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Introduction

In this essay we are interested in the not so well-known theory that lies behind a very
famous and interesting collection of results that have to do with the Fibonacci numbers. The
interest in Fibonacci numbers has several facets, their interpretation as a growth sequence is
of interest both in mathematics and in physics and biology. Their use in primality testing and
their connection with the so-called Golden Ratio have been exploited by number theorists.
Recreational mathematics has been much interested in their striking numerical properties
such as the fact that, if the numbers are suitably indexed. those indexed by primes are
themselves prime, and pairs of bers indexed by relatively prime bers ave th |
relatively prime; and, so on for results which are constantly being added to.

The Fibonacci sequence has also been generalized to sequences of Fibonacei polynomials
in two indeterminants which satisfy the same recursion formula [Ri, p.34 ). There are many
interesting relations among these polynomials which in turn produce the large number of
well-advertised numerical relations [Ri), [HW],[Vo]. And, of course, there is a respected
journal devoted to mathematics connected to them, The Fibonacei Quarterly. What is not
~0 well-known is that this body of results is a part of a much more general and far-reaching
theoty that impinges on the theory of multiplicative arithmetic functions, on the theory of
equations and symmetric functions and even reaches imto representation theory of groups
and algebras, and into other extensions of these subjects. That is, the lore of Fibonacei



2 From Fibonacci Numbers to Symmetric Functions

numbers is just the tip of an iceberg, It is this iceberg that we wish to have a look at here.

This is an expository essay and will net be organized into the format of theorem and
proof, though many results will be stated and often the key ideas of proofs will be indicated.
But the main object of the paper is to make available in & unified way the collection of
concepts which: are behind some well-known: results and to point out the richness of their
applications. There are some results here which have only been recently introduced into the
literature, and' there is implicit in the presentation directions for further research.

The reference list includes elementary sources from which basic theory can be learned,
books and articles which give applications of these ideas inside an outside of mathematics,
as well as some reference tos current research work. The list is hardly exhaustive, but is
suggestive and each source contains useful further bibliography.

1 Fibonacci and Lucas Sequences

We begin with the polynomial p(z) = @? — = = 1. This is one of the more famous
polynomials in the history of mathematics. It’s roots give a solution to the problem first
posed and solved—by a geometrical construction—by the Pythagoreans: construct a rect-
angle whose width is to its length as its length is to the sum of its length and width,
w : U= 1:1+w. Labelling the two roots of the polynomial & and 3 and letting a be the
positive root, taking w = 1, we find that ! = a will do the job; or more generally, we choose
the ratio of the length to the width to be @. The negative root, 3, is the negative reciprocal
of @, thus | B |= ¥. In the 16th century a was given the name golden ratio or golden section,
passibly due to a remark made by Johannes Kepler (see (Bo],p.53, for a discussion of the
Pythagorean discovery and the Kepler remark. For an interesting discussion of the golden
section in connection with the mathematics used in the building of medieval cathedrals see
[McC)).

A remarkable property of a “golden” gl
that if a square of side / is erected on the rectangle R , then a new rectangle of length w +{
and width [ is formed which solves the same problem.

Clearly, this process may be continued indefinitely (fig.1), and, in fact, at each stage
there are choices. The picture that results is that of a collection of symmetrical “spirals”
emmanating from a central point that might remind one of the spiral distribution of seeds
in a sunflower—and for good reason. For this is a pattern that is typical of many biological

is that it is self-replicating, in the sense

growth processes [Th].
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Figure 1

Note that this recursion process gives rise to the equalities

wag il kil b2 2wt Jomaw 4 finl
T wt+l w+2 2w+8l  Jw+S Jon+ a1

The sequence of numbers f,,, being (1,1,2,3,5,8,13, ) which satisfy the recursion relation
Fover = fen + fin—t1, that is, the Fibonacci numbers which arise from the rabbit problem
posed by Leonard of Pisa (Filionacel) in his text, Liber Abaci, first published in 1202.

1t will be useful to have W look at some of the relations between the Fibonacei sequence
and the golden ratio. For sturters we shall look at the powers of the two roots a and A of
plx)

It is clear that we have o = o + 1. And it is also clear that by iteration we have

P S S (1.1)
and, stmilarly,
A = B4 by, (1:2)

where @, and ., are non-negative integers. It is an easy exercise to show that ¢y, = fin,
that 1. the coefficients are just the Fibonacei numbers. From this one can deduce a well-
known relation between the Fibonacei numbers and the roots a and /A of the polynomial
#* — x = 1; namely, using (1.1) and (1.2), we deduce the famous Binet formulas
amH _ gmt

a-8

fin'= (1.3)

Writing a — 4= A, it will then be useful to write (1.3) as
1 .

det] mer  gms

S = A (1.4)

A‘ s just the discriminant of the polynomial p(x).
From (1.3) it is naturnl to look at the numbers

am+l 4 gmel

= o™l 4 gl
a4+ S LE (L)
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(since a + 3 = 1). These numbers also turn out to be integers, the so-called Lucas numbers
(2,1,8,4,7,...), which satisfy the same recursion as do the Fibonacci numbers [HW, p.148].
The Lucas sequence and the Fibonacci are called As we
shall see later, the two sequences are companionable in a number of ways.

2 Linear Recursion and Arithmetic Sequences

The construction made here can be considerably generalized and put into a setting in
which it is seen to be a special case of very general ideas which reach out to many other parts
of mathematics. But before we go all the way, let us first look at a natural intermediate
generalization of these definitions which are well-known in number theory.

Consider the generic second degree (monic) polynomial % — tiz —ty = p(z;ty,tp),
where the fici t1,t are par . Let A(ty,t;) = A and B(t;,t;) = B be the
roots of P(x), so that A+ B =t; and AB = —t,. As in (1.1) and (1.2), we can easily write
the powers of the roots to the first and zero-th powers, thus

A™ = S A = Sy (2.1)

and
BT No B (2.2)

where, for now, S‘(m) and S‘(,,,‘I) are rather elaborate names for whatever functions of t; and
t; that occur when we compute A™*! and B™*! iteratively, starting with A% = t;A + t5,
B2 =t,B +t, . As with a and 8, we can make the computation

Am+l _ gm+l

T - S (2.3)

As (2.1) or (2.2) suggest, S, is one of a family of polynomials. For reasons that will be
apparent later, we single it out and give it the special notation Fy,(t1,t2) = Fm , or if we
need to make the number of variables clear we shall also write S'(,,,) = Fm, where in this
case k = 2.

We could also have considered the sequence of polynomials A™ + B™ = Fnt1 —28(m 1),
which we shall rename G, (t1,t2) = G, (= G2,.). Both of the sequences {F} and {Gn}

will look tamer if we point out that

m =0
0, m <0

{ tiF-1 + t2F—2, m >0
=
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and
t1Gm-1 + t2Gm—2, m>0
Gm=4 1, m=0
0, m<0.

That is, both {Fy,} and {G,,} are recursive sequences, the recursion relation being the same
for the two sequences, facts that can be proved directly from the definition. Moreover, when
t; = 1 = ty, then {F,(1,1)} is just the sequence of Fibonacci numbers and {G,,(1,1)} is
Just the of Lucas i y {Fn(2.1)} is the sequence of Pell numbers,
while {Gn(2,1)} is the i of the Pell b

{Fn(3,-2)} and {G,, (3, —2)} are the sequences {2 —1} and the sequence of companion
numbers {2™ + 1} . The Mersenne primes belong to the sequence {F;,(3.~2)}, while the
Fermat primes belong to the sequence {G,(3, —2)}.(For an interesting discussion of primes
in sequences see [Ri, p.41 ff]).

Since the F— and G- sequences are recursive, they give rise to (linear) recursive se-
quences of integers for all pairs of integer values of t; and t; . Of course. some sequences
are more interesting than others. Their theory was developed by E. Lucas [1878] and ex-
panded by D.H. Lehmer in [1930]. Such sequences are variously called Lucas and or Lehmer
sequences [Ri]. They have been applied in a number of ways in mathematics, for example,
for primality testing in number theory [Ri, ch. 2] (also see [MacH 3] and [MacH, 1].

It is the polynomial p(x) that sets the whole machinery in motion. In the Lucas-Lehmer
ase, this is a second degree polynomial. But we needn’t stop there. In fact, what we have
seen so far is just the tip of an iceberg, one manifestation of a much more general state-of-
affairs.

3 Generalized Fibonacci and Generalized Lucas Poly-
nomials

Let us definite the core-polynomial to be the generic polynomial of degree k,
plastyonty) = o = tiak=! — . — t. We'll worry about the field of coefficients later.
We want to find a relation between the roots of p(x) and the coefficients that generalizes
the spirit of the Binet formulas, (2.3), which we can write in matrix matrix form as in (1.4):

1 1
: y det] 5 |
feedlldtaiol s,

or rather, we should say. one of the square-

(3.1)

where A again means the difference of the root

roots of the diseriminant of the core-polynomial.

g N
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Let Ry, ..., Rx be the roots of p(z;ty, -..,tx) . We proceed as in the quadratic case: we
find an expression for the powers of a root in terms of the first k — 1 powers of that root, as
in (2.1) and (2.2). Again by iteration, this turns out to be

k=1

BP =Y (SIS iianBe 2 =1k, (312)
3=0

where the 5'(ﬂ_k+1_,,) are functions of ty, ...,tx. That there is such an expression is obvious
from the fact that the R’s are roots of a polynomial of degree k (with coefficients ¢, ..., k)
What, in particular, the 5'(,,_‘:,,,'1,) are is yet to be divulged; but, in any case, using (3.2),
we can form the determinant

1 1
Ry Ry
) [ e Ak (33)
Rf—l et R:-l
R’}" 600 Ri"

Using the multilinearity of the determinant function and (3.3), and letting
IS iy =

we can compute that

1 1
Ry Ry
det : :
ok~ k—
[5{ 1 };é 1
m
U3 = L & b (3.4)
whereA? = discriminant p;ty, ..., tx)
From (3.4), we get that
1 1
R‘ 800 RL-
det : : :
IRES R
k= k1)
SR
= i & (35)

A

Now. of cowrse. the F's are functions of the #'s, while the determinants on the right
hand side of (3.4) and (3.5) are functions of the R's which are implicitly functions of the 's.
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So these equations mean that if we choose particular values for the ¢'s, then we determine
particular roots, R's, and the two numbers on either side of (3.5), say, are the same.

‘We now have a reasonable generalization of the Binet formulas which relate the roots
of the core polynomial to its coefficients, and for each set of values of the coeficient vector
t = (t1,....tk) , we have a recursively given arithmetical sequence (of degree k-1), F,(t),
determined by a recursive set of polynomials. The recursion is given by

k
P = Fin(t) = ) tiFn-y(t)- (3.6)
=1
The ion poly ials giving the co-seq (ie., i ) are deter-
mined by the recursion
n-1
Gin=Cn=3 t;Gn_; +nty. (3.7
=1

Thus we have a sequence and a co-sequence for each k. k = 1.2,.... Since increasing k only
adds new terms to the old and leaves the first k polynomials in each sequence unchanged, we
shall often omit the subscript & from our notation. That is, the length of the polynomials is
allowed to increase without bound. This causes no harm because the k— sequences can be
recovered by truncation, that is, by letting t; = 0 for j > k. This has the effect of picking
out a particular generic polynomial p(z) of degree k, that is, a particular core polynomial.

The polynomials F, play an important role in the theory of multiplicative arithmetic
functions [MacH 3]. In [MacH 2| the polynomials in the f—sequence are called Generalized
Fibonacei Polynomials, while the polynomials in the G—sequence are called Generalized
Lucas Polynomials. (These terms are not always used consistently in the literature.) Clearly,
the sequences described in Section 2.0 are just the polynomials F,, and G, described in
this section, that is, we have generalized from the case where p(x) is of degree 2.We should
also point out that (3.6) can be deduced from (3.5). We take (3.7) to be a definition. One
which we would like to interpret in terms of the roots of P(w:ty, ..., t;).

Before doing this, however, let us have a look at the first several of these polynomials.
Using (3.6) we can begin to compute the F-sequence as follows:

Fo=1
Fi=t
Fa=1 +1t2

Fy =t} + 2tyty + ty
Fy= 1)+ 313y 4+ 13 -+ 20ty + ty

Ve o



8 From Fibonacei Numbers to S;

Fs = t§ + 4t5to + 3tyt3 + 2toty ++ 3tits + 2taty +ts
Fg = t§ + 5tity + 6313 + t3 -+ dtits + t3 + 6tytats + 3t3ta + 2tots + 2tats +te.

Similarly, we can use (3.7) to produce the first six terms of the G-sequence:

Go =1
Gy =t
Ga =t} +2t>

Gy =t} + 3tytp + 3ty

Gy =t} + 4ty + 23 + dtyts + dta

Gs = 13 + 5t3ts + 5t1t3 + Stots + 5t3ts + Stata + 5ts

Go = 13 + 6t1ts + 9t3t3 + 613 + 6t3ts + 613 + 121tots + 6634 + 6tata + 6tyts + 6t

There is much to be learned by examining the form and the structure of these polyno-
mials, but let us first give the postponed answer to the question put just ahead of the lists.
What do the truncated polynemials represent in terms of the roots of the core polynomial
p(e)? With a little work, we can compute the answer using (3.5). It turns out to be the
following expression:

Fin =D BBk, whete si=msi€ {0,1,2,

These are famously known as the Complete Symmetric Polynomials (CSP); they are simply
the polynomials which are the sums of all menomials of total degree n; they are homogeneous
symmetric functions.

For the G—polynomials the answer is:
G =R} + .. + R (3.8)

These polynomials are also famous and are known as the Power Symmetric Polynomials
(PSP). How we deduced this is not so clear from what we have done, though it could'be
proved using (3.7), ie. by induction; however, we shall be able to see this result clearly
when we discuss symmetric polynomials.

4 Symmetric Polynomials

A symnetric polynomial, say in the letters R, ..., Rj, is one for which any exchange
of the names for the letters leaves the polynomial unchanged. Another way of saying this,
using our notation, is that any permutations of the indices leaves the polynomial unchanged.

e .. .
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Thus R} + R3 remains unchanged (as a polynomial) if the indices 1 and 2 are interchanged.
Similarly R} +R3+ R3+14R; Ry Ry remains unchanged under any permutation of the indices,
e.g., for the permutation which takes (123) to (231), or any of the other five permutations
of the three indices. That is a symmetric polynomial written in terms of the R; is invariant
under the action of the symmetric group of degree k, Sym(k). on its indexing set.

It is well-known that the symmetric polynomials with, say rational coefficients, of degree
n form a ring, usually written as A™ and if all of the symmetric polynomials are considered,
they too form a ring A. If we allow our coefficients to come from a field, then these rings
become algebras. In this essay we will generally be interested in either the integers or the
rationals as coefficients. The complete symmetric polynomials form a basis of the ring A
over the integers and the power symmetric polynomials form a basis for the algebra A over
the rationals.

The el y symmetric pol; Is (ESP) also form a basis of A over the integers.
tals are just those polynomials in Rj. ..... Ry obtained by
taking the sums of the products of the R, one at a time. two at a time. up until & at a time:

L= S e fo i T

The elementary symmetric pol

1€ <<y
This fact. that the el 'y symmetric poly jals are an integer basis for the ring of
symmetric polynomials, is one of two fundamental theorems concerning symmetric polyno-
mials. The other fund I theorem the rel of the roots of a polynomial

and the symmetric functions. We shall restate them for future reference:

FT1. Every symmetric polynomial can be written as an expression in sums and
products of elementary symmetric polynomials with integer coefficients (see (Wa, p.78] for
discussion and proof).

FT2. Let p(x) = @* + a1@*~! + ... + ax be a monic polynomial of degree k with
roots Ry, ..., Ry, then the coefficients of p(x) are elementary symmetric functions of the
roots; precisely, ex ; = (=1)7a;.

To see that FT2 is true, just write the polynomial, using a consequence of the fundamental
theorem of algebra, as a product of linear factors involving its roots, then multiply out. a;
is just equal to the sum of the roots, i.e.is the trace of p(x), and ax is the product of the
roots, i.e.. the norm of p(x). FT2. applied to the generic polynomial p(zity,..., ;) tells us
that

t; = (-1)1*e; ;. (4.1)
(We shall ignore the subscript k& when it is clear from the context.) Thus (4.1) determines a
transformation (in fact, an involution) from what we might call the root-basis for the ring of

Ve s
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symmetric functions to the ESP-basis; thusiour F— and (G—polynemials can can be thought
of as the CSP’s and the PSP’s rewritten from the root basis in the ESP-basis. Of course;
they are no longer sy ic pol ials. Following G. Polya (Po] (also see (Wa, p.78]),
we shall call them isobaric polynomials.

We shouldl remark at this point that we now have a tool to check (3.8).

5 Isobaric Polynomials

If we look at the tables in section 3.0 of Generalized Fibonacci and Generalized Lucas
polynomials we shall see that the monomials in each of the polynomials F,, and G,, is of the
form Aut§..t5* (which we shall write Aot ) where

k
S ey =n. (5.1)
=1
But this is the same as saying
(10,2921 iew) (5.2)

is a decomposition of the number 7, i.e., that 1+ ...+ 1+2+... +2+...+k+...+k = n where
1 occurs @y times, 2 occurs ao times, and so on. For example, (2°,3") is a decomposition of
18; 18 =2+2+2+3+3+3+3.

It turns out that the invelution determined by ion (4.1) takes h sym-
metric polynomials of total degree n to isobaric polynemials of isobaric degree n and in such

a way that the monomials are an encoding of all pessible decompositions of the number
n; thus the maximal number of monemials in such an isebaric polynomial'is equal to the
P of n. The tr ions at k are determined by the decompositions.
of n into parts whose maximal entry is k [HW, Ch.19).

number of d

The decomposition given in (5.2) is sometimes indicated by a shape of the sort illustrated
in fig.2, this being the shape for (4,3,12) = A.

[
L1

O

Figure 2

s called cither a Ferrer’s diagramor a Young, diagram [Yo). Such a shape is completely
determined once we know the “exponents” o of the decomposition (5.2). We can negard

T
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an isobaric polynomial as a polynomial whose indeterminants are the shapes determined by
the total degree n.

This relation among symmetric functions, decompositions of natural numbers, and
shapes is one which penetrates deeply into the theory and application of symmetric functions
(see, e.g., [Ha], [Mi], [Ma]). We shall talk more about these shapes in just a bit, but first
let us go back to the coeffici in the representations of the powers of the roots R; of the
core polynomial p(x) in (3.2).

These coefficients, which were themselves polynomials in t;,...,tx, were denoted by
symbols of the form 5(,,.‘1,). The notation suggests that there is a polynomial S(y 15),
and, indeed there is. We shall use the hat-notation to indicate the image of a symmetric
polynomial in the root-basis under the involution which takes it to the ESP-basis, that is to
the resulting isobaric polynomial. We shall call this image an isobaric reflect (of whatever

the symmetric preimage is).

So what is the symmetric preimage S, 15y of Sy )2 e

ust the Schur symmetric
polynomial determined by a shape of the form shown in fig. 3. in this case the shape
determine by (4,1%).

Figure 3
Such a shape is called, for obvious reasons, a hook diagram. But what is a Schur

polynomial?

6 Schur Symmetric Polynomials

1t will be convenient to write @ = (ay, ...ax) and to use the notation a - n to mean
that the shape A = (191,292 .., k%) is a decomposition of n . Then given any shape A the
isobaric reflect of the Schur polynomial determined by that shape is

Sy = det[Fay—i+3],1 £ 3,5 < n. (6.1)

The involution then can be used to write this expression as a symmetric polynomial in the
root-basis. However. the reflect will be of more interest to us.

/T—
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Two remarks are in order here. The first is that there is also a determinant directly in
terms of the ¢;s. And the second is that both of these determinants are versions of what is
known in the literature as the Jacobi-Trudi formulas [Maj.

Now we can answer the ion cc ing the coeffici of the formula (3.2). These
coefficients are just Schur-hook reflects.

1 suppose that a healthy “so what?” is in order here; we should try to give some
justification of what is so special about Schur-hooks, and about Schur polynomials at all.
First we give a table, computed using (6.1) showing the Schur-hook reflects for n = 6 in
terms of t's and F's. From (6.1) we see that our convention introduced in Section 2.0 of
denoting Schur-hook reflects of the form 5'(,,,, by F, is justified. So using (6.1) and (4.1)
and doing a little work we get the following table:

Hook Schur Reflects for n = 6.

5'(5) = 515'(5) 5 t;S‘(.,) ar 135'(3) + t45(z) + 153“, + teSm)
Sy = —(t28(a) + tsS(3) + taS2) + tsSa) + t6S(0))
Sz = tas'(a) it tas(z) ar t5$‘(1) A+ 1‘65'(0)
Sy = —(t48(2) + t55) + tsS(0))
S(z.m = ts.?m + 565(0)
Saey = ~(tsS(0))-

In this table 5‘40) = 1. The table suggests that there is a recursion relation among the
Schur hooks. This is the case. Namely, the following relation holds:

m

S(m—;,l!) =(-1) Z tis‘(vnrj)) (6:2)

i=j+1

Moreover, from (6.1), we see that 5(", is just F},, so that the F—polynomials are, in
fact, Schur hooks induced by Young diagrams consisting of a row with n squares. (S‘“m) is
a Schur hook induced by a column of m squares.) So, in particular, every Schur hook can be
written in terms of F's and F's are Schur hooks, which already gives Schur-hooks a certain
status in the world. (There are recursion formulas for Schur polynomials in general, again
in terms of F—polynomials, but they are a bit more complicated and not necessary for us
to look at here [Ma].)

Before explaining why the Schur polynomials are of interest in mathematics (and in
of interesting sequences that we get by
s, in fact at (1,1....)

physics), let us gather up a few more exampl

evaluating some of these sequences at the intege

(T
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For untruncated polynomials we have

B (L) =251 m.> 0 (6.3)

and
Gm(1,1,...)=2" —1,m 20. (6.4)

From (6.3) and (6.4) and from Euclid’s results on even perfect numbers, we have that,
whenever m is a prime and G,(1,1,...) is a prime, then Fy,(1,1,...)Gn(1,1,...) is an even
perfect number [LeV].

The pattern for F, continues for hooks:

g(m—;.l))(ly 1. (6.5)

but,

Sy, (6.6)
if A is not a hook

Thus (6.5) and (6.6) tell us that we can distinguish hook Schur polynomials from non-
hook Schur polynomials by evaluation!

But why are Schur symmetric polynomials important?

7 Schur Polynomials and Representation Theory

Schur polynomials, named after Issai Schur (1875-1941) were not brought into the
world by Schur, but rather by Georg Frobenius (1849-1917) (see[Ma, p.61]) who was also
T ible both for rey s) and character theory of finite
groups, though . possibly he did not appreciate the connection betwen the two. Schur did
see the relation of the polynomials named after him to the character theory of the finite

ion theory (using matric

symmetric groups and alternating groups (among other things). And, as it happens, this
relation to character theory is the source of their importance, and it turns out, not just to
the character theory of symmetric groups. But we are getting ahead of ourselves.

Though this is not the place for an exposition of representation theory and character
theory — there are many good sources for this subject ([Se]. [Hi), [Ro], [Fu], [St]), —we shall
sketeh enough of the ideas in order to see how the concepts in this paper apply.

A (faithful) representation of a group is merely an isomorphic copy of the group, prefer-
ably one that tells us something about the group. We are really interested in linear repre-

sentations, which is what Frobenius was interested in. A linear representation of a group
(for simplicity we restrict ourselves to finite groups) is a group of linear transformations of
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a vector space (for us, over the complex numbers, though this is not the most general case),
isomorphic to the given group. In turn, since a linear transformation can be represented by
a matrix, we can think of the representation as a group of matrices. The representation is
irreducible if the vector space, regarded as an algebra over the group ring of its linear trans-
formations, is not decomposable into a direct sum of subalgebras. It turns out that there
are exactly as many irreducible representations of a group as there are conjugacy classes of
elements in the group itself. (Two elements a and b in a group are conjugate if there is a
element g in the group such that a = g~!bg. Conjugacy is an equivalence relation.)

A character of a representation is then the map that assigns to each matrix in the group
of representations its trace, i.e. the sum of its diagonal elements. It is important for the
theory that similar matrices have the same trace—traces are not affected by basis changes
of the underlying vector space. The irreducible (complex) characters of a group are then
just the characters of the irreducible representations.

Suppose we consider the symmetric group of degree n, Sym(n), that is, we consider
the isomorphisin class of a permutation group on 7 elements. Suppose that Sym(n) has m
conjugacy classes. Two elements in a permutation group are conjugate iff and only if they
have the same cycle structure. But the number of different cycle structures in a permutation
group is just the number of ways that n can be written as sums of natural numbers less
than or equal to n, that is, it is equal to the number of decompositions of n. And with each
decomposition we can associate a Young diagram, that is a shape consisting of n squares .
This gives us m shapes. With each shape we can associate a Schur function (6.1), and with
each Schur function we can associate a character in an effective way. Now there are always
exactly m Schur functions of degree n (and isobaric Schur functions of isobaric degree n).
These m Schur functions of degree n contain all of the information necessary to compute
the character table of Sym(n).

The key to this computation is the Frobenius Character Theorem [Fu, p.93] which gives
us the irreducible character associated with a particular shape arising from the decomposi-
tion of n.

We give an example computing the character table of Sym(3), the symmetric group of
degree 3. For this we need the Schur reflects of isobaric polynomials of degree 3. There are
three decompositions of 3, namely, (1%), (2, 1), (3).

B

Figure

fd



Trueman MacHenry 15

Let us first do the shape (1,2) (1 + 2 = 3) with two squareson the top row and one
on the bottom: that is, we want to the irreducibl iated with the
Schur function S(1). The scheme is this: we first use (6.1) to find Sz;) in terms of
F—polynomials. We then write each F—polynomial in the determinant in terms of the
G—polynomials (recall that the G—polynomials are also a basis). The formula for this is

1
Fr=) —G
HEX =)
where G, = G{*...G*, and  z(p) = [Tj" p;!.

Next, we expand the determinant, multiplying out completely so that we have a sum
of products of G, and for each G, substitute (11,22, ... k**). Now the right hand side
of our formula is in terms of (1#7,2#2 .. k#*) = p. This is just the cycle structure of an
element in a conjugacy class of Sym(n), one such symbol for each class. In the case of
Sym(3). there are 3 classes (the class of cycles of length 3. the class with a product of two
cycles, one of length one and one of length 2, and a single one-cycle. the identity element.

with class sizes 2 and 3 and 1, respectively).

Finally we multiply each monomial in this expression by ;[':—-
the size of the conjugacy class c[u]. This is just the value of this character at each class of
Sym(n). This will be just the coefficient of the appropriate decomposition (1,212 . k#*) =
I

a number determined by

So let’s do the computation for the character deternined by Sz ,). By (6.1) S-(.“) =
FyFy — Fy, and writing each Fj that appears in this determinant in the G—basis gives us
=G, K= %Gf + %Gz, and F3 = %G‘;’ + %Glcg + %Gg. So that after substituting in
the determinant and expanding we have the expression

1 1
=G} +0G Gy ~ -G.
341 1G2 = 3Gy
Substituting the cycle structure symbols for the G's gives
1,3 1
7(1%) +0(1,2) - 2(3).
309 +0(1,2) - £(3)

And, finally, multiplying each term by the class size adjuster 7. we end up with 2(1%) +
0(2.1) — (3). that is just the second row of the character table of Sym(3) below:

Class 1 3 2
Schur %) (1,2) (3)
(3) 1 1 1
(2,1) 2 0 =1
(1%) 1 -1 1

Ve . i



16 From Fibonacci Numbers to Symmetric Functions

This algorithm can be simplified somewhat; however, the particular prescription given
here traces through the isomorphisms that map the Schur polynomial to the appropriate
character function by way of the Frobenius character theorem. There are three such steps,
the Jacobi-Trudi formula which represents the Schur polynomial as isobaric polynomials in
the F—basis, the map which takes this result and represents it in terms of the G—basis, and
then the involution which takes this version to a symmetric polynomial in the CSP-basis,
which is just the equation involved in the Frobenius Character Theorem [Macd or Fulton|.
Below we have also listed the isobaric versions of the Schur polynomials for n = 3 in the
ESP- or t-basis. The character determined by the shape (3) (first row of table), and by (1%),
(third row of table), are constructed using the same procedure.

Sz =18+ 2t1ta + s
S(z.x) = il =iy

5(1%) = ta:

Applications of character theory to other parts of mathematics can be found in [St].
Character theory was used extensively in the recent classification of the finite simple groups.
It is also important in the physics of elementary particles [Hi], [Ro], [Ha], [Mi].

It should be mentioned here that the application of symmetric functions to representa-
tion theory is by no means confined to the symmetric groups. One of the most active areas
of algebra nowadays is the search for representations of algebraic systems, especially those
that are important in physical theory, e.g., in Lie Algebras. The symmetric functions play
an important role in this enterprise. (For a glimpse see [Fu]).

8 Weighted Isobaric Polynomials

The Generalized Fibonacei Polynomials, i.e., the F—sequence and the Generalized
Lucas Polynomials, i.e., the G—sequence, belong to a much larger class of isobaric polyno-
mials, that is those that can be usefully organized into sequences. The sequences that we
have in mind are those that are determined by assigning a weight w; to the indeterminants,
t; j = 1,2,...k,... To motivate this idea, we point out that the coefficients of F,, are
uniquely determined by the exponent vector @ = (y, ..., @) of the monomial term ¢ ...t3*
This is a result of the recursion in (3.6). Because of (3.7), a similar result holds for the

polynomials Gy, In the case of Fy, we have that, for a given o, the coefficient is just the

(Z“f" ) ¢ ®.1)

=1k

multinomial coefficient

(T
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In the case of G,, the analogous result is

(Z(:_l)n. 82)

For an arbitrary weighted isobaric pol; ials, the coeffici

of the a term is

48 (Ea,) T i
o = = et
iy 5l
The weight vector being given by w = (wy,w, ...). Thus a member of a sequence of weighted
isobaric polynomials is a polynomial of the form P, ., =Y, , Aat®.

akn

Weighted Isobaric Polynomials for n =0 ton =5
Po=1
P =wity
Py = wit} +waty
Py = wit] + (w1 +wa)tat + waty
Py = wit] + (21 + wo)tits + watd + (w1 +ws)tats + wats
Py = wit] + 3wy + wo)tits + (w1 + 2wo)tyt3 + (w2 + ws)tats + (2w) +ws)thts
(w1 + wy)tity + wsts
Ps = w1t + (dwy + wo)tits + wotd + 3(wy + wo)3t3 + (3wy + ws)t3ts + wtd
+2(wi + wp + wy)titaty + (w1 + wa)tits + (w2 + wa)tats + (w1 + ws)tats + wets.
The Weighted Isobaric Polynomials (WIPs) provide a source for recursive sequences (

in fact, all recursive sequences are accounted for in this way). The recursion is given by the
formulas

1
Pllgiw) = Y tiPuny + Wntn- (8:3)

J=1
The weight vectors for the Generalized Fibonacci Sequence and for the Generalized Lucas
Sequence, as can be inferred from (8.1), (8.2) and (8.3), are, respectively, given by w; = 1

for all j. and w, = j for all j. Other famous WIP-sequences are the hook-Schur reflects,
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of which, of course, F,, is one. The weight vector for the hook reflects associated with the
decomposition (n — 7,17) is w(yy = (=1)7+D(0;...0,1,1,...) with 70's, and the rest 1's.
For generating functions for the weighted isobaric polynomials see [MT1].

There are some very interesting algebraic facts about these WIP-polynomials. For
example it turns out that addition of isobaric poelynomials of the same isobaric degree gives
the same result as taking the isobaric polynomial that is associated with the sum of their
weight vectors. That is we can add isobaric polynomials by adding their weight vectors at

the same time maintaining isobaric degree.
P+ Py = Prwsp (84)

Thus, we can see from (8.4) that under addition the isobaric polynomials (or rather sequences
of isobaric polynomials) have the same algebraic structure as the weight vectors under vector

addition. This has as consequences that:
The set of WIP-polynomials of isobaric degree . is a free Z — module.
Hence.
The set of all weighted sequences of WIP-polynomials is a free graded Z-module.

Morever, it can be proved that every WIP can be written uniquely as a linearly combi-
nation of of hook-reflects, that is,

The weighted sequences of hook reflects constitute a basis for this module.

These statements are proved in (MT1]. There is much interesting and useful algebraic
structure among the isobaric polynomials that we haven’t discussed here; e.g., a useful
operation that ties this structure to the algebra associated with multiplicative arithmetic
functions is the convolution product (see, e.g., [MacH1] (MT1][MT2]).

In Section 2.0 and in (6.3) and (6.4) we looked at the evaluations of Fz,m), of G(a,m)
at (1.1) and of F,,, and G, at (1,1,..) and found that we got some interesting sequences of

numbers. We can also easily see that Fj ,,, gives us that are r ively d 1

on the previous k terms, generalizing the Fibonacci numbers recursive dependency on the
previous two; that is, the numbers are defined recursively by fu«; = 27—, fj. We might
wonder what the analogous results are for more general cases. From (6.3) and (6.4) together

with (8.1) and (8.2) we can deduce these two interesting results:
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Yo L
Z( ul)n:? —1=§( ; )_1.1120.

akn
which relate the numbers on the left hand sides involving decompositions of n to the binomial
coefficients and the Pascal triangle.

If we ask similar questions of the weighted isobaric sequences in general, we have that

n-1
Prw(l,1) =Y 277 ) o+ wn
i=1

and, hence that

Sda= (BT wa, $ -1, 4

akn akn i=1

At the end of section 1.0, we mentioned that the generalized Fibonacci polynomials and
the generalized Lucas polynomials, i.e., the F— and G'—polynomials, are companionable in

a number of ways. Here is another interesting relation between them.

thus F} is a derivative of G,, for every integer j such that 0 < j < n. It is quite likely that
there is no other pair of WIP-sequences with this derivative relationship. It would be useful
to know this for sure. It would also be useful to have a clear definition of what ought to be

meant by a companion sequence.

Coda

At the centre of the spider web lies the core-polynomial, that is, the generic monic
polynomial in one indeterminant. The web radiates to the ring of symmetric functions
in k variables and their reflects in the ESP-basis giving the isobaric polynomials. These
include all of the k-variable Schur functions or, rather, their isobaric reflects, giving a direct
connection to the character table of the symmetric group of degree k, which is, in fact, the

Galois group of the core polynomial.

And they include the ( ive) of weighted isobaric poly ials, all of which
can be expressed in terms of hook-Schur reflects. When the #'s are evaluated at some vector

with A integer components, that is when the core-polynomial is specialized to a polynomial

Ve . i



20 From Fibonacci Numbers to Symmetric Functions

with integer coefficients, then the WIP sequences give us all recursive sequences of integers,
luding the Fibonacei and the Lucas sequence.(Various fields of coefficients are

of interest also.) There are also field extensions related to the core polynomial which are
important (MacH1].

The web extends even farther than we have indicated in this essay as can be surmised
from [Fu] or [Ma].
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