; with length L + 1. But (6) is exactly the definition

of the elenent (i. j) of AL~ o

So. the question we have posed leads naturally to the calculus of high powers of a matrix
A. But how should we obtain A* for a large integer A? Iteration is. of course, a solution. If
this method is good for a general matrix A, in some cases the application of the functional
calenlus is better. We now turn our attention to one of these cases: the adjacency matrices
of regular polyhedra in R™ .

If the ambient space has dimension n > 5, there exist only three regular polyhedra: the
n-dimensional versions of the cube, tetrahedron and octahedron (see [7]). Taking for granted
this result, we will evaluate the eigenvalues with multiplicity of their adjacency matrices?
following Saldanha-Tomei [16).

We start with the n-dimensional cube. If n = 2, we have the square, whose vertices we
label counterclockwise, as in example 5.1. Therefore, it is easy to calculate the eigenvalues
of the adjacency matrix Az of the square: 2, 0 (with multiplicity 2) and —2. With the
same pattern for the labelling of the vertices of two opposite faces in a cube, we see that its
adjacency matrix can be written as

L Ayt
Au—(lz A2).

wlhiere [y stands for the 22 x 2% identity matrix. Keeping the notation, if [,,—; denotes the
21 % 2"~ 1 identity matrix, the adjacency matrix of the n-dimensional cube is

N AT T oy
A"_( Ly Ay )

VThiis is done for all regular polyhedra in (16).

i
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Thus®,
det(A, — Aly) = det(An—1 — An—1)? = I2_)]
det((An-1 = (A= DIh-1)(An-1 = A+ Dlna)]
= det[An_y — (A = 1)In_y). det[An_y — (A + 1) Ty

So,
M€ 0(Ay) & (A—1) € 0(An_1) or (A+1) € 3(An_1)-

By induction, the spectrum of A, is

{n,n =2, —n+ 2, —n}

(5) (3) (1) (2):

respectively. (The multiplicities can also be calculated by the method given below).

with multiplicities

To evaluate the eigenvalues with multiplicities of the n-dimensional versions of the
tetrahedron and octahedron. we will make full use of their symmetry.

Before considering the general case, let us deal with the octahedron in R®. The problem
we consider will be solved by an abstract formulation following the same pattern.

Example 5.3 If we hang up the octahedron by a vertex v, the other vertices line up at
different heights: v forms the top level, then the 4 vertices at the central level and finally the
vertex opposite to v. (See Figure 1). We enumerate the vertices following a definite pattern:
top level, central level counterclockwise and bottom level. We denote by A the adjacency
matrix of the octahedron thus obtained.

Let V be the set of vertices of the octahedron. In order to attach its adjacency matrix
A to the set V, we consider A as an operator on U, the space of functions from 1/ to & (a
space clearly isomorphic to RY). The function u; assuming the value 1 at the vertex v, and
0 at the other vertices will be represented by the canonical vector ¢; € R,

If R stands for an isometry of the octahedron, it is geometrically clear that AR = RA
(isometries preserve adjacency). Let ug be an eigenfunction of A attached to the eigenvalue
A. Other eigenfunctions are attached to the same eigenvalue:

ARuy = RAug = RA\uy = ARuy. (7)

Since ug(v) # 0 for a vertex v, we can choose an isometry R that takes the vertex v to the

vertex vy. As a consequence, u := Ruyg satisfies u(v;) # 0.

SThe first equality is a well known property of the determinant of block matrices.

(T
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Figure 1: The octahedron is an example of a graph: vertices joined by edges. When sus-
pended by one vertex. the vertices line up at 3 different heights.

Now, let R be an isometry maintaining fixed the first level (so. it is a permutation
of the vertices of the second level). Considering the space generated by the eigenfunctions
thus ebtained, we can replace u by its average @ in the second level and still get a genuine
eigenfunction, since it satisfies @w(vy) = u(vy) # 0. If u(v;) = b; for i = 2.....5. computing
Ru(v;) for these isometries (there ave 8 isometries fixing the first level of the octahedvon:
4 rotations and 4 reflections, as in the case of a square), one checks that u is constant on

levels®. Note that, if Ru = u for all R fixing v, then u is alveady constar.t on levels.

Let us denote by S C U the subspace of functions that are constant on each level. We
have showed that each eig lue of A is hed to an eiges orin .

The regularity of the polyhedron implies that the form of the matriz

() W (R (8 ()
1@ 1 0 1 i
1010 1
= o) duiion 1
) R (0 R 03
(00 S U U U

is also “regular”: the top and bottom levels are represented by the first and last line of this
matix, the other lines representing the central level. The top level connects to all vertices
in the central level, but net with the bottom level or itself. Each vertex in the central
level connects to the top and bottom level and is connected two times by other vertices

W his property follows from the fact that the subgroup of such isometries acts trar.sitively on V.
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in the same level. The bottom level connect to the vertices in the central level, but not
with itself or with the top level. This implies’ that A(S) € S. In particular, A induces a
linear transformation B from S to itself, and the spectra of A and B coincide. Since the
octahedron has 3 different levels, B can be represented by a 3 x 3 matrix.

To represent B we choose as a basis of S formed by functions taking the value 1 in one
level and 0 in each other level. The matrix B that represents B is then

040
Bl= 2R
4 0
We note that, in this basis, b;; is the number of neighbors in level j of an arbitrary element
in level i. In consequence, the sum of entries of each line is exactly the number of the
neighbors of an arbitrary vertex.

The spectrum of B (and, therefore, of A) is {4,-2,0}. o

Now we consider the general case. Let V be the set of vertices of one of these polyhedra
and, as before. we consider its adjacency matrix A acting on the space U of functions from
V toR.

We fix a vertex v and suppose that the eigenfunction u of A attached to the eigenvalue
A satisfy u(v) # 0.

Let S, be the subgroup of all isometries of the polyhedron that fix v. For each v € V,
we define the levels of V' as the orbits

{Rv: ReS,}

(The reader might want to check the distinct levels are classes of an equivalence relation).

Since A commutes with each element R € S, considering the average of the values of
Ru on each level, we can change the eigenfunction u and assume that u is constant on each
level. Since the value of u in v remains fix, we have u # 0.

Let S C U be the set of functions taking constant values on levels. Then S is an
invariant subspace under A, hence inducing a linear transformation B from S to itself. The
spectra of A and B are clearly the same.

In order to represent B as an matrix, we choose as a basis the set of vectors taking the
value 1 in one level and 0 in any other level. So, B will be represented by a 7 x 7 matrix B,
 standing for the number of distinct levels. The element b;; € B is the number of neighbors

can also deduce that (1,1,...,1) is an eigenvector of A, attached to the eigenvalue 4, which is

[T\
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in level j of an arbitrary element in level i. Therefore, the sum of entries in each line of B
is exactly the number of neighbors of an arbitrary vertex.

To compute the multiplicities m; of the distinct eigenvalues A; of A, we observe that,
since A is symmetric, A = P~'DP for a diagonal matrix D and an invertible matrix P.
Therefore, A¥ = P='DKP, thus showing that the same basis diagonalizes simultaneously
the powers A*. Thus, if Ay,...,A; are the distinct eigenvalues of A, the diagonal of D is
Ak (my times), ...,»\f (m; times).

So, if 1 denotes the number of closed paths of length k with base point v, we have (|V|
stands for the number of elements of V)

VI =tr(A) = S mk.
ANFEA,
Once the A, are known, the m; are solutions of a linear system obtained by inserting small
values of &

We now calculate the eigenvalues with multiplicities of the adjacency matrix of the
n-dimensional versions of the tetrahedron and octahedron. In the case of the tetrahedvon.

0 n
B ( 1= ) :
The spectrum of the adjacency matrix of the tetrahedron is, therefore, {—1,n}. To evaluate

the multiplicity of these eigenvalues, we consider the paths of length 1 joining v to v (that
is, @1y in the matrix A). We obtain the equation®

we have

(=1)m, + (n)ma = 0.

An casy computation shows that the element iy of the matrix C = A? is n. We hence get
a second equation:

(=1)%my + (n?)mg = n® + n = n.(number of vertices).
Solving the system, we obtain m; = n and my = 1.

In the same way, for the octahedron

0 2n—2 0
Bi=I1 g ="4" 1
0/ 210 =210

It follows that the spectrum is {2n — 2,0, —2}. The multiplicities, which are calculated as
before, are 1, n and n — 1, respectively.

¥The Perron-Frobenius theorem (see [13]) implies that the multiplicity of the greater eigenvalue is 1, thus
reducing the number of equations needed.
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The calculus of powers of the adjacency matrix of the tetrahedron and octahedron by
use of the functional calculus is very attractive: in each case, the minimal polynomial of the
matrix A has (at most) degree 3, since A is diagonalizable. Therefore, each power A* will
be obtained by calculating the coeffici of the interpolation polynomial, which has degree
(at most) two.

6 Appendix: a Homomorphism of Algebras

Let A be a n x n matrix, m(z) = (2 — A;)* -+ (z = A¢)% the minimal polynomial of A and
k=max{d, - 1,....d; - 1}.

There exists a natural homomorphism between P, the algebra of polynomials (with
coefficients in R or C, according to the case) and P(A), the algebra of matrices formed by
evaluating each polynomial p € P at A. In other words. there exists a linear application

9: P — P(A)
p — p(4)

which also satisfies
o(pq) = p(A)q(A) = é(p)o(q)-

Its kernel is the set of multiples of the polynomial m. Euclidean division shows that the
algebra P(A) is constituted by polynomials in the matrix A with degree smaller than that
of m. By definition, the homomorphism ¢ is onto.

Let K be a compact set such that o(A) C K. We endow P with the norm
= (K) (=
= max{|p(2)|, ..., z)|}.
lIpllexxy zek(|ﬂ( ) 1P (2)I}
Clearly. convergence in this norm implies convergence in the semi-norm

lIplle = max{lpA)l; -, [PC=D A, A - [P A

(The reader might want to verify that there is no integer j < k such that convergence in the
norm || - [|cs k) implies convergence in the semi-norm? || - [|p).

If we consider P(A) with the usual euclidean topology of the isomorphic space R"" (or
c”, according to the case), the homomorphism ¢ is continuous. Indeed, the polynomial
(in A) p(A) — ¢(A) has coefficients that depend only on the values that the polynomials p

and ¢ (and their derivatives, up to the order k) attain at the eigenvalues {A;..... A} of the

91n T denotes the set of multiples of the minimal polynomial m(z). then ||« [ is a norm in the quotient
space P/T.

(T
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matrix A, following Definition 2.1. Tt follows immediately that p(A) will be near g(A), if p
and ¢ are near in the norm || - [|ox g

We denote by F* the algebra of all functions f defined and of class C* in all points
of a(A). Of course, P is a sub-algebra of ¥, and we consider ¥ with the norm already
defined. The functions in F* are euclidean with respect to A.

If we define @ : FX — P(A) by ®(f) = f(A), it can be checked that & is an algebra-
homomorphism that extends o. Furthermore, the argument given above shows that ® is

also continmuous.
P
A
The kernel of @ is constituted by the functions f € F* that have zero remainder when
divided by m.
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