e

CQUBQ o Mathematical Journal
Vol. 6, N* 1, (511-569). March 2004.

Numerical Solutions of Ordinary
Differential Equations

Michael J. Mezzino, Jr.
University of Houston - Clear Lake
Houston, Texas 77058
USA.

ABSTRACT
Tt paper explains the mothods of Runge-Kutta, Adams-Bashforth and
Bulieseh-Stoer for approximating the solution of a first order initial value prob-
lm wd the Numerov method for approximating the solution for a class of
s ander Bmear initial valuo problems. Mathematica is used to derive some of
e Bmdas. solve the example equations, and plot the solutions.

Mt Seremtial equations do not have explicit sol Even if a diffe ial
“ation bas as explicit solution, the solution may be so complicated that it is useless
e practiond parpons.

(0 e ther Band, we can try to find an approximation to the solution of a single
Al sgestion with an initial condition. Later, we will investigate numerical
Sl % systenns of ordinary differentinl equations. For example, suppose we are
v a Bt ceder initial value problem

{ V= f(t)

v(a) = w, .
Ul A sl & < £ € b Although we may not be able to obtain a formula for the
wolution of 0.1), we can subdivide the interval as
amtg<ty < <ty=b
ek Ty % wenign appraximato values Yy tot, forn=1,... N. Instead of a formula

:::u ‘h.f‘ 5 Ssaximation to the solution of (0.1) expressed as a table of the Y;,'s
s of the 1, 's. By graphing the table we can visualize the solution.

511

RiEm——

b

512 Michao! J. Mezzino, Jr.

One al l\m mnln goals in this paper is to explain the mdhodl of RW&KUM
Ad th and Buli for ap, fon of a first
order initial value problem, and the Nnm-vv m!u'nd for nppmxlmluu the so-
Jution for o class of second-order linoar initial value problems. These complicated
dmﬂmmnnwdmmcprowulu however. R:rtbumnnmwnbymm
simplor hods of | to differential equations.
Thcuimplmtofnllhlhcﬁuhmhod -hkthbelnSoedonl The next
simplest is the Houn method, which is derived from the Euler method in Section 2.
Section 3 is devoted to the Runge-Kutta method. Section 4 discusses the error analy.
sis, with a complete proof in the case of Euler's method, The development continues
with the presentation of the multistep methods of Milne and Adams-Bashforth in
Section 5. The extrapolati hnk of Bulirisch-Stoer are d in Section 6.
These and other solution methods available in ODE are discussed in Section 7. We
compare them briefly, and then in Section 8 we explain the details of how the Eules,
Heun and Runge-Kutta methods are implemented in ODE. In Section 9 we discuss
Mathematica's built-in numerical solver NDSolve. A brief discussion of implicit
methods and stiff equations is presented in Section 10 with stability presented in Sec-
tion 11, Adaptive step size h treated in Section 12. In Section 13 we present the
theory and Math I ion of the N method for the numerical
solution of second order differential equations of the form y” = f(t)y + g(t). Finally,
in Sections 14 and 15 we show how these algorithms can be extended to systoms of
differential equations.

ODE is a comprehensive Mathematica package written for students and instructors
of ordinary differential equations. It can be found at

http://math.cl.uh.edu/ode/htmldocs /newode.htm.

The complete documentation for this pacikage can be found in two forms at

http://math.cl.ub.edu/ode/3x/ref/ref htm.

First, as o hypertext linked document and second, as a sot of postscript files
suitable for printing. It is not necessary to understand Mathematica or ODE to resd
this paper. Mathomatica together with ODE are used to derive some of the results
and to perform all of the computations and produce all of the plots.

1 The BEuler Method

The Euler' method is the simplest method used to find numerical solutions to dif-
ferential equations. In spite of the fact that it is rarely used in practice, we

to study it because it sorves as a model for more complicated methods such as the
Runge-Kutta mothod that we shall study in Section 3.

"eonhard Euler (1707-1783). Born in Basel, Switserland. Worked most ol Ml life in »
snd Saint Petorsburg Wae the most profific of all time. Co
evolution and systematisation of asalysis. in pastiowlsr 10 the founding of the caleulus dm
snd the theories of differential equations. fesctioms of complex variables, and special fusctions,
and also lakd the foundations of mumber theory & & rigorous discipline. Concernod himeelf with
spplications of mathematics 1o Gelde se diverse a lottaries, hydrashic systoms, shipbuilding sad
nuvigation. actuarial science, desmography, Bueid mechanics, astronomy, and ballistics.

TS .‘

Numerical Solutions of Ordinary Differential Equations 513

jective i t an
awthod can be explained as follows. The objective is to construc
e 10 the :l:uon:fpm initial value problem (0.1) fora <t < b. We
Awiche the isterval a S 1 S b into equal subintervals:

amtg<t < <ty=b

1, is called the step size. Let us first suppose that (0.1) has a

:::—: ;l: :ﬁ;rh e assume to be twice differentiable. We need the finite Taylor
opRaRIC
ti-to)? o
pity) = wita) + (tr = to)y/(to) + = 3 2y (), (1.2)

wheewe & « & < 1. Using (0.1), we can rewrite (1.2) as
2
yit) = o) + S to.) + /o) 13)

New & & & & positive number less than 1, the quantity A? is even smaller. Therefore,
o e e approximate equality

ulty) = ylto) + h f(to,). (1.4)

Pl tiad comdition of (0.1) is y(to) = po. We can use this as the starting point
b & wgueser of sumenical approximations (Y;,), by taking Yy = yo. However there
iy S ool errors or other innccuracies which suggest a more general approach,
D wah & value Yo, not necessarily equal to yo. Let us now define Y; by

Yi = Yo + h f(to, Yo). (1.5)
Thon ¥ s s appraximation to y(ty).

Sugpeme sow that the solution of (0.1) cannot be easily or explicitly found. In
Il 8 e e coame with most differential equations. (The function £ in (0:1) must
b quse sssmgde 10 allow us to find a symbolic solution of (0.1); even then ingenious
fethids see sometimes roquired to find the solution.) Although we do not know
U e ow s approximate value Y. Furthermore, if we put

Ya=Yi+hf(t,, V),

‘n)\-r:w W s expect Y3 to be a reasonable approximation of ultz). More generally, we

Yass = Y+ h f(tn, Ya) (1.6)

B <nsN-1 The Buler
(g the wobstion to (0.1) by

;

method or tangent method consists of approx-
means of (1.6), which we call the Euler method

Michael J. Mezzino, Jr.

514
y®
b £
n__——“
£ L 4
~
Yo

® o !

' to 0H L7

The Euler method approximation
The above picture shows the geometry of the Euler method. From (0.1) we know
the point (fo, ¥p) and the slope of the tangent line to the solution curve at (o, Yp),
namely f(to,Yo). Thus the tangent line is the graph of

t— Yo + (t — o) f(to, Yo)-

We can obtain an approximation Y; to y(¢;) by moving along this tangent line until ¢
reaches t1; then Yg + (t1 — o) f(to, Yo) = Y1, say. Once Y] is determined, we can com-
pute f(1,Y1), which is an approximation to f(t1,y(t1)), which in turn approximates
the slope of the tangent line to the actual solution at ¢;. Continuing in this way, we
obtain a broken line which approximates the solution curve.

To see how the Euler Method works, we use it to approximate the solution to a
simple first order linear equation.

Example 1.1. Use the Euler method to find an approzimate solution to the initial
value problem
{ y=y+1,
(L.7)
y(0) =0,

for 0 <t < 1. Use step size h = 0.1 and compare the approrimation with the exact

solution.

Solution. The Euler method formula (1.6) for the initial value problem (1.7) with
step size h = 0.1 becomes

Ak =00 06, 2 1),

for 0 <n < N —1. The interval 0 < t < 1 is divided into 10 equal pieces, so N = 10.
We are given Yy = 0; then Y; = Yp +0.1(Yp + 1) = 0.1 and

Y=Y +0.1(Y1 +1) =0.1+40.1(1.1) = 0.21.

Numerical Solutions of Ordinary Differential Equations 515

Continuing in this way, we get the first three columns in the following table:

tn Yo Yexact(tn)
0.0 0.0 0.0

0.1 0.1 0.10517
0.2 0.21 0.22140

0.3 0.331 0.34986
0.4 0.4641 0:49182
0.5 0.61050 0.64872
0:6 0.77156 0.82212
0.7 0:94871 1.01375
0.8 1.14359 1.22554
0.9 1.35795 1.45960
1.0 1.59370 1.71828

5©® oo wN = o3

Since y' = y -+ 1 is a first order linear differential equation, the exact solution of (1.7)
is easily found to be

Yexast(t) =" =1
Then Yexact(0:1) = €%1=! & 0110517, Yexact(0.2) = €2~ = 0.22140, and so forth.
Values for the exact solution are shown in the fourth column.

In the following plot we compare the exact solution of (1.7) with the approximate
solution obtained by the Euler method.

»(®)
15
s
123
\
0.7
0.5

0.25

t

. 0.2 0.4 0.6 0.6 i

The exact solution of ' =y +1, y(0)=0 and
an approximate solution found by the Buler method

The difference [Yi0 — y(t10)| is approximately 0.12. an error of less than ten percent,
which can be considered reasonable. We shall see that more sophisticated methods
such as the Heun method and' the Runge-Kutta method give much better results ®

Next let us consider a differential equation for which it is impossible to find the
solution, at least by elementary techniques.

516 Michael J. Mezzino, Jr.

Example 1.2. Use the Euler method to find an approzimate solution to the initial
value problem
Y =5-1*3,
{ (1.8)

y(0) =0,
for 0 <t <1. Use step sizes h = 0.1 and h = 0.01 and compare the results.

Solution. The Euler method formula (1.6) for the initial value problem (1.8) with
step size h is
Yop1 = Yo+ h(5 - 12Y2). (1.9)

Taking h = 0.01 and then h = 0.001 in (1.9) gives us the following table:
t Y, (h=0.1) Y, (h=001)

0.0 0.0 0.0
0.1 0.50000 0.49998
0.2 0.99987 0.99886
0.3 1.49588 1.48647
0.4 1.96575 1.92540
0.5 2.34422 2.24190
0.6 2.52216 2.36963
0.7 2.44457 2.32246
0.8 2.22875 2.18041
0.9 2.02021 2.01484
1.0 1.85237 1.86018
Here is a plot which shows the diff in the approximations obtained with the
different step sizes:
Y

¢ 0.2 0.4 0.6 0.8 il

Approximate solutions to y' =5 — t?y®, y(0) =0
found by the Euler method with step sizes 0.1 and 0.01

Finally, we give an alternate derivation of the Euler method formula (1.6). Suppose
that we have an exact solution y = z(t) of the initial value problem (0.1). Then if we

Numerical Solutions of Ordinary Differential Equations 517

integrate 2'(t) from ¢, to tn4+1 we obtain

tng1 tnt1
/:" z’(t)dt:/tn £t 2(t))dt,

which can be rewritten as

tnta
oltntr) = 2(ta) + [£t 2(0)de. (1.10)

Consider the graph of the function ¢ — f(t,2(t)). The integral on the right hand
side of (1.10) equals the area under this graph from t, to tn+1, as indicated by the
following picture:

Sftz(®)

S(tny(ty))

Integral derivation of the Euler method

We can approximate the actual area under the graph by the area of the shaded
rectangle, whose area is

F(tns2(tn)) (Entr = tn)-
From (1.10) we obtain the approximation
2(tn1) & 2(tn) + £(tn, 2(t)) (Ent1 = tn) = 2(tn) + £ (tn, 2(tn)) h- (1.11)
In (1.11) we replace z(t,) by Y and z(ta+1) by Ya41. In this way we obtain
Yai1 = Yo + h f(tn, Ya),

which is the same as the Euler method formula (1.6).

2 The Heun Method

As a first attempt to obtain an improvement of the Euler method formula (1.6), let

us replace f(tn,Yn) with the average of f(tn, Ya) and f(tn41, Ynt1); this leads to the
formula

Yoga = Yot 3 (fltms ¥o) # Fltnat, Yosn). (212)

518 Michael J. Mezzino, Jr.

Unfortunately, Yn4+1 occurs on both sides of (2.12), so that we cannot obtain it without
solving the equation for Yy+1; this may be difficult. Fortunately, we already have an
approximation for Y41, namely the value

Yo + b fi(tn, Yn)

from the Euler method formula (1.6). Let us substitute Y, + h f(tn, Y3) for the Y4,
occurring on the right hand side of (2.12). The result is

h(f(t“,Y") e (e e (L y,.)))

Yop1 =Yn + 3 (2.13)
The Heun? method or improved Euler method consists of approximating the
solution to
{ ¥ =fty)
(2.14)
y(a) = o,

by means of (2.13), which we call the Heun method formula.

The Heun method is an example of a predictor-corrector method. The Euler
method is used to “predict” a value for Yy 41; this value is then used in (2.13) to
obtain a better (or “more correct”) approximation.

Example 2.1. Use the Heun method to find an approzimate solution to the initial
value problem
¥ =523,
{ (2.15)
y(0) =0,

for 0 <t < 1. Use step size h = 0.1. Compare the Heun method approzimation with
the Euler method approzimation.

Solution. Let f(¢,Y) = 5 — t?Y3. Since the Euler method approximation to Yo is
Yo + h f(tn, Yn) = Yn + A(5 — t2Y;3), we compute

Fltnt1, Yo + b f(tn, Ya)) = f(tn +h Yo +h(5—£2Y3))
= 5— (tn + h)2(Ya + h(5 — £2¥3))°.
We also have f(tn,Yn) =5 — t2Y;3. Thus the Heun method formula (2.13) becomes
Yoy, =t ;(10 — 2V ~ (tn + h)2(Ya + (5 — 27))°) (2.16)

We obtain Yy = (h/2)(10 — h®(125)), and so forth. Taking A = 0.1 in (2.16) gives
us the last column in the following table. The middle column is computed using the

2Karl Heun (1859-1929). German mathematician.

Numerical Solutions of Ordinary Differential Equations 519

Buler method formula (1.6).

t Y, (Euler) Y, (Heun)
00 0.0 0.0

0.1 0.50000 0.49994
0.2 0.99987 0.99788
0.3 1.49588 1.48089
0.4 1.96575 1.90680
0.5 2.34422 2.20007
0.6 2.52216 2.30745
0.7 2.44457 2.26215
0.8 2.22875 2.14016
0.9 2.02021 1.99622
1.0 1.85236 1.85650

The data in this table can be visualized by means of the plot below.

N 0.2 0.4 0.6 0.8 1 ¢
Comparison of approximate solutions to y' = 5 — t2y® y(0) =0,
found by the Buler and Heun methods with step size 0.1

3 The Runge-Kutta Method

The Runge®-Kutta? method selected for this paper is an improvement of both the
Euler method formula (1.6) and the Heun method formula (2.13) that involves a
weighted average of four values of f(#,y) taken at different points in the interval
tn St <tnya.

In order to motivate this, we first reformulate the Euler and Heun methods in a
common format which can be generalized. The notations O(h?), resp. O(h%), indicate
terms which are proportional to h?, resp. h®, plus higher powers of h.

3Carl David Tolmé Runge (1856-1927). Applied Mathematics Professor at Géttingen. Runge
devised his numerical method about 1895.

“Martin Wilhelm Kutta (1867-1944). German applied mathematician who made important con-
tributions to aerodynamics, Kutta extended Runge's method in 1901.

520 Michael J. Mezzino, Jr.

The Euler method can be reformulated as the problem of writing

Yop1 —Ya =ko

where kg is chosen so that so that kg = hy'(tn) + O(h?), the first-order Taylor ap-
proximation of y(t, + k) — y(ta). The simplest choice is ko = hf(tn, Yn) as defined in
the Euler method.

The Heun method can be reformulated as the problem of writing

Yas1 = Yo =v0ko + 11 k1

where ko = h f(ta,Ya), k1 = hf(tn + coh,Yn + Boko) and where the constants
a0, 80,70, 11 are chosen so that o ko + 71 k1 = hy'(ta) + (B2/2)y" (ta) + O(h®), the
second-order Taylor approximation of y(t, + h) — y(t.).

Example 3.1. Find all possible choices of the constants ao, Bo,70,71-

Solution Using the subscript notation for partial derivatives, we write the Taylor
expansion of y(t, + h) — y(tn):

hy(tn) + (R*/2)y" (tn) = hf (tn, Ya) + (h*/2)(filtn, Ya) + (f f)(tn, Ya)) + O(R%).
Using the Taylor formula in two variables, we have
0 ko+71 k1 = (0 + 1)AS (tn, Ya) + 7100 B2 feltn, Ya) + 71180 h2(££,)(tn, Ya) + O(R).
These will agree to within O(h®) if and only if
n+n=1 ma=1/2, mbp=1/2

This implies that ap = o = 1/271, hence a one-parameter family of solutions which
can be written
Y =1-m,a0=Fo=1/2m1 L}

In particular this is satisfied by the symmetric choice v =1 = 1/2,a0 =1,8 = 1
leading to the Heun method

Yoir = Yo = (h/2)f(tn, Ya) + (R/2)f(tn + b, Yo + hf (tn, Yn))-

Another choice is 70 = 0,71 = 1,9 = 1/2, fp = 1/2 which leads to the second-order
difference scheme

Yai1 = Ya = hf (tn + (h/2), Yo + (h/2)f(tn, Yn))-

Similarly one can define difference schemes based on the third-order or fourth-
order Taylor approximations, and so forth. The Runge-Kutta scheme of order four is
formulated as the problem of writing

Yat1 = Yo =v0ko + 71 k1 + 72 k2 + 23 k3,

Numerical Solutions of Ordinary Differential Equations 521

where

ko = h f(tn, Yn)

h f(tn +aoh, Yn + Boko)
h f(tn + arh, Y, + Biky)
ka = hf(tn + aoh, Yo + Boks)

Tz
{1

50 that we have

h2 h3 hi
oko + 71 Ky + 72 k2 + vs ks = hy(ta) + Y () + () + 57y () + O(h®):.
(3.17)
In order to find the ten constants (ao, . ..,73) we match the corresponding terms

in the Taylor expansions of both sides of (3.17). Using the subscript notation for
partial derivatives, the right side can be expanded by using the chain rule applied to
the differential equation y' = f(¢,y) . Thus

' = fot Sy Y= fut 2 e Fofyt £ fuy + £y

o 1

with a corr expression for y””, involving the partial derivatives of orders one,
two and three. The left side of (3.17) can be expanded, by using the Taylor formula
in two variables, applied to each of ki, kg, k3. In this way one obtains a formula
involving f and the partial derivatives fi, fy, fet, - . ., fyyy @ total of ten terms; (3.17)
then yields ten simul quat for the ten tants (@o,...,73). There is
no unique solution of this system, but the classical Runge-Kutta method chooses one
which is perhaps the simplest. This is defined by

h
Y1 =Ya + g(am + 2a9n + 2035 + a4n), (3.18)

where

an = f(tn, Ya),

h h
agm = f(fn + EWYn + 5‘111»))

Q3n

h h
f(t,. n E.Yn + E“h) 5

ain = f(tn + h Yo + hagn).

We call (3.18) the Runge-Kutta method formula.. It may be shown that in
case f(t,y) depends only on t, then the Runge-Kutta formula (3.18) reduces to the
familiar Simpson’s rule for approximating an integral by the integral of a quadratic
polynomial. Therefore we can assert that (3.18) is a generalization of Simpson’s rule.

522 Michael J. Mezzino, Jr.

The Runge-Kutta method is signifi ly more licated than the Euler and
Heun methods and is considerably more accurate. Computers can easily handle this
increased complexity.

Mathematica contains a package which will produce the systems of equations
for any Runge-Kutta scheme. It is called ”Butcher.m” and it can be found in the
”NumericalMath” directory . For example, to produce the system of 10 equations
referenced above (see [Butcher]), evaluate

<<NumericalMath ‘Butcher'
RungeKuttaOrderConditions[4,4]

Example 3.2. Use the Runge-Kutta method to find an approximate solution to the
initial value problem

y' = 10(1 — t2y° + 2t1y3),
(3.19)

¥(0) =0,

for0 <t < 1. Use step size h = 0.1. Compare the Runge-Kutta method approzimation
with the Euler and Heun method approzimations.

Solution. Let f(t,y) = 10(1 — t%y® + 2t*y®). We compute
aio = f(0,0) =10,
az = f(0.05,0.05 x 10) = 9.99688,
azo = f(0.05,0.05 x 9.99688) = 9.99688,
a0 = £(0.1,0.1 x 9.99688) = 9.90109.

Hence
Y: = 0.0166667(a10 + 2a20 + 2a30 + a4o) = 0.998144.

Continuing in this way we get the last column in the following table. Similar calcula-
tions using the Euler and Heun method formulas yield the second and third columns.

n t, Y, (Buler) Y, (Heun) Y, (Runge-Kutta)
0 00 00 0.0 0.0
1801 1.0 0.99505 0.99814
20 0:2 1.99010 1.83994 1.90323
3 03 268744 1.99998 2.27305
4 04 2.09780 1.80606 2.08513
5 05 1.85703 1.64398 1.85736
6 06 1.65626 1.54332 1.70104
7 0.7 1.60945 1.50988 1.61893
8 08 1.56762 1.56258 1.61459
9 09 1.68005 1.75588 1.72850
10 1.0 1.95025 2.33931 2.19565

Visualization of the data in this table is provided by the plot below.

Numerical Solutions of Ordinary Differential Equations 523

0.2 0.4 0.6 0.8 = O
Approximating solutions to
¥ =10(1 - t?° + 2t*y°, (0)=0
Thin=Euler, Dashed=Heun, Thick=Runge-Kutta

4 Numerical Errors and Stability

Numerical Errors

A common way to classify methods is to give their order of accuracy. This order is
associated with truncation error as defined by the particular method and the Taylor
expansion of the solution y(t). Taylor’s theorem states that if y(t) has k+1 continuous
derivatives on the interval tg — § < t < to + §, then

y(t) = y(to) + ¥/ (to) (¢ — to) + y//;‘” (b= to)? + oot y(k;#(t —t0)* + TE,

where to — 0 < t < to + &. Here the Taylor remainder TE is called the local
truncation error; it is defined by

_ ()
(k -+ 1)
where tg — 6 < 7 < tg + 6. If t) = to + h, then we may write

(="t

TE =

and we say that the local truncation error is proportional to h*+!. When this occurs,
we say that the method is of order k. The reason for defining it this way is because
the global truncation error

GTE = |y(t:) = Y (t:)|

is asymptotically proportional to one lower power of h when h tends to zero. Here we
use y for the true solution and Y for the approximate solution. In order to discuss
the error analysis, we introduce the big-O notation.

524 Michael J. Mezzino, Jr.

Definition. Suppose that f(h), g(h) are functions defined in some interval 0 < h < a
with g(h) > 0. Then we write

f(h)=0(g(h)), t—10

provided that there eist constants M > 0,8 > 0 so that |f(h)| < Mg(h) whenever
0<h<d.

For example sin(h) = O(h),h — 0, but sin(h) # O(h?),t — 0. In many cases we
will omit the quantifier h — 0 when it is obvious from the context.

This may be applied to the discussion of error analysis of the various schemes
introduced in this paper. Typically a given scheme (Euler, Runge-Kutta, etc) will
satisfy a pair of statements of the form

TE =0(h**') and GTE=0(h*) h—0

for a certain value of k.

To see how this analysis is done, let us consider the Euler method. Using Taylor’s
theorem,

e s,
Y(tnt1) = y(tn) + hy'(ta) + 54" (n) (4.20)

for some 7 € [tn,tn41]. To analyze the error in the Euler method, we state the Euler
method in terms of the approximate solution ¥ by

Yos1 =Ya+hf(tn,Ya) (R=0,1,...,N—1)

and subtract this equation from equation (4.20) to obtain

2
Y(tn+1) = Yns1 = y(tn) = Ya + A(f(tn, y(tn)) = f(tn, Ya)) + %y"(ﬂ)- (4.21)

The error in Y41 consists of two parts: (1) the local truncation error T'E introduced
at step t,4 and (2) the propagated error

Y(tn) = Yo + A(f(tn, y(tn)) = f(tn, Yn))-

The propagated error can be simplified by applying the mean value theorem to f(t, z),
considered as a function of z:
f (tn,
Fltmvlta)) = Fltm Vo) = 2L (40 7).
where £ is between y(t,) and Y;,. We let €, = y(t,,) — Yn, and use the above to rewrite
equation (4.21), obtaining

1 Ky (m) i

E"+x=(1+ha—z 2

These computations yield a general error analysis for the Euler method for the initial
value problem as stated in the following theorem.

Numerical Solutions of Ordinary Differential Equations 525

Theorem 4.1. Assume

0 < K = sup

% < oo. (4.23)

where the supremum is taken over (t,z) of the form z = y(t) with to <t < b. Then
the Euler method solution (Ya,) satisfies the error bound

_ | < elb-to)K i elb-talK _ g i 42
[y(tn) = Yol < e [y(to) = Yo| + h{ ——7—— | sup ly“(@)l; (429)
to<t<b

for all n with to < tn < b.

Proof.The proof can be accomplished by mathematical induction on the sequence of
numbers €,,n=0,1...,N. From equation (4.22) we have

lenstll < Alen] £ B (n=0,1,...,N = 1), (4.25)
where A =1+ hK, B = h*M/2 and M = supy, <e<s (Y (t)]- We propose to show that
B

1s,.|§len|A"+m(A"f1) (= 001 o sy W) (4.26)
Clearly (4.26) holds for the value n = 0. Assuming its truth for the value n = m, we
have
lem+1| < Alem| + B
< Afeold™ + 2= (4™ ~1)) + B

|€01Am+1+%(/‘m“*1)y

Il

which proves (4.26) for the value n = m + 1, and hence for all n by mathematical
induction. To obtain the conclusion (4.23) we apply this with A = 1+hK, B = h2M/2
and taking note of the inequality 1 + z < e* to write

2/
lenl < Jeol(L + RE) hTA;((/—Z((l +)™ = 1)
! M he
koklnl{_Fﬁ(e)

hM
< (enlalt=t)Ke G=ta)K _ 7).
< leole! +ox 1)

IA

Making the identification én = y(tn) — Y completes the proof L
When Yy = y(to) (as is commonly the case), (4.24) can be written

[y(tn) —Yal S chy, to<ta<b

526 Michael J. Mezzino, Jr.

where c is a constant. Therefore we say that the Buler method is an order one or first
order method. When h is halved, the error is halved. Also, the Euler method is said
to converge with order 1. In general, if we have

ly(tn) = Yal Sch¥, to<tn <,

then we say that the method is an order & method or is convergent with order k. To
see what this means, let us consider an example.

Example 4.1. lllustrate the error bound (4.23) for the equation
Y =4t ¥(0) =0
whose ezact solution is y(t) = 2t.

Solution. The error formula (4.22) becomes

€nt1 = €n + A2, € =0.
Using induction, we get
€n =nh?, n>0.
Since nh = t,,
€ = tnh]

In the above example we see that for each ¢, the error of approximation in the Euler
method at ¢, is proportional to h. The local truncation error T'E is proportional to
h?, but the cumulative effect of these errors is a total error proportional to h. The
following table summarizes the orders of the methods in ODE for the other approxi-
mation methods which occur in this paper. The methods of Milne, Adams-Bashforth
and Bulirsch-Stoer in addition to an implicit Runge-Kutta method will be discussed
in later sections. In ODE, RungeKuttad is the classical Runge-Kutta method defined
in Section (3) and RungeKuttad5 is the Runge-Kutta-Fehlberg method.

Method Order
Euler 1
SecondOrderEuler 2
Heun 2
ImplicitRungeKutta 3
RungeKutta4 4

RungeKuttad5 4(5)

Milne 4
AdamsBashforth 4

BulirschStoer variable

NDSolve unknown

Numerical Solutions of Ordinary Differential Equations 527

Example 4.2. Consider the initial value problem

{ y'=t%y,
y(0) =1

Find the ezact solution att = 1. Then use the Buler method with
h e {1/8,1/16,1/32,1/64,1/128,1/256,1/512}.
Create a table showing the absolute errors corresponding to the various step sizes.

Solution. First we compute the exact solution at 1.0 and call it exact.

exact = ODE[{y’==t"2 y,y[0]==1},y,t,
Form->Explicit,Method->Separable] /. t —> 1.0

Then we use

TableForm[Table[{1/2°k,diff = exact-Last [Last|[
ODE[{y’==t"2 y,y[0]==1},y, {t,0,1}, Method->Euler,
NumericalOutput—>True, StepSize->1/2"k]]1],
diff/(1/2°k)}, {k,3,9)],TableHeadings—>

{None, {"Stepsize", "Error", "Error/Stepsize"}}]

and obtain
Stepsize Error Errox/Stepsize
1
8 0.0922455 0.737964
1
16 0.0490388 0.784622
o
32 0.0253175 0.810159
1
64 0.0128679 0.823544
1
128 0.0064875 0.8304
1
256 0.0032573 0.833869
1
512 0.00163206 0.835615

Note that the last column is approximately a constant, which is what the theory
predicts for this method.

e Y

528 Michael J. Mezzino, Jr.

Stability

The result of the previous subsection may be paraphrased in the language of stability.
A numerical method is said to be stable if for any first-order differential equation
y' = f(t,y) and for any € > 0, there exists a § > 0 so that the sequence of numerical
approximations Y;, satisfy |Y, — y(ta)| < € for n =1,2,..., N whenever the step size
h < 4. To illustrate this, if a numerical method satisfies an inequality of the form
|Y, — y(tn)| < ch* then we may take § = (¢/c)!/* in the definition of stability. For
example in the Euler method we have k = 1, thus § = €¢/¢

This notion of stability is qualitative, and does not provide a numerical criterion
to differentiate between the various numerical methods. Later in section 11 we will
develop the notion of absolute stability in order to study stability in more detail.

5 Multistep Methods

The Euler, Heun and Runge-Kutta methods belong to the class of single step nu-
merical integration methods. This means that only the information at step n is used
to compute the estimate at step n + 1. There are other methods which use two or
more previous data points to compute the estimate at the next data point. These
are called multistep methods and they are frequently used to introduce the class
of predictor-corrector methods. ODE includes two of the most familiar multistep
methods, the Milne® and the Adams®-Bashforth/Adams-Moulton methods, where the
latter is simply called the Adams-Bashforth method. Here we discuss the details of
both the Milne method and the Adams-Bashforth method. Like the Runge-Kutta
schemes, there exists a complete sequence of multistep methods depending on the
number of points used to generate the interpolating polynomials. In this paper, we
have chosen the fourth-order versions of the Milne and Adams-Bashforth methods
so that comparisons can be made with other methods. Others can be derived in a
similar fashion.

As in the previous sections, the problem is to find a numerical approximation to
the solution of the initial-value problem

¥ =f(ty), ylto) = (5.27)

The Milne Method

The fourth-order Milne method needs four consecutive uniformly spaced data points
to estimate the next point on the solution graph. We begin by computing the ap-
proximate values of the solution at equally spaced points t,, t5, 3, for example by the
Runge-Kutta method. The Milne method can then be used to find an approximate

SEdward Arthur Milne (1896-1950). English A . Studied the of stars.
Developed a new form of relativity called kinematic relativity, an alternative to Einstein’s general
theory of relativity.

6 John Couch Adams (1819-1892). English Astronomer. Discover of the planet Neptune.

Numerical Solutions of Ordinary Differential Equations 529

value for y(t4) as follows. In order to describe the Milne method for computing Y41
in general, we assume given the points

{(tn=3,¥n-3), (tn-2, ¥yn—2), (tn—1, Yn—1), (tnsyn)}s

where tn_k = tn—k-1+ h.
Now if we had an exact solution of (5.27), we could write

tns
Y(tni1) :y(ln~3)+/ y'(s)ds (5.28)

th-a

Since y(tn-2),y(tn-1),y(t,) are known (approximately) , we can compute the deriva-
tives Ui 2 Yn-1+ Ys (approximately) from (5.27). Now we approximate the function
t — y/(t) by a quadratic polynomial passing through the three points (tn—2,¥5_2),
(ta—1.Yp—1)s (tn.yh). This can be done in a unique way. We substitute this poly-
nomial into the integral in (5.28) and substitute the approximate value ofy,_3 into
(5.28) to obtain an approximation for y(t,41).

Instead of giving a symbolic derivation of the necessary formula (5.29) below, we
will use Mathematica to obtain this. (The letter A below denotes the approximate
value of the integral in (5.28) when we use the quadratic polynomial approximation).

Mathematica allows us to perform this derivation using the following commands,
where we set ypn = y;,, and ypnmk =y, _,.

First we define the system of equations which leads to the quadratic passing
through the last three points.

systeml = {al (tn - 2h)"2 + bl (tn - 2h) + cl
al (tn - h)"2 + bl (tn - h) + cl
al tn"2 + bl tn i et
coeffsl = Flatten[Solve[systeml, {al,bl,cl}]]
parabolal = al t"2 + bl t + cl /. coeffsl // Simplify

ypnm2,
ypnml,
ypn}

(We suppress the output.) Next we integrate this quadratic on the interval t, — 3h <
t<ta+h:

il A 5 ;
A= (a1t* + byt +¢1) dt = T(Zypz —vho1 +2y;).
t 3

A = Integrate([parabolal,{t,tn - 3h,tn + h}] // Simplify

4 h (2 ypn - ypnml + 2 ypnm2)

3

Therefore, the predicted value is

ah ’
—(2¥h_2 — Yy + 20})- (5.29)

Unt1,p = Yn-3 + A= yn_3+ 3

530 Michael J. Mezzino, Jr.

Next we insert this value into the differential equation (5.27) to produce a better
approximation to the derivative at t,41.

Yns1 = S(tnt1, Uns1,p)-

Finally, we fit another quadratic to the points (tn—1,v5_1), (tn, ¥4), (fns1, U 41), inte-
grate to get B and then add B to yn—1 to give yn41 (corrected). Again, Mathematica
allows us to perform this derivation using the following commands.

system2 = {a2 (tn - h)"2 + b2 (tn - h) + c2 ypnml,
a2 tn"2 + b2 tn + c2 == ypn,
a2 (tn + h)"2 + b2 (tn + h) + c2 == ypnpl}

coeffs2 = Flatten[Solve[system2, {a2,b2,c2}]]

parabola2 = a2 t"2 + b2 t + c2 /. coeffs2 // Simplify

Then we integrate it on the interval [t, — h,t, + h].

tnt1 h
= 2 = f
T (a2t” +bat +c2) dt = 2(yf_y + 4y} + 7).

tno1

B = Integrate[parabola2, {t,tn - h,tn + h}] // Simplify

h (4 ypn + ypnml + ypnpl)
3

Therefore, the corrected value is
ho, PR
!ln+1=yn~1+B=yn_1+§(yn_|+4y,,+y,,“), (5.30)

Equations 5.29 and 5.30 constitute the fourth-order Milne predictor-corrector method
implemented in ODE as Method->Milne. Normally, a multistep method requires a
different technique to terminate the integration, since the final step size is frequently
different from h. Again, the Runge-Kutta method can be used to take the last step.

Numerical Solutions of Ordinary Differential Equations 531

y'HL

1E)0=5} iEil=22 fem=il ey gl

YRL

yntl,pe
yn+tl e

tn=sitn=2itn=1= tn"Entil

The graph of y = f(t,¥) on the interval [tn—s, tn+1],
and! the approximate solution found by the
Milne method

Example 5.1. Solve the initial value problem

{ Y =1+t— 42,
y(0) =1

by the Runge-Kutta and Milne methods and simultaneously plot the two approzima-
tions.

Solution. We use

Show [

{ListPlot [RungeKuttad[l + t - 4y°2,{0,1},0.1,100][t,y],
PlotJoined->True,DisplayFunction—>Identityl},

ListPlot [Milne[l + t - 4y°2,{0,1},0.1,100][t,y],
PlotJoined->True, DisplayFunction->Identity],
DisplayFunction->$DisplayFunction];

532 Michael J. Mezzino, Jr.

-

0.8

0.6
Comparison of approximate solutions to y’ = 1+t —dy?, y(0) = 1
found by the Runge-Kutta and Milne methods with step size 0.1

This example shows the inherent instability of the Milne method.

The Adams-Bashforth Method

The fourth-order Adams-Bashforth method represents a significant enhancement over
the Milne method due to its inherent improvement in stability. It also needs four
consecutive uniformly spaced data points to estimate the next point on the solution
graph but these points are used to perform a different interpolation. Again we assume
that the initial value is given by y(to) = Yo and that we obtain three additional points,
(for example by the Runge-Kutta method) before the Adams-Bashforth method can
be used. So we assume given the four points

{(tn-3,¥n-3), (tn-2, Yn—2), (tn—-1,¥n—1), (tn,) },

where t,_i = t,_x—1 + h. We begin by writing

(o
Y(tns1) =y(t..)+[Y'(s)ds (5.31)

Since y(tn-3), y(tn-2), Y(tn-1), y(tn) are known (approximately), we can compute the
derivatives y/(tn—3), ¥ (tn-2), ¥'(tn-1), ¥'(tn) (approximately) from (5.27). Now we fit
a cubic polynomial through the four points

{(tn-3,¥h-3), (tn-2,¥n—2): (tn-1,¥n_1). (tn, ¥) }-

This can be done in a unique way. Having obtained this polynomial, we integrate to
get an area, say A, and then add A to y, to give yn+1, (predicted)

h ,
Untip = Yn+ A= yn + 57 (55, - 59Yh-1 + 3T¥p_2 = Wy _s)- (5.32)

Numerical Solutions of Ordinary Differential Equations 533

Next we insert this value into the differential equation as before to produce a better
approximation to the derivative at tn4.1.
Ynt1 = f(tnt1s Uns1,p)-
Finally, we fit another cubic through the points
{(tn=2,¥h—2)s (En=1, U= 1) (brs Y)s (Brt1s 1)}

integrate to get a new area, say B, and then add B to yn to give yn+1 (corrected)

h
Yni1l = Yn—1 + B = yn_1 + ﬂ(l\‘)yﬁl — 5yl Yo+ Yl _3). (5.33)
Equations 5.32 and 5.33 define the well known fourth-order Adams-Bashforth/
Adams-Moulton predictor-corrector method implemented in ODE as
Method->AdamsBashforth. Again, the Runge-Kutta method can be used to start
this method as well as take the last step, if necessary.

Example 5.2. Solve the initial value problem
Y =1+t— 4%
{ y(0) = 1
by the Runge-Kutta and Adams-Bashforth methods and simultaneously plot the two
approzimations.
Solution. We use

Show [

{ListPlot [RungeKuttad([[l + t - 4y°2,6{0,1},0.1,100][t,y],
PlotJoined->True,DisplayFunction->Identity]},

ListPlot [AdamsBashforth[l + t - 4y~2,{0,1},0.1,100][t,y],
PlotJoined—>True,DisplayFunction—->Identity],
DisplayFunction—>$DisplayFunction];

0.6
Comparison of approximate solutions to y' = 1 +t — 4y, y(0) =1,
found by the Runge-Kutta and the Adams-Bashforth methods with stepsize 0.1

534 Michael J. Mezzino, Jr.

In general, when comparing methods of c ble order, the meth-
ods are more efficient than the single step methods, especially when high accuracy is
desired. For example, for the fourth-order methods previously discussed, the Adams-
Bashforth method requires only two evaluations of the derivative y' = f(t,y) to
compute the next solution estimate whereas the Runge-Kutta method needs four
evaluations. This assumes that the previous evaluations have been stored for fu-
ture use. Therefore the Adams-Bashforth method achieves the same accuracy as the
Runge-Kutta method in roughly one half the number of function evaluations. Also,
Un+1 in the predictor-corrector process just described receives its major contribution
from the corrector equation. However, there is a strong desire to continue iterating
with the corrector equation inside each marching step, thereby completely eliminating
the effect of the predictor. Experience shows that very little is gained by doing this
and in fact, although the corrected sequence converges, it does not converge to the
true solution. Consult any numerical analysis book for additional details concerning
multistep methods (see [Acton] or [Ham]).

6 Extrapolation Techniques

In both the Runge-Kutta and predictor-corrector schemes a basic step size h is chosen
and used for as long as it gives satisfactory results. It may be adjusted from time
to time, but it usually remains constant for long runs. In theory, the solution to the
approximate difference equation converges to the true solution as h goes to zero, but
h is never allowed to go to zero. Extrapolation is based on computing a limit on h at
each step. Simply put, we do a quadrature on y’' between ¢, and ¢, (a distance of h)
first using a one-step quadrature to get yy,1. Then we do this quadrature again using
the rule twice, after dividing h into two equal regions, producing a second estimate
v1,2- Then we compute a third estimate y; 3 by using quadrature four times on a step
size of h/4. Then, when enough estimates are available, we extrapolate to estimate
what y; » would have been if h had been permitted to go to zero and we use this
value as our final 1. Then we begin the process over again at t;.

The Bulirsch-Stoer Algorithm

The Bulirsch-Stoer algorithm always uses an even subdivision of h, which we call k.

Therefore
h

k=—,
21
for i = 1,2.... The fundamental substep is a linear extrapolation of y from ¢ to
t+ 2k, an interval of length 2k, using the slope at the midpoint ¢ + k. From the figure
on page ??, observe that the first step is an Euler step.

v =yo+kyp =y

Next we insert this estimate into the differential equation to get a slope and then use

Numerical Solutions of Ordinary Differential Equations 535

this slope together with the previous value of y to compute a new estimate.
Yo = yo + 2k = v

We interleave these steps until we reach the endpoint, where we compute a final ending
step yay and then average the last two estimates to give the final value for y at to + h.

i
Yay = ys +kyh, y(to+h) = %{

A complete fourth-order Bulirsch-Stoer step (k = h/4) is given by
0 w =w+t kyy=,
1) w2 = o+ 2kyf = vh,
@) s =+ 2%kyh =4,
@) v = v2+2%kys =y,
@ vy = vsthyi,

Ya + Yag
e

Yl h) =

4

h/4

t1

Bulirsch-Stoer basic integration step. Each line bears the
number of the abscissa from which its slope was derived.

It is clear that each Bulirsch-Stoer step is much more complicated than any Runge-
Kutta or predictor-corrector step, and it requires more evaluations of the differential
equation. Its primary advantage is that it permits large integration steps, for exam-
ple, two steps per period of the cosine function. If, however, we are interested in
A moderate number of intermediate values, then the advantage is not so clear (see
[StoBul]).

Example 6.1. Solve the initial value problem
' + tcos(3t)?y = tcos(t),
¥0) =0

536 Michael J. Mezzino, Jr.

over the interval 0 < t < 20 by the Runge-Kutta method (h = 0.3), Bulirsch-Stoer
method (h = 0.3) and NDSolve and simultaneously plot the three approzimations.

Solution. We use

sol = ODE[{y’ + t Cos[3 t]"2 y == t Cos[t], y[0]==0},
y.{t, 0, 20},Method->NDSolve, MaxSteps—->2000,
PlotSolution->{{t,0,20},PlotPoints->100}];
Show|[{ListPlot [RungeKuttad [t Cos[t] - t Cos[3 t]"2 y,
{0,0},0.3,66][t,y],PlotJoined->True,
PlotStyle->{GrayLevel[.7]},DisplayFunction->Identity],
ListPlot [BulirschStoer[t Cos[t] - t Cos[3 t]"2 y,
{0,0},0.3,66,4][t,y],PlotJoined->True,
PlotStyle->{GrayLevel[.4],AbsoluteDashing[{6,6}]},
DisplayFunction->Identity],

Plot [Evaluate[y/.sol], {t,0,20},DisplayFunction->Identity]},
DisplayFunction->$DisplayFunction];

Comparison of approximate solutions to y’ + t cos(3t)%y = tcos(t), y(0) = 0,
found by NDSolve, the Runge-Kutta method with step size 0.3 and
the Bulirsch-Stoer method of order 4 with step size 0.3

This graph reflects the strength of the Bulirsch-Stoer method when the step size is
large. We see that the fourth-order Runge-Kutta method eventually diverges from the
true solution while the Bulirsch-Stoer method continues to track the solution quite
closely.

7 Solving Differential Equations
Numerically with ODE

In thi ction we explain how to use ODE to solve first order differential equations
numerically (see [GMP] for a complete discussion of ODE). Any of the following

options can be used:

Numerical Solutions of Ordinary Differential Equations 537
Method -> Euler Method —> Heun
Method -> RungeKutta4d Method —> RungeKutta45
Method -> Milne Method -> NDSolve
Method -> ImplicitRungeKutta Method —> AdamsBashforth
Method -> SecondOrderEuler Method —> BulirschStoer

With the exception of NDSolve (which is explained in Section 9), all of the above
commands follow the same pattern:

ODE [{diffeq, initcond}, y[t], {t,a, b),
Method->method, Stepsyz ze->size]

The default step size is 0.1. Any numerical approximation found with ODE can be
plotted using the option PlotSolution. When plotting, it is frequently useful to
suppress the numerical output by using the option

NumericalOutput->None.

Example 7.1. Use ODE with the option Method->Euler to find a numerical ap-
prozimation to the solution of the inatial value problem

vty =~
y(0) =1
over the interval 0 < t < 1. Use § steps. Also plot the solution.

Solution. We use

ODE[(y" + y == -y"3,y[0] == 1},y,{t,0,1},
Method->Euler, StepSize->0.2,
PlotSolution—>{{t,0,1}}]

to obtain
{(0,1.),10.2,0.6),{0.4,0.4368},(0.6,0.332772), {0.8,0.258848), (1.,0.203609})

and the graph

Approximate solution to v ty= -3, y(0) =0
found by the Euler method

538 Michael J. Mezzino, Jr.

In Example 7.1 any of the methods listed on page 537 can be substituted for Euler.
Furthermore, the option Method->Al1Numerical can be used to plot all of the

approximations, one after another.
Example 7.2. Use ODE with the option Method->Al1Numerical to find and plot
numerical approzimations to the solution of the initial value problem

V-y= ebsin(5y) |
{ y(0) =1

over the interval —1 <t < 1. Use step size 0.02.

Solution. We use

ODE[{y’ - y == E"(58in[5y]),y[0] == 1},y,(t,-1,1},

Method->AllNumerical,
J/

StepSize->0.02, NumericalOutput->None,
PlotSolution->{(t,-1,1}}]

to obtain the following graphs:

—
Euler Heun
— //
—— |
Runge-Kutta Runge-Kutta (45)

il 4

Second Order Euler

Implicit Runge-Kutta

Numerical Solutions of Ordinary Differential Equations 539
Milne Adams-Bashforth

el

Bulirsch-Stoer NDSolve

From these plots it is clear that some numerical methods are better than others.
Inside of Mathematica the best method to use is NDSolve, as will be explained in
Section 9. The Euler and Heun methods are too primitive to be of much practical
use. The best all-around method is Runge-Kutta. The Milne and Adams -Bashforth
methods are examples of multistep predictor-corrector methods. The Milne method
i included only for historical reasons; in practice it gives bad results. The Adams-
Bashforth method provides the same accuracy as the Runge-Kutta method at twice
the speed.

The reader is invited to experiment with the methods listed on page 537.

8 ODE'’s Implementation of
Numerical Methods’

In this section we give the details of how ODE finds approximate solutions using the
Euler, Heun and RungeKutta methods.

The Euler Method via ODE

We first describe a Mathematica miniprogram called Euler which implements the
Euler method, specifically formula (1.6). This routine is called by ODE with the option
Method->Euler, but it can also be used independently of ODE.

We need two Mathematica functions, Module and NestList, described below.
We first define a function emstep of six variables as follows:

This section contains technical Mathematica details on how ODE works. It is not needed to use

ODE. However, the reader is encouraged to explore it because it contains useful information about
techniques in Math

540 Michael J. Mezzino, Jr.

emstep[f_, {t_,y_},{tn_,yn_}, h]:=
Module[{£fn},
fn = £ /. {t->tn, y->yn};
{tn + h,yn + h £n}]

The arguments of emstep are £_, t_, y_, tn_, yn_ and h_; we separate some of
them with braces in order to keep track of them. In the definition of emstep we
use Module with one local variable £n and two Mathematica commands. The first
command is

fn = £ /. {t->tn, y->yn};

Here £n is the same as the expression £, but with t replaced by tn and y replaced
by yn. The second command in the module is

{tn + h,yn + h £fn}
It does nothing more than compute the ordered pair {tn + h,yn + h £n}.
Next we define Mathematica function Euler that makes use of emstep:
Euler([f_, {tO_,y0_},h_,steps_][t_,y]:=
NestList [emstep[f, {t,y}, # h]l&, (t0,y0}, steps]
Note that Euler is a function of the seven variables
£, t0, y0, h, steps, t, y

The command NestList is useful for constructing a table of values of the result of
repeated application of a function to an expression. Specifically

NestList[g, expr, n]

gives a list of the results of applying g to expr 0 through n times. For the command

Euler we use
steps for n

{t0,y0} for expr
emstep[f, {t,y}, # h]l& for g
Here emstep([f,t,y, # h]& is Mathematica’s abbreviation for the function that

assigns the value emstep[£, {t,y}, {t0,y0},h] to the ordered pair {t0,y0}.
The following example demonstrates the use of the command Euler.

Example 8.1. Use the command Euler to find a numerical approzimation to the
solution of the initial value problem

{ y' = cos(15ty),
y(0) =1

over the interval 0 < t < 1. Use step size h = 0.1.

Numerical Solutions of Ordinary Differential Equations

Solution. We use
ex0=Euler[Cos[15 t y],{0,1},0.1,10][t,y]

which results in

({0,1), (0.1, 1.1),
{0.4,0.968843), (0.
{0.7,0.949935), (0.

(0.2,1.09209}, (0.3,0. 992993!,
+1.05799), (0.6,1.0499
0 0. 864659) (0.9,0. 806582],(1 0, 0.79593))

26

The command
TableForm[ex0]

prints this information in a nice tabular form:

0.0 1.0

0.1 1.1

0.2 1.09209
0.3 0.992993
0.4 0.968843
0.5 1.05799
0.6 1.04991
0.7 0.949935
0.8 0.864659
0.9 0.806582
1.0 0.79593

541

The solution ex0 can be plotted via the command ListPlot. This command is
frequently used for plotting data as points. The option PlotJoined->True. draws

line segments to connect the points. Here we use
ListPlot [ex0,PlotJoined—->True];

to get

11

A better approximation is obtained if we take h = 0.01 and do 100 steps. Let us skip

over printing out the numerical data and do the plot directly:

53
&
<}

Michael J. Mezzino, Jr.

ListPlot [Euler([Cos[15 t y],{0,1},0.01,100] [t,¥y],
PlotJoined->True];

-

The Heun and Runge-Kutta Methods via ODE

There is a more complicated miniprogram for solving a differential equation numeri-
cally using the Heun method:
Heun[f_, {t0_, yO0_},h_,steps_][t_,y_]:=
NestList [iemstep[f, {t, y)},#,h]&, {t0,y0}, steps]

Here iemstep iterates for Heun in the same way that emstep iterates for Euler.
The definition is as follows.
iemstep(f_,{t_, y_},{tn_,yn_},h_]:=
Module[{kl, k2},
k1 = £ /. {t->tn, y->yn};
k2 = £ /. {t=>tn + h, y->yn + h k1};
{tn + h, yn +h (k1 + k2)/2}]

It should be clear that this is the Mathematica implementation of (2.13). Here is the
corresponding program using the Runge-Kutta method:
RungeKuttad [f_, {tO_, y0_},h_,steps _]J([t_,y]:=
NestList [rkmstep[f, (t, y},#, h]&, {t0,y0}, steps]

The analog of emstep for RungeKuttad is given by
rkmstep(f_, {t_, y_},{tn_, yn_},h_]:=
Module[{kl, k2, k3, k4},
kl = £ /. {t->tn, y->yn};
k2 /. {t->tn + h/2, y->yn + h k1/2);
/8
7/

k3 {t->tn + h/2, y->yn + h k2/2};
k4 = {t->tn + h, y->yn + h k3};
{tn + h, yn +h (k1 + 2 k2 + 2 k3 + k4)/6}]

£
£
£
£

Numerical Solutions of Ordinary Differential Equations 543

This is the Mathematica version of (3.18).
Example 8.2. Solve the initial value problem
Yy =1-t+4y,
{ y(0) =1

using the commands Euler, Heun and tad and simuli
three approzimations.

ly plot the

Solution. We use

Show [

{ListPlot [Euler[l - t + 4y, {0,1},0.1,10][t,y],
PlotJoined->True, DisplayFunction~>Identity],
ListPlot [Heun[l - t + 4y, {0,1},0.1,10][t,¥],
PlotJoined->True, DisplayFunction->Identity],
ListPlot [RungeKuttad [l - t + 4y, {0,1},0.1,10][t,y],
PlotJoined->True, DisplayFunction—>Identity]},
DisplayFunction->$DisplayFunction];

to get

9 Using NDSolve

NDSolve is Mathematica’s built-in numerical differential equations solver. Although
very powerful, there is little documentation (at the present time) on how it works.
It is known, however, that NDSolve uses the Adams predictor-corrector method to
handle nonstiff problems and the backwards differentiation formula (or Gear method)
for stiff problems. Stiffness occurs in a problem where there are two or more very
different scales of the independent variable on which the dependent variables are
changing. Stiff problems arise in several fields of science, most notably in the theory

544 Michael J. Mezzino, Jr.

of chemical kinetics, where, say, one part of a reaction occurs in a few milliseconds
while the remainder takes hours to complete. Many popular algorithms exhibit an
extreme numerical instability which is not connected with any instability of the initial
value problem.

NDSolve returns its solutions as InterpolatingFunction objects, which con-
sist of internal Mathematica representatlons as piecewise cubic polynomials. Although
it is ible to use Math s ds InputForm and FullForm to view
an InterpolatingFunction object, it is not usually useful to do so.

ODE can call NDSolve using the option Method->NDSolve.

Example 9.1. Use ODE with the option Method->NDSolve to find a numerical
approzimation to the solution of the initial value problem

yV=y+1,

(9.34)
y(0) =0,

for 0 <t < 1. Use step size h = 0.1 and compare the approzimation with the exact

solution.

Solution. To get the exact solution we define a Mathematica function £ by

£[t_] = ODE[{y’ ==y + 1,y[0] == O},y,{t,0,1},

Method->FirstOrderLinear, Form->Explicit]

and to get the NDSolve-generated solution we define another Mathematica function

g by

glt_] = ODE[{y’ ==y + 1,y[0] == O},y,{t,0,1},
Method->NDSolve, Form->Explicit]

(note that in both of these definitions we have used = and not =:). The following com-
mand generates a table of values comparing the exact solution with the approximate

solution:

Table[{f[xx],g[xx]}, {xx,0,1,0.1}]//TableForm

to get

0 0.
0.105171 0.105171
0.221403 0.221404
0.349859 0.34986
0.491825 0.491826
0.648721 0.648723
0.822119 0.822121
1.01375 1.01375
1.22554 -1.22554
1.4596 1.45961
1.71828 1.71829

Numerical Solutions of Ordinary Differential Equations 545

Thus the solution generated by NDSolve is indeed very close to the exact solution m

The output of NDSolve is best understood by plotting it. We can consider an
InterpolatingFunction object to be a pseudo function; as such it can be plotted
in much the same way that Mathematica plots an ordinary function. Furthermore, al-
gebraic operations as well as differentiation can be performed on InterpolatingFunction
objects, and the results of these operations can be plotted.

Example 9.2 Use ODE with the options Method->NDSolve and
plotSolution to plot the approzimate solution to the initial value problem

{ yy' = tsin(t),
y(0) = L.
Solution. We use

ODE[{y y' == t Sin[t], y[0] == 1},y,{t,0,4.6},
Method->NDSolve, PlotSolution->{{t,0,4.6}}]

to get the plot
Y

t
i T ¥ O
Approximate solution to yy' =t sin(t), y(0)=1,
found by NDSolve

There are several options that control how NDSolve approximates the solution to
an initial value problem. MaxSteps limits the number of steps for each calculation.
With MaxSteps->n, the maximum number of steps taken is n. The default limitation
15 500 steps. This limit can be effectively removed with MaxSteps->Infinity.

For example, to solve the initial value problem y' = tsin(t?), y(0) = 1 on the

interval 0 < ¢ < 15, we must increase the number of steps NDSolve will use by
entering

ODE[(y" == y Sin[t"2],y[0] == 1},y,(t,0,15},
Method->NDSolve, MaxSteps->1000]

546 Michael J. Mezzino, Jr.

In general, Mathematica uses three terms to control the value of approximate nu-
merical results. WorkingPrecision is simply the number of digits used in the arith-
metic. The default WorkingPrecision is defined by $MachinePrecision, typi-
cally 16 on modern computers. PrecisionGoal defines the total number of correct
significant digits, also related to the relative error in the calculation. AccuracyGoal
defines the number of correct significant digits to the right of the decimal point, also
related to the absolute error in the calculation. NDSolve uses the following defaults:

WorkingPrecision -> 16
PrecisionGoal —> Automatic
AccuracyGoal —> Automatic

Here, Automatic means 10 digits less than WorkingPrecision or 6 decimal digits
on most computers. With PrecisionGoal—->Automatic and
AccuracyGoal->Automatic, convergence is determined by the first one to be sat-
isfied. To insist on a particular convergence criterion, say PrecisionGoal, simply
set AccuracyGoal->Infinity. To perform calculations at a higher level, say n,
we normally begin with WorkingPrecision->2n,
PrecisionGoal->n+2 and AccuracyGoal->n+2 and then experiment until we
are satisfied with the result.

For example, we know that the exact solution to the initial value problem y' = y,
If we evaluate

y(0)=1lisy=

£(t_] = ODE[{y’ == y,y[0] == 1},y,{t,0,1},
Method->NDSolve, Form->Explicit]

we can use
N([£(1],10]
to obtain a 10 digit approximation to the solution as
2.718289889
However, the correct 10 digit approximation is
2.718281828

To obtain a more precise solution, we can enter

g(t_) = ODE[{y’ == y,y[0] == 1},y,(t,0,1},Method->NDSolve,
WorkingPrecision->25, AccuracyGoal->12, PrecisionGoal->12,
Form->Explicit];

Then when we enter g[1] we get the value of e with 25 digits of precision:

284774148184693597

Numerical Solutions of Ordinary Differential Equations 547

10 Implicit Methods and Stiff Equations

In this section we discuss a class of methods which attempts to solve certain instability
problems.

Implicit Methods

Recall that the formula

: A ;
Yopr1 =Yo+ E(I(tnv}n) + f(tn+1, Yas1)),

used to introduce the Heun method, had Yy, on both sides of the equation. This
equation implicitly defines Y5,y and in general, this presents a difficult problem. If
we define a new function g by

0(6) = Yot 5 () + fltns2,10),

then we can attempt to find the next estimate Y, 4y by finding a fixed point of g.
That is, we seek a point @ such that g(i) = . Although several methods can be used
(from simple bracketing methods to Newton's method) a simple iteration is usually
sufficient. Thus if we define

g = Yo + hf(tn, Yn)
and let h
U1 = g(u;) = Yo + a(f(tmyn) + f(tns1,15)),
then the stability of implicit methods yields

lim u; = Y41
i=00

provided that
h Bf(t.y)\ s

A (10.35)

Condition 10.35 is equivalent to
lg'(w)| <1,

o sufficient condition for the sequence of iterates u; to converge to a unique fixed point
of g

The principal advantage of all implicit methods is that they can be made absolutely
stable, which will be defined and discussed in Section 11. The principal disadvantage
1s the added computational demands resulting from a required iteration at each step.
The number of iterations used to approximate a root of f is determined by the error

tolerance and the maximum number of iterations normally required to make the
method deterministic.

548 Michael J. Mezzino, Jr.

Other algorithms also have implicit forms. For example, a third-order implicit
Runge-Kutta method has been implemented in ODE. It is defined by

kv = f(tn,ym),

ky = f(t,. o2 (g) \Un + (g) (k1 +k2)) B

ks = f(tn +h,yn +hka),
h
Ynt1 = Yn + E(kl + 4k + k),

forn =0,...,N — 1, where t, = to + nh. The quantity k; is computed by iterating
the second equation until

2
0]
[|ky = Kalla = \J72 (mm(lh(x), k2 (i)], 1)) <€,

where n is equal to the number of equations and ¢ is the desired Tolerance with
a default value of 10~%. To restrict the number of iterations, a maximum number of
iterations is defined by ODEMaxSteps with a default value of 500. Since this method
is absolutely stable, it is particularly well suited to stiff systems of equations, for
example, like those normally found in biochemical kinetics.

Stiff Equations

The term stiff applies to differential equations in which there are two or more very
different scales of the independent variable on which the dependent variables are
changing. For example, consider the second order equation

=100y,

with general solution
y=Cie 1% 4 Cre'®

for arbitrary constants Cy and Cy. If the initial conditions are
y(0) =1 and v (0) = -

then the true solution is y = ¢~'%. All numerical integration methods would start
off decaying as e~ ', but every explicit method will explode as t becomes large. This
occurs because our numerical approximation is precisely that, an approximation to
the true solution. Therefore what we actually observe is

~10t 100
Yapprox = € + ee

Numerical Solutions of Ordinary Differential Equations 549

Although taking a very small step size will make ¢ small, eventually the second term
becomes dominant for explicit methods. Also, increasing the precision at which the
calculations are performed will only delay the effect of the second term.

Although stiffness is usually associated with higher order or systems of differential
equations, the round-off error characteristics of a particular numerical method applied
to o stiff system can be predicted by ining the d-off error produced when
the method is applied to the test initial value problem

{ V=M,
¥(0) =Yo
where) is a negative real number. The following example illustrates the effective use

of implicit methods for a stiff equation by applying a suite of numerical integration
techniques to the test equation.

Example 10.1. Describe graphically the behavior of all numerical approzimations
to the solution of the initial value problem

y' = —100y,
{ ¥(0)=1/3
over the interval 0 < t < 1 using a step size of 0.05.
Solution. We use

ODE[({y’==-100y,y[0]==1/3},y, (t,0,1},Method->AllNumerical,
StepSize->0.05,PlotSolution->{{t,0,1}}]
to obtain the following graphs:

B
|

Euler Heun

= 5

Runge-Kutta Runge-Kutta (45)

T,

550 Michael J. Mezzino, Jr.

i

Implicit Runge-Kutta Second Order Euler
|
|
L
Milne Adams-Bashforth
|
|
Bulirsch-Stoer NDSolve

NDSolve also uses an implicit technique to solve this equation. Hence, we see
that the stability of implicit methods, in general, causes them to be the procedures
of choice for stiff equations. We make this statement precise in the next section.

11 Absolute Stability

As we have seen in Section 10, significant numerical difficulties occur when we ap-
proximate the solution of a differential equation which contains terms of the form
e, where A is a complex number with negative real part. Although terms like these
decay to zero, round-off error tends to conceal the decay. The problem is particularly
serious when the solution contains a steady state term, because the numerical method
will seek the steady state term while the round-off error associated with the decaying
exponential can domi and produc ingless results.

Problems involving rapidly decaying transient solutions occur naturally in the
study of damped springs, control systems and in biochemical kinetics, just to name a
few. The accepted way to test a method’s ability to deal with an equation is to apply

Numerical Solutions of Ordinary Differential Equations 551

it to the simple test initial value problem
e
{ it (11.36)
¥(0) = Yo,

where A is a negative real number. To understand how we might perform a stability
analysis for a particular method, let us consider the Euler method applied to the test
initial value problem. If we let h = (b — a)/N and tx = a + kh, for k =0,1,...,N,
then (11.36) implies that

Yipr = (1+AhA)Yk,

for k= 0,1,...,N = 1. By induction we have
Yig1 = (1+ A0 Yo,
Since the exact solution of (11.36) is assumed to be
y(t) = yoe™,
the absolute error is
[(tk) = Yil = [— (1 + hA)*| [yol
and the accuracy is determined by how well the term 1 + h A approximates

1+h/\+(h)‘)

If we introduce a rounding error in the initial condition for the Euler method,
Yo = yo + 8o
then at the k™ step the rounding error becomes
Ok = (14 h\) 5.

Obviously we want (1 + hA)* < 1, otherwise the error increases. Observe that if
A > 0, the solution y(t) grows exponentially and since (1 + h)) < e"*, the rounding
error may not be serious. For equations, A < 0 so y(t) is decaymg exponentially; any
growth in ding error lly domi the app ion
The situation ii similar for the other In general, wh we apply a
method to the test initial value problem, we get

Yier1 = S(h\)Y.

For example, for the Euler method we have S(h\) = 1+ h), for the Heun method
we have S(A) = 1 + hA + (h))?/2! and for the Runge-Kutta method we have

BRI Y

S(hN) =1+ hA+ 5 + 2 =

552 Michael J. Mezzino, Jr.

Note that in each case, the order of the method defines the function S.
For multistep methods, like the Milne and Adams-Bashforth methods, the function
S becomes

S(2,hA) = (1 = hAb)2™ — (@m—1 — hAbm_1)z™* — -+ — (ao — hAbo),
where the result of applying the method to the test equation is of the form
Yis1 = amo1Yk + -+ a0Yip1-m + AA(bmYis1 + bn1Yi + - -« + boYj41-m),

where & = m —1,..., N — 1. To describe the amount of step size reduction needed
for a particular method to be used on a problem, we need the following definition.

Definition. The region R of absolute stability for a single step method is defined
by
R={hreC|[S(hN)]| <1},

and for a multistep method by
R={hN€C | |B] <1 for all roots By of S(z,h)) = ()}.

For example, the region of absolute stability for the Euler method is the circle in the
complex plane of radius 1 and centered at —1:

R={h\ |1 +h) < 1}.

Generally, numerical methods can be applied to stiff equations only if A\ is in
the region of absolute stability, which for a given problem places a restriction on the
size of h and usually forces many small steps to be taken as the approximation is
computed. Since the region of absolute stability of a method is generally the critical
factor in producing accurate solutions to stiff equations, special numerical methods
have been developed with as large a region of absolute stability as possible. This leads
to the following definition.

Definition. A numerical method is said to be A-stable if its region of absolute sta-
bility contains the half-plane {h) € C | Re(h)) < 0}.

Applying a similar analysis to the implicit Euler method, we see that the rounding
error at the & step becomes
o
O = —————
L= =

and the rounding error goes to zero even as h — oo. Therefore, this method is A-
stable. The implicit Runge-Kutta method included in ODE is a third order accurate
A-stable method and it is well suited to solving stiff equations. In general, implicit
methods are A-stable and some sophisticated implicit multistep methods have been
developed (see [Gear]).

Numerical Solutions of Ordinary Differential Equations 553

12 Adaptive Step Size and Error Control

All modern numerical differential equation solvers exert some adaptive control over
their own progress, making frequent adjustments to the step size. To see why the step
size needs to be adjusted, let us consider a simple example using the Euler method.

Example 12.1. Use the Euler method to find an approzimate solution to

y' = —100y,
(12:37)

y(0) =1/3

over the interval 0 < t < 1 using step size b = 0.2. Compare the approzimate solution
with the exact solution.

Solution. First let us note that the exact solution of (12.37) is given by
Yoxact(t) = (1/3)e™1%%;

consequently Yexace(t) 18 very nearly 0/ for t > 0.1. However, the Buler method gives
very different results. The Euler method formula for (12.37) is easy to find:

Yn+1 = Yn + (0.2)(=100y5) = —19yn. (12.38)

Using (12.38), we construct the following table:

n_ta Yo Yexact (tn)
0 0.0 333 333

1 0.2 —6.33 6.871071°
2 04 120 0

3 060 —2290 0

4 0.8 43400 0

5 1.0 -825000 0

So the approximate solution obtained from the Euler method is very bad. Instead of
tending to 0, the Y,,'s oscillate between positive and negative values whose absolute
value is rapidly increasing. Here is the plot obtained with the command

ODE[{y’ == -100y,y[0] == 1/3},y,(t,0,1},
Method->Euler, StepSize->0.2,
PlotSolution->({t,0,1},PlotRange->All}]

554 Michael J. Mezzino, Jr.

Euler approximation to y' = ~100y, y(0) = 1/3
plotted over the interval 0 < ¢ < 1 without adaptive step control

Of course, better results are obtained with smaller step size or with a more so-
phisticated technique such as Runge-Kutta. However, in this section we explore a
different technique, that of adaptive step size. Adaptive step size control in ODE is
activated using the option VariableStepSize->True. In addition to this option,
several other options can affect the overall outcome. StepSize sets the initial step
size, MaxStepSize sets the maximum value for the step size and Tolerance defines
the maximum allowable relative error at each integration step.

Most of the methods in ODE use a technique called step doubling, when using
the option VariableStepSize->True. Each step is taken twice, once as a full
step, then as two half steps. Then the two estimates are compared to the tolerance
defined by Tolerance. If the relative difference is greater than the tolerance, then
the step size is halved and the process is begun again. If the relative difference is
significantly smaller than the tolerance, then the step size is doubled for the next
iteration.

Quite often VariableStepSize—>True will produce an accurate solution, even
for a stiff equation such as y' = =100y, but the price is a requirement for many small
steps. These small steps are automatically created by Mathematica, so in general it
will take longer for ODE to solve a problem with VariableStepSize->True than
it would with
VariableStepSize->False.

Example 12.2. Use the Euler method to find an approzimate solution to (12.37)
over the mterval 0 < t < 1 using an adaptive step size control.

Solution. We use
ODE[(y’ == -100y,y[0] == 1/3},y,(t,0,1), Method->Euler,

VariableStepSize->True, StepSize->0.2, Tolerance->0.05,
PlotSolution->{(t,0,1),PlotRange->All}]

Ee .5\

Numerical Solutions of Ordinary Differential Equations 555

to obtain the plot

Buler approximation to ' = =100y, y(0) =1/3
plotted over the interval 0 < ¢ < 1 with adaptive step control
using a tolerance of 0.05

Thus the option VariableStepSize->True causes ODE to find a much more accu-

rate solution. Even more accurate results would be obtained by setting Tolerance
nearer to its default value of 0.00001 L]

Adaptive step size control is more difficult to implement in multistep methods such
4 the Milne method and the AdamsBashforth method. These methods derive
some of their simplicity by assuming a uniform step size over the interval of inter-
polation. Whenever this assumption changes, new points within the interval already
covered must be computed. Two methods are typically used. Either interpolation
15 used to generate intermediate points or the method is restarted at the appropri-
ate new starting point using RungeKuttad or some other single step method. ODE
adopts latter technique for all multistep methods.

For extrapolation techniques such as the BulirschStoer method, estimates of
the solution can be generated by changing the order of the method, where the orders
are defined by {2,4,6,8,12, 16, 24, 32,48, 64, 96}. If the estimates computed for orders
n | and 1 lead to an acceptable tolerance, then the final value is returned. If the

maximum order is reached, then the step size is halved and the process is started
over

implicit methods such as the ImplicitRungeKutta method iterate at
» until the tolerance is achieved. Because of this, these methods require
another control parameter called ODEMaxSteps, set to a default value of 500. Ob-

viously, Tolerance and ODEMaxSteps affect each other and some problems may
require o larger value for ODEMaxSteps.

AT,

556 Michael J. Mezzino, Jr.

13 The Numerov Method

In this section we derive a method for finding a numerical solution to a second order
linear differential equation with no first derivative present, written as

V' = f(t)y +9(t)-
This type of equation occurs frequently in scientific and engineering applications.
The method we describe (found by B. Numerov in 1933, see [Har], p.142) is popular
because of its simplicity and speed.
To derive the Numerov method we need the following fact.
Lemma 13.1. Suppose y is a solution of the second order differential equation

" = f(t)y + g(t). (13.39)

2
Let z(t) = (l - %f(t)) y(t), where h is some number; then for h — 0

2(t+h)+z(t-h)- |2+ i I{(’) z(t)
S TTAL)
;'2((t+ h) + g(t — h) + 10g(t)) + O(h®). (13.40)

Proof.The Taylor expansion of y(t + h) is

lt+h) = y(t) + hy'(t) + —/’(t) + —y”’(z) + —y“’(r) +O(h%).

We add y(t + h) and y(t — h) to obtain

ylt+ h) + y(t - h) = 2y(t) + h2%y" () + -—,“’m + O(h%). (13.41)
Similarly
v+ h) +y"(t = h) = 2"(t) + K2y () + O(h®),
so that
Ry () = y"(t + h) + y"(t — h) — 24" (t) + O(h®). (13.42)
From (13.41) and (13.42) we obtain

ylt+h) 4+ y(t = h) — 2y(t) = —(y"(l 4 h) + y"(t = k) +10y"(t)) (13.43)

+ O(hY). (13.44)

Numerical Solutions of Ordinary Differential Equations 557

Now assume that (13.39) holds. From (13.44) we obtain

2
WEHR) 3l =R) = 20(0) = T3 (S(E+ W+) +g(t +) + 16 — Ryt — h)
+ g(t —h) +10f(t)y(t) + 10g(t) + O(h®).
or

(1- T m)uesm+ (1= ste=m)aten -2 (1= 250)uco

= g(g(t +h) + g(t = h) +10g(t) + 12f(t)y(t)) + O(h®). (13.45)
Then we can rewrite (13.45) as
2(t+ h) + 2(t = h) = 22(t) + O(h®)
2 2 -1
< '1'—2 (g(t+h) +g(t—) +10g() + 12 (1 i %f(:)) z(t)) ;

from which we get (13.40)]

The Numerov method finds a numerical approximation to the solution of the
second order linear initial value problem

{ ' = f(B)y +9(t),

(13.46)
y(a) =Yo,y'(a) =Yy

on an nterval a < ¢ < b, To derive the iteration scheme for the Numerov method,
we need o discrete version of Lemma 13.1. To this end, let h be a small positive
number. We subdivide the interval a <t <basa =1ty <t} < - <ty = b, where
byr=ty=hforj=1,...,n. Let
h2f(t
W = -%")— (13.47)
1= 5f(tn)

Then 24 and 2y are given by

K h?
= (l - ﬁl('n))yu and = (1 - Ef(h)) (Yo+hYh). (13.48)

From (13.39) we get

h?
Zae2 = (24 wng1)ings = 20+ 35 (9(tns2) +10g(tns1) + 9(tn)). (13.49)

_ /BT,

558 Michael J. Mezzino, Jr.

We can use (13.48) and (13.49) to determine z,, for n = 2,3, ... Finally, we determine
Yo forn=23,... by

2 -1
Y, = (1 - %f(t..)) Zn. (13.50)

The Mathematica implementation of (13.47)—(13.50) is as follows:

Numerov([f_,g_, {tO_,Y0_,¥1_},h_,steps][t_,y]:=
Module[(tt, ££,gg,z0,z1,tmp, z, zs01},
fE[tt_,n_J:= £ /. £t > tt + n h;
ggltt_,n_]J:=g /. t => tt + n h;
z0 = YO(1 - (h"2/12)££(t0,0]);
z1 = (1 - (h"2/12)£f£(t0,1]) (YO + h Y1);
tmp = Table[(1,1/((1 - (h"2/12)££[t0,k]))},
{k,0,steps}];
zsol = NestList [nmstep[ff,gg, (t,z),# h]&,
{t0,z0,z1),steps];
Simplify [Map [Drop(#, {3)]&, zs0l] tmp]]
nmstep(f_,g_,(t_,z_)},(tn_,zn_,znpl)}, h_]:=
Module [{wnpl},
wnpl = h*2 £[tn,1]/(1 - (h"2/12)£(tn,1]);
{tn + h,znpl, (2+wnpl)znpl - zn +
(h"2/12) (g[tn,2] + 10g(tn,1] + g[tn,0]))]

Let us see how the Numerov method works in practice.

Example 13.1. Use the Numerov method to find a numerical approzrimation to the
second order initial value problem

y'=-ty+1,

y(0) =1, ¥'(0) = 0.
Solution. We use
ODE[{y’’ == -t"3 y + 1,y[0] == 1,y’ [0] == 0},y, (t,0,10},
Method->Numerov, StepSize->0.05, NumericalOutput->None,
PlotSolution->((t,0,10})]

or

ListPlot [Numerov[-t~3,1,(0,1,0},0.05,200]) [t,y],
PlotJoined->True]

to obtain the plot

Numerical Solutions of Ordinary Differential Equations 559

Numerov approximation to

v'= Pyl y(0) =1, ¥(0)=0

Although the above plot can also be obtained using NDSolve, for example using

ODE[(y'* == -t"3 y + 1,y[0] == 1,y’[0] == 0},y, {t,0,10},
Method->NDSolve, MaxSteps—>2000, NumericalOutput—>None,
PlotSolution->{{t, 0,10}, PlotPoints->400}]

Numerov is faster.

14 Systems of Ordinary Differential Equations

So fur the differential equations we have discussed have involved only one unknown
function. In many applications, however, there is more than one unknown function

and more than one equation. A system of first-order differential equations is
written in the form

dax
d_t‘ = Fy(t,z1,...,Tn),
(14.51)
d
D = Rty)
The independent variable is ¢, and the unknown functions are z(t),...,@a(t). The
functions Fy.. ... F, are assumed to be given. A solution of (14.51) consists of a

on of difierentiable functions {zy(t), ..., @x(t)} that satisfy the system (14.51)
alues of ¢ in some intervala < t < b.

also speak of an initial value problem corresponding to a system of
equations. Such an initial value problem consists of a system of the form
(1451) together with n initial conditions

71(to) = X1, 2a(to) = Xa,.

\Zn(to) = Xn (14.52)

560 Michael J. Mezzino, Jr.

for some tq satisfying a < to < b.
It is useful to abbreviate (14.51) and (14.52) to

x'(t) = F(t,x) (14.53)
and
x(to) = X, (14.54)
where
) By X,
x=iles il F=| : |, and X= :
Tn Fy X5

We can think of X as a point or vector in the space R™ of n-tuples of real numbers,
and £ — x(t) as a vector-valued function or (parametrized) curve in R". The vector
notation in (14.53) and (14.54) contains no new mathematics; however, it is a very
convenient abbreviation,

An important observation is that a higher-order single differential equation can
be written in terms of first-order systems. The following example illustrates the
procedure.

Example 14.1. Show that the second-order equation
" +p(t)y' () +a(t)u(t) = r(t) (14.55)
can be written as a system of two first-order differential equations.

Solution. By writing z; (t) = y(t) and z2(t) = y/(t), we convert (14.55) to the system

dx
= = @l
i (14.56)
=2 = —p(t)za(t) - q(t)za(8) + r(0).
dt
Clearly, (14.56) is a special case of (14.51) (with n = 2) by taking
Fi(t,21,22) = 22 and Fa(t,z1,22) = —p(t)za — q(t)x) + r(t)]

More generally, an n*"

equations

-order differential equation gives rise to n first-order differential

Example 14.2. Write y"'+y"+y/' +y = 0 as a system of three first-order differential
equations.

Solution. We put z, = y, z; = ¥/, and z3 = y”. This yields the system
I] v v

Ty = 23,

3 = L}
T3 = T3,

Ty =-n1-T7-T3

Numerical Solutions of Ordinary Differential Equations 561

One could also consider more general systems of higher-order differential equations.
However, any such system can be subsumed under the formalism of a first-order
system by defining new functions as the denvnnves of the original functions, just
as in the above le of a single d i The following example
illustrates this point.

Example 14.3. Show that the second-order system

vi(t) = 3u(t) +vi(t) + dwa(t),
(14.57)
vi(t) = 3y (t) + dui(t) + 5pa(t)
can be written as a system of four first-order differential equations.
Solution. We simply define
n=y, @@=y, 2=y L=V
and compute the derivatives to obtain
z) = 23,
Ty = 3x) + I3 + 473,
) (14.58)
T4 = @,
zhy = 3xy + 422 + 573.
Then (14.58) is the first-order system equivalent to (14.57) ™

15 Numerical Solutions of
Systems of Ordinary Differential Equations

Earlier, we discussed numerical methods for solving initial value problems associated
with first-order differential equations. Most such methods can be extended to systems
of first-order differential equations more or less automatically. The trick is to use
vectors instead of scalars. For example, suppose we are given a first-order initial

value problem
{ ¥(t) = f(t,y),

¥(to) = Yo,

where now ¢ «— y(t) and (t,y) =~ f(t,y) are vector-valued functions and Yy is a
vector. It is true that we can write out these objects in terms of their components:

¥it) = (n(t),....um(1),

fey) = (A6 OO Salt (O wn(0)), (15.60)
Yo = (mlto),...,un(to)).

(15.59)

562 Michael J. Mezzino, Jr.

But usually (15.60) is more of a hindrance than a help for understanding the theory;
the compact notation using y(t), f(t,y) and Yq is better 5. Of course, when specific
systems are solved components must eventually be inserted, although it is best to
keep the compact boldface notation as long as possible in the solution process. Since
boldface letters are used to denote vectors and vector-valued functions, a great deal
of the theory given in the earlier sections can be generalized to systems simply by
replacing appropriate nonboldface letters by boldface letters. Notice that ¢ and to are
never boldface.

For example, the Buler method for systems can be explained as follows. Just as
with its single-equation counterpart, the objective is to construct an approximation
to the solution of the initial value problem (15.59) for a < t < b. We divide the
interval @ < ¢ < b into equal subintervals:

a=ty<t <--<ty=b

where h =)41 — t) is the step size. The generalization to systems of the Euler
method formula (1.6) is just

Yirr = Yi + hf(te, Yi), (15.61)

where each Y is a vector.

Example 15.1. Find a numerical approzimation to the solution of the initial value
problem

{ a' = ysin(t), z(0) =.1,
(15.62)

Yy = —xcos(t), y(0) =0

over the interval 0 < ¢ < 10 with step size h = 1.0. Use the Euler method.

Solution. Write Yy = (Yo, Yk1); the Euler method formula (15.61) for the initial
value problem (15.62) with step size h = 1.0 becomes

Yierr = Yi + 1.0(Yiy sin(tk), - Yio sin(t))

for 0 < n < N —1. The interval 0 < ¢ < 10 is divided into 10 equal pieces, so N = 10.
We are given Yy = (1,0); then

Y; = Yo + 1.0£(0,(1,0)) = (1,0) + (0. 1) = (1,-1),

*1t was not until the boginning of the twentioth contury that vectors began to roplace lista of
components in the mathematical literature. The driving foree was voctor analysis as formulated by
Gibbs (see [Crowe]). In Mathematica a vector is a list.

Numerical Solutions of Ordinary Differential Equations 563

and so forth. We obtain the following table:

k= ty Yi
(1.0,0)

(1.0 = 1.0)

(0.1586, —1.5408)
(~1.2420, —1.4743)
(~1.45012, —2.7040)
(0.5962, —3.6518)
(4.0981, —3.8210)
(5.1657, —7.7558)
(0:07025, —11.6502)
(~11.4560, —11.6400)
(~16.2531, —22.0780)

SOC®NO G A o= o

The first plot below is the phase plot of the data given by this table. If we had used
1 top size of 0.01, we would have obtained the second plot.
’ &

Phase plot of (15.62) Phase plot of (15.62)
with step size 1.0 with step size 0.01

In the next example, we compare the phase portraits produced by the various
numerical methods.

Example 15.2 Use ODE with the option Method->AllNumerical to solve nu-
merically the witial value problem

7' =y, z(0)
vV +o = —sin(z? +t3), v(0)

1
0

Il

over the inferval —= < t < 27 using step size 0.02. Draw the phase portraits.

Solution. We use

564 Michael J. Mezzino, Jr.

ODE[{x’ == y,y’ + x == -Sin[x"2 + t°2],x[0] == 1,y[0] == 0),
{x,y),(t,-Pi, 2Pi),

Method->AllNumerical, ODETrace->False,

NumericalOutput->None, StepSize->0.2,
PlotPhase->((t,-Pi, 2Pi})}]

to obtain the following phase portraits

BEuler Heun

)

Runge-Kutta Runge-Kutta (45)

)

Implicit Runge-Kutta Second-order Euler

O

9

1

Numerical Solutions of Ordinary Differential Equations 565

OO,

Milne Adams-Bashforth
Bulirsch-Stoer NDSolve

NDSolwve is the best; the runner-up is AdamsBashforth.

Solving Higher-Order Equations Numerically Using ODE

NDSolwe and all of ODE's numerical solvers except Numerov can find a numerical
solution to a differential equation of any order. Before a numerical solver begins its
work, the command Transformation->ConvertToSystem is called to convert
the differential equation to a system. The conversion can be done either automatically
or more explicitly using ConvertToSystem We illustrate the two procedures:

Example 15.38. Use the Buler method with step size 0.1 to solve the second-onder

problem
o'+ oo =1,
x(1) =0, (1) = 0.

Find the phase plot of the solution over the interval 0 <t < 10.

Solution. The simplest command to use is

OOR[{x"' + x’ x == 1,x[1] == 0,x'[1] == 0},x, {t,0,10},
Method->Euler, PlotPhase->((t,0,10})}];

A\ more complicated command that accomplishes the same thing is

i AT

566 Michael J. Mezzino, Jr.

ODE[ODE[{x'’ + x' x == 1,x[1] == 0,x'([1) == 0),x,t,
Transformation->ConvertToSystem,
TransformationVariable->w], (wl,w2},(t,0,10},
Method->Euler, PlotPha >{{(t,0,10))}];

Using either command, we get the plot

Euler method solution of 2" + 2’z = 1,
2(1)=0, 2'(1)=0 plottedover 0<t <10

Recommendations

In closing, it seems appropriate to give some recommendations on methods to use
for solving a general problem. In general, NDSolve is to be used for all numerical
solutions. It is fast and accurate. It includes a dynamic adjustment of stepsize
determined by single step error estimates and it uses efficient algorithms for both
non-stiff and stiff systems. The other algorithms have been included for pedagogical
reasons, since they describe the general concepts used in NDSolve. All of the methods
we have discussed converge in the sense that the truncation error goes to zero with
the step size. However, the Milne method is unstable for some differential equations,
making it less desirable to use. It is included for historical reasons and because its
derivation is easier to understand. One way to rate the remaining methods is to apply
them to a variety of problems and compare the computer time used and the results.
Given a particular method, there is probably a special problem and a step size for
which this method is better than all others. Therefore, a superior method can be
better than others for a class of problems. but not necessarily best for any particular
problem.

If the equation is stiff, then an implicit method should be used. Here the desired
accuracy will determine the method, but in general, implicit multistep methods are
commonly used. Since no such method currently exists in ODE, the best choice will be
Implicit g ta. For nonstiff ions, the decision is normally made based
on the complexity of the functions being evaluated. If the functions are relatively sim-
ple, then BulirschStoer will be the most efficient, while the AdamsBashforth
predictor-corrector method is favored when the evaluation of the functions is compli-

Numerical Solutions of Ordinary Differential Equations 567

cated. The use of Runge-Kutta methods are normally restricted to finding starting
and possibly ending values for multi and lati hods, or to probl
where the function is easy to evaluate and the accuracy needed is small, about 1074,

References

[AbBrl] M. L. Abell and J. P. Brasel Differential Equations with Mathemati
Academic Press, San Diego, CA, 1992.

AbSt! M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functi
Dover Publications, New York, 1965.

Actonl F_S. Acton, Numerical Methods that Work, Mathematical Association of
America, Washington, DC, 1990.

Agew R P Agnew, Differential Equations, McGraw-Hill, New York, 1960.

Armold V1 Arnold, Ordinary Differential Equations, Springer-Verlag, Berlin-New
York, 1992.

Babd T Bahder, Mathematica for Scientists and Engineers,® Addison-Wesley,
Reading, MA, 1995.

[Braun) M. Braun, Diffe ial Equations and Their Applicati Fourth Edition,
Springer-Verlag, Berlin-New York, 1993.

[Bugl P Bugl. Differential Equations, Matrices and Models, Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

(StoBull) Swer and R. Bulirsch, Introduction to Numerical Analysis, Springer-
Verlag, New York, 1980.

{Buteher) 3. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
John Wiley,New York,1987.

[CelGra: M. Celia and W. Gray, Numerical Methods for Differential Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[CeHal T M. Creese and R. M. Haralick, Diff ial Equations for Ex
McGraw-Hill, New York, 1978.

S

[Ceowel M.). Crowe, A History of Vector Analysis, Dover Publications, New York,
1994

[Davis. H T Davis, Introduction to Nonlinear Differential and Integral Equations,
U'S Awomic Energy Commission, Washington, DC, 1960. Reprint by Dover
Publications, New York, 1962.

" Mathematicn programs for this book are available from mathsource . wri.com

568

[Gear]

[(GMP)

[Ham]

[Har|
[Hur]
[Ince]

[Iserles)

[Kamke|

[KeWi]

[Milne}

[PFTV]

[Rass]

[Sim]

SkKe]

Michael J. Mezzino, Jr.

C W Gear, Numerical Initial Value Problems i Ordinary Differential
Prentice-Hall, Engl d Cliffs, NJ, 1971.

A. Gray, M. Pinsky and M. Mezzino, Introduction to Ordinary Differen-
tial Equations with Mathematica, TELOS/Springer-Verlag, New York, NY,
1997.

R. W. Hamming, Numerical Methods for S ists and Engineers, Second
Edition, McGraw-Hill, New York, 1973. Reprint by Dover Publications, New
York, 1986.

D. R. Hartree, Numerical Analysis, Second Edition, Clarendon Press, Ox-
ford, 1958.

W. Hurewicz, Lectures on Ordinary Differential Equations, M. 1. T. Press,
Cambridge, MA, 1958.

E. L. Ince, Integration of Ordinary Differential Equations, Seventh Edition,
Oliver and Boyd, New York, 1967.

Arich Iserles, A First Course in the Numerical Analysis of Differential equa-
tions Cambridge University Press, Cambridge, 1996.

E. Kamke, Differentialgleichungen, Losungenmethoden und Losungen,
Tenth Edition, B. G. Teubner, Stuttgart, 1983.

J. B. Keiper and D. Withoff, Numerical Computation in Mathematica,
Course Notes from the 1992 Matk ica Conference, Wolf; Research,
Champaign, IL, 1992.

L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential
Equations, Academic Press, New York, 1971,

J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method, Academic
Press, New York, 1961.

W. E. Milne, Numerical Solutions of Differential Equations, John Wiley and
Sons, New York, 1970. Reprint by Dover Publications, New York, 1970.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes in C, Cambridge University Press, Cambridge, 1988.

J. M. Rassias, Counter E: les in Diffe 1 Ex and Related Top-
ics, World Scientific, Singapore 1991,
G. F. Diffe | Eq wath Appl s and Historical

Notes, Second L(Imnu \It(_vm\\ Hill, New York, 1991,

R. K. Skeel and J. B. Keiper, Elementary Numerical Computing with Math-
ematica, McGraw-Hill, New York, 1993

Numerical Solutions of Ordinary Differential Equations 569

[StpBull J. Stoer and R. Bulirsch Introduction to Numerical Analysis Springer-

[Verh]
[Vess)

(Wm2)

[WyBal

|Zwill]

Verlag, Berlin-New York, 1980.

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,
McGraw-Hill, New York, 1972.

E. Vessiot, “Sur I'i des ions differentielles lineares”, Annales
Scientifiques de ['Ecole Normale Supérieure, 3e série 9 (1892), 197-280.

S. Wolfram, The Mathematica Book, Third Edition, Wolfram Media, Cham-
paign, II, 1997.

C. R. Wylie and L. C. Barrett, Ad:
Edition, McGraw-Hill, New York, 1995.

d Engineering Mathematics, Sixth

D. Zwillinger, Handbook of Differential Equations, Second BEdition, Aca-
demic Press, San Diego, CA, 1992.

