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(To tlu' mumory of my teMher ~lax Dthu) 

In lhlS C!IS8y wc o.re intcrustud in lhc not '° 11>"'-ll·known thcol'y 1.hnt lics bohlml n vury 
fo111ous and mterest.ing colle(:! lou of results thaa ha\~ to do 11>"llb lhe l'' ibonntcl 11umbors. Tho 
interest in Fibonoa:i numbcrs hM severo! foccts, the:u intc11u~.ahon as o growth soquoncu is 
of lnter-est both in mntJ1mnn1.lcs tu1d iu physics and b1ology The1r use In prhnnli~y tcstlng o.nd 

thcir connoct1011 with the so-cnllod Coldcn Ratio h1w't bttt'I explo\tcd by uumbor thcorlsts. 
llecreauonal m11it ht'111nt,ic.'I hns boo!l nmch h1tC!rested in their striking 1111mcrlcul propcrtlcs 
such as thc fl\ct 1hnt , if Lho uurnbi.lr:, nrc suit&bly mdued. t.hose lndcxcd by primlll! nrc 
t licni.:.t:l\('::t 1n1111c, nml pllii·s of 11umbt1rs iudcxed by 1tl.alf\-cl)' pnut<' m1111bors n1·c tl1011111clv(!l!. 
rdo.twt'I)' prunc; ancl, so 011 fo1· 1·csults ~vhich o.re constanll)· ~ng ru:ldcd to. 

Tht" F1bonl\CC'i srquc11ct• !ul.-i nlso becu gcncnJlzed o ttqut'ntt'1f oí F'ibonncci poly110111inls 

111 two mdC"1t·n11111ni11.!I whk h imt lsfy lhc M.me rccursion íonnubi ¡ru. p.3•1 j. ·r1icrc nrc mn11.r 

\1111·u"'1mR. 1<'lnlkm1' n111011g thcse polynomlnls wlnch in Lum produce thr lnrgc mnnbcr of 
1wll· 1"htt1~l 11111ncric1.1l rolnt1011s (Rl!.\llWj.[Vo} Abd. of coursc, thcrC' Is n r :iperted 

¡n11n1<1I dM·otf.•d to muthemulirto «OUllCCLcd to lhcm, Thc Fd"'maa;i Qunrftirly. \Vhnt 16 1101 
~(l vo·ll·loMJWlt 1~ lhf'I th i11 bocly OÍ r('!.ult.s IS 1\ pru1 OÍ ll muda more gC11cr1.1 t n11d f11r-rouching 
!lit '" tl1J111 impmg~ ou !he 1h1·ory oí muhipliclll l\'l' antlunrhc fuuctions, ou thc tll(.'Ory of 
t't¡uahOllS a.nd ~'•111111c1 rlc fu11ct1011~ nnd t"Vt'll rt'acl1~ 11110 H"JUt"5C111ntio11 tlicory of group!I 
l\l1tl algrbtA-... (lUd 11110 o l.h l'r 4'Xl tll'l.!10U'I Or lh~ .!IUbJCC: Tltnt l!o, !he lort• or ¡.~ 1ho1mccl 
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numbers is just the tip of an iceberg. lt is tlhis iceberg that v.-e wish to have a look e.t hcre. 

This is an expository essay and will not be organized into the fonnat of theorem a.nd 

proof, though many results will be stated and often the key ideas of proofs will be indicated. 

Sut tibe main object of the paper is to make available in a unified way the collection of 

concepts which are bebind sorne well-known results and to point out the richncss of their 

applications. There are sorne results here which have only been recently introduced inl.o the 

literatur.e, and there is implicit in tibe presentation directions for further research. 

The reference list includes elementary sources from whkh basic theory can be learned , 
books and a~¿ides which give applications of trhese ideas inside an outside of mathematics 1 

as well as sorne reference to current research work. Tbe Jist is hardly exhaustive, but is 

suggestive and each source contains useful ful'ther bibliography. 

F ibonacci and Lucas Se<;¡uences 

We bE!gin with the polynomia! p(x) = x2 - :t:.... l. This is one of the more fnmous 

polynomials in t·he history of mathematks. lt's roots give a solution to the problem first 

posed and solved- by a geometrical construction-by the Pythagoreans: construct a rcct­

angJe whose width is to its Jengtrh as its length is to the sum of its length and width, 

w : l = l : l + w. Labelling the two roots of the polynomial O' and f) and letting a be the 

positive root, ta.king w = 1, we find that l = a will do the job; or more generally, we choosc 
the ratio of the length to the width to be O' . The negative root, /3, is the negative reciproca] 

of n, ~hus J /3 J= T· In the 16th century o was given the name golden rntio or golden .secllon, 

possibly due to a remark made by Johannes Kepler (see [Boj,p.53, fo r a discussio11 of thc 

Pyt~agorean discovery aud the Kepler remark. For an interesting discussion of the goldeu 

section in connection with the mathematfos used in the building of medie\'al cathcdrnls sce 

{McCJ). 

A remarkable property of a "golden" rectangle is that it is self- replicating, in thc •nsc 

that if a square of side l is erected on the rect.angle R , the11 a new rectangle of leug1 h w + 1 
aud width l is formed which so/ves the same prob!em. 

Clen.rly, this process ma.y be coutinued iudefi11itely (fig.1), a11d , in fncl , al. cach stage 

there are choices. The pícture tlia.t results is that of a collection of symmetrical "spirnls" 
cimuanatiug from a ceut.rnJ poiut that rnight reminU one oí the spiral distribution of sceds 

iu n suuffower- and for good reasou. Fo!' t.his is a patt crn thot is lypical of many biological 
¡;Towtl1 proces.ses fThj. 
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F'igurc l 

. "01'-' 1lun 1.111 1> rl'Cur!l1C111 proct:Sll •ivus rlst l O thc equalu1 

~=__!_=~=~=~- _ J,..,-1w+ f .. ,/ . 
I iu+ I ut+ 21 2w+31 Jw .1.-5' J~+ f,., -1 

The S(.oquonce of mnnb rs f,,, l)oi11g ( \ , l . 2. 3.6. , 13. ) whda sau!Í) ' thc rccurslon roll\r,1011 
fm H = lm + /m- 1, 1.IH1t h1, Lho l~lbo 11ncc 1 number$ wh1ch ar~ from t.ho rabbit prohlom 

pOM•d ~· 1A.1011nrd oí Pisa (F1J.onucC'I ) 111 lu o;. text. Llb<>r .\ l»a. fir:,1 pu bllslwcl in 1202 . 

h "111 bt• uM.-íul w hnw 11 look nr somc o f lht> relntto1~ lk1'1'T'l1 thc Flbo11ucc1 ~cqu1 ·m ·1· 

ond tln"' gold n rn110. Fo t ~ 1111 tcrs w1' s l111 ll loak n1 bl.' J'IO"-'('f" of lhf' 1wo root ri n t1 11d O of 

p(J.) 

h '" dCRr thol Wl' lmw n~ = l\ + l Anti il i!. l\lso cl~M l hll~ hy 111•n 11 lo11 wr hnvc 

o"' ... 1 • 9mO •O,,.. I· ( 1.1 ) 

and, 'illnllarly. 
( 1.2) 

whNt> o,.. and c)m-I ore no t1· 11cgntlvo i111ogen1 h lS a.u ca...;,.· CXf'l'C1St' 1.0 !lhow t hnt tjJ,,, = / .,., 
thnt t!i. lhc rocftkicnu nn· JU!ll. thc· Fibo11occ1 m11nbcr.o. 1-Toro thi!l onu c1111 ded uce 11 woll­
kuo'A'1t n-latK>n l>ctw n 1lw Flbounccl m1111ben a.mi cht ~"o ru1d f3 of thc polynomln.l 
il -x - 1: muu ly, usí ug {l. !) 1u1d (1.2), wcdfducc 1h.-f~ Bmct fo1·111ulns 

Wntmg o ,J • ~. \1 wi ll thon be ustful to Wfll(' ( l 3) ~ 

dd[ 0 .L1 J.1-. 1 ) 

Ím ~ A 

ü .: 1..~ JU"I 11w d1i<r1111 ml\l 1t of Lhc polynonunl p{.r}. 

Ftotn (J 3) 11 1~ nM m n\ !O \ook ni l hc num~~ 

(1..t ) 

{l !j) 
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(since o-+ {3 = 1). These nnmbers also turn out to be integers , the so-called Lucas numbers 

(2, l , 3, 4, 7, ... ) , which satisfy t he same recursion as do the Fibonacci numbers {HW, p.148J . 

The Lucas sequeuce and t hc Fibonacci sequence are called compamon sequences. As we 

shall see later , the two sequences are companionable in a number of ways. 

2 Linear Recursion and Arithmetic Sequences 

The construction madc here can be considerably generalized and put into a setting in 

which it is seen to be a special case of very general ideas which rea.ch out to many other parts 

of mathematics. But before wc go al i the way, Jet us first look at a natural intermediate 

gcueralization of these definitions which are well-known in number theory. 

Consider the gcneric scoond degrec (monic) polynomial x2 - t1x - tz = p(x; t 1 , t2 ), 

where the coefficicnts, t 1 , t'..? are parameters. Let A (t 1.t2 ) =A and B(t 1, t2) = B be t he 

roots of P {:i: ). so that A + B = t 1 and .4.B = - t2 . As in (1.1 ) aud {l.2). wc caH easily writ.e 

thc powers of the roots to the first and zero-th powers, thus 

(2. 1) 

and 

(2.2) 

where , for now , S(m) and S (m ,l) are rather elaborate namcs for whatever functions of t 1 aud 

t2 that occur when we compute A"'+1 and Bm+ I iterativcly, starting with A2 =ti A+ t 2, 

8 2 = itB + t 2 As with a ancl (3, we can make the computation 

Am +I _ Bm+ I , 

A - B = S(mJ· (2.3) 

As {2.1) or (2.2) suggcst , 5(,,, ¡ is one of a íamily of polynomials. For rcasons that will be 

apparcnt later, we single it out and give it t he special notation Fm(t 1, t.2) = F.,. , or if we 

uecd to make the nmuber of variables clear we shall a lso write S¡.,,¡ = Fk ,m• where iu this 

case k = 2. 

We could a\so ltave cousidcred t hc se<¡uence of polyuomials A"' + 8 111 = Fml1 - 2Srm.1¡ , 

which wc shal! rename G,.,(f 1 , t2 ) = G,., (= G2 .,,.) . Bot h of the sequences {Fm) and {C.,.} 

will look taiucr if we poiut out f.hat 

{ 
11r~ .. -1 + t2r: .. - 2. "'>o 

F,,, = 1, m =O 
o. ,,, < o 
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and 

{ 
t1Gm-I + t2Gm-2 1 m > O 

G,,.= l , m = ü 
O, m < O. 

That is, both {F.,,} aud { G,,,} are recursive sequences. the recursion relation being the same 
for the two scquences. facts that can be proved directly from t he definition. ;o.foreover, when 

t 1 = l = t2 , t.heu {F,..( l , 1 )} is just the sequence of F ibonacci numbers and {G.,, (1. 1)} is 

JUSt t he sequeucc of Lucas numbers: moreover. {F,..(2.1)} is the sequence of Pell numbers, 

while {G,.,(2. 1)} is t he cornpauion sequence of t he Pell numbers 

{F,,, (3, - 2)} and {G,.,(3. - 2)} are the sequences {2"'-1} and t he sequenceofcompanio11 

umnbers {2'" + l} The Mersenne primes belong to the sequence {F,,.{3. - 2)}, while t he 

Fermat primes belong to the sequence { G,,. (3, -2)} .(For an interesting d iscussion of primes 
iH sequences sec [Ri, p.41 ff]} 

Since t he F - ami G- sequcnces are recursivc. they give rise to (lineM) recursive se­
qucuces of integers for ali pain; of intcger valucs of t 1 aud t 2 Of coursf'. somc sequcnc~ 
are morf' int erest.iug t.hau others. Their theory wns developed by E. Lucas [1878} ami ex­

panded by D.M. Lehmer in [1 930]. Such sequences are various\y cal\ed Lucas and or Lehrncr 
scqucnccs [Ril. T hey liave becu applied in a numbcr of ways iu mat.hematics, for cxamplc. 

for primality tcst ing in munber t heory [Ri, ch. 2] (also sec [r-.•lacH 3) aud [:-.IucH, IJ. 
lt is t hc polynomial p(x) that sets thc who\c machiuery in mot.iou. 111 the Lucas-Lchmcr 

case, t his is a second degree polynomia\. But we need n't stop therc. h i fo.et , what wc have 

sec11 so far is jusi thc t ip of an iceberg, oue manifestatiou of a muclt m ore general stai.e-of­
affair :-; 

3 Generalized Fibonacci and Genera lized Lucas P oly­
nomials 

Let ns defiuite the core-pol·ynomial to be tbe generic polynomial of degrce l.:, 
¡¡(.r:l 1 . .. . t~) = .r~· - t 1.1:'1- 1 - - / ~ .. We'll worry about tl1e field of coefficients later. 

\\"e waut 10 find a rclat ion between the roots of p(.i:) and thc coefficicnts that gcneralizes 
tlw ~pirit oí thf' Biuct. formulas, (2.3), whicb wc can writc in matrix matrix form as i11 (1.4)· 

(3.1) 

wlwn· ~ 11;.:aiu 1m·11n:-; t lie diffc1·cllct' of thc roots, or rat her. we should suy. ouc of thc square-

1001~ uf 1lw di~niu1i11a 1 1t of 1hc core-polyuominl. 
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Let R1 , .• , Rk be the r00ts 0f p(x; t1, ... , tk) We ¡:ir.0ceecl as in the quadr-atic case: we 

fmd an expressien for tlhe p0wel'S 0f a rn0t in tet1ms 0f tlhe füst k - 1 p0wers 0f 1lhat rn0t, as 

in (2.1) and (2.2). Again h>y i.ter-ati0n, this tur.ns 0ut t0 h>e 

k-1 

R'(' = 2...)-1)i$C·n-k+l.l.i')R~-i - 1 ,j = 1, .. ,k, (3.2) 
j=O 

where the .S\ .. -k+l,l;J are functfons 0f t1 , . .. , t1i;. That there is such an expressi0n is 0bvi0us 

fr0m the fact that the R' s are ro0ts 0f a p0lyn0mial 0f deg:r.ee k (with coefficients t 1, ••• , tk)· 

What, in particular, the Scn-k+l.lli) are is yet te lile di-vulged; but, in any case, using (3.2), 

we can form tlhe deter.minant 

R, R, 

det (3.3) 
nl·- 1 
' 

nl·-1 ., 
R'" ' R¡'.' 

Using the mult.ilinearity of the deternninant f.uucti0H and (3.3), and \etting 

we can compute that 

d.et 

(3.4) 

wht·n·6 2 = 1li.HTi:111i.urml p(:1:; t.1, .. , 1-l·) 

F'l"Om (3.4), we get that 

det 

n~-i n¡:- 1 
H.'¡" +l·- 1 1?~'.• + l·- 1¡ 

!·~., = -~~--6-~--~ 

!\'ow. of l"011rsc . l·hc F's are fimcLious of t.he !'.~ . whik the dctel'lliiuaut.s 011 the righ! 

h;lwl ,; íclt· o f (JA ) n ud (:t 5) HJT f111wt•iot1.'> of t.111• H's wl1id1 HrC' i111p!icitl.v furn:tiiow; of Llw l's 
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So these equa t ions mean that if we ehoose particular values for tlhe t' s, then we determine 

particular roots, R's, and the two numbers on either side of (3.5), say, are t he same. 

We now have a reasonable generalization of the Binet formulas which relate the roots 

of t.he c0re polynomial to its coefficients, and for each set of values oí the coeficient vector 

t = (t 1 , .. , tk), we have a recursive\y given arit hmetical sequence (of degree k-1 ). F,,, (t ), 
determined by a recursive set of polynomials. The recursion is given by 

k 

F,,,. ~ Fm(t) ~ L t;F "- J(t). (3.6) 
J = l 

T he companion polynomials giviug t he co-sequence {i.e. , companion sequence) a re deter­

mined by the recursiou 

(3.7) 
j = l 

T hus we ha.ve a scque11ce aud a co-sequeuce for each k. k = 1. 2, Si11ce iucreasiug k ouly 

adds new terms to t.he old and !caves t.he first k polyuomials in ea.ch setqueuce unchanged. we 

sha\l often omit. t.he s11bscl'ipt k from our notat ion . T ha t is, the lellgth of the polynomials is 

a llowed to increase without bouml. T his causes no hann because t he k - sequences can be 

recovered by t runcat.ion, tluü is, by letting 11 = O for j > k. T his ha:; the effect of picking 

out a par ticular generic polynorni;~l p(:i:) of degrec k , that is, a pa r t.icula r core polynomial. 

T he polynomials F,, play an important role in t he t heory of multíplicative arit ]une t ic 

functions [J\facH 3]. In (Macl-1 2] t ite polynomials in t.he f - sequence are called Genera lized 

Fibonacci Polynoll!ials, while the polynomials in t he G-sequence are called Generalized 

Lucas Polynomials. (These t er!llS a re not. a lways used consistently in t he literature.) Clearly, 

the sequences <lescribed in Section 2.0 a re just the polynomials F2 _,, ancl C 2,,, describe<! iu 

t.his sect.ion , t.Jrn1 is, we llflve ge11eralized from the case where p(x) is of degree 2.We shonkl 

also po inl out 1.)1111 (3.G) cu11 be ~leduccd frm u (3.5). We 1.ake (3.7) t.o be a defi11il.io11 . Oiw 

wl1icl1 W(" would like ro i1 11.erpret i11 tenns of t.he roots of P(:~ ; t 1, . .• t~. ). 

l3eforc• doius t.his, liowever, let us have a look at the first. severa! of these poly1.1omials. 

Usi11s (:3.6) wc cau Uegiu to compute the F -sequence as fol\ows: 

Fo = 1 

F1 = 11 

F! = I~ + 11 

1-:1 = 1"11 + 211/2 +l:i 

F: = /"~ + 3ti12 + t~ + 2111:1 + l.1 



From Fibonacci Numbers to Symmetr-ic F\mctions 

F5 = t~ + 4t~t2 + 3t 1 t~ + 2t2t 3 + 3t~t3 + 2t 1t.1 + ts 

F6 = t1+St1t2 +6t?ti + t~ + 4t~t3 + t~ + 6tit2t3 + 3t?t.¡ + 2t2t<1 + 2t1ts + tG. 

Similarly, we can use (3.7) to produce the first si~ terms of the G-sequence: 

Go= I 

G1 = t 1 

G2 = t?+2t2 

G3 = tT + 3t1t2 + 3t:i 

G4 = t1+4tit2 + 2t~ + 4t1t3 + 4t.¡ 

Cs.= t~ + 5t~t2 + St1ti + 5t2t3 + St~t3 + 5t1t4 + 5t-s 

G 6 = t~ + 6t'/t2 + 9t?ti + 6t~ + 6tTt3 + 6t~ + 12t1t2t3 + 6t?t4 + 6t2t4 + 6t 1t5 + 6t6 . 

There is mucli ~o be learned by examiNing the fonl'! and the structure 0f these ¡~olyno­

mials, but \et. us first give the post¡¡>oHecl answer t0 the questi0n put just ahead of bhe !ists 

What do the truncated polynomfais represeF1t i·n terms 0f tihe r.00ts 0f the core polynomial 

p(x)? With a \iut:\e work, we can compute the answer using (3.5). It tums out to be the 

fol\0wing expression: 

Fk ... =LR~' ... R~k' where 2=;s;=n,s;E{O,l,2, ... } 

These are famously kn0w11 as the Complete Symmetric Polynomials (CSP); they are simply 

the p0lynmr·1·ials which are the sums 0f ali m0n0mials 0f total clegree n; they are homogeneous 

symmetric fuHcti0us. 

F0r the G-p0\y1·10mials the answer is: 

(3.8) 

These pol~'H0rnials are als0 farn0us au<l are known as ~he Powe1· Symrnet1ic Puly11omials 

{PSP). How we deduced this is not so clear f1"0m what we have done, though it could be 

prnved usiug (3 .7}, i.e. by induction; however, we shall be ab!e to see this result clear!y 

wheu we disc:uss symmet.ric polyn0mbls. 

4 Symmetric Polynomials 

A .~ymme.ftl"ic poly1tumilll, say i11 tlhe )etit.ers R1,. ,R •. , is oue for w/1ich ariy exchangc 

of the names for the Jet.t.ers leavcs tlic ¡·J0/y110mial uuclianged. AHother way of sayiug this, 

usiug Olff uot.at.im1. is t.hat any ¡~crumt.;1!1iol!.~ of tihc im!iGes /cave>:-; foh<· po!_vnomia) m1chauged 
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T hus R~ + RJ remains unchanged (as a polynomial) if the indices l and 2 are interchanged. 

Similarly R~+~+R~+ l4R1R2R3 remains unchanged under any permutation ofthe indices, 

e.g. , for the permutation which takes (123) to (231 ), or any of the other five permutations 

of the three indices. That is a syrnrnet ric polynomial written in tcrms of the Rj is iuvariant 

uudcr the action of t.he symmetric group of degree k, Sym(k), on its indexing set. 

lt is well-lmown t hat the symmetric polynomiuls with, say rational coefficieuts, of degree 

n form a riug, usuully written l.\S A" and if all of the symmetric polynomials are considered, 

thcy too form a r ing A. lf we a llow our coefficients to come from a field , then these riugs 

become algebras. In f.his essay we will generally be interested in either the integers or t he 

rationals l.\S cocfficients . The complete symmetric polynomials form a basis of the ring A 

over thc integers ami the power symmetric polynomials forma basis for the algcbra A over 

the rationals . 

The ele111e11tary symmetric polyrwmfols (ESP ) also forma basis of A over the iutegers. 

The ele111e11tmy sy1111net11c polynom'ials are just those polynomials in R1 ..... Rl· obtained by 

takiug the sum~ of tli(' products of t hc R, one ata time. two ata tíuw. up until k at n t ime: 

e k,; = L R,, ... R,,. 
1$ •1 < ... <1, 

T his fact. thnt thc e\cmentary symmetric polynomials are an integer basis for thc riug: of 

symmetric polynomials. is oue of two fundamental theorems concernillg symmetric polyno­

mials. The other fundamental thcorem concerns the relat ionship of the roots of a polynomial 

and the symmetric functions. We shall restatc thcm for future reference: 

F'Tl. Evcry symmetric polynomial can be writtcn as an cxpression in sums and 

products of clementary symmetric polynomials with integer coefficients (see [Wa, p. 78J for 

discussiou and proof). 

FT2. Let. p(:i: ) = :é + a1 ~1/•- 1 + ... + a l· be a monic polynomial of degree k with 

rnot.s /l.1, . •• Ub t hcu thc coefticicuts of p{:i:) a re elementary symmetric functious of thc 

roots: precisely. t!t·.1 = ( - 1)1<t1. 

Tos<'<' 1h1.11 FT2 is true, just writc the polynomial, using a cousequence of thc fundamental 

t livon·m oí a lgcbra. as a product of linear factors involving: it s roots, thell inult iply out. a.1 

is just l'qua\ to thc sum of the root.s, i.e.,is t hc troce of p(:i:), and al· is the product of t he 

roots, i.t.' .. the 1Jo n11 of ¡{r:). FT2. applied to the generic polynomial p(x; t 1, ••• , t~. ) tells us 

tlm! 

('l.l ) 

(Wl' :;hall iguort' t he s11bscript. k when it is clear from t he coutext .) Thus ('1.1) determines a 

t rnr1sfon1mt im1 (i11 fact , 011 i11volutio11) fro1 11 wliot wc 111igl1t cal] tlic root-busis for t hc riug of 
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symmetric functi0ns t0 tibe ESP-basis; tlhus 0ur F- and G-p0lyn0mia\s can can be tlhought 

0f as the CSP's and the PSP's rewritten fu:0m the F00t basis in bhe ESP-basis. Of course, 

they aFe no longer symmetric polynornia\s. Following G. P0lya [1P0] (also see [Wa, p.78)), 

we shall call them isobaric p0lyn0mials. 

We should remar-k at this point that we n0w have a tool to che€k (3.8). 

5 Isobaric Polyn.om.ials 

If we lo0k at the tables in sect i0B 3.lil 0f Generalized Fibonacd and Genera:lized Lucns 

p0lyn0mia!s we shall see that the m0n0mia!s in each 0f the polynomials F,. and G,, is of the 

form A,..tf' tr• {which we shaU write A 0 tº ) where 

But. tihis is t.he same as sayi11g 

k 

Ljaj =1t. 
j=I 

(1°',2º' .. . , kº') 

(5.1) 

(5 .2) 

isadecomposit-iou ofthe numli>ern, i.e., that 1+ ... + 1+2+ .. +2+ ... +k+ .. +k = nwherc 

1 oceurs n 1 t.imes, 2 occurs LY2 times. ami so 011. For e:ii<ample , (23, 3'1) is a dec0mposibi011 of 

18; 18 = 2 + 2 + 2 + 3 + 3 + 3 + 3. 

lt turns out that the inv0luti0n determine(!] by equati0n (4.1) takes hom0gene0us sym­

metric polyuomials of total degree n t0 is0baric µi0ly·n0mials 0f isobaric degree n and in such 

a way that the monomials are an enc0ding of aH possible dec0mp0sitions of the number 

n; thus t he maximal nmnber 0f mcm0mials iH such au isobaric polyn0mial is equal to thc 

number of decornpositions 0f n . 'fhe truneations at k are determined by t:he decomp0siti011s 

ofn into parts whose ma"Ximal entry is k [HW, Ch.19] 

T\1t> dt>composit.ion given in (5.2) is s0met·imes in<lirnted by a shape of the sor.t itlustrnted 

in fig.2 , thls being the shape for (4,3, 1•2) = ,\. 

Figure 2 

>.. i:; C'nllt>d <·itlwr a Fnn:r '.~ dmynm1 ora Ycmn.11 rlúiymm [Yo]. Such a shape i:-; cn111plctt·ly 
d~·t('rmi11cd 011rC' Wl' kuow t lw "'Pxpo111'11t.s" rrJ of t.lw dPrompositrio11 (5.2) . \11/c c1111 n·µ, 111"d 
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an isobaric polynomial ns a polynomia\ whose indetcrminants are the shapes determined by 
the total degree 11 . 

This relat ion among symmetric fu nct ions, decompositions of natural numbers, and 
shapcs is one which penetrates deeply into the theory and application of symmetric functions 
(see. c.g. , [Ha], [tvli), ¡rvla]). We shall talk more about these shapes injusta bit , but first 

Jet us go back to t he coefficie11t.s in thc reprcseutations of the powers of thc roots R1 of t hc 

corc polyuomial p(x) in (3.2). 

Thcse cocfficients, which were themselves polynomials iu t 1 ••• , ti:. were denoted by 

symbols of thc fonn S(.,•.JJ)· The notation suggest s that there is a polynomial Sr,,,,1.; ¡. 

ancl. indecd t.here is. We shall use t.he hat-notatio11 to indicate the imngc of a symmetric 

polyuomial in the root-bnsis uader the iuvolution which takcs it. to the ESP-basis, that is to 

thc resulting isobaric polynomial. We shall ca\l this image an 1.sobanc refiect (of whatever 
tite' symml"t ric preimagc is). 

So whnl h, thr ~.vmmctric preirnage S(m.P) of 51,.. 1, 1? Ir is just t h<> Srfrur symmetrir 
pol.\'HOmial tlete11n111cd by a shnpc of th<' form showu in fig. 3. in this case t.he shape 

det<'rrnine by ( l. 15 ). 

r 
Figure 3 

Such n shapc is calle<l, for obvious reusons, a hook diagram. But what is a Sclmr 

poly110111ial? 

6 Schur Symmetric Polynomia ls 

I! will b<· co11ve1dent to writc a = (ai, ... 01:) and to use the notation a 1- 11 to 111eau 
1 hat thl' :-:lmp<' ,\ = ( !º '. 2º' , ... , k'"") is a decomposition of n . T hen given auy shape ,\ t he 

isobark rcftect of t!1e Sclmr polyuominl determined by that shape is 

$>. = t!el [Fa ;-•+1]. 1 :Si, j :S 11. (6. 1) 

The im·olutiou tht•11 cnu b<' uscd to writ.c t.his cxprcssion as a symmctric polyuominl iu the 

rnoc -lmsh;. Jlowt'\"C'I". tlll' rtfkct wi!l lie oí more i11tcrest to us. 

11 



12 From Fibonacd Numbers to Symmetric F\.mctions 

Two remarks are in order here. The first is that there is also a determinant directly in 
terms of the tjs. And the second is that both of these determinants are versions of what is 
known in the literature as the Jacobi-Trudi formulas [Ma]. 

Now we can answer the question concerning the coeffi.cients of the formula (3.2). These 
coefficients are just Schur-hook reflects. 

l suppose that a healthy "so what?" is in arder here; we should try to give some 

justification of what is so special about Schur-hooks, and about Schur polynomials at ali 

First we give a table , computed using (6.1) showing the Schur-hook reftects for n = 6 in 
terms of t's and F's. From (6.1) we see that our convention introduced in Section 2.0 of 

denoting Schur-hook reflects of the form S(m) by F,,, is justified. So using (6.I) and (4.1) 

aud doing a little work we get the following table: 

Hook Schur Refl.ects for n = 6 

S¡¡¡¡ ti.Ses)+ t2.S(4J + t3$(3¡ + t4S¡2¡ + tsSo¡ + t¡¡Sco) 

S¡s.1) - (t25'¡4¡ + t;iSc3l + t4S¡2) + ts.5'r1¡ + tsS¡o¡) 

514 . 1~ ) t3Sr:n + t4${2) + tsS(IJ + t6S(o¡ 

S(3.1J¡ -(t4.5'(2¡ + ts.5'0 ¡ + t¡¡S¡o¡) 

5'(2.1•¡ ts.5¡1¡ +t¡¡S¡o¡ 

S(1e¡ -( t¡¡.5'¡0 ¡). 

In this t.able .S(o) = l. The table suggests that there is a recursion relation among the 

Schur hooks. This is the case. Namely, the following relation holds: 

Scm-j.JJ) = (-I)i Í: t;S(m-i)• 
i=j+ l 

(6 .2) 

Moreover. from (6.l) , we see that .5'¡,,¡ is just F,., so that the F-polynomials are, i11 

foct, Schur hooks induce<l by Youug diagrams consisting of a row with n squares. (So•" ) is 
a Schur hook induce<l by a cofomn of m squares.) So, in particular , every Schur hook can be 

wrincu iu tcrms of F's nnd F's are Schur hooks, which already gives Schur-hooks a ccrtain 
s1111.11s iu the world. (There are recu rsion formulas for Scbur polynomials in general , agaiu 

iu lcrms of F - polynomials, but they are a bit more cornplicnted and uot nccessary for us 
to look at. hcre [i'. la].) 

Bcfore explai 11i11g wh.v t.he Sdmr pol.v1101uiats nl't' of iurcrc>;I iu mathcumtics (mu ] in 

pl1ys1ts). IN u-. gather up a fr-w more cxmuplcs of iut.cn•sti uA scqneuces that w(' gl' I by 

cvohmtlllf.\ ~1111• of llil'N.· :o.1•qm·1m·.~ al 1 he iut.egl' rs, iu facl 111 ( 1 .! .... ). 
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For untruncnte<l polynomials we hnve 

F,,, (1, 1, ... ) =2"' - 1 ,m >O (6.3) 

ami 

Cm(l , ! , ... ) = 2"' - 1,m ;::: O. (6.4 ) 

F'rom (6.3) and (6.4) and fro111 Euclid's results 011 even perfect numbers. we have that, 

whenevcr mis a prime all(I C,.,{ 1, 1, ... ) is a prime, tbeu /-",0 {!1 1, .. )Gm{ l , 1, ... ) is an even 

pcrfoct number [LeV). 

The pattcm for F,,, continues for hooks: 

s(IH-J,\i)( l , J, .. ) = 2m -J-1 (6.5) 

but , 

Sp¡( t. t. .. ) ~o (6.6) 

if ,\ i:- 110 1 a hook. 

Thu:- (6.5) ami (6.6) tell us that wc can dist.iuguish hook Sclmr poly11omials fro1u uou­

hook Schur polynornials by evaluatiou! 

I3ut why are Schur syrninctric polyuomials importa11t? 

7 Schur Polynomials and R epresentation T heory 

Schur polynomia!s, namcd after lssai Schur (1875- 1941 ) were not brought into the 

world by Sclmr, but rnther by Georg Probcnius (1849-1917) (sec[;\ la , p .61 ]) who was a\so 

responsible both for reprcsentat.ion theory (using matrices) and chnractcr thcory of fi nite 

g,roups, though . possibly he <lid 11ot apprcciutc t he co1111ection betwe11 thc two. Schur did 

!'('I' tlw rrlnt io11 of thr pol~·noBiials narned nfH•r him 10 the chnrneter throry of the fi nit e 

syrnrnetric groups nnd nlternatiug, groups (nmong othcr things). Ami, ns it happeus, this 

rclut io11 to chnractcr t hoory is thc sourcc of t heir importnnce. aud it. tnrns out., not just to 

t lw d1nrnctcr t hoor.v of symmctric grnups. But we are getting ahcad of ourselvcs. 

Thongh 1his is uot the place for a.11 expositiou of represeutnt.ion tlicory and charactcr 

1lwor.\· thl..'rC' atl..' 1uany good sourccs for this subject (!Se). \Hi], lllo). [F'u], [Sr)) , - we shall 

~ki•tch e11ongh o f the idens iu Ol'l..lcr to sec how thc conccpts in this paper apply. 

A (faithful) repre!'>Cntatio11 of n g,roup is mcrcly au isomorphic copy of thc group, prcfer­

ubl.v om• thot tells us w methi11g nbout t lie group. \re nre rrnlly intcrestcd iu linear rcpre­

~catnt iou:.. which b wlmt ProlJeuius was iuter('Stcd i11. A linear represc11tatio1L of a grOLIJl 

(for :-i111plici1y \\'{' r1•:-1ric1 oursclvcs to fit1ite groups) b a group of liucar transfonnations of 

13 



14 F'rom Fibonacci Numbers to Symmetric F\mctions 

a vector space (for us , over the complex numbers, though this is not the most general case}, 

isomorphic to the given group. In turn, since a linear transformation can be represented by 

a matrix. we can think of the represeutation as a group of matrices. The representation is 

irreducible if the vector space , regarded asan algebra over the group ring of its linear trans­
formations, is not decomposable into a direct sum of subalgebras. It. turns out that therc 

are exactly as many irreducible representations of a group as there are conjugacy classes of 

elements in the group itself. (Two elements a and b in a group are conjugate if there is a 

element gin the group such that a= g- 1bg. Conjugacy is an equivalence re\ation.) 

A chamcte1·of a representation is then the map that assigns to each matrix in the group 

of represeutations its trace, i.e. the sum of its diagonal e\ements. lt is important for tl1c 

theory that s imilar matrices have the same trace-traces are not affected by basis changes 

of the underlying vector space . The irreducible (complex) characters of a group are then 

just. the characters of tbe irreducible rcpresentations 

Suppose we cousider the symmetric group of degree n , Sym (11 ), that is, we consider 
t.hC' isomorphisrn cla.ss of a pcrmutatiou group 01i n elements. Suppose that Sym(n) has 111 

conjugacr c\asses. Two elements in a permutation group are conjugate iff and only if they 

ha ve t he same cycle structure . But the number of different cycle structures in a permutation 

grouµ is just the number of ways that n can be written as sums of natural nmnbers lcss 

thau or equal to 11, that is, it is equal to the number of decumpositions of 11. Ami with each 

deco111posi tio11 we can associate a Young diagram, that is a shape cousistiug of n squares 
This gi,•es us 111 shapes. With each shape wc cau associate a Schur ftmction (6.1 ), and with 

each Schur functiou we ca11 associate a character in au effective way. Now thcre are always 

exactly m Schur functions of degree n (and isobaric Schur functious of isobaric dcgrec n ). 

These m Schur functiOllS of degree n contain ali of the lnformation necessary to compute 

the c/iamcter table of Sym (11). 

T he key to this computatiou is the Frobenfos Chamcter Theorem (F\i , p .93) whid1 givcs 
n::; t h{' irrt•cl ucih](' dmractcr m;sociat.Pd wit.h a particular sha¡w arisiug from th(' cleco111posi­

t io11 of11. 

\V(' givc au cxnmple computiug the character table of Sy111(3) , the symmetric group of 

dl'¡;:1ce 3. For this we ueed tlie Schur reAects of isolmric polynomials of degree 3. Therc are 
thrC<' dccompositious of 3, uamely, (1 :1) , (2, 1) , (3 ). 

EP 
Vig ur<' .J 
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Let us first do tbe shape (1,2) (1 + 2 = 3) with two squareson the top row and one 
on t hc bot tom: t hnt is, we waat to compute the irreducible character associated with the 

Schur function 5(2.1¡. The scheme is this: we first use (6.1) to fi nd Sc2.1J iu terms of 
F - polyuomia\s. \Ve then write each F - po\ynomial in the determinant in terms of the 

G- polynomials {recall that the C - polyuomials are a lso a basis). The formula for this is 

F, = L ,/ /"' 
¡•l-J. µ 

whcre e,, = Gi'1 ... cr1 , nud ::(p ) = íl P'JJ1, !. 

Ncxt , \\"(' expaml 1 he dctenninant , 11n1lt iplyi11s out completel:y so that we have a sum 

of producrs of e;'. and for each G~'' , substitute ( !''' . 21•2 • . • •• P'' ). Now the right liand side 
of our fonnula is i11 1en11:; of (11•, . 21•i , ... , l·.;l'l ) = ¡1 . This is ju!;t the cycle struct.ure of au 

e!e111e11t in a co11jugacy class of Sy111(11). one sucl1 symbol for each class. In t he case of 

Sym(3). 1here arf' 3 classC-" (!hf' c\nss of cycles of leng1h 3. thf' dass with a product of two 
l"yclc:-;. oue of lengtli oue uud ouc of lcugth 2. mid El ~rngle one-cycle. the idcutity clemc111 . 

wit h class size:. 2 nnd 3 ond l. respC'ctivcl~"). 

15 

Finally we multiply coch ruonomial in this exprcssiou by ;f,;¡ 1 o munber determined by 

tlie s ize of the conjugl\cy c\ass c[p]. This is j usL the value of this charactC'r al ench class of 

Sy111(11 ). T his will bejust. the coeffi ciei1t of the appropriate dccomposit iou ( !''' . 21'~ . • , k1' ') = 

'" 
So let '~ do the computntion for t.he charactel' deternined by 5(2.1¡. By (6. 1) $(2.1) =. 

F1 F2 - F3 , and writ ing each F1 that appcars in this determinant in t he G - basis gives us 

Fi = G 1, F2 = ~Ci + ~G2, and /~ = -j¡C~ + ~G 1C2 +1C3. So that after subst ituting in 
thc detcrminant and expanding we have t he cxpression 

~G~ + OGiG2 - ~GJ. 
S11bst it u1i11g tht• tycle strncture syu1bols for t.bc c·s gives 

}iI') + 0(1, 2) - ~ (3). 
Ami, fi ually, 111ultiplyi11g encl1 t.enn by the clnss size adjuster ;:fi;r. we cnd up with 2( 13) + 
0(2. 1) - (3). 1hat is jusi the sccoud row of t.he character table of Sym(3) bclow: 

Class 3 

Schu1 (! ' ) 11.2) (3) 

(3) 

(2, 1) - 1 

( 1"1 - 1 
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This algorithm can be simplified somewhat ; however, the particular prescription given 

here traces through the isomorphisms that map the Schur polynomial to the appropriate 

character function by way of the Frobenius character theorem. There are three such steps , 

the Jacobi-Trudi formula whlch represents the Schur polynomial as isobaric polynomials in 
the F-basis, the map which takes this resu!t and represents it In terms of the G-basis, and 

then the involution which takes this version to a symmetric polynomial in the CSP-basis, 

which is just the equation involved in the Frobenius Character Theorem [Macd or Fulton]. 

Below we havc also listed the isobaric versions of the Schur polynomíals for n = 3 in the 

ESP- or t-basis. The character determined by the shape (3) (first row oftable), and by (1 3 ) , 

(third row of table), are constructed using the same procedure 

ScJi = tT + 2t1t2 + t3 

s(2. l) = -t1t2-h 

S(l') ~ t,. 

Applicat.ions of character theory to other parts of mathematics can be found in [Sr). 

Character theory was used extensively in the recent classification of the finite simple groups 

lt is a!so important in the physics of elcmentary particles [Hij, [Ro], {Ha], [Mi]. 

lt should be mentioned here that the application of symmetric functions to representa­

tion theory is by no means confined to the symmetric groups. One of the most active areas 

of algebra nowadays is the search for representatious of algebraic systems, especially those 
that are important in physical theory, e.g. , in Lie Algebras. The symmetric functions play 
an irnportant role in this enterprise. (For a glimpse see [FU)) 

8 W eighted Isob a ric P o ly nomia ls 

Thc Geueralized Fil;ouacci Poly11omials, i.c. , tlw F - scque11ce and the Gcncralú.<.'1.1 

Lucas Polynomials, i.e., the C - sequence, belong to a much larger class of isobarlc poly110-

111i ats, that. is t hosc that can be usefully organized into sequeuces. The sequeuces t.l1nt wl' 

lmv(' in miu<l are those t hat are determined by assiguing a weight wi to the lndeter111inu111 ~ , 

11 j = 1,2, ... , 1.- , .. To 1notivate this idea, we point out that. t.he coefficients of F,,, arl' 

uuiquely dcterm ined by t.he expo11ent vector u= (a1 • . . , uk) of the monomial term t¡' ... tr,•. 
This is a rC"sult of thc rec111"s iou i11 (3 .6). Because of (3.7), a similar result liolds for tl1r 

polyuominls G',.. . Ju the casl' of F,,, we have t.liat., for a givcri o , t.he coeffi cient is just the 

111ul! i110111 inl co<'fficicnt 

(8 .l ) 
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111 t he case of Cm the analogous rcsult is 

(8.2) 

For an arbitrary weighted isubaric polynomials, 1he coefficient of the o term is 

T he weight vector being giveu by w = (w1,w2 , •.. ). T hus a member of a scquence of weighted 

isobaric polynomials is a polynomiul of t he farm P0 • .., = L: 0 .... ., A0 t º. 

Weighted lsobaric Polynornials far TI = O to n = 5 

Po .... = l 

Pi.-= ..J1f1 

The Wcighted lsobaric Polynomials (WJPs) provide a source far recursive scquc11ces ( 

i11 fo.et. ali recursive sequeuccs are accountcd far in this way). T he recursion is giveu by the 

formula." 

11-l 

P(k·.n . ..,¡ = LtJP" -J +w .. t,. . (8.3) 
,., 

Tlu- wcight vectors far the CeJLcrnlized F ibonacci Scqucuce ami far thc Ceucro.lizcd Lucas 

S<'tJlll'Ucc. a. ... cm1 bC' iufcrred from (8.1), (8.2) ami (8.3). are. rcspeclivcl.\". given by w.1 = 1 

for 1111 ;. ami ...,J = j for nll .J. Othcr fo111ou:: \V IP-sl'q11c11ces nrl' thc hook-Schur reAccts. 

17 
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of which , of course, Fm is one. The weight vect0r for the hook reflects associated with the 

decomposition (n - r, Ir) is w(r) = {-l}(r+IJ(O, . . O, 1, 1, . .. ) with rO's , and the rest l 1s. 

Far generating functions for the weighted isobaric polynomials see [MTl]. 

There are sorne very interesting alge@raic facts about these WIP-polynomials. For 

examp!e it turns out that addition of isobaric polynomials of the same isobaric degree givcs 

the same result as taking the isobaric polynomial that is associated with the sum of their 

weight vectors. That is we can add isobaric polynomials by adding their weight vectors at 

the same time maintaining isobaric degree. 

Pn,w + Pn,¡• = Pn ,w+w (8.4) 

Thus , we can see from (8.4 ) that under addition the isobaric polynomials (or rather sequenccs 

of isobaric polynomials) have the same algebraic structure as the weight vectors under vector 

addition . This has as consequences that: 

The set of W/P-¡wlyrwrnial.~· of ·1 .~obarú: dey1·ee ·11 is a ft -ee Z - m od11le. 

Meuce. 

Th e set oj ali weighted sequences oj WIP-polynomials is a free graded Z-mod11le. 

tvlorever, it cau be proved that every WIP can be writ ten uniquely as a Hnearly combi­

uation of of hook-refl ccts, that is , 

The weighted sequences oj hook reflects constitute a bu.sis for this module. 

These stat.ements are proved in [MT 1). There is mu ch interesting and use ful algebraic 

struct.ure among t.he isobaric polynomials that we haven 't discussed here ; e.g., a useful 

operation t.hat tics t his structure to the a\gebra associated witb mult iplicative arithmetic 

fuuctio11 !'> is t hc convolution product (see , e.g., [MacHl ] [MTlj [MT2)). 

!u Scct.ion 2.0 nnd in (6. 3) and (6.4 ) we looked nt t.he evaluations of F¡2.m )• of G(2,m) 

a t ( 1. 1) aHCI of F,,, and G,,. at ( l , 1, .. ) and found that we got sorne interesting sequenees of 

mnnhers. We can n!so ensily sce t hat /;¡_ ,,,, gives us sequences t.hat. are recursively dependen! 

ou t he previous k terms, gcncrnlizi11g the Fibouacci numbers recurs ive dependency on Lhc 

prcvious t.wo: that is, 1.hc numbers are dcfiued recurs ively by j,, ..._ 1 = L;',,, 1 fr Wc might 

womk r whnt the aualogous result.s are for more geuernl cases. F'rom (6.3) aud (6.:1 ) toµ,C' t her 

wi l h (8. 1) aud (8.2) we cau deduce thesc t,wo iu tcrestiug resu) t.s: 
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which rela te thc numbers on t he left ha11d sidcs involving dccompositions of 11 to t he binomial 

cocffidents aud 1he Pascal trinngle 

lf wc ask similar qucs t.ions of thc weighted isobaric sequences in general, we have tlmt 

a nd , hcuce 1hat 

P.,,..,(1, 1}= ¿ 2u-J- lwJ+w., 
J=l 

Al t lit' e11d of scct ion 1.0, we 111eutio11ed thnt t l1e gencralized Fibonacci poly110111ials m1d 

t lie ge11crnlized Lucas polyno111ials . i.e .. the F - ami G-polynomials. a re compauionabll' iu 

n nu111bcr of ways. Here is anothel' iutercst i11g relntion bet.ween 1hem. 

ó,G" = F.,_, 
v l.1 

t hus ¡.~ is a derivat h•c of e,, for evcry integer j such that o$ j $ 'l. lt is quite likely t.liat 

tbcre is no other pair of WIP-scquences with this dcrivat ive rela t iouship . It would be uscful 

1.0 k11ow this for sure. lt would also be useful to have a clear definit io11 of what ought to be 

rneant by a compo:mon scquence. 

Coda 

Al t he centre of the spider web lics thc core-polynomial. that is, thc gencric monic 

polynomial in one indctermiuant . The web rad iates to the ring of symmetric functions 

i11 ~· rnrii\bles and their reflects iu the ESP-basis giving thc isobaric polynomials. T hes(' 

inr lud1· all of 1he k-variable Sclmr fuuctions or, rather. their isobaric reAects, giving a direct 

rn1111<'ttiou ro rhe character table of thc symmetric group of degree k, which is, in fact, 1.he 

C nloi:- b'TO\lp of rhl' core polyuomial. 

A11d 1l1ry1udmll' tl1e (recursivc) scquenccs of weighted isobnric poly110111ia ls, ali of wl1ich 

c1111 Ll' exprt"'S.S<"'d in tN ms of liook-Schur rcftects. Whcn thc I' s nrc evatuatcd at some vector 

witli k i111cgcr ro111po11c111 s . t.Jmt is whcu thc corc-poly110111ial is specializcd to a polyuomiul 

19 
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wi th integer coeffi cient s, then t he W IP sequences give us all recursive sequences of integers, 

lncluding t he Fibonacci sequence and the Lucas sequence.{Various fields of coeffi.cients are 

of interest also.) There are also fie ld extensions related to the core polynomial which are 

important [MacHI ]. 

The web extends even farther than we have indicated in this essay as can be surmised 

from [FU] or [Ma] 
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