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ABSTRACT

In this article we investigate the geometry of a Lie group N with a left in-
variant metric, particularly in the case that IV is 2-step nilpotent. Our primary
interest will be in properties of the geodesic flow, but we describe a more general
framework for studying left invariant functions and vector fields on the tangent
bundle TN. Here we consider the natural left action A of N on TN given by
Aa(€) = (Ln)  (€), where Ly : N'—» IV denotes left translation by n and (Ln)-
denotes the differential map of Ly.

For convenience all manifolds in this article are assumed to be connected
and C™ unless otherwise specified. Many of the assertions remain valid true for
manifolds that are not connected and are G* for a small integer k.

We assume that the reader has a familiarity with manifold theory and with
the basic concepts of Lie groups and and their associated Lie algebras of left
invariant vector fields.
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1. Basic properties and examples of
symplectic structures

We first recall some basic results of manifold theory that will be useful.

1.1 Lie derivative and exterior derivative of k-forms

Let X be a vector field on M with flow transformations {X‘}. By definition the
integral curves of X are the curves t -+ X*(m), where m is an arbitrary point of M.
For each compact subset C' of M there exists a positive number ¢ = ¢(C) such that
the flow transformations { X'} are defined at every point of C on the interval (—¢,¢).
Moreover, X*** = X*o X* = X* o X! at all points of M for which X*, X* and X'**
are defined.

Every vector field X on M defines an interior product ix that maps a k-form w
on M to a (k - 1)-form ixw on M given by ixw(Xy,..Xk-1) = w(X, Xy,..Xk-1),
where (X, .. Xs.,) are arbitrary vector fields on M. Since the exterior derivative d
maps & k-form on M to a (k + 1)-form it follows that both (doix)(w) and (ix od)(w)
are k-forms for any vector field X and any k-form w.

If & is a k-form on M, then we define the Lie derivative Lyw to be the k-form
on M given by Lxw = ;ﬂ,:.,(x') * (w). The Lie derivative is related to the interior
product and exterior differentiation by the important formula

Lyw = (deix)(w) + (ix o d)(w) (1)

Since dod = 0 it follows immediately that

doLx =Lxod (2)
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If w is a 1-form on M, then dw satisfies the basic and useful formula

dw(X,Y) = X(@(Y)) - ¥(w(X)) - w((X,Y]) @)

where X and Y are vector fields on M and [X, Y] denotes their Lie bracket. There

is a generalization of this formula for dw, where w is a k-form. See for example, [Hel,
p- 21).

1.2 f-related vector fields

Let M and N be C*® manifolds, and let f : M — N be a C> map. We say that vector
fields X in M and Y in N are f—related if f.(X(m)) = Y (f(m)) for all m € M. The
following result is standard.

Proposition Let M and N be C* manifolds, and let f : M =& N be a C* map.
Let X;, X, and Yj,Y2 be vector fields in M and N such that X, is f-related to ¥;
and X, is f-related to Y2. Then [Xy, Xo] is f-related to [V3,Y3].

1.3 Flow box coordinates and commuting vector
fields

The following result is often useful. For a proof see [S, Theorems 7 and 14,
Chapter 5].
Proposition Let M be a C* manifold of dimension n.
1) Let X be a C™ vector field on M, and let m be a point of M such that X (m) # 0.
Then there exists a coordinate system z = (zy,z3, ...,z,) in a neighborhood U of m
such that X -z— inU.
2) Let {X;,..., Xkl) be linearly independent €™ vector fields that commute on some
open subset U of M; that is, [Xi, X;] = 0on U for 1 <, j < k. Then for every point
m of U there exists a coordinate system z = (z;,7,...,2,) in a neighborhood V of
m such that X; = ;,% inVforl<i<k

1.4 Definition of a symplectic structure

A C™ manifold M of dimension 2n is said to have a symplectic structure if there
exists a nondegenerate 2- form £ on M such that d = 0 and QA ---AQ (n times) is
nonzero at every point of M. Globally symplectic manifolds may vary considerably,
but locally the symplectic structure has a canonical form.

Proposition (Darboux) Let M be a manifold of dimension 2n with a symplectic
structure given by a closed 2-form Q. For every point m of M there there exists a
coordinate neighborhood U of m and coordinate system

= (P, punry ey Gn) : U = IR¥™ such that @ = dgy Adp; + dgs Adpy + -+ +
dgn Adp, on U.
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Example 1. Symplectic structure on the cotangent bundle [Am]
Let M be a C* manifold with tangent bundle TM and cotangent bundle TM*. The
cotangent bundle admits a canonical 1-form @ defined by 8(¢) = w(dn(£)), where ¢
is an element of T,(TM*) and m : TM* — M is the projection that assigns to an
dlement w of (T,,M)* the point m. The 1-form 6 satisfies the following properties
and is characterized by the first of these:

1) If4: M - TM* is a smooth 1-form on M, then 8*(f) = 3, where §*(6) denotes
the pullback of 8 by 8. ~

2)If f : M — M is any diffeomorphism, then the natural extension f : TM* — TM*
given by f(w) = f*(w) preserves 6; that is, (f)*(8) = 6.

The 2-form 2 = —df is a symplectic form on TM*; that is, 2 is nondegenerate
at every point of TM* and Q4..AQ (n times) is a nonzero 2n-form at every point of
TM*. Since pullbacks commute with exterior differentiation the two properties above
for # have immediate analogues for Q.
1)1f 3 : M = TM* is a smooth 1-form on M, then 3*() = —d3.

2 1f f+ M — M is any diffeomorphism, then f*(2) = Q. !

Example 2. Coadjoint action of a Lie group on its Lie algebra
Let H be a connected Lie group, and let § denote its Lie agebra. On the dual space
H* we define a left action Ad* : H = GL($") called the coadjoint action of H. Given
WwE N and h € H we define Ad*(h)(w) = wo Ad(h™"), where Ad : H —» GL($)
denotes the usual adjoint action of H on $. It is routine to check that Ad*(hyhy) =
Ad*(hy) o Ad*(hy) for all hy, hy € H. Hence Ad*(H) is a subgroup of GL($*).

For each X' € § define ad* X € End($*) by ad* X (w) = —woadX. It is easy to see
that ™" ¥ = Ad*(e'X) for all t € IR and all X € $. Hence ad*$H = {ad" X : X € 5}
is the Lie algebra of Ad*H.

Next, we show that each orbit of Ad*H in §° is a symplectic manifold. Given an
clement w of H* the orbit Ad*H (w) is naturally diffeomorphic to the coset manifold
H/H,, where H, = {h € H : Ad"h(w) = w}. It suffices to define a symplectic
structure on H/H,,.

For each w € 9* define a skew symmetric bilinear form B, : § x § = IR by
DX Y) = @([X,Y)). If §, denotes the Lie algebra of H., then it is easy to see
that H, = (Y € H:ad"Y(w) =0} = (Y € H: w([X,Y]) =0forall X € H} = (Y €
N BUXY) =0 forall X € H) = nullity of B,,. Hence B, defines a nondegenerate,
skew symmetric bilinear form B, on $/9,, by B.([X),[Y])) = Bu(X,Y), where [X]
denotes the element of /9, determined by X € §. In particular, §/$, has even
dimension 2n,, for every w € §°.

Let [¢] be the identity coset in H/H,. The tangent space Tj,)(H/Hy) may be
n’n‘lunﬂy identified with /8, by the isomorphism [X] = aqy)'(0), where ajy;(t) =
CHL for X € § and t € IR, Now let Q, be the nondegenerate, left invariant 2-form
on H/H, such that Q, = B, on Tjo)(H/H,). 1t is routine to show that Qu A« AQ,
(n, times) is nonzero at every point of H/H,. This completes the construction of a
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symplectic 2-form ), on each orbit Ad*H(w) in §°.

2. Symplectic structure on the tangent
bundle of a pseudoRiemannian manifold

2.1 Definition of the symplectic 2-form

Let m =<, >, be a smooth assignment of a nondegenerate symmetric bilinear form
of fixed signature to each tangent space Ty, M; that is, <,> is a pseudoRiemannian
structure on M. The bilinear form <, > defines an isomorphism f,, between T,, M
and T,,M* for each point m of M by fn(v)(w) =< v,w > for all vectors v,w in
T, M. The resulting diffeomorphism f = f< - : TM — TM* allows one to pull back
the 1-form # and the 2-form Q = —df on TM*. These pullbacks will also be denoted
# and Q. It is routine to show

0(€) =< v,dn(€) > for every € € T,(TM) (4)

where 7 : TM — M denotes the projection map that sends a vector v € T}, M to the
point of attachment m. Since d commutes with pullbacks we also have

0= —df (5)

An isometry of M relative to <,> is a diffeomorphism f : M — M such that
< fu(v), fo(w) >=< v,w > for all vectors v, w in T,,, M at all points m of M. Again,
fo: TuM = Ty(uyM denotes the differential map of f. From the definitions it is
routine to show

f*(0) = 6 and f*(Q) = Q for every isometry f: M - M (6)

where f* denotes the pullback of a differential form by f.

In this article we will always assume that <, > is positive definite; that is, <,>
is a Riemannian structure on M. Moreover, we shall assume that M is a complete
Riemannian manifold so that all geodesics are defined on (—00,00). In particular, the
geodesic flow {F’) is defined on TM for all t.

Remark:

Operating on the cotangent bundle TM* has some obvious advantages over op-
erating on the tangent bundle TM. The forms # and Q are intrinsically defined on
TM*, and they are preserved by the natural extension f : TM* — TM* of any
diffeomorphism f : M — M. The corresponding forms # and Q on TM are not
intrinsically defined but depend on a choice of nondegenerate bilinear form <, > for
the tangent spaces of M. Moreover, the forms @ and 2 are not left invariant by every
diffeomorphism of M but only those diffeomorphisms that leave <, > invariant; that

e A\



P

Left invariant geometry of Lie groups 433

s, the isometries of M. However, to define many interesting flows and vector fields on
TN, such as the geodesic flow of Riemannian geometry, it is necessary to introduce
an inner product <, >.

2.2 Geometry of the tangent bundle of a Rieman-
nian manifold

Let M be a connected C'™ manifold with a positive definite Riemannian structure
<. > We shall define a natural induced Riemannian structure <<, >> on T'M, usu-
ally called the Sasaki metric, and develop some of its basic properties. In particular
we define a connection map K : T(T'M) — M and use it to give an alternate defini-
tion of the symplectic 2-form Q. We describe a natural almost complex structure J
on TM that relates Q and <<, >>. For further discussion see [E5] or [P).

2.2a Connection map

For each vector v € Ty, M we define a linear map K, : T,(TM) — T,,, M as follows.
Let £ € T.(TM) be given and let Z(t) be a smooth curve in TM with initial velocity
£ Ifalt) = 7(Z(t)), where 7 : TM — M is the projection, then we may regard
Z(t) as a vector field along the curve a(t) in M. Now define K,(£) to be Z'(0), the
covariant derivative at t = 0 of Z(t) along a(t). By computing in local coordinates it
18 not difficult to show that K, (€) does not depend on the choice of curve Z(t) in TM
with initial velocity £ A formula for the connection map K in local coordinates may
be found in [GK M), and to my knowledge this is the first discussion in the literature
of the connection map.

2.2b Sasaki metric

It is not difficult to show that £ = 0in T, (TM) & dr(€§) = 0 and K (£) = 0. Hence
if H(v) = ker K, and V(v) = ker dry, then T,(TM) = H(v) &V (v) , direct sum. We
call H(v) and V(v) the horizontal and vertical subspaces of T, (T M) respectively.

Define the Sasaki metric <<, >> on the tangent spaces of TM by

<< §n >>=< dn(§),dn(n) > + < K(§), K(n) >

for §,n € T.(TM) and v € TM. Note that the vertical and horizontal subspaces are
orthogonal relative to <<,>>.
Remark

f:M-= Nisan isometry of Riemannian manifolds, then it is routine to show
that the differential map f : TM — TN is an isometry relative to the associated
Sasaki metrics.

2.2¢ Jacobi vector fields

The connection map allows one to define an explicit isomorphism between T, (T'M)
and the vector space of Jacobi vector fields J(v,) along the geodesic 7, with initial
velocity v. Given a vector € € T,(TM) we define Ye(t) to be the unique Jacobi vector
field oo +, such that Y¢(0) = dr(€) and Y¢'(0) = K(€), where Y¢'(t) denotes the

P —
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covariant derivative of Y¢(t) along 7.

The map £ = Y; is a linear isomorphism of T,(T'M) onto J(v,). For any real
number ¢, one may also show that Yg(t) = dn((8¢).€) and Y¢'(t) = K((®").£), where
{®"} denotes the geodesic flow in TM. See [E5] for further details.

2.2d Symplectic 2-form

The symplectic 2-form Q on TM has the following description in terms of the
metric <,> onMand the connection map K. See [P, p. 14] for details.

Qé,n) =< dn(€), K(n) > — < K(€), dn(n) >

From this it follows that {(B%)°Q}(&,n) = Q(B).£,(8").n) =< dn((8).£),
K((89.n) > = < K((®").€),dn((8").n) >=< Y(t),Y;(t) > = < Y1), Y(2) >.
The Jacobi equation and curvature identities imply that the derivative of this func-
tion of t has derivative identically zero. This proves that (&¢)*Q = Q for all £.
Warning

It is not true that (8%)*¢ = @ for all ¢, where # is the canonical 1-form on
TM. In fact, if & denotes the geodesic vector field with flow {®‘}, then Lot =
“,{l.:o {(®')*6} = dE, where E : TM — IR is the energy function given by E(v) =
= < wv,v > forv € TM. However, if we restrict our attention and also @ to a hypersur-
face of constant energy, say the unit tangent bundle SM = E~(1), then (8!)*0 =8
for all t. See (5.1) for further details.

2.2e The almost complex structure J on TM

Given v € TM and a vector £ € T, (TM) we define &, = dn(€) and &, = K(£).
We refer to &, and &, as the horizontal and vertical parts of £&. We associate £ with
the pair (&,&,) € TmM x T,y M, where m = =(v). Conversely, fix v € TM and let
m = w(v). Then for every pair (a,b) in T,, M x T,, M there exists a unique element
€ € T,(TM) such that (éx,&) = (a,b).

Define a map J = J, : Ty (TM) — T,(T M) by requiring

dn(J(€)) = —K(€) and K(J(€)) = dr(€) for all £ € T,(TM),v € TM.

If we identify £ with the pair (€,£,) as above, then we may describe J as follows:
J(€)n = =& and J(€). = & or equivalently
J(§ns €0) = (=6v, 6n)
From this description it is clear that J?> = —/d and J interchanges the horizontal
and vertical subspaces H(v) and V(v) of T,(TM). Moreover, from the alternate
description above of the symplectic form € in terms of K and <, > it is routine to
check that

QE,n) =<< J(€),n >> forall §,n€ T, (TM) and all v € TM.

It follows from the skew symmetry of Q that J is skew symmetric relative to <<, >>.
However, J is also a linear isometry relative to <<, >> on each tangent space T, (T M)
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since << J(€),J(n) >>= = << J*(€),n >>=<< 1 >> for all §,n € Ty(TM).

3. Poisson manifolds

3.1 Definition

A €™ manifold P is called a Poisson manifold if there is a structure {, } : C°(P) x
("9(P) - C™(P) that satisfies the following properties :
1) (Skew symmetry) —{f,g} = {g, f} for all f,g € C=(P)
) (Bilinearity) {,} is R-bilinear
a){af +bg,h} = a{f,h}+b{g,h} fora,b € Rand f,g,h € C®(P)
b){f,ag+bh} = a{f,g} +b{f h} fora,b€ R and f,g,h € C®(P)
3) (Leibniz) {f.9-h} = {f,9} - h+g-{f h} for all f,g.h € C=(P)
4) (Jacobi Identity) {f,{g,h}} + {9, {h, f}}+{h,{f,g}} =O0forall f,g,h € C°(P)
If we are given a Poisson structure {, } on C*°(P), then for each f € C*®(P) we
may define Xy : C%(P) = C®(P) by X;(9) = {9.f}. The Leibniz property then
becomes the statement Xy(g-h) = (Xyg) - h+ g (Xsh) for all f,g,h € C®(P).
In particular, each map X, is a derivation on C*(P) and consequently X; defines
an element of X(P), the C* vector fields on P. The vector field X; is called the
Hamiltopian vector field on P determined by f.
Notation Let Xy(P) = {X;: f € C™(P)}, the collection of Hamiltonian vector
fields on P.

3.2 Reformulation of the Jacobi identity

The Jacobi identity may be restated in two equivalent ways:

1) (X7 X,) = =X{y) for all f,g € C®(P), where [X;, X,] is the usual Lie
bracket in X(P).

2) Xy {g.h} = {X;yg,h} + {9, Xyh} for all f,g,h € C=(P).

The first statement says that f — X is a Lie algebra antihomomorphism of
(C=(P).{.}) into {Xy(P),[,]}. It also shows that Xy (P) is a Lie subalgebra of
X(P) with respect to the Lie bracket of vector fields. The second statement says that
Xy is a derivation of the Lie algebra {C®(P), {, }} for every f € C®(P).

3.3 Examples of Poisson manifolds
We present some examples that are discussed in more detail below.

Example 1 Let P be a C™ manifold with a symplectic 2-form Q. For every point
in P and every w € T, P* there is a unique vector £ € T; P such that w(£*) = Q(&,€*)

L



436 Patrick Eberlein

for all £* € T, P; this follows from the fact that Q is nondegenerate at every point
of P. In particular, for every f € C*(P) there exists a unique C* vector field X,
such that Q(Xy,-) = df. Now define {f, g} = Q(X;, X;). We verify in example 2 of
(3.7) that {,} satisfies the Poisson axioms on P and X/ is the Hamiltonian vector
field associated to f by the Poisson structure {, }.

Example 2 Let $ be a finite dimensional real Lie algebra. The Lie algebra $
may be regarded as the subspace of linear functions in C*($*) under the natural
isomorphism between ) and (£*)*: given A € § and w € H* define A(w) = w(A).
Define {, } on $* by requiring that {4, B} = [4, B] for all A, B in $. Then there is
a unique extension of {, } from $ to all of C**(H*). Note that § is a Lie subalgebra
of C*(9°*). See example 3 of (3.7) for further discussion.

Example 3 Let $ be a finite dimensional real Lie algebra, and let <,> be a
nondegenerate, symmetric bilinear form on 5. Let # : § = $* be the isomorphism
defined by A#(B) =< A,B > for all A,B € . Define {,}# on §* C C®(H) by
{A*,B¥*} = [4, B]# for all A, B in §. Then {, }* has a unique extension to a Poisson
structure on $). As in the previous example, we note that §° is a Lie subalgebra of
C>(9). See example 4 of (3.7) for further details.

3.4 Symplectic Stratification

Example 2 shows that there are important Poisson structures that do not arise
from a symplectic structure. Symplectic manifolds must have even dimension, but
Lie algebras have no such restriction. However, the process of symplectic stratification
allows one, in effect, to reduce to the case of a symplectic Poisson structure for many
situations. We give a brief outline here and provide more details later. The interested
reader should consult [O, Chapter 6] , [MR, Chapters 10-13] and the references in
these books for proofs of the statements here.

The Hamiltonian foliation and its rank

For each point z of a Poisson manifold P let H(z) = {Y(z) : Y € Xy (P)} and let
rank(z) =dim H(z). Call H the Hamiltonian foliation in P even though the rank of
H may not be constant in P. If the rank of A is constant in an open subset U of P,
then by the Frobenius theorem the distribution % is integrable in U since Xy (P) is
closed under Lie brackets.

Symplectic leaves

An extension of the Frobenius theorem shows that if z is any point of P, then
there exists a maximal integral manifold L(z) of # that contains p and has dimension
rank(z). Note that the restriction of any Hamiltonian vector field X, to any leaf L(z)
is tangent to L(x). In fact, the manifold L(z) carries a symplectic 2-form €, defined
by Q. (X;(x), X,(2)) = {f,9} (z) for all f,g € C™=(P). In particular every leaf L(z)
has even dimension. The manifolds L(z),z € P, are called the symplectic leaves of $
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or P.
The discussion above shows that each Poisson manifold P can be decomposed into
a disjoint union of d even di ional sub ifolds that carry a symplectic

structure arising from the restriction of the Poisson structure of P. The symplectic
Jeaves may not all have the same dimension since the foliation % may not have
constant rank. We shall see later in (3.8a) that if f : P, — P is a C*™ diffeomorphism
that preserves Poisson structures then f maps each symplectic leaf in Py onto a
symplectic leaf in Py.

We consider left actions A by a connected Lie group H on a Poisson manifold P
such that the elements of H preserve the Poisson structure of P. It frequently occurs
that H leaves each symplectic leaf invariant, which in principle allows one to study
the dynamics of the action on each symplectic leaf. In this case each X € §) defines
a vector field A(X) on P that is tangent to each symplectic leaf and whose flow tran-
formations are {A,x ). If in addition each vector field A(X') is Hamiltonian, then one
obtains & momentum map J : P = $* that is an important tool in analyzing the
action of H. See (3.11¢) for further discussion.

3.5 The Poisson structure in local coordinates

Before describing examples we exhibit formulas in local coordinates for the Poisson
structure {, ) and the associated Hamiltonian vector fields. Let P be a Poisson mani-
fold, and Jet z = (zy,...2,) : U = IR" be a local coordinate sytem defined on an open
subset 7 of M. For C™ functions F, H on P the Poisson axioms yield the following:
- - OF 0H
() {FH)= Z;,;(I"I')"_‘*"_%
G OH @
Xp = T4, Tj} =}
2(12( 4 Oz Ox;
The structure matrix J(z)

It s evident from these formulas that the Poisson structure is completely deter-
mined locally by the skew symmetric structure matrix J(z) = Ji;(z) = {a;, 2;}(x) for
£ € U The Jacobi identities 0 = {y, {z;, xx}} + {z;, {zx, 2:}} + {x, {zi,2;}) define
a family of first order nonlinear partial differential equations for the structure matrix
J(x) that must be satisfied. Conversely, let (z, ) be a local coordinate system on
P and bt J(z) be a skew symmetric matrix that satisfies these partial differential
‘quations. If we define {z;,2;}(z) = Ji;(z) and {f, g} by the formula above in (*)
for functions £, g in C*(U), then {,} defines a Poisson structure on C*(U). See [0,
pp. 395-396) for a proof.

The observation above can be restated in another way. Let (z,U) be a local
‘oardinate system in a manifold P. Suppose that {, } is a bilinear pairing on C®(U) of
the form (*) above such that the Jacobi identities 0 = {zi, {z5,zx}} + {2, {zh, @i} } +
{24, {2,,2,} are satisfied. Then {,} defines a Poisson structure on C®(U).

e
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This criterion is useful in the discussion below of the canonical Poisson structure
on P = §", the dual space of a finite dimensional real Lie algebra . This example
can be dualized to a canonical Poisson structure on a Lie algebra $ with an inner
product <, >, but in this case the Poisson structure depends on <, >.

Remarks

1. The rank of the Hamiltonian foliation # equals the rank of the structure matrix
J(z) in any local coordinate system. See [O, p. 399] for details.

2. If F, F* and H, H* are pairs of functions with the same derivative maps at r,
then from the formulas above we see immediately that
a) {F H}(z) = {F"*, H" }(2)-
b) Xr- () = Xr(a).
Conversely, if Xp-(z) = Xp(z) for two functions F and F*, then F and F*
have the same differential maps at z. One may verify this either directly from
the Poisson axioms or from the local coordinate representations of X and Xp-
above,

o

A vector subspace V of C*°(P) will be called first order dense in C*°(P) if for
every point m of P and every element f of C>(P) there exists an element f
of V such that f and f have the same differential map at m. For example, the
linear functions W* on a finite dimensional real vector space W are first order
dense in C®(W).

If V is first order dense in C*(P) and {,} : V x V' = V is a map that
satisfies the Poisson axioms, then by 2) there is at most one extension of {, } to
a Poisson structure on C*(P).

3.6 Local coordinates of Lie - Weinstein (ct. [0, p.405),
[MR, p. 348])

If the Poisson structure {,} has constant rank 2n in some open set U of P, then
we may hope to choose local coordinates cleverly so that the structure matrix J(z)
has the simplest possible form in U. To see what this simple form might be we
consider a single skew symmetric m x m matrix A. By linear algebra A has rank
2n < m = 2n + { and there exists an element g of O(m) such that B = gAg~' has
the following canonical form:
*) 1)Byy =0fori>2n+1orj>2n+1.

2) The upper 2n x 2n block, namely {B,; : 1 <i,j < 2n} consists of n
-1 ‘l) along the diagonal and zeros elsewhere.
We can now make our question more precise. If {,} has constant rank 2n in

copies of the 2 x 2 matrix




_
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some open set U of P, then can we find a local coordinate system around each
point of U so that the structure matrix J(z) has the canonical form described above
in(*)? ;
The answer is yes, and local coordinate systems with this property are called Lie
. Weinstein coordinates.
We formulate this result in greater detail.

Canonical form for the structure matrix J(z)

Proposition Let P be a Poisson manifold. Suppose that the Poisson structure {, }
Jias constant rank 2n in some open subset U of P. Then for each point m of U there
exists & coordinate system z = (q1,P1,q2,P2, - -+ ,Gn, Pny 21, - - -+ 2¢) in an open set V'
with p € V C U such that

1 {peps) = {ang) =0 for all d,j

{aps) =85
P2} = {02} = {22} =0for 1<i<nand1<rs<¢

2 Xy = g and Xoy= —gk-for 1 <i<n
X, =0for1<r<t
3. A function f : U = R is a Casimir function (cf. (3.9)) & §L = 3“’% = 0 for

'Pi
1 €4.) < n In this case f = 4(zy,...,2z¢) for some function A of ¢ variables.

Remark The bracket relations in 1) are equivalent to the statement that the struc-
ture matrix J for this coordinate system has the canonical form in (*) above.

As & straight forward consequence of the result above we obtain
Corollary Let m be a point of P such that the rank of {, } is = 2n in some neigbor-
hood of m. Let P have dimension 2n+£ for some integer £ > 0. Then m lies in a coordi-
nate neighborhood U with coordinate functions z = (g1, P1,92, P2, - - <, Gny Py 21, - - -+ 22)
such that

4) The symplectic leaves in U are the slice submanifolds (zy,...,2) = (c1,...,¢),
whete {¢,} are constants.

“\ OFOH OF 0H
b Poi = — -}
) The Poisson bracket takes the form {F, H} g; i Gl WO 00

Proof of the Proposition The coordinates p, g, z of the proposition are constructed
inductively, two at a time. The first step is the following
Lemma Let P be a Poisson manifold of dimension N, and let p: P> RbealC®
function with Hamiltonian vector field Xp. Let m be a point of P such that X,(m) #
0. Then there exists a neighborhood O of m and functions q,¥3,..,yn : 0 9 R
with the following properties :
Uz =(g.p,...,yn) : O = RY is a coordinate system in O.
: }={pyi}=0fori>3.

P —
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Proof By (1.3) there exlsts a coordinate system = = (z;,...,zx) in a neighborhood
V of m such that X, = z& . If ¢ = oy, then {g,p} = X,(q) = 1, and it follows
that (X, Xg] = —X(gp) = 0 since X, = 0 for any constant function c¢. By (1.3) we

may choose a different coordinate system y = (y1, .. .,yx) in a neighborhood W of m
such that W C V,-X, = L and X, = a% in W. Now define z = (¢,p,¥3,...,UN) :

W — R™. We show that there exists a neighborhood O of m with O C W such that
2= (g,p,y3,---,yn) : O = RN has the properties of the lemma.

To prove 1) it suffices to show that z is nonsingular at m. The determinant of
the Jacobian matrix 6—‘ is a_yq‘FyL 3%# = qudp(an, 5, 2) dgAdp(—Xg, X,) =
dg A dp(Xy, X,) = dq(Xp)dp( o) — dg(Xq)dp(Xp) = {a,pH{p,a} - {g,a}{p,p} = -1.
Hence z is nonsingular at all points of W, wlnch proves )

2) We observed already that {g,p} = 1. Now, {yi,p} = X,(vi) = By: = 0 for
i > 3. Similarly, {yi,q} = X,(¥:) = —gﬁ = 0 for : > 3. To prove the remaining
assertions of 2) we relabel ths- coordinates. Let z; = ¢,20 = p and 2z = yj for
k > 3. Then from the bracket relations above and the local coordmate form for a

Hamiltonian vector field we obtain X, = Z Z(Z"'Zi}a 6 Z{Zk,p)a
k=1 j=1 RSN 2

il - bl
2 Similarly, X, = y il 8 O
3 smias 3= S S ) DL =S =

3) v} = =Xo{wiys} = —{vovi}sa} = {{vs.abowid + ({avi}y;} = 0if
i,j > 3 by the Jacobi identity and the bracket relations in 2). A similar argument
shows that ;—q{y,,y,) =0if4,j > 3. The proof of the lemma is complete. [ ]

Proof of the Proposition Let N = dim P. Let U be an open set of P such that {, }
has constant rank 2n > 2 on U. Fix a point m of U and choose a function p: U = R
such that X, (m) # 0. Choose an open set O with m € O C U such that the conditions
of the lemma hold. The structure matrix J in the coordinates z = (g,p,y3,...,yn)

4 0),whereA: Wl and Jj is an

0 L =10
(N = 2) x (N — 2) matrix whose entries are {y;,;},4,7 > 3. Clearly the rank of J;
is 2n — 2 in U since the rank of J is 2n in U.

If 2n — 2 = 0, then J; is the zero matrix and {yi,y;} =0in U for all ,5 > 3. In
this case we set ¢1 = ¢,p1 = p and z; = yiy for 1 <i <N —2. It is easy to see that
these coordinates in U satisfy the assertions of the proposition.

If 2n — 2 > 0, then we repeat the method of the lemma. Let ¢, = ¢ and p; = p.
Write m = (my,...,my) in the coordinates (q1,p1,¥3,...,yn). Now consider the
foliation of U into codimension 2 submanifolds U, c, defined by setting ¢, = ¢; and
p1 = ¢3. Each submanifold U, ., has a coordinate system y = (y3,...,y~) around
m' = (mg,...,my) in which the entries {y,y;},i,j > 3, of the structure matrix
Jy depend only on y;,...,yn by 3) of the lemma. Hence each submanifold U, .,
inherits from P a Poisson structure of rank 2n — 2 with structure matrix J;. For
one of the submanifolds Ue, ¢, (it doesn’t matter which) we repeat the method of
the lemma above to obtain a new coordinate system (ga,p2,2s,...,2x5) on Ug e,

takes the block diagonal form J = (
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in a neighborhood U’ of m' such that the structure matrix of Uy,,c, has the form
= ( i s , where A = O , Jo has entries {zi,2;},%,j > 5 and J; has

(50

rank 2n — 4 on U'. Making the original neighborhood U smaller if necessary we now

have coordinates (q1,p1,42,P2,2s,...,2n) on U so that the structure matrix J has
B0 A0 (gl

the form ( 0Lk ),whereB: ( 0 A ),A: ( Bt ) and a—‘::{zi,zj} =

ﬁ-(z;,Zj) =0for @ =1,2 and 7,5 > 5. It is now clear how to repeat this process

until the coordinates (q1,P1, 92,2, - -, qn,Pn, 21, - . -, 2¢) described in the statement of

the proposition have been achieved. [ ]

3.7 Examples of Poisson structures

1. A simple example in IR*"
Let y,...,@on be the standard coordinate functions and relabel them so that
pi = a; for 1 <i < n and ¢; = ant; for 1 < i < n. Define {p;,p;} = 0; {gi,q;} = 0
and {gi,p;} = di;. Substituting these structure functions into the formula above
yields
> OF 0H OF 0H
ol ;‘3% Opi  Opi 0g;

n n
0H 9 0H 0
T T B
& Opi 0q; & 94: Op:
One may check directly that that {,} satisfies the Poisson axioms, but we omit
this computation. This example is a special case of the next one.

2. Symplectic manifolds
Let P be a 2n-manifold with a symplectic structure arising from a symplectic
2-form Q. Since ) is nondegenerate at each point of P, for every m € P and every
w € (T P)" there exists a unique vector € € T}, P such that Q(&,¢&') = w(¢’) for all
¢ € Trn P. In particular, if f : P — IR is any C™ function, then there exists a unique
vector field X; on P such that Q(Xy,Y) = df(Y) for all Y € X(P). In terms of the
interior product we may express this relationship as

ix, Q= df for all f € C°°(P).
Given f,g € C*(P) we now define
{f,9} = Xy, X,)
We verify the Poisson axioms. It is not difficult to show that

X5, Xl = = X5y for all £,9 € c(P).



442 Patrick Eberlein

It now follows from the Jacobi identity for [,] on X(P) that {,} satisfies the Ja-
cobi identity on C*°(P). The skew symmetry and bilinearity of {,} are evident
from the definition and the fact that the map f — X is IR-linear. Finally, since
{f,9} = UXy, X,) = df(Xy) = X,(f) it is clear that the Leibnizian property of {, }
follows from the Leibnizian property of the vector field X, for each g € C*°(P). This
shows that {, } satisfies the Poisson axioms. Moreover, for each f € C*(P) the vector
field X defined above by Q is precisely the Hamiltonian vector field associated to f
by the Poisson structure {, }.

Hamiltonian foliation of a symplectic manifold

In a symplectic manifold P the Hamiltonian foliation is trivial; that is, H(m) =
Tm P for every m € P. Given a point m € M and a vector £ € T, P recall that ic§2 €
T, P* is defined by i¢Q(n) = Q(€,7) for all n € T,,, P. Let f € C*(P) be a function
such that df,, = igQ € T,n P*. By definition, ix (;)Q = dfm, and hence Xy(m) = ¢
by the nondegeneracy of 2. This proves that T,,P = {X;(m) : f € C*P)} = H(m)
for all m.

Special case

n
Let M = IR*" with coordinates py, ..., pn, q1, .., gn and let Q = Z dg; Adp; . If
i=1
X is any vector field on IR?" | then it is easy to compute
n n
ixQ =" X(g:)dpi — Y X(pi)dai .
i=1 i=1

In particular, ix, Q = dH satisfies the equations Xu(q) = % and Xy (pi) =

OH 9 OH o
_on = N
5q, or equivalently Xp = Z 9 00 Z 8q; Op:

example shows that these two Polsson stru(‘tures are the same.

A comparison with the first

3. The canonical Poisson structure on $*

Let § be a finite dimensional real Lie algebra, and let $* denote its dual space.
The Lie algebra structure ] on ) defines a canonical Poisson structure on §*. First,
we observe that each element X of §) can be regarded as a linear function from $* to
IR by defining X(w) = w(X) for every w € §*. Define {,} : H x H = H C C®(H*)
by {X,Y} =[X,Y].

Next, we extend {, } to a Poisson structure on $*. Note that there is at most
one extension by the remarks 2) and 3) of (3.5),

If {z1,..,7,} is a basis for §, then z = (z1,..,2,) : H* — IR" defines a
linear coordinate system on FJ‘ Let (C“} be the structure constants defined by

= Z C,]zk IfA= Z Ajz; and B = Z Bjz; are arbitrary elements of 9,

k=1 i=1 =

[aies 4
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then {4, B} = [4,B] = Z{E §AiBj}ey. Noting that A; = 24 and B, = 28

we guess that for arbltrary C°° functmns fy9:9* = IR the pairing
af 8
o =Dy ey By,
k=1 ij=1 0z; O
with structure fu,{lctions

o) = ZC" Tk

k=1
is a good candidate for a Poisson structure on C®($H*). For f € C*(H*) the map
X;:C®(9°) - C°°(S")‘) given by Xy(g) = {9, f} has the local coordinate formula

n af
i k

%= Sz
It is evident that X is a C* vector field on §* for each f € C*(9*), and this
property is equivalent to the Leibnizian property of {,}. The skew symmetry and
IR-bilinearity of {, } are obvious from the expression for {f, g} in (*) and the fact that
CU = —CA for all 7,5, k.

It remains only to check the Jacobi identity for {,}. By the discussion above in
(3.5) it suffices to check the Jacobi identity on the coordinate functions {z1, ..., x, } for
$*. However, since {xi,;} = [;,z;] the Jacobi identity for {, } follows immediately
from the Jacobi identity for .

Hamiltonian foliation in $H*

Let H be a connected Lie group with Lie algebra . For all w € $ we show that
H(w) = ad*H(w) = T, Ad"H(w), the tangent space at w to the Ad"H orbit of w.
This proves at the same time that the orbits of Ad*H are the symplectic leaves of
the canonical Poisson structure on §)*. See example 2 of (1.4) for a definition and
discussion of Ad*H C GL(H*) and its Lie algebra ad”$ C End(97)

Given an element w € H* we let 7, denote the element of 7,,H* that is the initial
velocity of t — w+tn. Regard §) as the vector space of linear functions on §* defined
by A(w) = w(A) for all A € § and all w € H*. It follows from the definitions that
Nw(B) = n(B) for all B € § and all n,w € H*.

Given 4, B € § and w € $H* we compute X4(w)(B) = {B, A}(w) = [B, 4] (w) =
w([B,A]) = ad*A(w)(B). It follows that X 4(w) = ad*A(w), for all A € § and all
w € H* since a vector field on H* is determined by its values on linear functions.
Recall that § is first order dense in C*(H*).

If f € C®(9H*) and w € H* are given, then since § is first order dense in C*($*)
there exists A € § such that Xy(w) = X(w) = ad*A(w),,. This proves that H(w) =
ad"$(w), and it is an easy exercise to show that ad*$H(w) = T,Ad" H(w).

4. The canonical Poisson structure on {, <,>}

Now let <,> be a positive definite inner product on a finite dimensional real Lie
algebra ®. We dualize the construction of the previous example. This construction of
a Poisson structure {, } depends on the choice of <, >, but it is important for the later
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discussion. The construction of {, } actually works for any nondegenerate, symmetric
bilinear form on §), but our interest is in the Riemannian case.

As before, we let # : § — ©* be the linear isomorphism defined by A#(B) =
< A,B > for all A,B in §. We regard §°* as the subspace of C*°(£) consisting of
linear functions.

Proposition For every positive definite inner product <, > on § there exists a
unique Poisson structure {, } on § such that

1) If f,g € £, then {f,g} € H".

2) {4# B*} = [A,B]* forall A,B € §.

Proof By remarks 2) and 3) in (3.5) there can be at most one Poisson structure
{, } that satisfies 1) and 2) since the subspace §* is first order dense in C*°(§).

To show that there exists a Poisson structure {, } satisfying 1) and 2) let { By, ..., B}

be an orthonormal basis of $ with structure constants (C,';) defined by [E;, Ej] =

n
ZC,‘;EA.. The dual basis {z1,...,z,} in H* defines a linear coordinate system
: 9 = IR™ . It is evident that z; = E.# and hence the condition

TR ()
2) implies that

n
. E k
() {zmiz) =D Chme
k=1
Substituting these expressions into the local coordinate formula for a Poisson struc-
ture yields the following candidate for a Poisson structure :

SR b
b= 0%, czﬁ# o

k=1 i,j=1

- of 9
= k

Xy —;(lglcﬂaz )8—21
Note: These formulas have the same appearance as those of the previous example.
However, observe that in the previous example we used an arbitrary basis {z;} of $
to define a linear coordinate system = = (zy,...,z,) : §* — IR". Here we need a basis
{z;} of " that is dual to an orthonormal basis of . This should not be surprising
since the Poisson structure {, } on $ depends on the inner product <, > on $.

In the formula above for {, } it is immediately evident that 1) is satisfied. Condition
2) reduces to (*) above. By the discussion in (3.5) it remains only to check the Jacobi
identity for the coordinate functions {z;} to show that {, } is a Poisson structure on
$. From 2) and the discussion above it follows that {z;,zx} = {Ef,Ef} = [E,,Eg]#
and {z;, {zj,zx}} = {E'#,{E#,E:‘)} = [E;, [E;, Ex])*. Hence the Jacobi identity
for {z;} follows from the Jacobi identity on . ]

Hamiltonian foliation in $

We define an odd looking left action A of H on § by Ax(A4) = Ad(h 1)(A), where
Ad(h~")! denotes the metric transpose defined by <,> of Ad(h™') : § = . It is
easy to check that Ad*(h)o# =# oAy for all h € H, where ¥ : $ = H° is the iso-
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morphism defined by <,> and Ad* denotes the coadjoint action of H on $*. Since

1§ = H* is a Poisson map (details omitted) it follows that the symplectic leaves
of the canonical Poisson structure on $* are the images under # of the symplectic
leaves on §) with the Poisson structure defined by <,>. See (3.8a). We saw earlier
that the symplectic leaves on $* are the orbits of Ad*(H). It follows that the sym-
plectic leaves on §) are the orbits of A(H). Hence H(A) = TaA(H)(A) for every A € §.

Invariant Hamiltonian formula for linear functions
For later use we give an invariant description of the Hamiltonian vector field X
determined by a linear function f : § — IR, (i.e. an element of H*). For elements
a,&,n € 9 let & € T,$ denote the initial velocity of t — a + t€ and define <, >, on
To$ in the usual way by < &q,7q >o=< &,n >. Then for elements a, A and £ € $
we have
< Xaw(a),€a >a=— < a,[A, €] >

Proof For a,& € 9 it is routine to show that (grad £#)(a) = &, since ¥ € H*
is a linear function on $. It follows that < Xaw(a), & a‘< Xan(a), (grad
#)(a) >a= (d€*(Xav))(@) = (Xa#)(6%))(a) = {€#, A% }(2) = —{A%,£¥}(e) =

—[A€* (@) =-<a,[A4,€> ]

Invariant Hamiltonian formula for arbitrary functions in C*($)
Let f € C°°(H) be arbitrary, and let elements «, & € § be given. Then

< Xf(@),€a >a= — < o, [ gradf(a), €] >

Proof  The meaning of the right hand side of the equality requires some explana-
tion. Let f € (%) and a € § be given. Let A € § be the unique element such
that grad f(a) = Aa. Now define [ gradf(a), €] = [4,&].

Given f € C®($) and a € H we choose A € § so that grad f(a) = Aq. It
follows easily that df, = dA#¥. From the formula above for linear functions and
remark 2) of (3.5) we see that < X7(a),éx >a=< Xg#(a),éa >a= — < a,[4,€] > —
<a, [ gradf(a),€] >. L]

3.8 Poisson maps and automorphisms

Let Py and P, be Poisson manifolds with Poisson structures {, }, and {, }. A C*® map
@ : P, = P, is called a Poisson map if { fop, gow}1 = {f,g}acp for all f,g € C®(P;).
If P, = P; and g is a diffeomorphism, then ¢ is called a Poisson automorphism. The
collection B(P) of all Poisson automorphisms of a Poisson manifold P is a subgroup
of the diffeomorphism group Diff(P) of P.

We call a C* map ¢ : P, - P, an anti Poisson map if { fop, gop} = —{f, g}200
for all f,g € C(P,). If H is a connected Lie group with Lie algebra ), then the
Gauss map G : TH — § is an anti Poisson map See example 6 of (3.8b) below for a
precise statement and proof.
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3.8a Basic properties of Poisson maps
Proposition Let Py, {,}; and P, {, }» be Poisson manifolds, and let f : P, = P, be
a Poisson map. Then

1) For every H € C*(P,) the vector fields Xpoy and Xp are f-related.

2) If f is a diffeomorphism, then f preserves the symplectic stratifications; that is,
f(Ly(z)) = (L2(fz)) for all z € P, where Ly(z) and Ly(fz) denote the symplectic
leaves of P and P, containing z and f(z) respectively.

Proof

1) Given H,H' € C®(P;) and = € P, we compute f.(Xpos(z))(H') =
Xpos(z)(H' o f) = {H'o f,H o f}(z) = {H',H}(fz) = Xy(fz)(H'). Since H' €
C°°(P,) was arbitrary it follows that f.(Xgoys(z)) = Xu(fz).

2) Let H; and H; denote the foliations of Py and P, spanned by the Hamiltonian
vector fields. The symplectic leaves of Py and P are the arc connected integral man-
ifolds of #, and H,. If y(t) is any C*° curve in L, (z), then (f o v)(t) is everywhere
tangent to Hy since f.(My(z')) = Ha(fz') for all z' € P, by 1). Hence (f o7)(t)
lies in a single leaf of H2, namely Haz(fx). This proves that f(L,(z)) C (La(fz)) for
all z € P;. We obtain equality by applying the same argument to the inverseof f. ®

3.8b Examples of Poisson maps

Example 1 Pullbacks on TP by diffeomorphisms on P

If Q is any C* manifold, let P = T'Q"*, the cotangent bundle of @, and let {,}
be the Poisson structure on P that arises from the canonical symplectic structure Q
on P. Then every diffeomorphism f of  extends to a Poisson automorphism f* of
TQ*, where f* denotes the pull back action of f on P.

The proof of this assertion is routine. We now present some other examples of
Poisson maps and automorphisms that will be discussed later in greater detail.

Example 2 Musical isomorphism # : § — H*

Let $ be a finite dimensional real Lie algebra, and let <,> be a nondegenerate,
symmetric bilinear form on $). Let # : §§ - §* be the isomorphism induced by <, >.
Let {,}* denote the canonical Poisson structure on $*, and let {,} be the Poisson
structure on ) determined canonically by <,>. Then # : § — 9" is a Poisson map.

Example 3 Infinitesimal Poisson automorphisms

Let P be any Poisson manifold with a Poisson structure {,}. Let X;(P) de-
note the set of all vector fields X on P such that Lx{,} = 0; that is, Lx{f,g} =
{Lx(f).g} + {f, Lx(g)} for all f,g € C>°(P). Then the flow transformations {X*}
of every X in X{ }(P) are Poisson automorphisms. See [MR, p. 339] for a proof. The
vector fields in X }(P) are called infinitesimal Poisson automorphisms. For further
discussion see (3.9) below.

Example 4 Flows of Hamiltonian vector fields
Let P be any Poisson manifold with a Poisson structure {, }. Let X (P) = {X, :
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[ € C(P)}, the collection of Hamiltonian vector fields on P. Then Xy (P) C X{ }(P)
by the definition of Poisson structure, so by example 2 the flow transformations {X*}
of every X in Xy (P) are Poisson automorphisms.

Example 5 Momentum maps of Lie groups acting on Poisson
manifolds

Let H be a Lie group with Lie algebra $, and let A : H — Diff(P) be a left action
on a Poisson manifold P. Assume furthermore that for each A € $ the elements
{\ta } are the flow transformations of a Hamiltonian vector field A(4) on P. Then
there exists a momentum map J : P — $* that under certain additional restrictions
is a Poisson map relative to the given Poisson structure {, } on P and the canonical
Poisson structure {,}* on $*. The momentum map is important in physics, and
there are many situations in which it exists and is a Poisson map. We shall define
and discuss the momentum map in greater detail in (3.11e).

In this article we shall primarily be concerned with the case that H acts by left
translations on P = T'H, and T'H is equipped with the Poisson structure arising from
the symplectic 2-form defined by a left invariant Riemannian metric on H.

Example 6 The Gauss map G:TH — §

Let H be a Lie group with Lie algebra § and tangent bundle TH. Define the
left translation Ay, on H by Ay (h*) = hh* for h,h* € H. This defines a natural left
action of H on itself. Identify $ with T, H, the tangent space to H at the identity,
and identify TH with H x $ under the diffeomorphism (h, X') = dAx(X).

Define G : TH = H x $ = § by G(h, X) = X, projection onto the second factor.
Geometrically, this amounts to the left translation of a vector € € TH back to the
identity. In the case that H is the abelian Lie group R® with vector addition as the
group operation, then the Gauss map defined here is precisely the classical Gauss map
used to study the geometry of surfaces in R® .

Now let H be a Lie group with Lie algebra § and let <,> be a nondegenerate,
symmetric bilinear form on §). Let # .9 — H* be the natural isomorphism defined by
<,>. Let Q denote the symplectic 2-form on TH pulled back by # from the canonical
symplectic 2-form on T'H*, and let {,} denote the corresponding Poisson structure
on TH. Let {,}* denote the Poisson structure on $ that is pulled back by # from
the canonical Poisson structure {, }* on $*. Then G : TH — § is an anti Poisson
map for every choice of a nondegenerate , symmetric bilinear form <, > on $.
Remark The Gauss map G : TH — § does not depend on a choice of <,> but it
acts as Poisson map for every choice of <,>. The Gauss map is an important tool
for the study of the geodesic flow on the unit tangent bundle SH of a Lie group H
with a left invariant Riemannian metric arising from a choice of positive definite inner
product <,> on .

In this context, the Gauss map is also a valuable resource for studying totally
geodesic sub ifolds of H with di ion > 2 in the case that H is simply connected
and 2-step nilpotent. See [ E2] and (6.9) below for further discussion.

(AT
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3.9 Poisson subalgebras

If {,} is a Poisson structure on a C* manifold P, then we say that a real vector
subspace 2 of C*°(M) is a Poisson subalgebra of C'°°(P) if it contains 1 (and hence
the constant functions) and is closed under the operations of addition, pointwise mul-
tiplication and Poisson brackets.

Example 1 Casimir functions ¢(P)

A function f € C°°(P) is called a Casimir function if X; = 0, or equivalently if
{f,g} = 0 for all g € C*°(P). One may also describe the Casimir functions as the
center of the Poisson algebra.

It is obvious from the definition that €(P) is not only a subalgebra of C'*°(P) but
an ideal in C®°(P); that is, if f € €(P) and g € C*(P), then {f, g} € €(P).

The Casimir functions play an important role in Poisson mechanics. By their def-
inition Casimir functions are constant along the integral curves of Hamiltonian vector
fields X, for every function g € C*°(P), and hence Casimir functions are constant on
each symplectic leaf of P. Conversely, if f is constant on each symplectic leaf L, then
df(X,) = 0 on L since each Hamiltonian function X, is tangent to each symplectic
leaf of P. Hence {f,g} = X,(f) = df(X,) = 0 for all g € C*(P) , and we conclude
that f is a Casimir function. This proves the following
Proposition Let P be a Poisson manifold. A function f € C*°(P) is Casimir ¢ f
is constant on each symplectic leaf of P.

Local coordinate description of Casimir functions

Let (g1,p1,42,P2y.,qnsPn, 21, - 2¢) be Lie -Weinstein local coordinates on an
open set U (cf. (3.6)). The symplectic leaves in U are the slice submanifolds
(21,.-y2¢) = (c1,...,ce), where {c¢;} are constants. By the result above a function
f:U = R is Casimir & gp‘ =0 and Par =0for1<i<n.

The symplectic case If the Poisson structure on P arises from a symplectic
2-form Q on P, then by definition ix,Q = df for every function f € C*°(P). Hence
the Casimir functions are just the constant functions in this case.

However, it is not true that a Poisson structure whose Casimir functions are the
constant functions must arise from a symplectic structure. If some Poisson manifold
has a symplectic leaf that is dense in P, then every Casimir function f must be con-
stant on P since f is constant on the closure of each symplectic leaf.

The Lie algebra case Let $ be a finite dimensional real Lie algebra with an
inner product <,>, and let {,} be the canonical Poisson structure determined by
<,>. Let # : §§ - H* he the isomorphism determined by <, >.

We give two examples of Casimir functions.

1) Let f: H — IR be a linear function and write f = A% for a unique element A
of . Then f is a Casimir function < A € 3, the center of 9.
Proof If f = A# is a Casimir function, then for any B € 5 we have 0 = {B# A#} =
[B.A]*. It follows that A € 3. Conversely suppose that f = A#, where 4 € 3.
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Given g € C®() and a € § choose B € § so that dgo = dB¥. Then {g, f}(a) =
{B*, A*}(a) = [B, A]* (a) = 0. Hence f is a Casimir function.

2) Let g : $§ = IR be a function that depends only on 3; that is, g = fom3 , where
f:3 = R is any function and 73 : $ — 3 is orthogonal projection onto 3. Then g
is a Casimir function.

Remark If § is an almost nonsingular 2-step nilpotent Lie algebra (cf. (6.4)), then
we shall see in (6.6) that every Casimir function g : $§ — IR has the form above in 2).
Proof of 2) Let {Ey, Ey, ..., E, } be an orthonormal basis of $ such that {Eg41,...En}
is a basis of 3, where ¢ = dim 3+ and n — ¢ = p = dim 3. Let {z1,%2, ..., } denote
the dual basis of $*, and let z = (z1,22,...,&n) : § = IR denote the correspond-
ing linear coordinate system for §. Let {C,",) be the structure constants defined by
Cf = zx((Ei, Ej)) for all i,j,k. By the discussion of example 4 in (3.7) the Hamil-

n n
tonian vector field X, is given by X; = Z{ Z ck ng 1")6:
i=1 ik=1

FL =0for1 <i<gq=dim3*. However, C" = zx([Ei, Ej]) = 0 for i > ¢ since
Ej € 3 for i > q. Hence X; = 0 by the expressmn above. L]

. By hypothesis

Example 2 First integrals for the flows of Hamiltonian vector
fields

Let P be a Poisson manifold. For any C* function f : P — IR we define §(f) =
{9 € C®(P) : dg(Xy) = 0}. Equivalently, F(f) = {g € C>=(P) : {g, f} = 0}.

The elements of §(f) are called first integrals for the flow of the Hamiltonian
vector field X;. They may also be characterized as those functions in C*°(P) that
are constant along the integral curves of X.

Proposition For any function f € C*(P),§(f) is a Poisson subalgebra of C*°(P)
that contains f and the Casimir functions.

Proof Clearly §(f) contains f and the Casimir functions. Note that g € F(f) &
{g,f} = 0 since {g, f} = X;(g) = dg(Xy). Since d(g + h) = dg + dh and d(gh) =
gdh + hdg lt is clear that §(f) contains the constants and is closed under addition

If g, h are el of F(f), then by the Jacobi identity
((g,h) fy=-{{h.f}.9} - {(f,g) h} = 0. Hence {g, h} € §(f) for all g, h € §(f).
[ ]

Remarks

1) If one chooses f at random, then §(f) will consist only of the Poisson subalgebra
generated by f and the Casimir functions However, if f has special significance, which
occurs in cases of physical importance, then §(f) is nontrivial and it is an interesting
problem to determine it.

2) Let H be a Lie group acting by Poisson automorphisms on a manifold P with
Poisson structure {,}. Let f : P = IR be any C* function that is constant along
each H-orbit in P. We shall see that the moment map J : P = $*, whenever J
exists and is equivariant, defines an $*-valued first integral for the flow {X“,) of the
Hamiltonian vector field X;. See Proposition A of (3.11e) below.

3) Let P be a finite dimensional real Lie algebra $ equipped with an inner product

TN
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<,>. We saw in example 4 of (3.7) that <,> and the Lie bracket [,] of $ determine
a Poisson structure {,} on § in a canonical way. Let E : § - IR be the energy
function defined by E(v) = % < v,v >. The Hamiltonian vector vector field X
defined by E is called the geodesic vector field, and we shall see that X g corresponds
in a natural way to the geodesic flow on TH by means of the Gauss map G : TH — §.
Here H is given the left invariant Riemannian metric determined by <,>. It is an
interesting problem of Riemannian geometry to determine the Poisson algebra §(E)
of first integrals for the geodesic vector field Xz. We will give special attention later
to the special case that § is a 2-step nilpotent Lie algebra.

3.10 Infinitesimal Poisson automorphisms

Definition Let P be a Poisson manifold. We say that a vector field X on P is
an infinitesimal Poisson automorphism if Lx{,} = 0; that is X{f,g} = {Xf,g} +
{f,Xg} for all f,g € C®(P). Let X(P) denote the collection of all infinitesimal
Poisson automorphisms on P.

If X is an infinitesimal Poisson aut phism, then it is not difficult to show that
the flow transformations {X'} are Poisson maps. Conversely, if X is a vector field
on P whose flows transformations {X*} are Poisson maps, then X is an infinitesimal
Poisson automorphism.

It is routine to check that X }(P) is a Lie subalgebra of X(P) with respect to the
Lie bracket. From the Poisson axioms it follows that every Hamiltonian vector field
Xy is an infinitesimal Poisson automorphism, or equivalently X¢(P) C X{}(P).

In general the inclusion X (P) C X j(P) is strict as the following example shows.
Let z be a point of a Poisson manifold P such that the rank of {,} is = 2n in
some neigborhood of z. Let P have dimension 2n + £ for some integer £ > 0,
and let U be a coordinate neighborhood equipped with Lie-Weinstein coordinates
(q1,P1,92, P25 +,4n, Pn, 21, -, 2¢) as in (3.6). Let A be a nonzero linear transformation
of RY , and define a 1-parameter family of maps A(t) : U — U by
A(t)(91,P1,92,P2, 1 Gny Py 21, s 26) = (01,P1,92, P25 -+ Gn Py €4 (21, ..
easy to check that the maps A(t) are Poisson maps, and hence A’ = f|i=oA(t) is an
infinitesimal Poisson automorphism on U. The vector field A’ cannot be a Hamil-
tonian vector field since its flow transformations do not leave the symplectic leaves
invariant.

3.11 Orbit structure of Lie group actions on Poisson

manifolds
3.11a A left action A : H — Diff(P) and its differential \ : § —
X(P)
A left action of a Lie group H on a C*® ifold Pisah phism A : H —

Diff(P); that is, Ay, is a diffeomorphism of P for every h € H and A(hh*) = A(h)oA(h*)
for all elements h, h* € H. The left action is C* if the map A : H x P — P given by

FEe N
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A(h,m) = Ap(m) is C*. We shall consider left actions on a Poisson manifold P by
a connected Lie group H whose elements act as Poisson automorphisms of P. Let £
denote the Lie algebra of H.

If A : H — Diff(P) is a left action, then for every X € § let A(X) denote
the vector field in P whose flow transformations are {A.ex}. It is not too diffi-
cult to show that A : § — X(P) is a Lie algebra antihomomorphism; that is ,
[MX), A(Y)] = =A([X,Y]). See [Br, p. 53]. This antihomomorphism is the derivative
map of the homomorphism A : H — Diff(P) if one regards Diff(P) as an infinite
dimensional Lie group with Lie algebra X(P).

3.11b Properties of actions

A left action A : H — Diff(P) is effective if ker A = {1}, or equivalently, if
An(z) =z for all z € P and some h € H, then h = {1}. Any action A : H — Diff(P)
induces an effective action X : H = H/ ker A\ — Diff(P) by A(hker A) = A(h).

For each x € P define H, = {h € H : A\y(z) =z} and H: = {A € H: A(A)(x) =
0}. Tt is routine to show £, that is the Lie algebra of .. A left action A : H — Diff(P)
is free if H; = {1} for all z € P and it is almost free if $, = {0} for all x € P.

Every free action is almost free, but the converse is false.

The next result will be useful.

Proposition Let A : H — Diff(P) be a left action and let X : H = H/ ker A — Diff(P)
be the effective induced action. Then

)H: = H,/ker A and $: = 92/ ker\, where A in the second equality refers to
the antihomomorphism A : §§ = X(P).

2) The action A : H — Diff(P) is almost free ¢ $, = ker A for all z € P, where
A: ) = X(P) is the antihomomorphism.

Proof Assertion 2) follows immediately from 1) and the proof of 1) follows routinely
from the definitions. [ ]

3.11c Relation to symplectic stratification

The symplectic stratification theorem gives an intrinsic decomposition of P into
disjoint symplectic sut ifolds. The el of H permute these symplectic leaves
by (3.8a) since H acts on P by Poisson automorphisms.

We consider the special case that H leaves each symplectic leaf invariant. In this
situation each element X of § defines an infinitesimal Poisson automorphism A(X) on
cach symplectic leaf, as we explain below. It is natural to ask under what conditions
these vector fields A(X) are all Hamiltonian vector fields, an outcome that is not
guaranteed in general. When this optimal situation does arise, then one may define
a momentum map J : P = $* with important properties. There turns out to be an
obstruction to this optimal situation that can be described explicitly. The obstruction
involves both the topological structure of the manifold P and the algebraic structure
of the Lie algebra . To explain, we first need to reformulate the problem.

Since we are assuming that H leaves each symplectic leaf invariant we may as
well restrict our attention to an individual symplectic leaf. Therefore it suffices to
consider the case that H acts on a symplectic manifold P and the elements of H leave
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invariant the symplectic 2-form .

3.11d Hamiltonian actions on symplectic manifolds

Let A : H — Diff(P) be a left action by symplectic automorphisms on a symplectic
manifold P. For every A € §) it follows that 0 = Ly(4)Q = d(ix4)Q) + ix(4)(dQ) =
d(ir4))) since the flow transformations of A(A) leave Q invariant. Hence iy(4)Q is
a closed 1-form for every A € .

‘We note that a vector field Z on P is Hamiltonian < iz is exact, that is iz = df
for some f € C*°(P). In this case Z = X; on P by the nondegeneracy of 2. By the
discussion above the restriction of A(4) to a simply connected open subset of P is
exact for each A € § since closed forms and exact forms are the same on U.

We say that the action A : H — Diff(P) is Hamiltonian if A(A4) is a Hamiltonian
vector field on P for every A € §. For a left action by symplectic automorphisms
the problem then is to find criteria under which iy(4)Q is exact for every A € 9.
If every closed 1-form on P is exact; that is, the first de Rham cohomology group
H} (P, IR) vanishes, then that is clearly sufficient. This criterion would be satisfied,
for example, in the case that P is simply connected. However, one can do better.
One defines a map Hy : ) = Hpp(P,IR) by Hy(A) = [iAM)ﬂ] where [,] denotes the
equivalence class of a closed 1-form of P in H} (P,IR) = (closed 1-forms) / (exact
1-forms). It is easy to see that H), is a linear map. One can show that [A(X),A(Y)]
is the Hamiltonian vector field determined by f = —Q(X,Y). See, for example [Br,
p.104], but note that a different sign convention is used there for the definition of
the Hamiltonian vector field, namely ix,Q = —df. It follows that the kernel of Hy
contains the commutator subalgebra [$), ).

We summarize : Every vector field A(A), A € $, is Hamiltonian ¢ the linear map
Hy : $ — HLgp(P,R) given by Hy(A) = [iA(A)Q] is identically zero. This happens
in at least the following three cases :

1) H}hg(P,R) = {0}; e.g. P is simply connected.

25 = %, 9]

3) There exists a 1-form 6 on P such that the elements of H leave 8 invariant and
Q= df.

Case 3) occurs, for example if P = TH*, the cotangent bundle of a connected Lie
group H, and H acts on TH by the pullbacks of left translations on H. In this case
6 is the canonical 1-form and = —df the ical symplectic 2-form. We
0 = LA8 = d(ixa)0) +ira)(d6) = d(8(AA)) + 154 (), which shows that iy(4)(f) is
exact for every A € .

Case 3) also occurs if H is a connected subgroup of isometries of a Riemannian
manifold M and H acts on TM on the left by the differential maps of its elements.
In this case # is again the canonical 1-form and Q = —df the canonical symplectic
2-form. The proof that iy(4)(R2) is exact for every A € § is the same as above.

3.11e The momentum map
Let P be a Poisson manifold, and let A : H — Diff(P) be a left action on P
by a connected Lie group H. We say that the action A is Hamiltonian if A(A) is a
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Hamiltonian vector field on P for every A € $). Henceforth we assume that the action
A of H on P is Hamiltonian.

The linear map J : ) — C®(P)

By hypothesis, for every A € § there exists a function J(4) € C®(P) such
that A(4) = Xj ) . Note that J(A) is not uniquely determined since we may always
replace J(A) by .i(A)+f, where f is a Casimir function. Nevertheless, we may always
choose the map J : $ = C*(P) to be a linear map. To see this, let {X,..., X} be
a basis of 5, and let {H,..., H,} be functions in C*(P) such that Xp, = A(X;) for

n n

1 <i < n. If we define j(Za,X.v) & Za.-H.- , then J : § — C*°(P) is linear and
i=1

i=1

ANA) = X, for all 4 € 5.

We may now define a map J : P — §° by J(z)(4) = J(A)(z) for all ¢ € P and
A € 5. Note that J(z) € H* for every o € P since J is linear. Although the map J
seems to have no name, the map J : P — §* is called the momentum map.

The existence of J and J has the following immediate payoff :
Proposition A Let H be a connected Lie group with Lie algebra §. Let A be a
Hamiltonian action of H on a Poisson manifold P, and let J : § — C°(P) be a
linear map such that A(A) = Xj(a) for all A € §. Let f: P — IR be a C* function
that is constant along each H orbit in P. Then J(A) is a first integral for the flow of
Xy for all A € 5. Equivalently, the momentum map J : P — §* is an §*-valued first
integral for the flow of X .
Proof Let f : P = IR be a C® function that is constant along each H orbit in P.
Let A € $ be given. Then {f,J(A)} = Xja)(f) = A(A)(f) = 0 since f is constant
on the integral curves of A(4), which all have the form z — A4 (z). [ ]

Obstruction to J being a Lie algebra homomorphism

We investigate further the properties of J : §§ = C®(P) and J : P - $*.
Proposition B Let H be a connected Lie group with Lie algebra . Let A be a
Hamiltonian action of H on a Poisson manifold P, and let J : § — C®(P) be a
linear map such that \(A) = Xj4) for all A € H. Then X4 p) = Xj(a) (s for
all A,B€ 5.
Proof For A,B € § we have Xjapy = AM[4,B)) = —[AA),A(B)] =
= (X Xum) = Xpscasemy by (3:2) and 3.11a). .

The previous result does not quite imply that J is a Lie algebra homomorphism,
but only that c;(4,B) = J([4,B]) - {J(A),J(B)} is a Casimir function for all
A,B € $. Themap cj : $ x H = €(P) is clearly skew symmetric and bilinear, and
the Jacobi identity implies that c;([4, B],C) + c;([B,C], 4) + ¢;((C, 4], B) = 0 for
all A,B,C € 5. 5

We wish to choose J , if possible, so that ¢; = 0, and this will imply that J : § —
C™(P) is a Lie algebra homomorphism. The discussion above shows that JiHo
C®(P) and J; : § = C®(P) are linear maps with Xj,(4) = X, (A) = A(4) for all
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Aepnet=J - Ja is a linear map from $ to €(P). If we replace our original
linear map J : § - C®(P) by J* = J — & where £ : $§ = €(P) is linear, then a
computation shows that

cj.(A, B) = ¢;(4, B) — &([4, B]) for all A, B € 9.

We summarize the discussion above:
Proposition C Let H be a connected Lie group with Lie algebra §. Let A be a
Hamiltonian action of H on a Poisson manifold P, and let J : $ — C>®(P) be a
linear map such that A(4) = X, for all A € . Then there exists a Lie algebra
homomorphism J* : $§ — C°°(P) such that A(A) = Xje(a) for all A € § & there
exists a linear map £ : § — €(P) such that c;(A, B) = £([4, B]) for all A, B € §.
The obstruction for J to be a Lie algebra homomorphlsm vanishes in each of the
following cases :

1) P is compact (cf. [Br, p.132])
2) H is compact (cf. [MR, p.380])
3) [9,9]=9 (cf. [Br, p.132])

4) There exists a 1-form 6 on P such that the elements of H leave # invariant and

Q = df. In this case let J(A) = 6(\(A)) for all A € H.
Remark Example 4 is particularly important for Riemannian geometry. Let M be a
Riemannian manifold, and let H be any closed, connected subgroup of the isometry
group I(M). It is a classical result that H is a Lie group [MS], but of course I(M)
may be the trivial group for a random Riemannian manifold M. In any case the
tangent bundle P = TM admits a symplectic structure Q2 = —df as described in
(2.1). It is easy to check from the definition of 6 that (Ls)*6 = @ for all h € H. We
may now invoke the assertion of example 4.

Because of its importance for Riemannian geometry we prove assertion 4).
Proposition D Let P be a connected C* symplectic manifold, and let Q denote the
symplectic 2-form. Let A be a left action on P of a connected Lie group H by Poisson
automorphisms. Let A : §§ — X(P) also denote the canonical anti homomorphism,
where $) is the Lie algebra of H. Suppose that Q = df, where 6 is a 1-form on P
such that (Lp)*0 = 6 for all h € H. If J : § = C*=(P) is the linear map defined by
J(A) = 8(A(A)) for all A € $, then J([4, B]) = {J(A), J(B)} for all 4, B € 9.
Lemma X ;) = A(A) for all A € 9.

Proof of the Lemma The flow transformations of A(4) are {4 }, which leave the
canonical 1-form 6 invariant. Hence 0 = Ly(4)8 = d 0 iy4)0 + iy(4)df = d(J(A))

iyt = X500 = ix(4)Q%. Hence X ;,) = A(4) for all A € § since Q is nondegenerate
onTH. ¥ 4 [ ]

We show that J([4,B]) = {J(A),J(B)} for all A, B € $ by computing
Q(A(A),A(B)) in two different ways. On the one hand Q(A(A4),A(B)) =
QX4 Xj(my) = {J(A), J(B)} by the lemma. On the other hand Q(A(A), A(B)) =
—d6(A(A),A(B)) = ( )(G(A(B))) + AB)BAA) + B(ANA)LAB)) = -
AT (B)+AB)(F(A)-8(A(4, B]) = =X joa(JB)+X j ) (I (4))~J ([, B]) =

—{J(B), J(A)} + {J( AJJ(B } - J(AB) .
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Comparing the two expressions for Q(A(A),A(B)) yields {j( )y =
~{J(B), J(A)}+{J(A), J(B)}-J([4, B]) , which shows that J([4, B]) = {J( )
for all A, B € 5. .
The consequences of J being a Lie algebra homomorphism

The ability to find a Lie algebra homomorphism J : $ — C*(P) such that

AA) = Xj 4, for all A € § has powerful equivalent formulations.
Proposition E Let H be a connected Lie group with Lie algebra §. Let A be a
Hamiltonian action of H on a Poisson manifold P, and let J : § = C®(P) be a
linear map such that A(A) = X.i(A) for all A € §. Let J : P — §* be the momentum
map given by J(z)(4) = J(A)(x) for all z € P and all A € . Then the following are
equivalent :

1)J : 5 = C*(P) is a Lie algebra homomorphism.

2)J : P - 9" is a Poisson map relative to the canonical Poisson structure on £*.

3)J : P — " is an equivariant map; that is, for every h € H the following diagram
commutes :

J
P reegtty
|
Mo | Ad(h)
4 4
J
P ——-2 $*

Proof Note that § C C°°(H*) by the discussion in example 3 of (3.7). Recall that
{A,B)* = [A, B] for all 4, B € $ by the definition of the canonical Poisson structure
{,}* on H°. It follows that Ao J = J(A) for all A € $ the definiti ns of J and Tk
Hence {40 J, BoJ} = {J(A),J(B)}, and {4, B}* o J = [A, B]oJ = J([4, B]) . This
proves

Lemma The map J : $ = C°(P) is a Lie algebra homomorphism ¢ {AoJ, BoJ} =
{A,B}* o J for all A,B € 5.

We prove that 2) = 1). Suppose that J : P — §* is a Poisson map. Since
$C C®(5H*) it follows that (AoAJ,BOJ) = {A,B}* o J for all A, B € §, and by the
lemma above we conclude that J is a Lie algebra homomorphism.

We prove 1) = 2). Let J : $§ = C®(P) be a Lie algebra homomorphism. Let
fig € C*(9*) and z € P be given. Let w = J(z) € H°. Since § is first order
dense in C*($*) we can find A, B € § so that df, = dA, and dg, = dB,. Then
d(f 0 J); = df, 0dJ; = dA, 0 dJ; = d(A o J);. We obtain

(*) df. =dA, s dgw =dB,
d(fod)s =d(Aod)s , d(god)s =d(BoJ),
Since J is a Lie algebra homomorphism, the lemma above together with (*) and the
discussion in (3.5) show that {f o J,go J}(z) = {40 J,BoJ}(z) = {4, B}*(w) =
{£.9)* (@) = ({£,9)* 0 J)()

We prove 3) = 1). Let J : P = §* be an equivariant map. Let z € P and
A, B € § be given. By hypothesis Ad* (') o J(z)(B) = J(A,,2)(B) for all t € IR.
We may rewrite this equality as
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*) J(z)(Ad(e~t4)(B) = J(B)(A,,,) for all t € R.

Note that t = A,z is the integral curve of A(4) = XJ(A) that starts at z. Recall
that Ad(e~*4)(B) = e~tadA(B) for all t € IR. Differentiating both sides of (*) at
t = 0 we obtain J( (B, A])(a: = J(z)([B, 4]) = J(z)(-[A, B]) = MA)(J(B))(z) =
X J(A)(J(B) (z) = {J(B), J(A)}(x). (The third equality comes from the differentia-
tion at t = 0.).

Proof of 1) = 3). This proof is somewhat more difficult, but a proof may be found
in [MR,p.402] . See also [B, p.133] in the case that {, } arises from a symplectic struc-
ture. This completes the proof of the Proposition. [ ]

3.11f Reduced first integrals for H-invariant functions f : P - R
‘We observed in Proposition A of the previous section that J(A) is a first integral
for Xy if f : P = R is constant along the orbits of H. If J : §§ — C*(P) is a Lie
algebra homomorphism, then J($) is a finite dimensional subalgebra of C%(P) rela-
tive to the Poisson structure {, }. If j(A) is a Casimir function, then it is a relatively
uninteresting first integral so we consider the space J($)/€(P)NJ($) of reduced first
integrals. Note that €(P)N.J(5) is an ideal of J($) that is contained in the center of
J() since €(P) is the center of the Poisson algebra C*(P). Hence J(f))/G(P)nj(i))
has a quotient Lie algebra structure.
Proposition A The Lie algebra J(£)/C(P) N J($) is Lie algebra isomorphic to
9/ ker A, where A : § = X(P) is the canonical anti-homomorphism. 5
Proof Since A(4) = X4, for all A € § it follows that A € kerA & J(A) €
C(P)N J($) . If we define p : H/ker A = J()/C(P) N J(H) by p(A + ker)) =
J(A) + €(P) N J($H) , then it is easy to check that ¢ is well defined and is a Lie
algebra isomorphism. [ ]

Functional independence of first integrals in J(5)

Elements {fi, f2, ..., fg} in C*°(P) are said to be functionally independent if their
differentials {(dfy)z, (df2)z, ..., (dfk)z } are linearly independent for all z € P. If Pis a
symplectic manifold, then it follows from the definitions that {fy, f2, ..., fx} are func-
tionally independent in C*°(P) <> the Hamiltonian vector fields {Xy,,Xy,, .., Xy, }
are linearly independent in P. Sec Lemma A in (3.12).

Proposition B Let A : H = D ff(P) be a symplectic left action of a connected
Lie group H on a symplecti ifold P. Supp that there exists a linear map
J:$ — C®(P) such that Xj 4, = A(4) for all A € § and J((4,B)) = {J(4),J(B)}
for all A, B € . Then

1) There exist at most N = dim($)/ ker A) functionally independent elements of
J(9) .

2) If the induced action X : H = H/ker A — Diff(P) is almost free, then there
exist N functionally independent elements of J($) .

Remark The main case of interest to us in this article is the natural left action of H
on TH by the differentials of the elements of H. This action is a free action, and the

e &\



Left invariant geometry of Lie groups 457

hypotheses of the p ition are satisfied for the map J : $ — C>®(TH) given by
J(A) = 8(A\(4)). Hence we obtain N = dim ) functionally independent first integrals

in J(9) .
Proof of Proposition B 1) Let m > N and let {A;, A, .

A} be any elements

of . Choose constants {c;}, not all zero, so that A = ZC,A, € kerA. Then

=1
m
dJ(A) = iy)? = 0 since Xj 4 = A(A). Therefore 0 = dJ(A). = > cidJ(A;). for
=1

every z € P, which shows that {J(A,), ..., j(Am)) are functionally dependent.

2) Suppose that X : H = H/ker A — Diff(P) is an almost free action. By (3.11b)
this means that kerA = ; = {4 € § : A\(4)(z) = 0} for all z € P. Equivalently, if
A(A) vanishes at one point of P then A(4) =0 on P. Let N = dim($)/ ker \) and let
{41, Az, ..., A} be elements of § such that {4, +kerA, A2 + ker A, ..., Ay +ker A} is
a basis of / ker A. i

We assert that {J(A1),..., J(Ay)} are functionally independent.

N

N
Suppose that 0 = Zcidj(A‘-)z for some z € P. If A = Zc,:{, , then dj(A), =0.
i=1 i=1

Hence A(4)(z) = U;ince dJ(A) = ix(4)Q and  is nondegenerate. By the discussion
N
above we conclude that A\(4) = 0. Since 4 = ZC,A, € ker A and {A; + ker\, A, +

i=1
kerA,..., Ay + ker A} is a basis of $/ ker A it follows that ¢; = 0 for every i. ]

3.12 Complete integrability on a symplectic mani-
fold

Two functions f, g on a Poisson manifold P are said to be in involution if {f, g} = 0.
It follows that the corresponding Hamiltonian vector fields commute since [Xy, X,] =
=X{s4) =0. If X; and X, are linearly independent at some point z of P, then the
result in (1.3) states that there exists a coordinate system on a neighborhood U of
 such that Xy and X, are the first two coordinate vector fields. Continuing in this
vein, suppose that we can find functions fy, f, ..., fr on P such that {f;, f;} = 0 for
1 <i,j < k. The Hamiltonian vector fields Xy, ,...X, commute by the argument
above. If the vector fields are linearly independent at some point z of P, then the
result of (1.3) says that there exists a coordinate system on a neighborhood U of @
such that Xy, ... Xy, are the first k coordinate vector fields on U.

We now assume that P is a symplecti ifold of di ion 2n. This is not
really an additional condition since Hamiltonian vector fields on P are tangent to
cach symplectic leaf of P. The discussion above might lead one to conclude that
there could be as many as 2n independent functions in involution if one were lucky.
However, it turns out that there are at most n = %dimP independent functions
in involution on P. If the i number n is achieved, then one says that the
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symplectic structure on P is completely integrable.

‘We now give some detail to the verbal description above.
Proposition Let P be a symplectic manifold of di ion 2n with sy ic 2-form
Q. Let {p1,pa,...,pn} be functions such that {p;,p;} = 0 for 1 < i,j < n and the
differentials {dpy, dps, ..., dpn} are linearly independent at every point of P. Then for
every point x of P there exists a neighborhood U of z and functions ¢; : U = R, 1 <
i < n, with the following properties:

n
= %qu./\dp, inU.

i=1

2)z = (q1,p1,42,P2, - qn, Pn) is a coordinate system on U such that {p;,p;} =0
for all i, j and {g;,p;} = dij. Moreover

a) [Xp, Xp;] = [Xpi, X,] = 0 for all §,5.
b)For1<i<n,X, = 3% and X, = Bp. +Z(qk,q,)a

3) If H:U — R is a function such that {H,p;} = 0 for 1 < i < n, then &= B" =0
for 1 <i < n. In particular, H = ¢(p1,p — 2,...,pa), where @ is some funcuon of n
variables.

Lemma A The Hamiltonian vector fields {X,,..., X} } are linearly independent at

every point of M.
n

Proof Suppose that 0 = Za.Xp‘ (z) for some point z of P and some real numbers

i=1
{a;}. Then 0 =i()" aiXp,(@)Q = " aiix, (2)2 = " ai(dy,).. Hence a; = 0 for

i=1 i=1 i=1

all i since the differentials {dpy,dp,, ...,dp,} are linearly independent at z. [ ]
As we explained above, the Hamiltonian vector fields {Xp,,..., X;,} commute

since {p;,p;} = 0 for 1 < i,j < n. It now follows from Lemma A and the result in

(1.3) that for every point p of P there exists a coordinate system & = (2, 3, ..., T2n)

in a neighborhood V of p such that X, = % inVforl<i<n

Lemma B Fix a point p of P and choose a coordinate system z = (1,23, ..., Z2n)

in a neighborhood V' of p such that X, = = inVfor1<i<n Letg=az

for 1 <i < n. Then {Xp, ('), .. Xp. (0'), Xq, (P ),...,.\'q" (p')} is a basis for Ty P for

every p' € V.

Proof We begin by observing
(*){pirp;} = 0 and {gi,p;} = &, for all i, j.
The first equations are the hypotheses and the second equations follow since q = x;

and X, = - . Let a;, b; be real numbers such that 0 = Z a; Xy, (p +Z bi X (p

Xyig(p), where f = Za,p, and g = Zb,q, . Since X7,,(p) = 0 we obtain
=1 =

‘e &\
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0= {p,f +9}p) = Za.-(m,m) + ij{Pk,q;) = —bk by (*). Similarly, 0 =

{ae, f + 9}(p) = Zﬂ-(qkyp.) k3 zb {gk,q;} = ax by (*) and the fact that b; =

for all 5. [ ]
Proof of the Proposition Let V' be the neighborhood of p constructed in Lemma
B. Let ¢, = z; for 1 < i < n. We prove that 1) holds in V. By the conclusion of
Lemma B it suffices to show that the equation in 1) holds for all pairs of vector fields
of the form a) (X, , Xp,) b) (Xy,, Xp,) or ¢) (X, Xg,). The verification in each of
these cases follows routinely from (*) in the proof of Lemma B and from the definition
of the Hamiltonian vector fields .X,, and X, in terms of {, }. We omit the details.

2) Define a map « : V = IR*™ by @ = (q1,P1, G2, P2, - Gns Pn)- From 1) it follows
that Q" = ¢, (dgy A dpy A dga Adpy A ... A dg, A dpy,), where ¢, is a constant that
depends only on n. Since Q" is nonzero by the definition of symplectic 2-form it
follows that dgy Adpy Adga Adps A ... Adgn Adp, is nonzero in V, or equivalently, that
z is nonsingular in V. If we replace V by a possibly smaller open neighborhood U of
p, then z is a diffeomorphism on U and hence a coordinate system on U.

The assertion {p;,p;} = 0 for all 4, j is the hypothesis of the proposition, and the
assertion {g;,p;} = d;; was noted in (*) of the proof of Lemma B. Hence [X,,_,X,,)] =
=X(p.py) =0, and [Xg,, Xp,] = =X, ;) = 0 since X, = 0 for any constant c.

To compute X, and X, we relabel the coordinates for convenience say z;, pi

2n
and @2y = g for 1 € i < n. Then X, = (zk,z) ' =
t ' ;; g Oz Bn
n P Py 2n 2n
Ty —=—,Similarl,X|: = Ty i} m—
IR Y, Xq k;,zl(” z,)az T g{ b

t H : U - IR be a function such that {H,p;} = 0 for 1 < i < n. Then

S "0 + Z(qk.q,)aq
3) Led
= Xy (H) = {H,pi} =0 by 2). =

oH
dge

4. Geometry of Lie groups with a left
invariant metric

For each g € G let L, and R, denote the diffeomorphisms of G given by L,(h) = gh
and R,(h) = hg respectively for all h € G . Fix an inner product <,> on the
Lie algebra $. Then there is a unique extension of <, >, also denoted <,>, to the
tangent spaces of H such that the left translations {L, : g € G} are isometries of
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{H,<,>}. Such a metric is called the left invariant metric determined by <,>. One
defines the right invariant metric determined by <,> in the same way by using the
right translations R, : g € G}. In this article we consider only Lie groups with a left
invariant metric.

4.1 Optimal left invariant metrics on H

Although we shall consider the geometry of an arbitrary left invariant metric on a
connected Lie group H there is an optimal left invariant metric on H in the case that
H is simply connected. If H is nilpotent in addition, then we can say even more. See
(6.2d).

Maximal compact subgroups of Aut(H)

Let H be a simply connected Lie group with Lie algebra $. Let T : Aut(H) —
Aut(5) be the continuous homomorphism defined by T(p) = (dp). : T.H = H = 9.
The homomorphism T is injective since H is connected, and T is surjective since H
is simply connected. Hence T is an isomorphism of Lie groups. In particular K is a
maximal compact subgroup of Aut(H) < K’ = T(K) is a maximal compact subgroup
of Aut(9).

Now let <, > denote an inner product on $ and also the corresponding left invari-
ant metric on H. If ¢ € Aut(H) and T(p) = (dy). is a linear isometry of §, then
o € I(H), the isometry group of H, since po Ly = L) o for all h € H. Hence the
isomorphism 7" : Aut(H) — Aut($)) maps K = Aut(H) N I(H) isomorphically onto
K' = Aut() N O(H), where O($) denotes the orthogonal group of {$, <,>}. Both
K and K’ are compact Lie groups since K' is a closed subgroup of the compact group
0(5).

Proposition Let H be a simply connected Lie group. Then there exists a left
invariant metric <,>, on H such that K, = Aut(H) n I(H,<,>,) is a maxi-
mal compact subgroup of Aut(H). If <,> is any left invariant metric on H and
K = Aut(H)N I(H,<,>), then dim K < dim K, with equality < K and pK,p~'
have the same identity component for some ¢ € Aut(H).

Remark Although <, >, is not uniquely determined in the result above we refer to
<, >, as an optimal left metric on H for reasons that are evident from the statement
of the proposition.

Lemma Let K be any compact subgroup of Aut(H). Then there exists a left invari-
ant metric <,> on H such that K C Aut(H)NI(H, <,>).

Proof of the lemma Let K’ = T(K) C Aut($)) C GL(%). Since K' is a compact
Lie group there exists an inner product <,> on § such that K’ C Aut($)NO(H). It
follows from the discussion above that K C Aut(H)NI(H,<,>). L ]
Proof of the proposition Let K, be a maximal compact subgroup of Aut(H). By
the lemma there exists a left invariant metric <,>, on H such that K, C Aut(H) N
I(H,<,>,). Equality holds by the maximality of K, since Aut(H)NI(H,<,>,) isa
compact subgroup of Aut(H) by the discussion above.

Now let <, > be any left invariant metric on H, and let K = Aut(H)NI(H, <, >).
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If K* is any maximal compact subgroup of Aut(H) that contains K, then K* =
pKoyp~" for some ¢ € Aut(H) ([T}, [Mal 2]). Hence dimK < dimK* = dim K.
Moreover, it is clear that if equality holds then K and K* have the same identity
component. | |

4.2 Basic left invariant metric structure

4.2a The Levi Civita connection of a left invariant metric

Let H be a connected Lie group with Lie algebra $. Let <,> denote an inner
product on $ and also its extension to a left invariant metric on H. The Levi Civita
connection for a Riemannian manifold takes a particularly simple form in this case.

Recall that the Levi Civita connection of a Riemannian manifold M can be de-
scribed as the map V : X(M) x X(M) — X(M) that is uniquely determined by the
following properties :

1)(X,Y) = VyY is R-bilinear.

2)V xY = fUxY forall X,Y € X(M) and all f € C®(M).

Q)VxfY = fUxY + X(f)Y for all X,Y € X(M) and all f € C®(M).

4)VxY - Vy X = [X,Y] for all X,Y € X(M)

X <Y, Z2>=<VxY,Z>+<Y,VxZ > forall X,Y,Z € X(M)

If H is a connected Lie group with a left invariant metric, then < X,Y > is a
constant function on H for any two left invariant vector fields X,Y on H; that is,
for any two elements X,Y € $. In particular X < Y,Z >= 0 for all X,Y,Z € 9,
and 5) now says that for each X € § the map Y — VyY is skew symmetric. These
observations lead to a considerable simplification of the usual formula for V x Y, which
can be found, for example, in [He, p.48]. We obtain
Prop Let H be a d Lie group with Lie algebra $, and let <,> be a
left invariant metric on H. If X,Y € $, then VxY € § and satisfies

VxY = H[X,Y] - (adX)'Y - (adY)'X}
where (adX )" denotes the transpose of adX relative to <, >.

The Riemannian curvature tensor on a Riemannian manifold M is given by the
formula

R(X,Y)Z = -Vixv)Z + Vx(VyZ) - Vy(Vx Z) for XY, Z € X(M).

If H is a connected Lie group with a left invariant metric , then R(X,Y)Z € § if
X,Y,Z € 9 since VyV € Hforall U,V € $.

The discussion above illustrates the principle that much of the geometry of a Lie
group H with a left invariant metric can be computed from the algebraic structure of
the Lie algebra .

4.2b The tangent bundle TH as a Lie group

Let H be a connected Lie group with Lie algebra = 7. H. We may identify the
tangent bundle TH with H x $ by means of the diffeomorphism that sends (h, X)
o (Ly).(X) € TyH. We regard H x $ as a product Lie group, where § is a simply
connected abelian Lie group. In this manner TH becomes a Lie group. The Lie
algebra of TH = H x $ may be identified with $ x $, and the exponential map
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expry : HxH = H x §is defined by expry(X,Y) = (eX,Y) for all X,Y € $, where
e:$H — H is the exponential map of H.

In the sequel we regard TH as the Lie group H x ), and we consider the stan-
dard left action A of TH on itself given by A z)(h*,2*) = (hh*,Z + Z*) for all
(h,Z),(h*,2*) € H x . The restriction of this action A to the subgroup H is also
important since H x $ = P will soon be equipped with a symplectic 2-form 2. The
restriction A : H — Diff(H x $) is clearly given by Ax(h*,2*) = (hh*,Z*) for all
(h*,Z2°) € H x 9.

Each element (X,Y) of $ x § defines a left invariant vector field on H x $ whose
flow transformations (X,Y)! are given by (X,Y)!(h, Z) = (he!X,Z + tY) for all t.
(Recall that every left invariant vector field on a Lie group has flow transformations
that are right translations by elements of the Lie group.) Since $ x § is the Lie
algebra of the product group H x §) and § is an abelian factor of H x $ we obtain

)(X,Y)+ (X, Y)=(X+ XY +Y') forall X,X"Y,Y' € §.

c(X,Y) = (cX,Y) = (X,cY) for all X,Y € H,c€R.

2)[(X,Y), (X", Y")] = ([X,X'],0) for all X,Y € H.

3) Given (h, X) € Hx$ and £ € T, x)(H x ) there exist unique vectors Y, Z € $
such that (Y, Z)(h, X) = &.

4.2c The connection map in TH

We compute the values of the connection map K : TTH — TH on the left
invariant vector fields {(Z,2*) : Z,Z" € $}. We identify TH with H x § as above.
Proposition Let H be a d Lie group with Lie algebra $ and a left invariant
metric <,>. Let V denote the Levi Civita connection on H with corresponding
connection map K : TTH — TH. Let 7 : TH — H be the base point projection
map. Then

7u(Z,2*)(h,a) = (h,Z) for all h € H and all Z € §.

K((Z,2*)(h,a)) = (h,Vza+ Z*) for all (h,a) € TH and all Z,2* €
Proof The proof of the assertion for 7. is routine. For the proof of the assertion for
K the following elementary result is useful. We leave the proof as an exercise.
Lemma Let §(t) be a C' curve in a Riemannian manifold M, and let £(t) be a
C" vector field on 3. Let @ be an isometry of M, and define 8°(t) = @(f(t)) and
& (t) = p.(&(t)). Then £'(0) = (¢").£*'(0), where ¢'(0) and £*'(0) denote the
covariant derivatives at t = 0 of £ and £* along 8 and A°.

Let Z,Z* € §and (h,a) € Hx$ = TH be given. By definition (Z, Z*)(h, a) is the
initial velocity of t — (he'Z,a + tZ*). Hence by definition K ((Z, Z*)(h,a)) = £(0),
where £(t) = (a + tZ*)(het?).

We now apply the lemma above to 3(t) = he'? and @ = Lp-1. Then B*(t) = et?
and £°(t) = (a +t2°)(e'%). We compute £*'(t) = Vgoi(ya + Z*(B°(t)) + tVge 2",
and hence £*'(0) = (Vza + Z*)(e), where e denotes the identity of H. The lemma
says that K((2,2°)(h,a)) = Ln-€"'(0) = Ln-(Vza + Z*)(e) = (h,Vza + 2°). m

4.2d The Sasaki metric on TH

The result above and the definition of the Sasaki metric in TM for an arbitrary
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Riemannian manifold M yield the following

position Let H be a 1 Lie group with Lie algebra § and a left invariant
memc <,>. Let V denote the Levi Civita connection on H with corresponding
connection map K : TTH — TH. Let <<,>> denote the Sasaki metric in TH
defined by <,>. Then for all Z,Z* € §

<< (21, Z})(h,@),(Z2,Z3)(hy@) >>=< Z),Z > + < Vz,a+ 2}, Vz,a+ 23 >

4.3 The symplectic structure of TH = H x

The left invariant inner product <,> on H induces a diffeomorphism between the
cotangent bundle TH* and the tangent bundle TH. We use this diffecomorphism to
transport the canonical 1-form 6 and the symplectic 2-form Q = —df from TH* to
TH. We then study TH using both the geometric structure of TN with the Sasaki
metric <<, >> induced from <, > and the symplectic structure from TH*.

We first identify TH with H x $) and construct some canonical vector fields on
TH that will be useful.

Basic properties

Let H be a finite dimensional, connected real Lie group, and let § denote its Lie
algebra. Let <, > be a positive definite inner product on $, and let <, > also denote
the corresponding left invariant inner product on H. The inner product <, > defines
a diffeomorphism f : TH — TH* given by f(£)(v) =< v,€ > for {,v € T,H and
h € H. Note that f(TyH) = T,H* forall h € H. Let f and Q = —df be the canonical
I-form and symplectic 2-form on TH* that were defined earlier in (2.1). Let 6 and
{) = ~d# also denote the pullbacks to TH by f. It is easy to check the following
assertions from the definitions :
Proposition A 1)0(¢) =< m,(€),v > forv € TH and £ € T,(TH), where 7 : TH —
H is the basepoint projection map.

2) The forms 6 and 2 = —df are H-invariant; that is, (Ap)*0 = 6

and (\y)*'2 =N forall he H.

Next, we evaluate 8 on the left invariant vector fields {(Z,2*) : Z,2* € §} on
TH that we defined in (4.2b).
Proposition B Let (Z,Z*) and (U,U*) be any left invariant vector fields on TH =
H x H, and let (n,3) be any point of H x $. Then

2((2,2%),(U,U*)(n,8) =~ <U,2* >+ <U*Z2>+<[2,U],f>
Proof We need two preliminary results whose proofs we leave as an exercise.
Lemma 1)6(Z,2*)(n,B) =< Z,8 >.

2)(Z,Z*){6(U,U")}(n, B) =< U, Z" >

Proof of Proposition B By the lemma above and the formula for the exterior
derivative of a 1-form (cf. (1.1)) we obtain
0((2,2*),(U.U"))(n,B) = —d9((Z,Z‘).(U,U'))(" B) = =(2,2°){6(U,U")}(n, B) +
(U, U*){8(2, 2°)}(n, B) +6(((2,2°),(U,U*))(n,B) = - < U,Z* > + < Z,U* >
+0([Z2.U],00(n,8)=-<U,2* > +< Z,U* > + < [2,0),8 >. []
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4.4 The Poisson structures on TH and §

The manifold TH has a Poisson structure arising from the symplectic 2-form Q de-
fined by <,>. The Lie algebra § has a canonical Poisson structure determined by
<,>. We now define a map G : TH — $ that will turn out to intertwine these two
Poisson structures; more precisely, we show that G is an anti Poisson map. Although
the Poisson structures on T'H and §) depend on the choice of <, >, the map G depends
only on H and $.

4.4a The Gauss map G : TH — 9

We define the Gauss map G : TH = Hx$H =3 9 by G(h,Z) = Z for all Z € §.
In view of the identifications we have made, the map G translates a vector in Tj, H
back to T,H = $ by the differential map of A, ~'. In the case that H is the abelian
group IR® the Gauss map is the same as the Gauss map used in the classical study of
surfaces in IR®.

We note that G : H x $ = § is a Lie group homomorphism since addition is the
group operation in ).

We introduce some definitions that will be useful in the proof that G is an anti
Poisson map.

4.4b H-invariant functions on TH

A function f : TH — IR will be called H-invariant if f is constant on all H-orbits
in TH = H x §; that is , f(h,X) = f(e,X) for all h € H and all X € 9.

The H-invariant functions on TH may be identified with the functions on $
A TH — IR is an H-invariant function, then we may define f : § = IR by
F(X) = f(e,X), where e denotes the identity in H. Conversely, if we are given a
function f .V) — IR, then f arises from an H-invariant fun(‘non f TH — IR given

by f(h,X) = f(X) for all (h, X) € H x §. Note that f = fo

4.4c H-invariant vector fields X'(7H) on TH

A C* vector field Y on TH will be called H-invariant if (An).Y (K, X') =
Y (hh',X') for all h,h' € H and all X' € §. Equivalently, Y is H-invariant & Y
is Ap-related to itself for all h € H (cf. (1.2)). We let X'(TH) denote the collection
of H-invariant vector fields on TH. By (1.2)X'(TH) is closed under Lie brackets.

The next result gives a useful characterization of H-invariant vector fields on TH.
Proposition The following assertions are equivalent for a vector field Y on TH =
HxH:

1)Y is H-invariant.

2) If {Y'*} are the flow transformations of ¥ on TH, then Yt o Ay = A, o Y* for
all h E H and all t € R.

Y(h, X) = (fi(X), fo(X))(h, X) for C* functions fi, f : $ = 9.

Tlu right hand side of 3) denotes the value of the left invariant vector field
(f1(X), f2(X)) at (h, 2 , the initial velocity of t = (he'/1(X) X 4 ¢f,(X)).
Remark Assertion 3) say thdt there is a one-one correspondence between H-invariant
vector fields on T'H and pairs of C™ functions f;. f; : § — 6.
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Proof of the Proposition The equivalence of the first two assertions is routine,
and we omit the details. Given a pair of C™ functions f, f2 : § — 9, the vec-
tor field Y'(h,X) = (fi(X), fa(X))(h, X) is easily seen to be H-invariant. Con-
versely, let ¥ be an H-invariant vector field on TH. If we are given X € 9,
then by 3) of (4.2b) above there exist unique elements f(X), f2(X) of § such that
Y(e,X) = (fi(X), fa(X))(e,X). The functions f,(X) and fo(X) define an H-
invariant vector field on H x §) whose values on {e} x $ are the same as Y. Since
an H-invariant vector field is determined by its values on {e} x 9, it follows that
Y(h,X) = (/1(X), f2(X))(h, X) for all (h, X) € H x . n

4.4d The Lie algebra homomorphism G : X'(TH) — X()

If Y is an H-invariant vector field on TH, then we may define a vector field
¥ on H by ¥(X) = G.(Y(e,X)). Note that Y and Y are G-related vector fields
since Gu(Y (h, X)) = Gu(An-Y (e, X)) = (G o Mn).Y (e, X) = (G).Y (e, X) = V(X) =
Y(G(h, X)) for all (h,X) € H x .

If we write Y (h, X) = (f1(X), f2(X))(h, X) for suitable C> functions f1, f> : § =
§ as in 3) above, then it is easy to check that Y (X) = (f2(X))x € Tx for all X € .

Conversely, every vector field ¥ on § arises in this fashion from an H-invariant
vector field Y on TH. To see this, let f : $§ — § be the function such that Y (X) =
J(X)x € Tx$ for all X € $. Then define Y (h, X) = (0, f(X))(h, X) for all (h,X) €
Hx 9.

By (1.2) we may summarize the discussion above as follows :

Proposition The map G : Y = Y is a surjective Lie algebra homomorphism of
X/(TH) onto X(H). The kernel of G is the set of vector fields Y in X'(TH) of the
form Y'(h, X) = (f(X),0)(h, X), where f : §§ = $ is an arbitrary C* function.

4.4e Hamiltonian vector fields of H-invariant functions

If f:TH - R is an H-invariant function, then f defines a function f: § - R
by f(X) = fle, X), where H x $ = T'H. Conversely, we observed above that every
function f :  — R defines an H-invariant function f : TH — R by f(h,X) =
f(X) for all (h,X) € H x . The next result relates the Hamiltonian vector fields
determined by f and f relative to the Poisson structures on TH and .
Proposition Let H be a d Lie group with Lie algebra 5 and a left invariant
metric <, >. Let f: TH = IR be an H-invariant function with companion function
f:H - R Let Xy and X denote the Hamiltonian vector fields defined by the
Poisson structures on TH and $. Then

(*) X;(h,a) = (gradf(a), - X;(a))(h,a) for all (h,a) € H x 9.
In particular, the vector fields X; and — X are G-related, where G : TH — ) is the
Gauss map.
Remark The meaning of the right hand side of the expression above needs some
explanation. Given a € § let &,&° be those elements of $ such that grad f(a) =
£ € T,9 and Xy(a) = & € To$). Then (gradf(a),—Xy(a))(h,a) is defined to be
(£ =€) (h,a).
Proof It is easy to see from the definition of the Gauss map that G.(Z, 2*)(h,a) =
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Z5 € To9 for all Z, 2%, & € §. The fact that X; and —X; are G-related now follows
immediately from (*).

We prove (*). We show first that X is an H-invariant vector field on TH. We
note that (A\;)*Q = Q for all h € H, and (\4)"df = df since f is H-invariant. It
follows that X is H-invariant since ix,Q = df.

By (4.4c) there exist functions fi,fa : $ — 9 such that X;(h,a) =
(fi(a), fa(@))(h,a) for all (h,a) € H x § = TH. Our task is to show that for
alae®h

i) f1(@)a = gradf(a) and ii) fa(a)a = —X/(a).

For vectors €,£* we compute (ix,2)((€,€")(h,a)) in two different ways and com-
pare the expressions. From the definition of X we compute (ix, Q)((§,&*)(h,a)) =
df((§.67)(h, @) = df((§,0)(h, @)) + df ((0,€7)(h, ) = df((0,€")(h,@)) = (df)a(€*)a
by the H- invariance of f and the definitions of the vector fields (¢,0) and (0,£%)
on TH. On the other hand (ix,Q)((¢,£*)(h,a)) = UX;(h,a), (& €E)(h,a)) =
A(fi(@), fr(@)(h, ), (€€ ) (ha)) = = < fo(@)€ > + < fi(a),&® > +
< a,[fi(a),€] > by (4.3). Comparing the two expressions for (ix,Q)((§€%)(h, @)
yields

#)(@Na(€)a = = < f2(0),€ > + < fi(@),€ >+ < a,[fi(a), €] >

Note that the left hand side of (#) does not depend on £. This shows
a)(df)a(§*) =< fi(a),&* > for all @, &" € H
b) < a,[f1(a),€] > — < fa(a),€ >=0 for all a,E € H
Assertion a) proves i) above. Substituting i) into b) yields < fy(a),f >=
< a,[gradf(a),£] >= - < Xj(a),€a >a by 4) of (3.7). This proves ii) above.
L]

4.4f Poisson maps associated to TH

Let H be a connected Lie group with Lie algebra $) and left invariant metric <, >.
We show that G : TH — § is an anti Poisson map and J : TH — " is a Poisson
map with respect to the canonical Poisson structure on $* and the Poisson structures
on TH and § defined by <,>. Here J denotes the moment map of the H-action,
which exists in this setting as we will show. We then relate G and J.

The Gauss map G: TH — §

Proposition A The map G : TH — § is an anti Poisson map relative to the Poisson
structures on TH and $ defined by <, >.

Proof Let f,§ : be C™ functions, and let f,g : TH — IR be the corresponding
H-invariant functions defined in (4.4b). It follows from the H-invariance of f and g
that f = foG and g = goG. Let {,}5 and {, }75 denote the Poisson structures
defined on § and T'H by the inner product <, >. We must show

) ({£,3)s 0 G)(h,a) = —({f, 9}r1)(h,a) for all (h,a) € H x $

By the proposition in (4.de) we know that G.(X,(h.a)) = —X,(a) for all (h,a) €
H x 9. Hence ({f,3} o G)n(h,a) = {f,5}s(a) = (X3(/))(a) = (Xp)(@)(f) =
=G (X (ha)(f) = =(X,(h,@))(f 0 G) = ={f o G.g}(h,a) = —{f,g}(h,a). L]
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The momentum map J : TH - $*

The next result follows from Proposition D and the remark preceding it in (3.11¢).
Proposition B A momentum map J : TH — $) exists and is a Poisson map relative
1o the Poisson structures on TH and § defined by <, >.

Relationship between J and G
ition C Let H be a 1 Lie group, and let G : TH — $Hand J : TH —

y,’ denou the corresponding Gauss map and momentum map. Let 7 : TH — H
denote the base point projection map. Then J(£)(A) =< G(£), Ad(n€)~ ‘A > for all
¢eTHandall A€ H.
Proof We identify TH with H x ) as in (4.2b). The projectionmap 7 : TH = H x
now has the form #(n, 8) = n for all (n,8) € H x .
Lemma Let (n,0) € H x $and A € H. Let A : § — X(TH) be the canonical anti
homomorphism. Then

1)A(A)(n,8) = (Ad(n~")A,0)(n, B) in the terminology of (4.2b).

2)J(A)(n, B) =< B, Ad(n~")A >
Proof of the of the lemma

1) By definition A(A)(n,f) is the initial velocity of t = A, (n, ) = (e!4n,B) =
(nn~1etAn, B) = (netAdn™NA, g),

2) We apply Proposition D of (3.11e). By the statement of that result , 1) above
and the definition of 8 we obtain J(A )( ﬂ) B(A(A)(n, B)) = 8((Ad(n~")4, 0, 13))
=< (n,8),7.((Ad(n"")A,0)(n, B)) >=< (n, B), (Ad(n~")A)(n) >=< B, Ad(n~')A

.

We now complete the proof of Proposition B. Let £ = (n,3) € H x § = TH and

A € H be given. Then J()(4) = J(A)(®n,f) =< B,Adn"")A >=
< G(E), Ad(€)" A > by 2) of the lemma. ™

5. The geodesic flow in TH and §

5.1 Geodesic flow in TM,M a Riemannian manifold

We begin by defining the geodesic flow in two equivalent ways for an arbitrary
Riemannian manifold.

Definition 1 Let M be a lete Ri ifold with Ri metric
<, > and tangent bundle TM. For each v € TM and t € R define ®'(v) = v,'(t),
the velocity at time t of the unique geodesic with initial velocity v.

The fact that M is complete implies that the geodesics of M are defined on RR.
Hence @' is defined on M for all t € IR. It is easy to check that B! o ®* = B° 0 8! =
@' for all 5.t € IR. We define the geodesic vector field ® to be the vector field on
TM whose flow transformations are {&'}.

P ey
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Definition 2 Let M be a lete Ri i ifold with Ri ian metric
<,> and tangent bundle TM. Let 6 and = —d# denote the canonical 1-form and
symplectic 2-form defined on TM by <,>. Let E : TM — IR be the energy function
defined by E(v) = % <wv,v > for all v € TM. Let & = Xg, the Hamiltonian vector
field determined by E. Now let {®‘} denote the flow of &.

Remark If ¢ is any isometry of H, then E((¢.v)) = E(v) for all v € TM. Hence if
H is any connected subgroup of (M), then E is constant along H-orbits in P = T'M,
where Ay (v) = (Lp)s(v) for all h € H and v € TM. If A : § = X(TM) is the anti
homomorphism defined by the action of H, then it follows from Propositions A and
D in (3.11e) that j(A) = 60(A(A)) is a first integral for the geodesic flow.

We now show that these two definiti of the jesic flow are equivalent. We

need two preliminary results.

Lemma 1 Lyf = dE.

Proof By definition of the Lie derivative Lgf = ﬁ,:n((c‘)'ay Let £ € T, (TM) be
given, and let Yg(t) denote the Jacobi vector vector along the geodesic 7, such that
Ye(0) = dn(€) and Y'(0) = K (€), where K denotes the connection map (cf.(2.2a)).
For any t € R, 8'(£) € Te(TM), and we compute {(8°)*8}(£) = 0((®").(€)) =
< B'v, 7. (B").(€) >=< 7,/(t), Ye(t) > by Proposition 1.7 of [E5]. Hence Lgf(£) =
fili=o < %/(1), Ye(t) >=< v, Y¢'(0) >=< v, K(§) >.

On the other hand, write £ = %h:u, where Z(t) is a curve in TM with Z(0) = v.
We regard Z(t) as a vector field on the curve o(t) = 7(Z(t)). Then K(€) = Z'(0) by
the definition of K. If E(t) = E(Z(t)) = % < Z(t), Z(t) >, then dE(€) = E'(0) =
< 2'(0), Z(0) >=< K(£),v >= Lob(§). N
Lemma 2 0(8) = 2E.

Proof We note that 7,&(v) = v for all v € TM. Hence 8(8)(v) =< v, 7.8(v) >=
< v,v>=2E(v). [ ]

We now complete the proof that the two definitions of the geodesic flow given above
are equivalent. From Lemmas 1 and 2 and standard facts about the Lie derivative
(cf.(1.1)) we obtain dE = Lef = (doig +ig 0 d)f = d(0(8)) — ig = 2dE — lan
This proves that i = dE, and it follows that & = Xg.

5.2 Computation of the geodesic vector field & on
TH

We use the proposition in (4.4e) for the computation. Let £ : TH — R denote
the H-invariant energy function E(v) = 7 <wv,v>andlet E:H = R denote the
restriction of E to $ = T, H. It is easy to check that (grad E)(a) = aq for all a € ;
that is, grad £ is the position vector field in $. The Hamiltonian vector field Xg is
called the geodesic vector field in $ and is denoted &.

The geodesic vector field & on §

We first relate the flow transformations of & in TH to those of & in §.
Proposition A Let H be a connected Lie group with Lie algebra $, and let <, > be
a left invariant metric on H. Let {®} and {&'} denote the flow transformations of

e 32 A\
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the geodesic vector fields  on TH and & on 9. Let G : TH — $ be the Gauss map.
Then Go®~' =@'oG forall t € R.

Proof By the proposition in (4.4e) applied to the energy functions E and E we con-
clude that @ and ~® are G-related; that is, G.(®(€)) = —B(G(€)) for all £ € TH
The ion of the proposition now follows i diately.

&(a) =

Proposition B Let H be a connected Lie group with Lie algebra §, and let <,>
be & left invariant metric on H. Then the geodesic vector field ® on $ is given by
&(a) = Vaa.

Proof From the invariant formula for Xg(a) in example 4 of (3.7) we obtain
< Xpla)ba >a= - < q, [(grad E)(a),{] >= - < a,[a, €] > for all a,€ € H.
From properties of the Levi Civita connection and the discussion in (4.2a) we obtain
- <a,f0,€] >= - < a,Vaé - Vea >= - < a,Vaf > + < a,Vea >=< Vaa, € >
ﬂ{ <a,a >=< Vya,§ >. We conclude that Xg(a) = (Vaa), for all a € $. [ ]

The geodesic vector field 8 on TH

Proposition C Let H be a connected Lie group with Lie algebra §, and let <, > be
a left invariant metric on H. Then the geodesic vector field 8 on TH = H x §) is
given by
&(h,a) = (a,-V,a)(h,a) for all (h,a) € H x H

where the meaning of this notation is defined in (4.2b).

Proof By the Proposition in (4.4e) and the facts that ® = Xz and (grad E)() = aq
for all @ € % we see that 8(h,a) = (a, —Xg)(h,a) for all (h,a) € H x §. It remains
only to show that Xp(a) = (Vaa), for all a € 5. This is the content of proposition
A since & = Xp. ]

5.3 First integrals for the geodesic flow in TH

5.3a Universal first integrals for H-invariant functions

We begin by recalling the first integrals arising from the momentum map. In fact,
these are first integrals for any Hamiltonian vector field X, where f : TH — R is
any H-invariant function.
Proposition A Let H be a connected Lie group with Lie algebra 9, and let <,>
be a left invariant metric on H. Let A be the left action of H on TH given by
Mfe) = (Ly)*(v) for all v € TH, and let X : $ — X(TH) be the corresponding anti
homomorphism. Then f4 = 6(A(A)) is a first integral for the geodesic flow on TH.
Proof We showed earlier that ® = X, and we observed that E is H-invariant. The
result now follows from Propositions A and D in (3.11b).
Remark The functions f4 = 8(\(4)) : TH — IR are not H-invariant first mtegrals
in general unless A lies in the center of . In the next result we use the same notation
s in Proposition A and we identify TH with H x §.

P
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Proposition B Let A € §) be given. Then

1)fa(h,a) =< a,Ad(h™")A > for all (h,a) € H x H.

2)fa(h'h,) = fa(h, Ad(K'™")a) for all h, K € H and a € 5
Proof Assertion 2) follows immediately from assertion 1). By definition fa(h,a) =
8(A\(A))(h,a) =<(h, @), . A(A)(h,@)>=< (h,a), (h,Ad(h~')A)>=< a, Ad(h"")4 >
by the left invariance of the inner product. We use also the fact that A(A)(h,a) is
the initial velocity of t = (e!4h, a) = (hh~'e!4h, a) = (he!Ad(h™HA q), ™

5.3b H-invariant first integrals for the geodesic flow

Equivalence with first integrals for the geodesic flow & in H

Let f: TH = H x $ = IR be an H-invariant function, and let f: 9 = R denote
its restriction to $. By (4.4f) we know that {f, E} = {_]oG‘E‘oG) =-{f,E}oG,
where G : TH — $ denotes the Gauss map and E : § — IR denotes the re-
striction of E to $. The function f is a first integral for the geodesic flow in
TH ¢ {f,E} = 0 & {f, B} = 0. Hence finding H-invariant first integrals for
the geodesic flow in TH is equivalent to the problem of finding functions f:H-R
such that {f, B} =

Examples of first integrals for &

Proposition A A function f : ) — IR satisfies {f, E} = 0 & < (grad f)(a), Vaa >=

0foralla € H.

Proof The meaning of the expression < (grad f)(a),V,a > is defined as in the

discussion of example 4 of (3.7).

By the definitions and Proposition A of (5.2) we obtain {f, E}(a) = Xg(e)(f) =

(df)aXg(a) =< (grad @), Xg(@) >=< (grad f)(a), Vaa >. The result follows.

L}

Example 1 & =0

The simplest situation in which to find first integrals for Xp is when the energy
function E is Casimir, which occurs precisely when V,a = 0 for all a € $ by the
discussion in (5.2). This condition is equivalent to requiring that the inner product
<, > be ad-invariant; that is, ad X : $§ = $ is skew symmetric for all X € . The
equivalence of these conditions is easily verified from the formula for VxY in (4.2a),
and we leave the details as an exercise.

Examples in which <,> is ad-invariant include the case that $ is abelian and
more generally the case that §) is the Lie algebra of a compact connected Lie group
H. In this case by averaging any inner product <, >* on §) over Ad(H) one obtains
an inner product <, > that is preserved by the elements of Ad(H). By differentiating
the identity Ad(e') = e X at t = 0 it follows that <, > is ad-invariant. If § has
trivial center, then one may always choose <,>= —B, where B is the Killing form
given by B(X,Y) = trace (adX oadY) for X, ¥ in £. For the group H = SO(n,R)
the Killing form is a constant multiple (depending on n) of the natural trace form

(X,Y) = trace XY.
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Conversely, one can show that if § admits an ad-invariant inner product, then
there exists a compact connected Lie group H with Lie algebra $ [Mi, Corollary 21.6).

Example 2 Polynomial first integrals

If /., + % = R are polynomial functions of degree m,n respectively, then
(fa):Hn -+ Risa polynomial function of degree m + n — 1 by the local coor-
dinate upmon for (f g} that appears in the discussion of example 4 of (3.7).
Since poly are the simplest smooth functions it makes sense to con-
sider polynomial first integrals for the geodesic flow; that is, polynomial functions
/9 = R such that {f,E} =

Reduction to the homogeneous case

Let 5 be equipped with linear coordinates x = (zy,2,...,2,) arising from an
orthonormal basis {Ey, By, ..., Eq} of $ and its dual basis {z;,22,..., 2.} of $°. Let
/5 = R be a polynomial function of degree n and write f = ¢+ fi+...+ fi+...+ fa,
where ¢ is a constant and each f; is a homogeneous polynomial of degree i,1 < i < n.

Hence {f,E} = Z(an‘), where {f;, B} is a homogeneous polynomial of degree

=1

i+ 1 Since each of the terms {fi, £} has a different degree of homogeneity it follows
that {f.E} = 0 & {fi,E} = 0 for each i,1 < i < n. Therefore, in looking for
polynomial first integrals f for the geodesic flow Xz it sufffices to consider the case
that f is homogeneous.

For general use we prove the following
Proposition B Let f : § — IR be any function. Then {f,E} = 0 &
<a, [grad f(a),a] >=0for all @ € 9.
Proof Since the linear functions are first order dense in C™(9) it suffices by remark 2)
in (3.5) to prove this result for a linear function f = A#* : § — IR, where # : $ — .FJ‘
18 the somorphism defined by the inner product <,>. In this case grad f(a) =
for all @, so it suffices to prove the next result.

Linear first integrals

Proposition C Let f = A% : § = IR be a linear function. Then {f,E} = 0 &

<a,fAa] >=0forall a€ 9.

Remark If A € 3, the center of §, then the criterion above is clearly satisfied, but we

know from the discussion in (3.9) that f is a Casimir function in this case. We shall

see later in (6.85) that if 5 is a 2-step nilpotent Lie algebra, then every linear function
= A* that is a first integral for X p must be a Casimir function with 4 € 3.

Proof of the Proposition If f = 4% then {f, E}(a) =< (grad f)( ) Xp(a) >=
€ AV.a >= - < Vad,a >= - < Vaa + [0, 4], >= —-A<au> =
<lo.d).a >= - < [a,4],a >=< [4,a],a >. The result follows. ]

Quadratic first integrals
P'Wlm D Let f(z) =< S(z),z > be a homogeneous polynomial of degree
% where S © 5 - $ is a symmetric linear transformation. Then {f, E} = 0 &<

—
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S(a),Vaa >=0 for all @ € $.
Remarks 1) It is easy to see that every homogeneous second order polynomial f:
$ — R can be written f(z) =< S(z),z > as above for a suitable S.

2) We shall see later in (6.8b) that if § is an almost nonsingular 2-step nilpotent
Lie algebra, then f(z) =< S(z),z > is a first integral for the geodesic flow Xp ¢
S(3) € 3,5(3*) € 3* and [S(A), B] = [A, S(B)] for all A, B € 5. Here 3 denotes the
center of £, which is always nontrivial if 5 is nilpotent, and 3* denotes the orthogonal
complement of 3.

Proof of Proposition D Since Xg(a) = (V,a), by the discussion in (5.2) it suffices
to show that (grad f)(@) = (25(a))a for all a € . We leave this statement as an
exercise. ]

5.4 Closed geodesics in I'\H

We describe some general results about closed geodesics in a coset manifold T\H ,
where H is a connected Lie group with a left invariant metric and I is a discrete
subgroup of H that acts on H by left multiplications. In section 6 we will obtain
more specialized results for the case that H is a simply connected, 2-step nilpotent
Lie group and T is a lattice in H; that is, P\ H is compact.

Basic definitions and notation
Definition A geodesic o(t) in a Ri i ifold M is said to be closed with
period w> 0 if o(t + w) = o(t) for all t € R.

Equivalently, a geodesic o(t) is closed with period w if ¢'(w) = o'(0). To check

the equivalence merely observe that the geodesics o*(t) = o(t + w) and o(t) have the
same initial velocity ¢ o'(w) = o'(0).
Notation We let SM denote the unit Langenl bundle of a Riemannian manifold M.
Definition Let M be a complete Ri ifold. A vector v € SM is said to
be periodic with period w> 0 if 8“(v) = v, where {&'} denotes the geodesic flow in
SM

Let v be any vector in SM, and let o(t) be the unique geodesic with ¢'(0) = v.
Then it follows immediately from the definitions that v is a periodic vector with period
w >0 o(t) is a closed geodesic wn.h penod w.

Definition Let M be a ¢ I Ri ifold. We say that the closed
geodesics in M are dense if the periodic vectors in SM are dense in SM.

It is a problem of classical interest to determine Riemannian manifolds in which
the closed geodesics are dense. Geometrically this says that every geodesic o is a limit
of a sequence of closed geodesics {0, }. Of course, if w, > 0 is the smallest period of
0y, then w, — 00 as n —= oo if o is not a closed geodesic. If this were not the case,
then o would be closed with period w* for any cluster point w* of the sequence {w,}.

It is also a classical problem to determine the smallest periods of all closed
geodesics in M. The collection of these periods, counted with multiplicities, is called
the length spectrum of M. In cases where it is not easy to compute the length spec-

trum it is also useful to consider the growth rate of the function N : (0,00) -+ R given
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by N(t) = the number of umallest penods w of closed geodesics in M such that w < ¢.
If M is a compact Ri d with negative sectional curvature, then the
growth rate of N(t) is pretty well understood. In this article we shall be primarily
interested in describing the length spectrum of a compact 2-step nilmanifold I'\ V and
also the marked length spectrum of I'\N. See (6.8¢).

Closed geodesics in I'\H and translated geodesics in H
Proposition A Let H be a connected Lie group with a left invariant metric, and
let I' be a discrete subgroup of H. Let m : H — ['\H be the covering projection,
where I acts by left multiplications on H. Let o(t) be a geodesic of I'\H such that
alt +w) = oft) for all t € IR and some w > 0. Let y(t) be a geodesic of H such
that #((t)) = a(t) for all t € IR. Then there exists an element ¢ of I' such that
¢ yt)=9(t+w)foralltelR.

Conversely, let ¥(t) be a geodesic of H such that ¢ - y(t) = y(t + w) for all ¢t € R,

some w > 0 and some element ¢ of T'. If o(t) = w(y(t)), then o(t + w) = a(t) for all
teR.
Remark We say that a geodesic y(t) of H is translated by an element ¢ of H if
¢ 9lt) =3t +w) for all t € R and some w > 0. The number w is called a period of
the element . The result above says that finding closed geodesics and their periods
in I'\H is equivalent to finding geodesics of H that are translated by elements ¢ of I'
and finding the periods of these elements .

In general this is a useful way to study the closed geodesics of I'\H since the
geometry of H is easier to deal with than the geometry of a quotient I'\H. This is
particularly true when H is simply connected and 2-step nilpotent since in this case
the Lie group exponential exp : M — N makes N diffe phic to the Euclid
space M
Proof of Proposition A The proof of the second assertion is immediate, so we prove
only the first. Let o(t) be a geodesic of I'\H such that o(t + w) = o(t) for all t - R
and some w > 0. Let 4(t) be a geodesic of H such that x(y(t)) = o(t) for all t € R.
The deck group of the regular covering 7 : H — I'\H consists of left multiplications
by the elements of I'. Since 7(y(w)) = a(w) = a(0) = 7(7(0)) there exists an element
 of ' such that ¢ -9(0) = y(w). If M(t) = 7(t +w) and 72(t) = ¢ - ¥(t), then
n(0) = %(0) = y(w) and m(yi(t)) = o(t) for i = 1,2 and all t € R. It follows that
Wit = 25(1) for all ¢ since o(t) has a unique lift to N that begins at the point (w).

Translated geodesics in H and periodic vectors of {&'} in
Proposition B Let H be a connected Lie group with Lie algebra ), and let <, > be
A left invariant metric on H. Let y(t) be a geodesic of H such that ¢ (t) = 7(t +w)
for all ¢ € R, some € H and some w > 0. Let & = 7/(0) and let £ = G(£) € 9,
Where G- TH = 9 is the Gauss map. Then 8“(&,) = &, where {®'} is the geodesic
flow in §

Conversely, suppose that “(&,) = &, for some w > 0 and some £, € $. Then
£ = y(t+w) for all t € IR, where v is the geodesic with 4'(0) = &, and ¢ = Y(w).
Proof We note that ¢ - 4(t) = y(t +w) for all t € R & dL,(+'(0) = 7'(w) &
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dL(€) = B“(€), where {®!} denotes the geodesic flow in TH. By Proposition A of
(5. 2) we know that G o ® = 8¢ oG for all t € R. Hence 0""50 =®vG(¢) =
G(8%€) = G(dL,(€)) = G(€) = &. Applying B to the equation &~“E, = &, proves
the first assertion of the proposition.

Now suppose that (&) = &, for some w > 0 and some &, € $. To prove that
©-7(t) = y(t+w) for all t € R, where v is the geodesic with 7/(0) = & and ¢ = y(w),
it suffices by the discussion above to show that dL(§,) = &“(£,). Both dL,(&,) and
®=(&,) lie in the same tangent space of H, and hence to prove that they are equal it
suffices to prove that their images under the Gauss map G are equal. We compute
G(dLy(&)) = G(&o) = & and G(8%(&)) = (877 0 G)(&) = B7(§,) = &. The
proof of the proposition is complete. -

Density of periodic vectors in T(I'\H) and §

A classical problem in Riemannian geometry is to look for Riemannian manifolds
M such that the geodesic flow in the unit tangent bundle SM has a dense set of peri-
odic vectors. Typically the manifolds M considered are compact although sometimes
it is sufficient for M to be noncompact with finite volume. If M is compact, then SM
is also compact, and in this compact situation there is an abundance of tools from
differential geometry, dynamical systems and ergodic theory to study the geodesic
flow on SM.

In the context of this article it is more natural to consider the tangent bundle 7'M
with its symplectic structure. However, we note that v € T'M is a periodic vector for
the geodesic flow in TM ¢ the unit vector v/ |v| is a periodic vector for the geodesic
flow in SM. Therefore, if we are interested in proving that SM contains a dense
set of periodic vectors for the geodesic flow, then it is equivalent to prove that TM
contains a dense set of periodic vectors for the geodesic flow.

We now consider the case that M = I'\H, where H is a connected Lie group
with a left invariant metric and T is a discrete subgroup of H that acts on H by left
multiplications.

Proposition C Let H be a connected Lie group with a left invariant metric, and let
I" be a discrete subgroup of H. If the periodic vectors for the geodesic flow in 7'(I'\H)
are dense in T'(I'\H), then the periodic vectors for the geodesic flow in $ are dense
in 9.

Lemma Let 7 : H = I'\H be the covering projection, and let G : TH — $ be the
Gauss map. Let € be an element of TH. Let 7.(£) be a vector of period w > 0 for
the geodesic flow in T(I'\H). Then G(€) is a vector of period w for the geodesic flow
in .

Proof of the lemma Let 5(t) be the geodesic of H such that v/(0) = €. Since . (£)
is tangent to the closed geodesic 7 o4 with period w it follows from Proposition A
that ¢ - y(t) = y(t + w) for some € I and all ¢ € R. Proposition B now says that
G(£) has period w for the geodesic flow in $. "]
Proof of Proposition C Let X = {¢ € TH : #.(£) is periodic for the geodesic flow
in T(T\H)}. The set X is dense in TH since 7, (X) is dense in T(I'\ H) by hypothesis.
Hence G(.X) is dense in ) since G is continuous and surjective. The lemma says that
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G(X) consists of periodic vectors for the geodesic flow in 9. [ ]

6. Geometry of 2-step nilpotent Lie groups

In this section we apply the results and methods described in the earlier sections to
connected 2-step nilpotent Lie groups with a left invariant metric.

6.1 Definitions and basic examples

6.1a Definition A finite dimensional Lie algebra $ is 2-step nilpotent if 5 is not
abelian and [9,(9.9]] = {(0}. A Lie group H is 2-step nilpotent if its Lie algebra 5
I8 2- step nilpotent.

Clearly, a 2-step nilpotent Lie algebra has a nontrivial center that contains [, ).
It Is natural to study 2-step nilpotent Lie groups and Lie algebras. They are as close
a8 possible to being abelian, but the differences from Euclidean space are interesting
and challenging. In addition, they arise frequently in important areas, for example as
the horospheres of symmetric spaces of strictly negative curvature. See for example,
[EH, pp. 447-448).

In this section we will use the letter 9 to denote a 2-step nilpotent Lie algebra,
and N will denote the corresponding simply connected 2-step nilpotent Lie group
with Lie algebra M.

6.1b Exponential and logarithm functions

It is known that if N is a simply connected nilpotent Lie group with Lie algebra 1,
then exp : M — N is a diffeomorphism, where exp denotes the Lie group exponential
map. In this case we let log : N — 91 denote the inverse of the exponential function.

If N is 2-step nilpotent in addition, then the multiplication law in N can be
expressed as follows in terms of the exponential map.

exp(X) - exp(Y) = exp(X + Y + §[X,Y]) for all X,Y €N
From this formula one can quickly derive additional formulas. Let X,Y be any ele-
ments of N and write p = exp(X) and ¥ = exp(Y). Then

a) o' = exp(Y + (X, Y]).

b) o, ¥ = v Y = exp((X, Y)).

€} y commutes with ¢ ¢ X commutes with Y.

d) log(y ) = log o + log ¥ + & (log , log ]

6.1c Examples of 2-step nilpotent Lie algebras

We begin with some important examples of 2-step nilpotent Lie algebras and Lie
Aroups. There are many of them, and one never has to check the Jacobi identity!

S ——
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Example 1 Free 2-step nilpotent Lie algebras

Let k > 2 be an integer. A 2-step nilpotent Lie algebra M is said to be free on k
generators if it admits a generating set {X;, X, ..., X} with the following property :
Let M’ be any 2-step nilpotent Lie algebra and let {X{, X}, ..., X} } be any subset of M’
with k elements. Then there exists a unique Lie algebra homomorphism T : i1 — N’
such that T(X;) = X! for 1 < < k.

A simply connected 2-step nilpotent Lie group N is said to be free on k generators
if its Lie algebra N is free on k generators.

It follows easily from the definition that a free 2-step nilpotent Lie algebra M on
k generators is unique up to isomorphism, and that every generating set for M has
at least k generators. Moreover, if 9 is a 2-step nilpotent Lie algebra generated by
a subset with k elements, then ' is a homomorphic image of M. It follows that if
M is any connected 2-step nilpotent Lie group whose Lie algebra M’ is generated by
k elements, then N’ is a homomorphic image of a simply connected 2-step nilpotent
Lie group N whose Lie algebra is free on k generators.

The universal mapping property of a free 2-step nilpotent Lie algebra M on k
generators is useful. In principle, if one understands a particular geometric property
thoroughly for 9N, then one has a tool to study that property on the homomorphic
images of M.

Model of a 2-step nilpotent Lie algebra 0 that is free on k
generators

For any integer k > 2 let My = R* @ A?(R*) as a vector space, where A?(R*)
denotes the second exterior power of R* . Define a Lie bracket operation in M by

(), (&, 1)] = (0,2 A ).

It is easy to see that My is 2-step nilpotent and that A’(]l'l") is the center of M.
Moreover, any basis of R¥ is a generating set for M. To see that My is free on
k generators fix any basis {vy,va, ..., v} for R* . If {X], X},..., X{} is any subset
with k elements in a 2-step nilpotent Lie algebra O, then let T : R* — 0 be the
unique linear transformation such that T'(v;) = X/ for all i. Extend T to a linear map
from My to N’ by requiring that T'(v, A vj) = [\_'\;]' where [, ]' denotes the Lie
bracket in M. We leave it to the reader to check that T is a well defined Lie algebra
homomorphism such that T(z Ay) = [T'(z),T(y)] for all z,y € R*.

Let Nj = R* x AQ(IR"), and define multiplication in N by

() s (@) = (@+2\y+y + j(zAZ))

Clearly N is simply connected, and it is easy to see that A?(IR¥) is the center of N.
We leave it to the reader to check that Ni is a group with unit element (0,0) and
that My is the Lie algebra of Nj.

Example 2 Heisenberg Lie algebras

In R**! k > 1, we construct a 2-step nilpotent Lie algebra with 1-dimensional
center as follows. Let {z1,11,72,¥2,...,Ta, ¥, 2} be a basis of R***! and define a
2-step nilpotent structure on R***' by requiring that [z, 5] = — [y, z,) = = for
1 <4 < k and setting all other brackets of basis vectors equal to zero. It is easy
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1o check that this defines a 2-step nilpotent Lie algebra with 1-dimensional center
spanned by 2. This Lie algebra is called the Heisenberg Lie algebra of dimension
2%+ 1.

It is not difficult to show that every 2-step nilpotent Lie algebra with 1- dimen-
sional center must be isomorphic to the Heisenberg Lie algebra of dimension 2k + 1
for some k > 1. It is also easy to check that the Heisenberg Lie algebra of dimension
3 s a free 2-step nilpotent Lie algebra on 2 generators.

Example 3 P-tuples of random skew symmetric matrices
Let p > 2 and ¢ > 2 be any integers. Let C',...,CP be any skew symmetric
¢ * ¢ matrices. Then we may define a 2-step nilpotent Lie algebra structure on
N = R' @ R” as follows. Let {vy,vg,...,v,} and {2y, 23,....2p} be any bases for IR?
P

and R” respectively. Define (v, v;] = Z Cf; 2 and require IR” to lie in the center of
k=1
0. Now extend the bracket operation to be bilinear on IR*.
1£ 9 is any 2-step nilpotent Lie algebra, then we may write M = V @ 3, where V
I8 any subspace complementary to the center 3. By the definition of a 2-step nilpo-
tent Lie algebra it follows that (V, V] C 3. If we identify V' with R and 3 with R?
. then M is one of the examples above for suitable skew symmetric matrices C"', ..., C”.

Example 4 Random subspaces of so(n,IR)

We define a 2-step nilpotent Lie algebra M with a preferred inner product <,>.
One can show that every 2-step nilpotent Lie algebra M is isomorphic as a Lie algebra
to one of these examples.

Fix an integer n > 2, and an inner product <, > on IR". Let so(n,IR) denote the
Lie algebra of linear transformations on IR"™ that are skew symmetric relative to <, >.
Define an inner product <, >* on so(n,IR) by < X, Y >*= —trace XY Itis routine to
check that <, >* is positive definite on so(n,R) and that ad X : so(n,IR) = so(n, R)
18 skew symmetric relative to <, >*. Indeed, these two properties characterize <, >*
uniquely up to a constant multiple.

Now let W be any subspace of so(n,IR) of dimension p, and let = R" & W.
Equip 9 with the inner product induced from <, > and <, >* that makes R and W
orthogonal. We now define a Lie bracket operation on M by requiring that W lie in
the center of Mand that < (X,Y],Z >*=< Z(X),Y > forall X,Y in R" and all Z in
W It s easy to check that the center of M = U@ W, where U = {X € R" : Z(X) =0
for all Z € W),

Example 5 Special subspaces of so(n, R)

A geeric subspace W of so(n, IR) produces a generic 2-step nilpotent Lie algebra
= B" & W, one without much interest or importance. If we require more from
W, then 9 exhibits nicer properties. For example, if W = so(n, IR), then M = R™ &
1a(n ) is & free 2-step nilpotent Lie algebra on n generators. This is a consequence
of the natural isomorphism between so(n,R) and A*(R").

Asnother important example arises when W is a subalgebra of so(n,IR). A good

.
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way to find subalgebras is to consider representations p : H — GL(V) of a compact
Lie group H on a finite dimensional real vector space V. If V' is equipped with an
inner product <, > that is invariant under the elements of p(H), then W = dp($)) is
a subalgebra of so(V, <, >).

A subspace W of so(n,IR) is said to be a Lie triple system if
[W,[W,W]] C W. Clearly any subalgebra W of so(n,IR) is a Lie triple system, and it
is not hard to show that if W is a Lie triple system in so(n,R), then W + [W, W] is a
subalgebra of SO(n,1R). One can further describe the difference between subalgebras
of so(n,IR) and Lie triple systems in so(n,IR) in geometric terms. Let the special or-
thogonal group SO(n, IR) be given a bi- invariant Riemannian metric, which is unique
up to constant multiples. Then the totally geodesic submanifolds of SO(n,IR) that
contain the identity matrix are precisely the sets exp(W), where W is a Lie triple
system in so(n,IR) , and exp : so(n,IR) = SO(n,IR) is the matrix exponential map.
The totally geodesic subgroups of SO(n, IR) are precisely the sets exp(IV), where W
is a subalgebra of so(n, IR).

Example 6 Representations of Clifford algebras and spaces of
Heisenberg type

Representations of certain algebras produce important examples of Lie triple sys-
tems in so(n,IR). If C¢(p) denotes the real Clifford algebra determined by IR” with
a fixed inner product <, >, then a linear map j : R” — End (V) defines a repre-
sentation of the Clifford algebra if j(Z)? = —|Z|* Id for all Z € Ct(p). Under this
condition there is a natural extension of j to an algebra homomorphism from C€(p) to
End (V7). The elements of Cf(p) that are finite products of elements of unit length in
R’ form a compact group called Pin(p). If one equips V" with an inner product <, >
that is invariant under j(Pin(p)), then W = j(IR”) is a subspace of so(V, <, >). From
the condition above that defines a representation of Cf(p) it is not difficult to show
that W is a Lie triple system of so(V, <, >). The totally geodesic subspace exp(W)
of so(V') is in this case a sphere of dimension p.

The representations of the Clifford algebras C#(p) are important in several con-
texts. The corresponding 2-step nilpotent Lie algebras M = V @ j(IR”) are those of
Heisenberg type. These are the nicest possible 2-step nilpotent Lie algebras with a
center of fixed di ion p > 2. The corresponding simply connected, metric, 2-step
nilpotent Lie groups N are the model spaces for all simply connected, metric, 2-step
nilpotent Lie groups in much the same way that the Riemannian symmetric spaces
are the model spaces for all Riemannian manifolds

The systematic study of the spaces N of Heisenberg type was initiated by A.
Kaplan in [K1,2]. They have also been used by E. Damek and F. Ricci in [DR] to
produce counterexamples to a long standing conjecture of Lichnerowicz that every
harmonic Riemannian manifold must be a locally symmetric Riemannian manifold.
Damek and Ricei showed that each of the Lie algebras M arising from a representation
of CZ(p) has a natural solvable extension §= IR @9 that is the Lie algebra of a simply
connected solvable group S that is also a harmonic space with nonpositive sectional
curvature. This construction produces a symmetric space only when p=13or7
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but examples exist for every positive integer p.
For further information on the geometry of spaces of Heisenberg type see [BTV).

Example 7 Sp that are Heisenberg like
In & space N of Heisenberg type we have the very strong condition that j(2)? =
121" 1d for every Z € 3. In particular every eigenvalue of j(Z) is £i|Z|. A space N
s called Ilml'n:_u:‘ like if the eigenvalues of j(Z) depend only on |Z|. The Heisenberg
like spaces interesting geometric properties. See for example (GM2] for further
and other refe in the li

6.2 Geometry of a simply connected 2-step nilpo-
tent Lie group N

We (llustrate how one may study the geometry of N by computations in the Lie al-
gebea M with the metric <,> that determines the left invariant metric on N.

6.2a The maps j(3)

Following Kaplan [K1,2] we decompose N into an orthogonal direct sum N =
V& 3, where 3 denotes the center of % and V = 3*. For each Z € 3 we define a
skew symmetric linear transformation j(Z) : V = V by j(Z2)X = (adX)*(Z), where
(adX)* denotes the transpose of ad X : M — 3 determined by <, >.

Equivalently, 5(Z) : ¥V = V is the unique linear map such that < j(Z2)X,Y >=
<[X.¥],Z>forall X,Y € Vand Z € 3. It is evident that j : 3 = so(V) is a linear
map.

Much of the geometry of N can be described by the maps j(Z). See [K1,2] and
|E] for further details. We present one example, which illustrates some of the chal-
lenge in studying the geometry of Lie groups with a left invariant metric and 2-step
nilpotest groups with a left invariant metric in particular.

6.2b Ricci tensor

I M s any Riemannian manifold, then the Ricci tensor is a symmetric, bilinear
form on each tangent space of M defined by the formula Ric(v,w) = trace(Ryw),
where (R, )(2) = R(z,v)w and R denotes the curvature tensor of M.

Let H be a connected Lie group with a left invariant metric <, > arising from
A imser product <, > on the Lie algebra $. Then the Ricci tensor Ric , like the
Curvature tensor R, may be defined by its values on left invariant vector fields of H,
OF equivalently, by its values in ) = T, H. Hence we may regard the Ricci tensor as
A symmetric, bilinear map Ric: H x H = R given by the formula above.

5 s 2-step nilpotent, then we can be more specific. See Proposition 2.5 of [E1]
for & proof of the next result.

Proposition Let N be a simply connected, 2-step nilpotent Lie group with a left
\ivasiat metric <, >, and let M denote the Lie algebra of N. Write M = V@ 3,

—
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where 3 denotes the center of M and V = 3* denotes the orthogonal complement of
3. Then
1) Ric(X,Z) =0 for all X € V and all Z € 3.
2) For X,Y € V Ric(X,Y) =< T(X),Y >, whereT:V = Vis the symmetric
P

linear transformation given by 7' = %Zj(z. )? , where {Z,, ..., Z,} is any orthonormal

basis of 3. In particular T' is negativ‘e tlieﬁnite on V.

3) For Z,Z* €3  Ric(Z,2") = —}trace{j(Z) 0 j(Z*)}. In particular

Ric(Z,Z) > 0 for all Z € 3 with equality & j(Z) = 0.
Remark The statement above says that the Ricci tensor is negative definite on V,
and positive semidefinite on 3. We shall see in the next result that the Ricci tensor
is positive definite on 3 as well if we remove the Euclidean de Rham factor from N.
This means that the Ricci tensor of a left invariant metric on N can never by posi-
tive semidefinite or negative semidefinite. Comparison theorem techniques (cf. [C'E]),
which have played a central role in studying Riemannian manifolds with sectional or
Ricci curvatures of a fixed sign, cannot be used to study the geometry of 2-step nilpo-
tent Lie groups N with a left invariant metric. The geometry of such groups is an
interesting mixture of phenomena that occur in spaces of positive, negative and zero
sectional curvature.

6.2c Euclidean de Rham factor
The next result is contained in Proposition 2.7 of [E1]

Proposition Let N be a simply connected, 2-step nilpotent Lie group with a left in-
variant metric <, >, and let 9 denote the Lie algebraof N. Let £ = {Z € 3:j(2) =0
in V} and let M* denote the orthogonal complement of € in M. Let N* = exp(N*)
and E = exp(£), where exp : M — N is the Lie group exponential map. Then N* and
E are totally geodesic submanifolds of N, N is isometric to the Riemannian product
N* x E and E is isometric to the Euclidean de Rham factor of N.

6.2d Isometry group of N
Let H be a simply connected Lie group with a left invariant metric <,>, and let
I{H) denote the isometry group of {H,<,>}. If ¢ is any isometry of H, then set
= le) and ¥ = Ly-1 o p. Then clearly v € K = I(H). = {p € I(H) : p(e) = €}
and I(H) = H - K | where we identify H with the left translation subgroup H' =
{Ln:heH)CIH).

If H = N, asimply connected Lie group (not necessarily 2-step), then E. Wilson
proved in [Wi] that & = Aut(N) N I(N); that is, every isometry of N that fixes the
identity of N is an automorphism of the Lie group N. It follows immediately in this
case that N is a normal subgroup of I(N) ;

We obtain
Proposition A (Wi] Let N be a simply connected nilpotent Lie group with a left
invariant metric <, >, and let K = Aut(N)nJ(N). Then I(Ny=K-N=N-K and
N = {Ly:n € N} is a normal subgroup of N
Remark J. Lauret in (La 1, 3, 5] has computed

the group K in some important special
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cases. including those in which the Lie algebra M is either of Heisenberg type or can be
s R" @@, where ® C so(n,IR) is the Lie algebra of a compact subgroup G
ol 50(n, ) and N = R" ®® has the bracket structure defined in example 4 of (6.1c).

Left invariant metrics with maximal symmetry
Proposition B Let N be a simply connected nilpotent Lie group , and let K, be a
maximal compact subgroup of Aut(N). Then

1) There exists a left invariant metric <,>, on N such that K, = Aut(N) N
I(N, <, )

2) If <, > is any left invariant metric on N, then dim I(N, <, >) < dim I(N, <, >,).
If equality holds, then K = Aut(N)NI(N,<,>) and pK,o~" have the same identity
component for some ¢ € Aut(N).
Proof The proposition in (4.1) shows that there exists a left invariant metric <, >,
such that K, = Aut(N) N I(N,<,>,). Now let <,> be any left invariant metric
on N and set K = Aut(N)N I(N,<,>). By the discussion in (4.1)K is a compact
subgroup of Aut(N). Let K,* be a maximal compact subgroup of Aut(/N) such that
KC K. Then K," = pK,p~" for some @ € Aut(N) ([I], [Mal 2]). By Proposition
A we bave dim /(N, <,>) = dim K +dim N < dim K,* +dim N = dim K, +dim N =
dim I(N, <, >,). Moreover, it is clear that if dim I(N, <, >) = dim I(N, <,>,), then
K and K" = oK, must have the same identity component. [ ]

6.3 Nonsingular 2-step nilpotent Lie algebras

Lt % be & 2-step nilpotent Lie algebra. We say that M is nonsingular if adX : 91 = 3
I8 surjective for all X € M~ 3. It is an easy exercise to show :
Proposition A Let 1 be a 2-step nilpotent Lie algebra. Then the following properties
are equivalent :

1)M is nonsingular

2] For every inner product <, > on N and every nonzero element Z of 3 the linear
map j(Z) is nonsingular.

) For some inner product <, > on N and every nonzero element Z of 3 the linear
map j(Z) is nonsingular.

Coadjoint action description

We can also define the nonsingularity of M in terms of the coadjoint action of 9
08 8 dual space M*. Recall from example 2 of (1.4) that for every X € O we obtain
A trassformation ad® X : M* = N* given by ad* X (w)(Y) = —w([X,Y]) forall Y € N.
For every w € M define 9, = {X € M:ad" X (w) = 0}.

We list the following useful facts whose proofs are straightforward.

AR, D3 forallwe N,

BN =Nesw=00n (NN

We now relate the coadjoint action to the behavior of the maps j(3) defined by
A8 inser product on M. Fix an inner product <,> on N and let T : M* = N be the

S——
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isomorphism such that < T'(w),€ >= w(€) for all w € N* and all £ € N. Forw € N*
let Z,, denote the 3-component of T(w). From the definitions one then obtains

c) Let X € ¥ and w € M* be given. Then X € M, & X € kerj(Z.).

As an immediate corollary of ¢) we obtain

d) Let w € M*. Then N, = 3 < j(Z.,) is nonsingular on V.

One also has the following result whose proof is left as an exercise.
Proposition B Let M be a 2-step nilpotent Lie algebra. Then the following properties
are equivalent :

1) adX : M — 3 is surjective if X € M- 3.

2) N, = 3 if wis not identically zero on 3.

6.4 Almost nonsingular 2-step nilpotent Lie alge-
bras

Let M be a 2-step nilpotent Lie algebra. We say that M is almost nonsingular if
N, = 3 for some nonzero w € N*. The next result is analogous to the Proposition in
(6.3), and as before, we leave the proof as an exercise.
Proposition Let M be a 2-step nilpotent Lie algebra. Then the following properties
are equivalent :

1) M is almost nonsingular.

2) For every inner product <,> on M there exists a nonzero element Z of 3 such
that j(Z) is nonsingular on V = 3+,

3) For some inner product <, > on M there exists a nonzero element Z of 3 such
that j(Z) is nonsingular on V = 3*.

Corollary Let M be an almost nonsingular 2-step nilpotent Lie algebra. Then

1) There exists a dense open subset O of 3 such that j(Z) is nonsingular for all Z
in O.

2) There exists a dense open subset O* of M* such that M, = 3 for all in O*.
Proof 1) One can show that {Z € 3 : det j(Z) = 0} is the set of common zeros of
a finite set of polynomial equations in any set of linear coordinate variables for M.
It follows from d) in (6.3) that if M is almost nonsingular, then {Z € 3 : j(Z) is
invertible} is a dense open subset O of 3.

2) This follows from 1) and d) in (6.3).

6.5 Rank of a 2-step nilpotent Lie algebra

To define the rank of a 2-step nilpotent Lie algebra we use the notation and discussion
of the coadjoint action in (6.3).
Definition Let M be a 2-step nilpotent Lie algebra. We define

rank(M) = 1 + min{dim(N_./3) : w € N*}
The discussion above shows that if M is lar or almost ingular, then
rank(M) = 1.
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For an example of rank 2 consider an irreducible rep ion of the compact 3-
dimensional Lie group H = SU(2) on an odd dimensional real vector space V. (There
i one of these V for every odd integer.) Identify V' with R" and choose an inner
product <, > invariant under SU(2); that is, H = SU(2) is a subgroup of SO(n, R).
Then 5 i & subalgebra of so(n,R), and M = R" & 5) becomes a 2-step nilpotent Lie
algebes with an inner product <, > by the process described above in example § of
(6.1¢). One can show that §) is the center of M, and j(Z) has a 1-dimensional kernel
for each Z in 3 since the dimension of V = IR"™ is odd. Hence rank(9) = 2 for all of
these examples.

Not much attention has been paid to 2-step nilpotent Lie algebras of rank > 2.

6.6 The Hamiltonian foliation and the symplectic
leaves in M

Now let 7 be a 2-step nilpotent Lie algebra with an inner product <, >, and let
9 be equipped with the Poisson structure defined by <,> in example 4 of (3.7).
By the discussion of that example the Hamiltonian foliation H in M is given by
HiA) = {(adg)'(A) : £ € M}, and the symplectic leaves in M have the form L(A) =
(Ml 4)  n € N}, where (adf)! and Ad(n)" denote the metric transpose of ad
£ M Mand Ad(n) : M — N respectively.

Proposition A Let A= X + Z € M, where X € V = 3* and Z € 3. Then
HHA) = J(2)(V) = (j(Z)(Y) : ¥ € V), where j(Z) : V = V is the skew
symmetsic map defined in (6.2a).
NLUA) = A+ H(A) = {A+(2)(Y): Y € V).
Remark It follows from this proposition that if A € V, then L(A) = {A}. Moreover,
1£)(2) & ponzero whenever Z is nonzero, then V = {4 € M : L(A) = {A}}. One
may show that j(Z) is nonzero whenever Z is nonzero & M cannot be written as
A nontrivial Lie algebra direct sum M, @ 2, where 2 is abelian. In practice one
can l"lﬂ reduce to this case that M has no abelian factor 91, Hence, in this case
Propesition A gives a nice characterization of V = 3* in terms of the Poisson structure
{,} o8 M defined by <, >.
Proof of 1) This is an immediate consequence of the next result
Lemma 1) ad(2)" = 0 for all Ze€3

D XYY =0forall X,Y € V.

3 sd(XY'Z = j(Z)X for all X €V and all Z € 3.
Proof of the lemma

;; r,.lt-a.'"d £,§' € Mare given, then < (ad2)!(€), &' >=< ¢,[Z,€] >=0.
inen . é;e Vand § € M be given. Then < (adX)'Y,¢ >=< Y,[X,£] >= 0

NlmXey ze 3 and € € M be given. Write £ = X' + 2, where X' € V
-(n're 3. Then < (adX)!Z,€ >=< Z,(X,¢] >=< 2, [X,X'] >=< j(2)X, X' >=
hl':bl.( > by the definition of j(Z). n

of2) Let n € N be given. Then n = exp(£) for a unique element £ € N since

S



484 Patrick Eberlein

exp : M — N is a diffeomorphism by (6.1b). It follows that Ad(n) = Ad(exp(£)) =
€40 = Jd 4 ad€ since (adf)* = 0 for all k > 2. Hence L(A) = {Ad(n)'(A) : n €
N} = A+ {(ad€)'(A) : € € M} = A+ H(A). "

Casimir functions in the almost nousingular case

Proposition B Let M be an almost nonsingular 2-step nilpotent Lie algebra. Let
<, > be an inner product on N, and let {, } be the Poisson structure on N determined
by <,>. Let f M — IR be a > Casimir function, and let g : 3 - IR be the
restriction of f to 3 C M. Then f= goms3, where 713 : M — 3 denotes orthogonal
projection.

Remark This result is the converse (in the almost nonsingular 2-step nilpotent case)
of a result proved for an arbitrary metric Lie algebra {$),<,>}in the discussion of
example 1 of (3.9).

Proof of the proposition Let A = X + Z € M be given. By the corollary in (6.4)
there exists a sequence {Zn} C 3 such that Z, — Z as n = oo and j(Z,): V = V
is nonsingular for every n. By Proposition A the symplectic leaf through Z,, is given
by L(Z,) = Zn + §(Zn)V = Zn + V for every n. If Ay = X + Z,, then A, = A
as n — oo and A, € L(Z,) for every n. Since the Casimir function f : 1 =+ R
is constant on symplectic leaves it follows that f(4,) = f(Z,) for every n. Hence
f(4) = "lln;of( n) = lim £(24) = £(2) = 9(2) = (g o m3)(A). L]

6.7 Lattices in simply connected 2-step nilpotent
Lie groups

6.7a Definition A discrete subgroup I of a simply connected nilpotent Lie group
N is said to be a lattice if the quotient manifold I' N is compact.

We require that I' act by left translations on N so that ' will be a group of
isometries of N with respect to any left invariant inner product. At tlns point we
require only that N be nilp not ily 2-step nil| The q space
I\A will be called a compact nilmanifold.

It is always desirable to work with compact manifolds if possible, but in fact lat-
tices in a simply connected nilpotent Lie group usually do not exist. We will be more
precise on this point shortly in the case of 2-step nilpotent Lie groups.

6.7b The criterion of Mal’cev

Mal’cev in [Mal 1] found a necessary and sufficient condition for a simply connected
nilpotent Lie group N to admit a lattice I'.
Proposition Let N be a simply connected nilpotent Lie group with Lie algebra M.
Then N admits a lattice [' ¢ there exists a basis B = {§,&,...,&,} for M with

rational structure constants; that is, [, & = Z C),& , where the constants (C,‘J)

are rational numbers.
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We say that Ng = Q - span('B) defines a rational structure on 0; that is, Ng is
.uwmcmd dimg Ng = dimg N.

Mal'cev also proved a correspondence between rational structures on N and com-
mensurabilty classes of lattices on N. Two lattices I' and I on N are said to be

# I'nI* is a finite index subgroup of both ' and I'*.
Let N be a simply connected nilpotent Lie group with Lie algebra M.

1) BT i a lattice in N, then Ng = @ — span(log ) is a rational structure on N.

2) 1 T and I'* are lattices in N, then @ — span(logT) = Q — span(logT™*) & T
and [* are commensurable.

3) 1 B s any basis of M with rational structure constants and £ = Z — span(‘B),
then the subgroup in N generated by exp(L) is a lattice T'.

§.7¢ The space My(p,q) of 2-step nilpotent Lie algebras

Comsder the collection of all 2-step nilp Lie algebras M of di jionn > 3
with & center of dimension p > 1. If p = 1, then M is isomorphic to one of the
Hewenberg Lie algebras as we observed above in Example 2 of (6.1c). The case p=2
s abso special and for a fixed integer n > 4 a generic 2-step nilpotent Lie algebra N
of dimension n with 2-dimensional center is unique up to isomorphism.

We consider the case where p > 3.

Definition M, (p,q) = {2-step nilpotent Lie algebras N such that dimN = p + ¢, N
has center 3 of dimension p and (M, M] = 3}.

For convenience we define D = }q(g - 1). The condition [R,9M] = 3 implies
that p < D (details omitted) and hence g > 3 since p > 3. It is therefore no loss of
generality to consider the structure of the space My(p, q), where 3 < p < D and g > 3.
One now has the following structure result whose proof may be found in [E4]. Recall
that G(p. p+ q) denotes the pact connected G ifold of p-di ional
subspaces of R”*Y.

Proposition Let p,g be integers with 3 < gand3 < p <D = %q(q —1). Then
yip.q) = & smooth manifold of dimension pg + pD that fibers over G(p,p + q).
Moreower,

1) The fbration Z : My(p,q) = G(p,p + q) is the map that sends an element N of
Ty(p.q) 10 its center 3 in G(p,p +q).

21 The fiber F is the set of elements C = (C*,C?,...,C?) € so(g,IR)? such that

8, ker(CY) = {0) and

B (€77, ., CP) are linearly independent in so(g, R).

The fiber F is a dense open subset of so(g, R)”.

Remark Once we are given the fiber bundle structure of My(p, ) the dimension of
T35 q) follows immediately. Note that 2b) is only possible sincep < D = }q(g-1) =
dim so(g. R)

The goup G = GL(p+q,IR) acts on My(p, ) in a natural way, and the orbits of G
Aee the womorphism classes of elements in My (p, g). Hence the space of isomorphism
Chasses & My(p.q) may be identified with the orbit space My(p,¢)/G and given the
Quotient topology.

Problem : What can one say about the topology of M(p, q)/G? In particular, what

—
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can one say about the fundamental group of My(p, ¢)/G?

6.7d The scarcity of rational Lie algebras in M(p, q)

Call a 2-step nilpotent Lie algebra M rational if it admits a basis B with rational
structure constants. Since there are only countably many choices of rational structure
constants {C.‘;) it follows that the rational elements of My (p, ¢) consist of the union
of countably many orbits of G = GL(p + ¢,IR). If the dimension of every G-orbit in
My (p, g) is smaller than the dimension of 9, (p, ¢), then we conclude that the rational
elements of Na(p,q) form a set of measure zero in Ny(p, q).

For a given integer p > 3 there exists a positive integer ¢, = go(p) such that if
q > go, then the dimension of My (p, ) is greater than the dimension of any G-orbit
in My(p,q). We outline the proof and refer the reader to [E4] for details.

One may show that the dimension of a G-orbit in My(p, ¢) is at most p? +pg+¢*~1.
The dimension of M (p, q) is pq + pD. The condition p? + pq + ¢* = 1 < pq + pD is
equivalent to the condition (*) ¢*(1 — 3p) + q(3p) + (p* = 1) < 0. For fixed p > 3
the condition (*) is satisfied for sufficiently large ¢ since 1 — {p < —%. Whether
one obtains the smallest value of g, from the smallest value of g, that satisfies (*) is
unknown to me.

6.7e Spaces N that admit lattices

By the Mal'cev criterion we may identify the simply connected 2-step nilpotent Lie
groups that admit lattices with the elements of M, (p, ¢) that admit rational structures.
By the argument above, most elements of My(p, g) do not admit rational structures,
but there are definitely large classes of elements of My(p, ¢) that do. These elements
. which form a null set of My(p,q) in general, are the really interesting ones. It is an
interesting problem to find criteria guaranteeing that an element M of My(p, g) admit
a rational structure. Once we have found one rational structure on an element M of
Ny (p,q) we can then try to describe the space of all rational structures on N.

For the moment we remark only that M admits a rational structure if it arises
from a Lie triple system W in so(n,IR) as described in Example 5 of (6.1¢). See (E3]
for details. As noted earlier the Lie triple system examples include all examples of
Heisenberg type and all examples arising from finite di ional real rep i
of compact Lie groups. See also (CD).

Problem What can you say about the space of rational structures on a 2-step nilpo-
tent Lie algebra that arises from a Lie triple system W in so(n, R)?

6.7f Riemannian submersion structure of compact 2-step nil-
manifolds with a left invariant metric

Let N be a 2-step nilpotent Lie group that admits a lattice I'. If we let T act by
left translations on N, then I' acts by isometries relative to any left invariant metric
<.> on N. The left invariant metric <,> on N descends to a Riemannian metric
on I\N and the projection p: N = I'\NV becomes a Riemannian covering map. By
abuse of language we refer to the metric on I'\N as left invariant.

The isometry group I(I'\NV) does not act transitively on T\ N. In fact the identity
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1,(\N) is a torus of dimension p = dim 3, where 3 is the center of M. The

Lebits of LIT\N) are flat, totally geodesic p-tori that are the fibers of a Riemannian
subaersion onto & flat torus, More precisely we have the following result which is
Propesition 5.5 of [E1) : ! v
Proposition Let T be a lattice in a simply connected, 2-step nilpotent Lie group
with & left lnvariant metric. Let 0 be the Lie algebra of N, and write M =V & 3
w in (62a) Let my : M = V denote the orthogonal projection onto V, and let
Ty = V/my(logT). Then

1) Ty is a flat torus of dimension g, where ¢ = dim V.

2) There exists & Riemannian submersion 7 : P\N — T whose fibers are the
oebies of 1,(I\N), all of which are isometric to a single flat torus T.

The result above says that T\N is a principal torus bundle over T whose fibers
aee totally geodesic and isometric to T,

6.8 Geodesic flow in a compact 2-step nilmanifold
with a left invariant metric

6.8a Formula for the geodesic flow in TV and M

Let N be a simply connected 2-step nilpotent Lie group with a left invariant metric
< > and et M be the Lie algebra of N. We identify TN with N x M as in (4.2b)
uader the diffcomorphism (n, A) = dL,(A) for n € N and A € M = T.N. We write
M= Vé3asin (6.2a).

The grodesic flow {®') in TN has a simple description. Note that the flow maps
@ commute with the maps {dL, : n € N}. From Proposition 3.2 of [E1] we obtain
the following
Proposition Let £ = (n,A) € TN. Let y¢(t) denote the geodesic of N with initial
velocity £ and write A = X + Z, where X € V and Z € 3. Then &!(n,4) =
(%t} "X 4+ Z) forall t€ R.

As aa smmediate consequence of the result above and Proposition A of (5.2) we
ubtain & description of the geodesic flow maps &* in 0.

Corollary 1 Let &' be the flow maps of the geodesic vector field & in 9. Then

O X+2Z)=e DX 4 Zforall X€V,ZE3andt€ R

;\'- e the result above to describe the zero locus of the geodesic vector field &
n
Corollary 2 Let @ be the geodesic vector field in 0. Then &(€) = 0if € € VN 3. If
T s somsingular, then VU 3 = {€ € M: B(€) = 0).

Proof Thas s an immediate consequence of Corollary 1 and Proposition A of (6.3)
sinee 800 = 0¢s @'(€) = £ for all t € R. 4

6.8b First integrals for the geodesic flow

The canonical 3-valued first integral
Defise amap o : TN 5 3by p(n, X+ Z) = Zforne N.X € Vand Z € 3.

h-
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It is clear from the previous proposition that ¢ is a 3-valued first in.u!K"‘] for the
geodesic flow {®!}) in TN. This first integral has a simple relationship to the first
integrals produced by the momentum map J : TN — M*.

First integrals in TN from the momentum map J: TN = N*
We recall some results of (5.3) in this special case where $ = M, a 2-step nilpotent
Lie algebra. By the discussion in (3.11¢) the momentum map J : TN — 0 is
equivalent to the map J : M — C=(TN) given by J(A) = O(\(A)), where @ is
the canonical 1-form on TN,\(A4) € X(TN) is the vector field on TN whose flow
transformations are {A.a}, and A, = dL, for all n € N. From (5.3a) we have the
formula
J(A)(n, B) =< B, Ad(n~*)A > for all (n,B) € N x M =TN
The function J(A) is N-invariant on TN ¢ Ad(n)A = Aforalln€ N & A€ 3. If
A € 3, then we obtain immediately :
Proposition Let  : TN = 3 be the canonical 3-valued first integral for the geodesic
flow {®!} in TN. Then < ¢(€), 4 >= J(A)(£) for all A € 3 and all € € TN.

First integrals for the geodesic flow in M.

We observed in (5.3b) that the first integrals £ : 9 — IR for the geodesic flow &'
in N are in one-one correspondence with the N - invariant first integrals f: TN = R
for the geodesic flow @ in TN. The correspondence is given by the relation f(n, A) =
f(A) for all (n,A) € N x M=TN.

We discuss some polynomial first integrals for the geodesic flow {®¢} in 9 that
are particular to the 2-step nilpotent case. By the discussion in (5.3b) a C* function
f:M = IR is a first integral for the geodesic flow {&!} in M & (f, £} = 0, where
E M - IR is the energy function given by E(A) = % < A, A > forall A €N We
also observed in (5.3b) that if f:M 3 Risa polynomial function, then we may
reduce to the case that f is homogeneous of a given degree.

Linear first integrals
Proposition Let M be a 2-step nilpotent Lie algebra with an inner product <, >,
and let # : % — M* be the canonical isomorphism given by A#(B) =< A, B > for
A BeN Let f =A% : 9 - R. Then

1) {f, B} =0¢ A€ 3, the center of M.

2) If {f, B} = 0, then f is a Casimir function
Proof of 1) By Proposition C of (5.35) we know that {f, £} = 0 ¢s< a,[A,a] >=0
for all a € M. If A € 3, then clearly {f, E) = 0. Conversely, suppose that {f, £} =0
andwrite A= X+Zfor X € Vand Z€ 3. Leta = X'+2Z' bean arbitrary element of
N, where X' € Vand 2' € 3. Then 0 =< a,[A,a] >=< X'+2',(X + 2, X' + 2] >=
< Z'[X,X') >, If we set Z' = [X,.X'], then it follows that [X, X'] = 0 for all X' € V.
Hence X € VN3 = (0), and we conclude that A = Z € 3. This proves 1).
Proof of 2) This is an immediate consequence of 1) and the discussion in example 1
of (3.9) since f depends only on the center 3
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Quadratic polynomials in the almost nonsingular case

We consider next the homogeneous polynomials of degree 2. Any such polynomial
fusetion J - M = R can be expressed as f(£) =< S(£),€ >, where S : M —+ N
1 & Bsear map that is symmetric relative to <,>. By the discussion in (5.3b) the
polysomsial is a first integral for the geodesic flow & in Me

® < S§(A),VaA >=0for all A € N.

Let A € M and write A = X + Z, where X € V and Z € 3. From (2.2) of [E1] it
follows that V44 = —j(2)X.

In the case that M is almost nonsingular we obtain a nice characterization of the

symaetric linear maps S : M — N that satisfy (*) above.
Propesition Let 7 be an almost nonsingular 2-step nilpotent Lie algebra. Let S :
M -+ M be a symmetric Jinear transformation and define f : M = R by f(§) =
« S10.£ > for all € € M. Then £ is a first integral for the geodesic flow & in N ¢

1) S(V) € Vand 53) € 3.

2) § commutes with j(Z) for all Z € 3.

Remarks

1) 1t is easy to see that 1) and 2) are equivalent to 1) and 2)’ : [S(A), B] = (4, 5(B)]
forsll A, BEMN

20 Let S M = M be a symmetric linear map such that S(V) C V and S(3) € 3.
Witte § = 5,45, , where S; = Son Vand S, =0o0n 3;S; =0onVand S, = Son 3,
[ M- Risgiven by f(€) =< S(€),& >, then f = fy + fo, where f; =< S1(€),€ >
and fy =< 5,(£).€ >. By the discussion in example 1 of (3.9) f, is a Casimir function,
and bemce [ b8 a first integral for {@'} & fi is a first integral for {&'}.

From the proposition above and the discussion of the previous paragraph we now
conchade 1 9 is an almost nonsingular 2-step nilpotent Lie algebra, then the poly-
nomial fiest integrals for @ that are homogeneous of degree 2 are in one-one corre-
spundence, modulo Casimir functions, to symmetric linear maps S : V — V such that
§ commutes with j(Z) for all Z € 3.

Note that condition 2) in the proposition implies that j(3) must leave invariant

each of the cigenspaces of S restricted to V.
Proof of the Proposition Let S : M — N be a symmetric linear transformation
and define M 5 R by f(€) =< S(€),& > for all € € N. By the discussion above we
it chasacterize all such maps S with the property that 0 =< S(X+2),j(Z)(X) >=
<SX)2)X) > + < 5(2),j(Z)(X) > forall X €V and Z € 3.

Asssme first that this equation holds for some symmetric linear map S. The first
fers om the right hand side is linear in Z while the second term is quadratic in Z.
Hence both terms must vanish identically and we have

W 0=<5(X),j(Z2)(X)>forall X € Vand Z € 3.

)0 =< 5(2),j(Z)(X) > forall X € Vand Z € 3.

S M Vby Sy = my oS, where 7y denotes orthogonal projection onto V.

The sestriction of Sy to V is symmetric on V since S is symmetric on 9. We may

Bow seplace S by Sy in the statements of 1) and 2) above since j(Z)X € V for all
YeVandZe3,

From a) we conclude that < Syj(Z)X,X >=0for all X € V and Z € 3 since

S
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Sy 1V = V is symmetric. From a) we also conclude that < j(Z)Sy(X), X >=0 for
all X € Vand Z € 3 since j(Z) : V = V is skew symmetric. Hence we obtain

*) 0 =< {Svj(Z) - j(Z)Sp}(X),X > forall X € Vand ZEJ
However, Syj(Z) — j(Z)Sy is symmetric on V for all Z € 3 since j(Z) is skew
symmetric and Sy is symmetric. The equation (*) implies that every eigenvalue of
SvilZ) = j(Z)Sy is zero for all Z € &. We conclude

%) Sy commutes with j(Z) for all Z € 3

So far we have not used the hypothesis that 9 is almost nonsingular, but we now
use this hypothesis to draw conclusions from b) above, where S is replaced by Sy.
If M is almost nonsingular, then by the corollary in (6.4) there exists a dense open
subset O of 3 such that j(Z) is nonsingular for all Z in O. Condition b) above now
implies that Sy(Z) = 0 for all Z € O. Since O is dense in 3 and S is continuous it
follows that Sy = 0 on 3 or equivalently that S(3) C 3. Since S is symmetric and
V = 34 it follows that S(V) C V. Hence S = Sy on V and (*) says that S commutes
with j(Z) for all Z.

We have verified that if f(€) =< S(£),€ > is a first integral for the geodesic
flow on M, then S must satisfy the two conditions of the proposition. Conversely,
if these two conditions are satisfied, then it is immediately clear that b) holds. It
remains only to verify that a) holds as well. Given X € V and Z € 3 we com-
pute < S(X),j(Z2)X >=< X,S5j(Z)X > since S is symmetric. On the other hand
< S(X),j(2)X >= - < j(2)S(X), X >= - < X,S5j(Z)X > since j(Z) is skew sym-
metric and S commutes with j(Z). It follows that < S(X), j(Z)X >=0forall X € V
and Z € 3, which proves that a) holds and completes the proof of the proposition. =

Polynomial first integrals of Butler

L. Butler in [Bu 3] exhibited the following polynomial first integrals for the geodesic
flow in N.
Proposition (L. Butler) For each integer i with 1 <i < %dimv define fi : M= R
by fi(X 4 Z) =< X,j(Z2)*X > for all X € V and Z € 3. Then each f; is a first
integral for the geodesic flow in M.

Note that each f; is a polynomial function of degree 2i + 2 in the variables of
any linear coordinate system for M. To see why each f, is a first integral we first
observe that j(Z) commutes with ¢'#) for all ¢ and ¢Y(®) is an orthogonal lin-
car transformation of V for all ¢ since j(Z) is skew symmetric. Recall from (6.8a)
that the geodesic flow {®‘) on M is given by (X + Z) = e~ Y@ X 4 Z. Hence
fio®)(X + Z) =< "W X, j(Z)e-YA X S=c ~UI2) Y o~(2)j(Z)2X S>=
< X,j(2)¥X >= [,(:\' +Z)forall X € V,Z € 3 and t € R. It follows that cach f;
i a first integral for & in M L]
Remark The first integrals will in general be functionally independent for a generic
2-step nilpotent Lie algebra M. In the case of a 2-step nilpotent Lie nl,srlxm of Heisen-
berg type we obtain the simple expression f(X + Z) = (-1)*|X? 12]" forall X € V
and Z€ 3
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Other first integrals ,

Foe simplicity we consider arbitrary continuous functions f : M — IR that depend
Jaly s the V-component of each vector in M =V @ 3; that is, f(X + Z) = §(X) for
some contiouous function g : V = IR. (This is not unreasonable since the functions
/ % -+ R that depend only on the 3-components of each vector are Casimir functions
by the discussion in example 1 of (3.9)). Evidently such a function f is a first integral
of the grodesic flow in 0N ¢ § is constant on all curves t — e()X for all X € V
sod ol Z € 3 Let 9 denote the Lie subalgebra of so(V) that is generated by
43 = (J12) - Z € 3), and let H denote the connected Lie subgroup of SO(v)
whewe Lie algebra is . If § is constant on all curves t — €(?)X, then § must
be comstant on all orbits in V of H, the closure in SO(V) of H. To see this let
i = [y € SO(V) : glpX) = g(X) for all X € V}. Then H' is a closed subgroup of
(V) whose Lie algebra contains j(3)}.

Comversely, if §: V = IR is & continuous function that is constant on orbits of A
{8 V. then clearly § is constant on all curves t — e ?) X for X € Vand Z € 3.

Fue fiest integrals £ : M = IR of this type we have reduced the problem, in a
sense. 10 the problem of computing %, A and the orbits of H in V once we are given
1030 Bor & generic 2-step nilpotent Lie algebra M = V@& 3, the subalgebra § of so(V)
generated by 5(3) is so(V) itself. In this case H = SO(V), which acts transitively
o6 Wl spberes of V. Hence the functions g : V = IR that are constant on orbits of
H = SO(V) are the functions of the form g(X) = f(|X|), where f : (0,00) = R is
any comtinuous function.

6.8¢ Density of closed geodesics in I'\V, a necessary condition

Let I be a lattice in NV, and let 7 : N = I'\NV be the covering projection. We saw
i (540 that if £ € TN is a vector such that 7, (€) has period w > 0 relative to the
grodesc Bow (@') in T(I'\N), then G(€) has period w > 0 relative to the geodesic
fow (&) i M We now take a closer look at what it means for a vector A € 9 to
be periodic relative to (') if 9 is a 2-step nilpotent Lie algebra.

Hegular vectors in 2-step nilpotent metric Lie algebras

L#t % be & 2step nilpotent Lie algebra with an inner product <, >, and decompose
T into am orthogonal direct sum M =V & 3 as in (6.2a), where 3 denotes the center
of . For each clement Z of 3 the transformation 3(Z)* is symmetric and negative
semudefaite since j(Z) is skew symmetric. We may decompose V into an orthogonal
evet v V= W, @ W, @ ... & Wiy, where W, is the kernel of j(Z),j(Z)? = —62Id
on W1 <5< N and (~67,..,~6%) are the distinct nonzero eigenvalues of j(Z)?.
Let N, demote the maximum value of N as Z ranges over all nonzero vectors of 3,
ket 3, = (Z€3: j(Z)* has N, nonzero eigenvalues). One can show that 3, is a
dimse ogem subset of 3, See for example (GM 2, Proposition 1.19).

Definition of Regular vectors
'hlndhnydunenlof‘n and write A = X + Z, where X € V and Z € 3.
weetor A s said to be regular if Z belongs to 3, and X has a nonzero compo-

—_—
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nent in each subspace Wi, 1 € i € N,, relative to the decomposition above of V' into
eigenspaces of j(Z)?. Clearly the set of regular vectors of M is a dense open subset
of M since 3, is a dense open subset of 3.

Resonant vectors of 3

A nonzero vector Z of 3 is said to be resonant if the 1-parameter group {e/(#)} in
SO(V) passes through the identity of SO(V) at some positive time w. It is not difficult
1o show that Z is resonant ¢ the ratio of any two nonzero eigenvalues of j(Z) is a
rational number. Note that the ratio of any two nonzero eigenvalues of j(Z) must
be a real number since the eigenvalues of a skew symmetric linear map are purely
imaginary.

1If Z is a resonant vector of 3, then clearly ¢Z is also a resonant vector of 3.

Regular periodic vectors of {®} in M

Proposition Let M be a 2-step nilpotent Lie algebra with an inner product <, >. Let
A = X + Z be an element of M that is regular and periodic relative to the geodesic
flow {®'} in 3. Then Z is a resonant vector in 3.

Proof Let V = W, @ W, @ ... @ Wy, be the orthogonal direct sum decomposition
of V into eigenspaces of j(Z)* that was described above. By hypothesis X has a
nonzero component X; in each eigenspace W, for 1 < i < N,. Since j(Z)* = ~6}1d
on Wy, 1 <i < N,, it is routine to show

(*)e"'%) = cos(t;)Id + (1/8,)sin(16,)j(Z) on each W,.
By hypothesis ®“(A) = A for some positive number w, and by the corollary in (6.8a)
this means that ¢*/(%) X = X. Since j(Z) leaves invariant each subspace W, it follows
that /%) does also. Hence e=/#) X, = X, for 1 < i < N,. Each component X is
nonzero since A = X -+ Z is regular, and it follows from (*) that w; = 27N;, where
N, is an integer for 1 €4 < N,. It follows that 6, /6, is rational for 1 < 1,7 < N,
The numbers {0;/0;,1 < i,j < N,} are the ratios of the nonzero eigenvalues of j(Z),
and hence by the discussion above we conclude that Z is resonant. L

The next result was first proved in [Mas, Theorem 4] using the argument of the
proposition above. Although nonsingularity is part of the hypothesis in that result,
it 18 not needed in the proof.

Corollary Let N be a simply connected, 2-step nilpotent Lie group with Lic algebra
M and a left invariant metric <,>. Let I' be a lattice in N. If the periodic vectors
for the geodesic flow in T(C\N) are dense in T(I"\V), then the resonant vectors of 3
are dense in 3.

Proof If the periodic vectors for the geodesic flow {®') in T(I'\N) are dense in
T(T\N), then by Proposition C of (5.4) the periodic vectors for the geodesic flow
{®"} in M are dense in M. The set of regular vectors of N is dense and open in N,
and hence there is a dense sot of regular vectors in 9 that are periodic for {@¢}. Each
regular periodic vector is resonant by the proposition above, and the proof is now
complete. L]
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ples with a dense set of resonant vectors

1s wiew of the corollary above it is natural to look for examples of 2-step nilpotent
Lie algebras with inner products <, > such that the resonant vectors in 3 form a
e wubwet of 3. We will restrict our remarks to examples of the form 0t = R" @ W,
where IV i & subspace of so(n, IR), and M has the inner product and 2-step nilpotent
srsctuee defined in example 4 of (6.1¢c). We omit the proofs of the assertions below.

fecall from example 4 of (6.1¢c) that the center of M = R™ @ W is given by
JulUaW, where U= {X€R":Z(X)=0forall ZeW}.
Bxample 1 ([DeC)) Let dim W = k, where k > rankso(n, R) Then there exnsts
& desse open subset O of G(k, so(n,IR)), the Gr of k
subnpaces of so(n, R), such that if W € O, then the resonant vectors of 3 are dense

=3

The rank of a Lie algebra ) is the di ional of a imal abelian subspace of
f Rask so(n,R) = j wheren =2j or 2j + 1.

Example 2 Let W be the subalgebra of a d subgroup G of the

specsad orthogonal group SO(n, IR), and suppose that G has no fixed points in R" .
Then the resonant vectors are dense in 3 =W for M=R"a W.

YW = SU(2,R) and R" is irreducible relative to W, then 3 = W and every
sossero vector of 3 is resonant. If dim W > 2, then W = Su(2,R) is the only Lie
algeben of & compact subgroup of SO(n, R) in which all vectors of 3 are resonant.
Example 3 Let M be a 2-step nilpotent Lie algebra of Hexsenberg type. Then every
posanr vector of 3 is resonant. In particular j(Z)? = - |Z|* Id, so the ratio of any
two soseero eigenvalues of j(Z) is 1 or —1.

Heeall from example 6 of (6.1¢) that every Lie algebra M of Heisenberg type may

be wrtten . N = R" @ W, where W = j(R”) and j : Cf(p) & End(IR") is a
mpeesestation of the Clifford algebra.
Remark Recall that a 2-step nilpotent Lie algebra M with an inner product <, > is
s 10 be Hessenberg like if the eigenvalues of j(Z) depend only on |Z]. Tt follows that
wither all ponzero vectors of 3 are resonant or none of them are since ¢Z is resonant
7 & vesonant for any nonzero number c.

Lie algebras that are Heisenberg like are plentiful (cf. [GM 2]).

6.8d Density of closed geodesics in I'\ N, sufficient conditions
We st sufficent conditions in the order of historical appearance.

Results of Eberlein, Mast, Lee-Park and DeMeyer

Proposition A ([E1, Proposition 5.6]) Let N be a simply connected 2-step nilpotent

Lie growp with a left invariant metric such that the Lie algebra M is of Heisenberg

fype Then the closed geodesics are dense in T'\N for any lattice subgroup T of N.
We note that the necessary condition of a dense set of resonant vectors in 3 is

satisfied by example 3 above if M has Heisenberg type.

Propesition B ([Mas, Theorem 3]) Let N be a simply connected 2-step nilpotent

L growp with & Jeft invariant metric such that the Lie algebra 9N is nonsingular and

overy mossero vector in 3 is resonant. Then the closed geodesics are dense in ['\IV

—
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for any lattice subgroup I' of N, ; 3

Proposition C ([LP, Theorem 3.3]) Let N be a simply connected 2-step nilpotent Lie
group with a left invariant metric such that the Lie algebra 0 is almost nonsingular
and 3 contains a dense set of resonant vectors. Then the closed geodesics are dense
in T\N for any lattice subgroup I' of N.

L. DeMeyer was the first to show that the condition of almost nonsingularity is

not a necessary condition for the density of closed geodesics.
Proposition D ([DeM, Main Theorem]) Let IR" be an irreducible §%(2, IR) module,
where 7 is any odd integer > 5. Let M = R"@ Su(2,IR) be given the inner product
<, > and the 2-step nilpotent Lie algebra structure defined in example 4 of (6.1¢). If
{N. <, >} is the corresponding simply d, 2-step nily Lie group with left
invariant metric, then the closed geodesics are dense in I'\V for any lattice subgroup
Fof N.

The fact that n is an odd integer means that the skew symmetric map j(Z) :
IR"™ — IR" has a nontrivial kernel for every vector Z € SU(2,IR). For every odd
integer n > 3,IR" has the structure of an irreducible S%(2,IR) module (cf. [DeM]).
If n = 3 we may take IR = S%(2,IR) and the Lie algebra structure of SU(2,IR)
makes IR* an $2(2,IR) module. In this important special case the technique of proof
of [DeM] does not work , and it is still unknown if Proposition D holds here,

For M = R"® Su(2,IR) every vector in 3 = SU(2,IR) is resonant. If n is an
even integer, then it is easy to see that M = R"&  Su(2,IR) is a nonsingular 2-step
nilpotent Lie algebra. Hence in this case one may apply the result of [Mas] or [LP].
Problem The Lic algebras M = R"@ S%(2,R) of [DeM] all have rank 2 in the sense
of (6.5). Can one find criteria for a metric 2-step nilpotent Lie algebra {M, <, >} of
rank k > 2 such that if I' is any lattice in the corresponding simply 1, 2-step
nilpotent Lie group N with left invariant metric <, > |, then the closed geodesics in
\N are dense 7

6.8e Length spectrum and maximal length spectrum Isospec-
trality

A classical problem of geometry and analysis is 1o try to recover an operator on a
space X, up to a suitable notion of equivalence, from the spectrum of its eigenvalues.
For example, a self adjoint linear operator on a finite dimensional real inner product
space X is completely determined by its eigenvalues up to conjugation by an element of
the orthogonal group of X. If M is a Riemannian manifold and X is a suitable space of
functions or differential forms equipped with a natural inner product, then the Laplace
operator A on X is sell adjoint. In this context the problem has been historically
1o find conditions under which M is determined up to isometry by the cigenvalues
of A, There is an enormous literature on this subject, and we make no attempt to
summarize it here, If M is a compact nilmanifold I'\ N, then C. Gordon and E, Wilson
showed that the space of compact nilmanifolds with the same Laplace spectrum as
M on C* functions, modulo isometric equivalence. is not a single point but is a nice
e dimensional double coset space determined by the almost inner automorphisms

§ N. For a precise statement of their result see Theorem 5.5 of {GW]. We shall return
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4o the sotion of almost inner automorphism shortly.

A sebated problem in Riemannian geometry is to find conditions under which a
compact Riemannian manifold M is determined up to isometry by the lengths of
1o el grodesics, with the multiplicities of these lengths being counted suitably.
I this case the flow transformations {®'} of the geodesic flow play the role of the
Laphacian &, the periodic vectors play the role of the eigenfunctions of A and the
Jengthe of the closed geodesics play the role of the spectrum of A. The set of lengths
of the chowed geodesics of M s called the length spectrum (without multiplicities) of

M

Sere are relations between the Laplace spectrum and the length spectrum (cf.

JCUVL IDG)), but in general these cannot be written down in closed form except in

special cases. For compact surfaces with Gaussian curvature K = —1, or more gener-

ally for compact locally symmetric spaces of rank 1 and negative sectional curvature,

thie Selberg trace formula gives an explicit relation between the length spectrum and

the Lagtace spectrum ([DeGJ, (Ga), [McK]). In the case of compact 2-step nilmanifolds
\ . where N has I-dimensional center, an explicit relation is given in (Pe].

Free homotopy classes of closed curves

Let M be any complete Riemannian manifold, and let C(AM) denote the set of free
hometopy classes of closed curves in M. A free homotopy class C is called trivial if
It comiasns the constant curves, For every free homotopy class C € C(M) let £(C)
demeie the dengths of all closed geodesics that belong to C. If M has nonpositive
sextiosad curvature, then £(C') is a single positive number for each nontrivial C' €
ST However, in general the set £(C) may contain more than one real number,
poviags even infinitely many. We shall see that for a compact 2-step nilmanifold T\ N
el sen 1) contains o largest element and a smallest element, and these elements
10 gemeral are different unless the Lie algebra 0 is nonsingular and the closed curves
18 € o wot belong to the center of m (C\A). Moreover, the largest element has a
slmple exphicit formula in terms of log I' € M. See Propositions A and D below for
precise stalements,

By elesmentary covering space theory there is a bijection between C(M) and the
COREREey asses in the fundamental group my (M). Hence if M; and M, are complete
Riemassian manifolds with isomorphic fundamental groups, then any isomorphism
Fom(M,) < (M) induces a bijection T, : C(My) = C(My).

Leagth and marked length spectrum

Lot M be & compact Riemannian manifold. For each positive number w let n(w)
ot the number of free homotopy classes of closed curves in M that contain a
clowd grodesic of length w. The number n(w), the multiplicity of w, is always finite
by the compactness of M.

Lot S(M) = {{w,n(w)) : n(w) # 0}. The set £(M) is called the length spectrum
of I (with maltiplicities).

Now bet Afy and M; be compact Riemannian manifolds with isomorphic funda-
muntal grougs. We say that M, and M; have the same marked length spectrum if

é
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there exists an isomorphism T : my (Afy) — =y (Afz) such that {(T.(C)) = £(C) for all
C € C(M,), where T, : C(My) — C(Mf3) is the bijection induced by T'. Clearly any
two compact Riemannian manifolds with the same marked length spectrum have the
same length spectrum,

Length spectrum in compact 2-step nilmanifolds

Let N be a simply connected, 2-step nilpotent Lie group with a left invariant metric

<, >, and let T be a lattice in N. By the discussion in (5.4) the lengths of the closed
geodesics in \N are precisely the positive numbers w such that @ - y(t) = y(t + w)
for some @ € I' and all t € IR. The next two results, which are Proposition 4.5 and
its corollary in [E1), give useful information about these periods w of the elements @
of N.
Proposition A Let N be a simply connected, 2-step nilpotent Lie group with Lie
algebra M, and let <, > be a left invariant metric on N. Let ¢ be any element of N
and write ¢ = exp(V* + Z*), where V* € V and Z* € 3. Let Z** be the component
of Z* orthogonal to (V*, M) and let w* = (|V'!:I +|Z"’|:)'/’. Let y(t) be a unit speed
geodesic of N such that ¢ - y(t) = 4(t + w) for all ¢ € R. Then

1) V| <w<gw'

2) w=w" ¢ the following conditions hold

a)y(t)y=n- nxp(;‘:(l" + Z**)) for all t € R, where n = 5(0).
b) Z** = Z° + (V*,§], where § = logn.

3) w=|V |2 =089t = n.cxp(i"‘s.;,) for all t € IR.

Corollary B Let N be a simply connected, 2-step nilpotent Lie group with Lie
algebra M, and let <, > be a left invariant metric on N. Let ¢ be any element of N
that does not lie in the center of N and write ¢ = exp(V* + Z*), where 0 # V* € V
and Z° € 3. Assume that Z* lies in [V*, 0. Then

1) has a unique period w = |[V*|.

2) Let y(t) be a unit speed geodesic in N with 4(0) = n = exp(€), where £ € M.
Then @ y(t) = y(t+w) for all t € R & [€,V*] = Z* and (t) = n - exp(LL") for all
teR.

Remarks 1) By Proposition A of (6.3) the corollary applies to any noncentral
element  of N if M is nonsingular.

2) The proposition above and its corollary give information about the largest and
smallest periods of an element ¢ of N. There is also an explicit but more complicated
formula for all of the periods of . See Theorem 2.4 of [GM 2).

Periods of central elements of N

If ¢ is an clement in the center of N, then the geodesics translated by ¢ and the
periods of p have markedly different behavior than those of the noncentral elements
of N
The next two results are Propositions 4.9 and 4.11 of [E1)
Proposition C Let N be a simply connected, 2-step nilpotent Lie group with Lie
algebra O, and let <, > be a loft invariant metric on N. Let  be any clement of
N that lies in the center of N. Lot n € N be arbitrary and let 4 be any unit speed
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of N such that 4(0) = n and (w) = @ n for some positive number w. Then
| goalt)=y(t+w) forall te R,

‘ Pr D Let N be a simply connected, 2-step nilpotent Lie group with Lie
algebes W, and let <, > be a left invariant metric on N. Let ¢ = exp(Z) be a central
sdesent of N such that j(Z) # 0 for some Z € 3. Then there exists a positive integer
o sk that " has at least two distinct periods for all integers n > N.

Femsark I N bas 00 Euclidean de Rham factor, then j(Z) # 0 for every nonzero
clement Z of 3 by (6.2c).

Maximal length spectrum and marked maximal length spec-
trum

By Propesition A above each nonidentity element ¢ of N has a unique maximal
periend o = w*(), whose formula is given in the statement of the proposition. Now
It © b sy lattice in N, and let o be a nonidentity element of I'. The correspon-
dence Between free homotopy classes of closed curves in T\ N and conjugacy classes
I ny (1N shows that w* (i) is the largest length of a closed geodesic in the free
hometogs class of closed curves determined by the conjugacy class of . For each free
homotops class C of closed curves in I\ we let £°(C) denote the largest length of a
clied prodesic in C.

B ek positive number w* let n® (w*) denote the number of free homotopy classes
of it curves in T\N that contain a longest closed geodesic of length w*.
Defise C(MN) = {(W*,n*(w") : n*(w*) # 0). The set £*(T\N) is called the
masal length spectrum of '\ (with multiplicities).

BT, asd T, are lattices in simply connected, 2-step nilpotent Lie groups N, and
Ny wik Seft invariant metrics, then we say that Ty \N; and T;\Np have the same
masked saximal length spectrum if there exists an isomorphism 7 : 'y — Ty such
that FUEICY) = #(0) for all € € C(I'y\Vy). Here T. denotes the bijection be-
fween COEUNG ) and C(T'y\Ny), where we recall that T is isomorphic to my (I;\N;)
fori=1,2

Almost inner automorphisms of Gordon-Wilson

£ Gordon and E. Wilson in (GW] introduced the important concept of an almost
Iy phism of a simply 4 nilpotent Lie group N. We say that an
Awtomorptasm ¢ N < N s almost inner if for each element n of N there exists an
dlemest @ = aln) of N such that p(n) = ana~'. The usual inner automorphisms
U whes & i a constant function on N.

Sndon and Wilson showed that the set AI(N) of almost inner automorphisms
OF N Brss & Lie subgroup of Aut(N) that in general is strictly larger than the
9 o ssner awtomorphisms. The Lie algebra of AI(N) consists of the almost inner
deristions of M where M denotes the Lie algebra of N. A derivation D : !t = N is
Ser o for every clement = € M there exists an element £(z) € 2N such that
Diz) = Ei2),2), or equivalently, that D(z) € ad z(M) for all z € N. The element
A0 i ety b roplaced by £(z) + Z(x), where Z(z) is any element in the center
SFE ML M < 91 can bo chosen so that € is continuous on 3* — {0}, then D is said

——
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1o be of continuous type.
If N Ts 2-step nilpotent and ¢ is an almost inner automorphism of N, then the

differential dp € Aut(M) can be written dy = Id + D, where D is an almost inner
derivation of M. One says that  is of continuous type if D is of continuous type.

If T is a lattice in N, then an automorphism ¢ : N — N is called C-almost inner
if for every v € I there exists an element a = a(y) such that (v) = aya™" for all
5 € I. The set Alr(N) of M-almost inner automorphisms is also a Lie subgroup of
Aut(N) that in general is larger than the group of inner automorphisms of N.
Theorem B ([GW), [Gord 2]) Let N be a simply connected, nilpotent Lie group
with a left invariant metric. Let T’ be a lattice in N and let ¢ be a I-almost inner
antomorphism of N. Then F\N and @(I')\N have the same Laplace spectrum on
functions and p-forms, 1 < p < dim N.

The manifolds I'\N and @(I')\N are Laplace isospectral on functions and forms
if ¢ is a P-almost inner automorphism of N, but they are not isometric unless @ is
an inner automorphism. See Theorem 5.5 of [GW] for a more complete statement.

Rigidity of marked maximal length spectrum

Let N be a simply connected, nilpotent Lie group with a left invariant metric, and
Jet T be a lattice in N, If @ is a I'- almost inner automorphism of N, then it is casy
1o sec that the periods of 4 are the same as the periods of ¢(y) for every v € . It
follows that P\N and @(I)\N have the same marked length spectrum and marked
maximal length spectrum. Let N and N* be simply connected Lie groups with left
invariant metrics and suppose that there exists a group isomorphism @ : N = N*
that is also an isometry. Then it follows that T\N and @(I)\/N* also have the same
marked length spectrum and marked maximal length spectrum. Conversely, if we
restrict ourselves to 2-step compact nilmanifolds T\ N and I'*\N*, then these are the
only two ways that the marked maximal length spectrum can be the same. More
precisely, we have the following result, which is Theorem 5.20 of [E1].
Theorem F Let [',['* be lattices in simply connected, 2-step nilpotent Lie groups
with Jeft invariant metrics. Assume that I\N and I'*\N* have the same marked
maximal length spectrum, and let ¢ : ' — I'* be an isomorphism that induces this
marking. Then ¢ = (¥4 o ¥)|r, where v, is a [-almost inner automorphism of N
and vy is an automorphism of N onto N* that is also an isometry. In particular [\N
and I"\N* have the same marked length spectrum and the same spectrum of the
Laplacian on functions and differential forms
Remark The result above says that in some sense the marked maximal length spec-
trum determines not only the marked length spectrum but also the Laplace spectra
on functions and differential forms. Proposition A says that the maximal length spec-
trum of F\N can be computed from log I' by a simple explicit formula. It is interesting
to ask if the Laplace spectra of F\N on functions and forms can also somehow be
computed explicitly from log I'.
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4.8f The problem of geodesic conjugacy
" Let A, and Ay be Ri i ifolds with geodesic flows {®!} and {®%} on
. e it tamgent bundles SM) and SMj. One says that My and M, are C* geodesically
' F where & 2 018 an integer, if there exists a C* homeomorphism f : SM; —
B ﬁ that fo®] = @4of forallt € R. Ifk > 1, then this condition is equivalent,
“ o+ the comdition (@) = ©, where 8, and ®; denote the geodesic vector fields on
S0, and SNy
Clesety M, and M, must have the same dimension n if they are geodesically
wnpugwe. 1 n > 3, then it is not hard to see that the C* geodesic conjugacy
§ SM, -+ SM; induces an isomorphism T’ between the fundamental groups of M;
and M and T, < C(Afy) = C(M3) preserves the marked length spectrum.
14 1s 4 isteresting question to ask if the geodesic flow determines the isometry type
A & Bsannian manifold. More precisely, if M, and M; are Riemannian manifolds
(st e O grodesically conjugate, then must M, and M, be isometric ? The answer
1 ths qpuestion & 0o in general, but is yes in some important special cases that include

the following

11 M, asd M, are compact surfaces with nonpositive Gaussian curvature and
A= 0 (ICe], [O])

7 M, and M are compact ifolds of arbitrary di ion and nonpositive

wetionad curvature, rank M, > 2 and k = 0 ([CEK]).

4 M, & » compact, locally symmetric space with negative sectional curvature,
> My bt & compact manifold with negative sectional curvature and k > 1 ((BCG 1, 2]).

Geodesic conjugacy for compact 2-step nilmanifolds

W shall consider the geodesic conjugacy problem in the case that both M; and M,
e comgact 2atep nilmanifolds of dimension n > 3. As we noted above if there exists
4 % godessc conjugacy f : SMy, = SMy, then M; and M; have the same marked
lngth spectrum and in particular the same marked maximal length spectrum. In view
A e sty result for marked maximal length spectra, Theorem F of (6.8¢), we may
Sk 5 e case that there exists a simply connected, 2-step nilpotent Lie group N
WA & bl Ssvanant metric, a lattice I in N and a [-almost inner automorphism ¢
of W wack that My = T\N and Mz = o(T)\N.

16 show that M, and M, are isometric is equivalent to showing that the T-almost
\ner ssscmcrphism  above is actually an inner automorphism. By Theorem 2.12 of
(GO0 3 the sstomorphism p must be an almost inner automorphism of continuous
fpe. s defied i the discussion of (6.8¢). Almost inner automorphisms of continuous
(i 1t e mot tnner automorphisms are rare for a 2-step nilpotent Lie algebra. In
faet, whey dom't exist for a generic 2-step nilpotent Lie algebra. See [GoM 2] for a

discussion

Move detadled :
¥ we impene the additional condition that the geodesic conjugacy f : SM; — SMy
ot of a symplectic diffeomorphism f : TM, — TM, , then M, and My

W iomutrsc. See [GMS] for a proof.

 ——
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6.9 Totally geodesic submanifolds and subgroups

Gauss map for submanifolds of a connected Lie group

Let H be a connected Lie group with Lie algebra , and let G : TH = H x5 =+ §
be the Gauss map. For an integer k with 1 € k < n = dim H let G(k,5) denote
the Gr ifold of k-di ional sub of . If S is a k-dimensional
submanifold of H, then we may define a Gauss map G : S = G(k, 9) by G(z) =
G(T,S) = {G(v) : v € TS C TH}. We abuse notation slightly by using the letter
G and the name Gauss map to denote also this extension of the original Gauss map.
Note that G : TyH = {h} x H is an isomorphism for each h € H so that G(T:S5) isa
k-dimensional subspace of $ for every z € S.

If H = IR", regarded as a simply connected abelian Lie group, then this Gauss
map is just the standard Gauss map used in classical differential geometry to study
submanifolds S of Euclidean space. In this more general context the Gauss map
G : S = G(k,H) should also be useful for studying the geometry of S for any choice
of left invariant metric <, > on H. In fact, comparing the geometry of S for different
choices of <,> i an interesting problem for a given connected Lie group H. This
problem is nonexistent in the case that H = R" since all left invariant metrics <, >
in this case are flat and isometric to each other.

The image of geodesics under the Gauss map

In this article we consider only the case that S is a totally geodesic submanifold
of H and H = N, a simply connected, 2-step nilpotent Lie group with a left invariant
metric <, >, First we consider the case that S is 1-dimensional ; that is, S is a geodesic
v : (a,b) = N. Write 4'(a) = (n,A) = dL.(A) for A € M, and write A = X + Z,
where X' € Vand Z € 3 as in (6.2a). In this case ;.S = +/(t) for t € (a,b) and by the
propasition in (6.8a) G(S) is the curve in N given by G(7'(t)) = %) X. Note that
ecither G : S = G(k, $) is nonsingular or G is a constant map and J(Z)A = 0. In the
latter case () = n - exp(tA), the left late of a 1 group of N, by
the geodesic equations of N as found, for example, in l’roposuuon 3.5 of [El] Equiv-
alently, if S is a geodesic of N, then either G(S) is a nonmngular curve in Nor G(S)
is a point and S is the left translate of a totally geodesic 1-di

The image of totally geodesic submanifolds under the Gauss
map

1f N is a nonsingular 2-step nilpotent Lie algebra, then the Gauss map exhibits
similar behavior for totally geodesic submanifolds of N' with dimension k > 2 ([E2]).
We do not know if nonsingularity is a necessary h\'pol.hmh or merely a cnnvmlcnce for
the proofs in (E2]. We note that if S is a k-di jonal totally geodesi ifold
of a Euclidean space H = R", then the Gauss map G : S — G(k, IR") is a constant
map

The next two results are Theorem 4.2 and Corollary 5.6 of [E2)
Proposition A Let N be a simply connected, 2-step nilpotent Lie group of dimen-
sion n > 3 whose Lie algebra 9N is nonsingular. Let <, > be a left invariant metric
on N and lot S be a totally geodesic submanifold of N of dimension k > 2. Let
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G § =+ Glk,M) denote the Gauss map. Then either G is nonsingular at every poinc
of § o G s & constant map and S is an open subset of L,(N), where n is any point
of 5 asd N i a totally geodesic subgroup of N.

Propesition B Let N be asimply d, 2-step nilp Lie group of di

> 3 whose Lie algebra N is nonsingular. Let <,> be a left invariant metric on V'
sl bt § be & totally geodesic submanifold of NV of dimension k > dim 3, where 3 is
e comter of 91 Then S is an open subset of L,(N), where n is any point of S and
N & & totally geodesic subgroup of N,

Remark Proposition B says that if the di ion of a totally geodesic sub ifold
5 of N i suflfickently large in the nonsingular case, then S must be an open sub-
st of o deft ranslate of o totally geodesic subgroup of N. It would be interesting
4 snderstand more about the Gauss images G(S) when dimS < dim 3. Can one
fnd & complete description as satisf y as in the 1-di ional case that S is a
rendenic 7

7. Solvable extensions by R and
homogeneous spaces of negative curvature

7.1 The criterion of Heintze

E Btz ([Hel)) and D.V. Alekseevski ([A]) were the first to study systematically
e grossetey of & simply connected homogeneous space of strictly negative sectional
Ouvstsre. We discuss the method of Heintze, which is closest to our own discussion.
Hilntan s approach was generalized by R. Azencott and E. Wilson in [AW 1, 2] to the
ity of sismply connected h I spaces with itive sectional curvature.

1 was known that every simply connected homogeneous space M of nonpositive
setionad curvature has a simply transitive solvable group S of isometries. Hence M
‘e vogarded as a solvable Lie group S with an appropriate left invariant metric.
T e thits fix 2 point z of M and let z : S — M be the diffeomorphism given by
Fi) = wix) for all s € S, 1f S is given the metric <,>; that makes v : S - M an
Wemuetry, then it is easy to see that <, >, is a left invariant metric on S.
l"':":::‘ [Hed] derived necessary and sufficent conditions for a solvable Lie alge-
b i #a nner product <, > such that the corresponding simply 1
_"' oo § ;ﬂh Jeft invariant metric <, > has strictly negative sectional curvature.
nwh-"w ([He]) Let 8 be a solvable Lie algebra, and let S denote the simply con-

1 M. Lie group with Lie algebra §. Then the following are equivalent :
PRy admits an inner product <,> such that S with the left invariant metric

g Segative sectional curvature.

8 bau the following properties :

&) % = (8, §] has codimension 1 in §.

—
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1) 8 admits a derivation D such that the restriction of D to M has eigenvalues
with positive real parts.
Remark If § is a solvable Lie algebra, then its commutator subalgebra N = (8, 8]
i always nilpotent,

7.2 Examples

Riemannian symmetric spaces of negative sectional curvature

Let M be a simply connected Riemannian symmetric space with nonpositive sec-
tional curvature that has no Euclidean de Rham factor. Then G = [, (M) is a
semisimple Lie group and admits an Iwasawa decomposition G = KAN, where K is
a maximal compact subgroup of G, A is an abelian subgroup and N is a nilpotent
subgroup (cf. [Hel, Chapter VI]). If § = AN, then S is a solvable subgroup that acts
simply transitively on M. If § and M are the Lie algebras of S and N, then N =
(s, 8].

The group A is 1-dimensional ¢ the sectional curvature of M is strictly negative.
in this case M = (6, S| is a 2-step nilpotent Lie algebra of Heisenberg type, mod-
ulo multiplying the metric on M by a positive constant. If A, is a unit vector in 8§
orthogonal to M and if D = ad A,, then D is a derivation such that D = 2c/d on
Jand D = cldon V = 3* for some nonzero constant ¢. Replacing A, by A, if
necessary we may assume that ¢ is positive. If the original metric on M is multiplied
by a suitable positive constant, then we may assume that ¢ = 1. See [Hei] for details.

3-step Carnot solvmanifolds

We now work backwards with the structure result of Heintze and the remarks
above to guide us. Let M be a 2-step nilpotent Lie algebra with an inner product
<, >, and define a derivation D on M by D = idon V = 3* and D = 2/d on M.
Let 8= IR @ M and define a bracket operation [,] on 8 such that ad (¢,0) = tD for
all £ € R and [,] agrees on M with the bracket of 9. It is easy to check that § is
solvable and [§, §) = M. Now let § be given the inner product <, >* such that R
and M are orthogonal, <, >*=<, > on M and (1,0) has length 1. Let S be the simply
connected Lie group with Lie algebra 8 and let <, >* also denote the corresponding
left invariant metric on §. We call {8, <,>*} a 3-step Carnot solvmanifold.
Question 1 Under what conditions on (N, <, >} does the 3-step Carnot solvmanifold
{5, <,>"} have negative sectional curvature 7
Question 2 Under what conditions on {M. <. >) is the 3-step Carnot solvmanifold
{S.<,>"} a Riemannian symmetric space with negative sectional curvature 7

A partial answer to the first question is given by the next result, which is
Proposition 3.10 of (EH].
Proposition A Let (S, <,>"} be a 3-step Carnot solvmanifold. For each Z € 3,
the conter of M, lot j(Z) : V =+ V be the skew symmetric linoar map of (6.2a). Let
131l = max {[j(Z)X|: X € V,Z € 3 and |X]| = |Z] = 1}. Lot K denote the sectional
curvature of {8, <,>*). Then

1NIK < ~1or K 2 =4, then |[j]] €2 Moreover, [j(2)X| = 2|2||X] for

Remmmic - .\
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wectors Z € 3 and X €V & j(2)X = -4|2]" X.
) & 3= 1 and [|j]| € 2, then -4<K<-1
3) Let dem 3 be asbitrary.

$) Ul €1, then K € -1.

) Ml S V3, then K 2 -4 3 2

A patial answer 10 the second quﬁﬂolf h given by t!le next resulta, which is

s i Proposition 3 of [Hei]. The condition (*) below is called the J* condition
1 [CDKR) and the next result is also a different formulation of Theorem 1.1 of

mhl B Let {5, <,>") be a 3-step Carnot solvmanifold with strictly negative
wetienad cervature such that j(Z)? = -4|Z|1 Id for all Z € 3. Then {S,<,>"} is
4 wmesetric apace ¢ for every nonzero vector X of V and every orthonormal basis
(4. . &) of 3 we have

CIHENZNX € span{j(Z1)X, ... §(Zp) X} whenever r #5,1< 1,5 < p.

Damek-Ricci spaces

s DR E Damek and F. Ricci proved the following important result

Thestem C Let {5, <,>°) be a 3-step Carnot solvmanifold such that j(Z)* =
42)" 14 o all Z € 3. Then

1) The sectional curvature K of {8, <, >*} is nonpositive.

318 < 5"} & a harmonic Riemannian manifold.

Memark 1 The result above gives an infinite family of counterexamples to a conjec-
S of Lachserowics [Li) that every harmonic Riemannian manifold must be a locally
symmen space. See [BTV, pp.11-12] for various equivalent definitions of a harmonic
Wumassias manifold. The condition of being harmonic implies that an infinite se-
e of csrvature conditions hold (the Ledger conditions) and the first of these
i e comdtion of being Einstein. The n** of these conditions is called n-stein, for
foens Wt are Joft as an exercise for the reader.

Remsark 2 The mysterious factor of 4 that occurs in the statements of Proposition B
st Thewewss C fs & normalization that is necessary for the metric on {S,<,>*} tobe
Elnutsss. We could have avoided this ¢ lization of the definition of Heisenberg
{0 By weguising i the definition of 3-step Carnot solvmanifold that D = 1Id on
Ve adD=Idon3.

Reeall that 2-step nilpotent Lie algebras {M, <, >} of Heisenberg type arise from
Mpreesiations of the Clifford algebra Cf(p),p > 1, and the center 3 of M in this
:lu- haw h.:gl(:lw J-step Carnot sol ifold {S, <,>"} corresponding to

pr—tation ) is & symmetric only when p = 1,3 or 7. In all other
s U harmonic manifold {8,<,>*) hmmg_ .
..'-'u ; (S <, .>') 18 & nonsymmetric Damek-Ricci example, then the sectional
t ; "'( :'_) .' S<>')in ;l'll;:l 2010 on some 2-plu’e. Hence a Damek-Ricci example
o for s N”““‘k sectional curvature is strictly negative. See [Do] and

amm——
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Examples of Leukert

For an integer n > 2 let @ be a semisimple subalgebra of so(n, R) such that R*
i irreducible as a G-module. Let M = R" & & be the 2-step nilpotent Lie algebra
with inner product <,> that was defined in example 4 of (6.1c). Let {S,<,>*}
be the 3-step Carnot solvmanifold constructed from {N, <, >} as above. It is an
interesting question to ask when the curvature of {0, <, >} is negative or nonpositive.
Leukert obtained a partial answer in [Le] in the case that @ is a simple Lie algebra.
However, Leukert used a different normalization of the inner product on so(n, R)
in the construction of example 4 of (6.1c); namely. one defines < Z, 2* >= ~(1/4n)
trace ZZ* for all Z, Z* € so(n,R). It should not be surprising that this normalization
of the inner product on sa(n, R) is also chosen so that the 3-step Carnot solvmanifold
{5.<,>*} will be an Einstein manifold. See Proposition 3.21A of (EH] for further
details,

In the next result we use the notation of Proposition A.

Theorem D ([Le]) Let {S, <, >*} be a 3-step Carnot solvmanifold with Lie algebra
S such that [§, §] = M = R" & &, where @ is a simple Lie subalgebra of so(n, R)
and IR" is an irreducible & - module. Then

1) If § has sectional curvature K < 0, then then ||j]|* < 8.

2) There are at most 9 examples M = R"& @ where ||j]] < 8. In the classification
of plex simple Lie alg these cor d to the following cases :

a) Ay highest weights wy, 2wy, 3wy, 4y

b) Ay highest weights wy,wy

c) €, highest weight w, (standard representation)

d) ®; highest weights wy, 2w,

We recall that that in this classification the Lie algebras %, %3, and €; correspond
10 Su(2), Sw(3)and SP(4) respectively. The Lie algebra @; is one of the exceptional
Lie algebras,

In addition to the result above Leukert also showed that the sectional curvatures
of the first three examples of a) are strictly segative. The sectional curvatures of
the fourth example of a) are nonpositive, but there exist 2-planes with zero sectional
curvature. It has not yet been determined if the examples of b), ¢) and d) actually
have nonpositive sectional curvature. However, Leukert's computer calculations of
the sectional curvature on random 2-planes suggest that the sectional curvature ks
also nonpositive in cases b), ¢) and d).

Examples of Iwasawa type

Lot 9 be a 2-step nilpotent Lie algebra with an inner product <, >, and let D be
& derivation on M that is a positive definite symmetric linear operator. The example
that occurs in the definition of a 3-step Carnot solvmanifold is clearly the most prim-
itive example of this type. We now mimic that definition. Lot § = IR & N and define
a bracket operation ,] on 8 such that ad (£,0) = ¢D for all ¢ € R and [,] agrees on R
with the bracket of M. Again, it is easy to check that § is solvable and 8, 8] = 9.
Now lot § be given the inner product <, >* such that R and N are orthogonal,
<,>*=<,> on NMand (1,0) has length 1. Let S be the simply connected Lie group

R . N J
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with Lie shgeiben 8 and et <, >* also denote the corresponding left invariant metric on
5 Oue calls (5. <, >*) & 3-step solvmanifold of I type with algebraic rank 1.

Mre gemerally, & simply connected solvable Lie group S with a left invariant
mwtzie <. >" & said to be of Iwasawa type if

1) The subspace & = N* is abelian, where M =[5, §].

3 For ol ponzero A in A, ad A is symmetric and nonzero.

31 For woeme nonzero A in A, ad A is positive definite on M.

The slgebomic rank of (S, <, >*} in this case is defined to be the dimension of 2.
Nate that ome doos not require that M = (8, §] be 2-step nilpotent.

Aming the solvmanifolds (S, <, >*} of Iwasawa type it is natural to look for con-
ditions wader which (S, <, >*} must be a Damek-Ricci example.
Theweem E Lt (5,<,>%) be a 3-step solvmanifold of Iwasawa type with alge-
bew sask | Then (S, <, >*} is a Damek-Ricci example under any of the following
bt

11 T Sowt two Ledger conditions (Einstein and 2-stein) hold.

408 <. 5%} s a harmonic Riemannian manifold.

3145.<.>") has nonpositive sectional curvature.

\wertion 1) i proved in [BPR) and also in [Dr) in the special case that {S, <, >"}
04 Sty Carmot solvmanifold. Assertion 2) is an immediate consequence of 1) and
1) folliowss froem 1) and a result of J. Heber [Heb] that a solvmanifold of Iwasawa type
Vit songesitive sectional curvature must have rank , 5
tmv"m’“m‘s&-)') beah ic sol ifold of I type such
:::: ;‘: :‘:P:rmlnsulu 2step nilpotent Lie algebra. Then {S,<, >} is a

8. Other topics in the left invariant
feometry of Lie groups

There - :

motew ‘::::. o ng toplcs in the geometry of Lie groups with a left invariant

mlated b0 sopics ;‘:"d“‘“md. in this article. Some of these that are closely
include Gelfand pairs, commutative spaces, d'Atri

W by J o o—
USSa . 5y gy, ( “’;:;'l;l;'neou Riemannian spaces of negative curvature , Math.
= +93-117; English translation Math. USSR - Sb. 25, (1975),

:



506 Patrick Eberlein

[AM] R. Abraham and J. Marsden, Found. of Mechanies, Second Edition, Ben-
jamin / Cummings, Reading, 1985,

[AW 1] R. Azencott and E. Wilson, H, folds with negative curvature,
1, Trans, Amer. Math. Soc. 215, (1976), 32}362
[AW 2] ——, Hq folds with neg curvature, II , Memoirs Amer.

Math. Snc vol.8, 178, 1976, 1-102.

[Br] R. Bryant, An introduction to Lie groups and symplectic geometry , from
Geometry and Qi Field Theory, D. Freed and K.Uhlenbeck, Editors, IAS
/Park City Mathematics Series, vol. 1, Amer. Math. Soc. , 1995, 7-181.

[Bu 1) L. Butler, Invariant metrics on nilmanifolds with positive topological entropy
, preprint, 2002,

[Bu 2] ~, Zero entropy, nonintegrable geodesic flows and a noncommutative rota-
tion vector , preprint, 2002
[Bu 3) -, Integrable geodesic flows with wild first integrals : the case of 2-step

nlmanifolds , preprint 2000,

[BCG 1] G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces lo-
calement symétriques de courbure strictement négative , Geom. and Func. Anal-
ysis, b, (1095), 731-799.

[BCG 2] ——, Minimal entropy and Mostow's ngidity theorems , Ergod. Th. Dyn.
Syst. 16, (1996), 623-649.

[BPR] C. Benson, T. Payne and G. Ratcliff, Three-step harmonic solvmanifolds |
Geom. Dedicata, 101, (2003), 103-127

[BTV] J. Berndt, F. Tricerri and L. Vanhecke, G hzed Hi b Growps
and Damek-Ricei Harmonic Spaces, Lecture Notes in Mathematics 1598,
Springer,Berlin, 1995,

|Cr] C. Croke, Rigidity for surfaces of nonposstive curvature , Comment. Math. Hel-
vet. 65, (1990), 150-169.

{CdV] C. de Verdiere, Spectre du Lapl: el i s des géodés périodiques,
I, 11, Compositio Math. 27, (1973), £3-106 ; 159-13‘

[CD] , G. Crandall and J. Dodziuk, Integral structures on H-type Lie algebras , Jour.
Lie Theory, 12, (2002), 69-79

[CDKR] M. Cowling, A. H. Dooley, A. Koranyi and F. Riccl, H-type groups and
Iwasawa decompomtions , Adv. Math. 87, (1991), 1-41

ICE] J. Cheeger and D. Ebin, Compersson Theorems in Rie e/
North Holland, Amsterdam, 1975

biid |




p—

b

Left invariant geometry of Lie groups 507

(9K € Crole, P. Eberlein and B. Kleiner, Conjugacy and rigidity for nonpositively
‘m,t.:d..dda of higher rank , Topology 35, (1996), 273-286.

ccl L G and F.Groenleaf, R of Nilpotent Lie Groups and Their
B 1: Basic ﬂ;ry and Bzamples, Cambridge University Press,

wtions, Part
ﬁm‘ . 1990,

D] B DeCoste, Private communication.

D D L DeGeorge, Length spectrum for compact locally symmetric spaces of
serwrtly mepative curvature , Ann. Sci. Ecole Norm. Sup. 10, (1977), 133-152.
Dl L DeMeyer, Clased geodesics in compact nilmanifolds , Manuscripta Math.

Wb, (2001), 263-310.
Dol | Dottt On the curvature of certain extensions of H-type groups , Proc. Amer.
Mack. Soc. 125, (1997), 573-578.

Uy M Dewetia, On Harmonic and £-stein spaces of Jwasawa type, Differential Geom.
Agpl. 18, (2003), 351-362

UG T Dastermaat and V.Guillemin, The spectrum of positive elliptic operators and
porsadse Wacharactenstics , Invent. Math. 29, (1975), 39-79.

DR E. Dassek and F. Riccl, A class of y ic harmonic Ri ian spaces
Bl Amer. Math. Soc, 27, (1992), 139-142.

WAL E Bhesien. Geometry of 2-step nilpotent groups with o left invariant metric ,
Aass Bcole Norm. Sup, 27, (1094), 611-660.

LR (Gewmetry of S-step nilpotent groups with a left invariant metric, II ,
Tesew. Amer. Math, Soc., 343, (1994), 805-828.

(BN Ssemanssan submersions and lattices in 2-step nilpotent Lie groups , Com-
i Asalysis and Geom, Vol 11 (3), (2003), 441-488.

L The moduli space of 2-step nilpotent Li
Mach., 3X2, 1m)_'§;_n'/ step mlpatent Lie algebras of type (p,g) , Contemp:

-t
(ma] e ‘ )‘\m 1t a geodesic flow of Anosov type, I 9, J. Diff. Geom., 8, (1973),

(B P Exevdesss and J. Hoby ;
wudwer , la. Jour, M:l.lf.r‘?_q('l‘;;‘se),: :’;’:’;&’]-h"mwmwm spaces of negative cur-

(6, R Gz, The ten
: igth spectrum of some co t i i o
v, ) DM Geom, | 2, (1977), 403424 mpact manifolds of negative curva:

Gard 3] €. Gordon, Naturall
. 3 y reductive h Ri tan. nilmanifold
Cad J Mash, 37, (1085), 467-487. 4 Y

—



508 Patrick Eberlein

[Gord 2) ———, The Laplace spectra versus the length spectra of Ricmannian man-
ifolds , in Nonlinear Problems in Geometry, edited by D. DeTurck, Contemp.
Math. 51, Amer, Math. Soc., Providence, 1086, 63.80.

|Gorn 1] R. Gornet, Bquival of ¢ of two and three-step
nilpotent Lie groups , J. Funct. Alulyih. 119, (IW) 121-137.

[Gorn 2) ———, The length spectrum and representation theory on two and three-step
nilpotent Lie groups , Contemp. Math. 173, (1994), 133-155.
{Gurn 3] _— Tllc marked length spectrum vs. the Laplace spectrum on forms on
ifolds , C Math. Helvet. 71, (1996), 297-329.
[Gorn 4] ———, A new construction of & ul Ri i il folds with ex-

amples , Mich. Math. J. 43, (1996), 159-188.

[GoM 1] C. Gordon and Y. Mao, Comparisons of Laplace spectra, length spectra and
geodesic flows of some Riemannian nilmanifolds , Math. Res. Lett. 1, (1994),
G77-688.

[GoM 2) -, Geodesic ies of two-step nill folds , Mich. Math. J. 45,
(1998), 451-481.

[GG] C. Gordon and R. Gornet, Spectral geometry on nilmanifolds , Trends in Math-
ematics, Birkhduser, Boston, 1997, 23-49.

[GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometric un
Grossen, Lecture Notes in Math., vol. 55, Springer - Verlag, Heidelberg, 1968

{GM 1] R. Gornet and M. Mast, lx‘ngﬂl minmezing geodesics and the length spectrum
of R two-step folds , J. Geom. Anal. 13, (2003), 107-143.

G 2) -, The length spectrum of R two-step nil folds , Ann. Sc-
ent. Ecole. Norm. Sup. 33, (2000), 181-200

[GMS] C. Gordon, Y. Mao and D. Schiith, Symplectic rigidity of geodesic flows on
two- step nilmanifolds , Ann. Sci. Ecole Norm Sup. 30, (1997), 417427

[GW] E. Wilson and C. Gordon, Isospectral deformations of compact solvmanifolds ,
J. Diff. Geom., 10, (1984), 241-356

[Heb] J. Heber, Noncompact homogeneous Ewmstein spaces , Invent. Math. 133,
(1998), 279-352

[Hei) E. Heintze, On homogeneous manifolds of negative curvature , Math, Ann. 211,
(1974), 23-34

[Hel] S. Helgason, Diferentral Geometry and Symmetric Spaces, Academic Press,
New York, 1062

. ¥



b

Mai 3 O the theory

Left invariant geometry of Lie groups 24

K Iwwawa, On some types of topological groups , Annals of Math. 50, (1949),

" P )

K1 A Kaglas, Reemannian nilmanifolds attached to Clifford modules , Geom. Ded-

s, 11, (1981), 127-136.

(R3] . On the goometry of groups of Heisenbery type , Bull. London Math. Soc.,
14, (198, 3542

14 1) J Laset, Gelfand pairs d with lly reductive two-step nilpotent
Lae growg | preprint.

Ladl .. Commutative spaces which are not weakly symmetric , Bull. London
Maah Soc. 30, (1998), 29-36.

La X Gelfand pasrs attached to representations of compact Lie groups , Trans-
formation Groups 5, (2000), 307-324.

Lad . Hemogeneous nilmanifolds attached to representations of compact Lie
proage . Manuscripta Math. 99, (1999), 287-309.

La § Modified H-type groups and symmetric - like Riemannian spaces , Diff.
Geem. and s Apps. 10, (1999), 121-143.

Ladi Naturally reductive homogeneous structures on 2-step nilpotent Lie
gmge . Rev. Un. Mat, Argentina 41, (1998), 15-23.

Ll M Lassendord, Einstein metrics with nonpositive sectional curvature on exten-
wons of Lae wlgebrus of Heisenberg type ™ Geom. Dedicata 66, (1997), 187-202.

[Ref S Lowhees, R wons and Ne itwely Curved Sol, ifolds, Ph.D.

tiwertaticn, University of North Carolina at Chapel Fill, 1998,

Ll A Lichawwowics, Sur les espaces ri i iplé har i Bull.
So Math Prance 72, (1944), 146-168.

P K Pukasd KB Lo, S hly closed
Usin Math ) 45, (1996), 1-14.

Mal ] A1 Mal'cev, On a class of homogeneous spaces , Amer. Math. Soc. Trans-
Wi 3. 1951, lav. Akad. Nauk USSR, Ser. Mat. 13, (1949), 9-32.

in L-step nimanifolds , Indiana

of L A
NS 06 (1) 168 1o 2 14€ 97OUPS in the large , Rec. Math. [Math. Sborik]

M| M. Mast, Clased
e S50

Nek] B Mo, Selbery's truce
formula as ed 1.
Comas. Pare and App. Math, 25, (1972), “ﬁ”:nl_“ compact Riemann surfaces ,

geodesics in 2-step nilmanifolds , Indiana Univ. Math. J. 43,

:



510 Patrick Eberloin

[Mi 1] J. Milnor, Curvatures of left snwariant metrics on Lic groups , Advances in
Math. 21, (1976), 203-329.

[Mi 2] J. Milnor, Morse Theory Annals of Math Studies, vol. 51, Princeton University
Press, Princeton, 1963

[MR] J. Marsden and T. Ratiu, Intrody to Mech and Sy y Second
Edition, Springer, New York, 1999,

[MS] S. B. Myers and N, Steenrod, The group of isometries of a Riemannian manifold
, Annals of Math., 40, (1939), 400-416.

[0] P. Olver, , Applications of Lie Groups to Differential Equations Second Edition,
Springer, 1993,

[Pa] G. Paternain, Geodesic Flows Birkhiuser, Boston, 1999.

[Pe] H. Pesce, Une formule de Poisson pour les variétés de Heisenberg , Duke Math.
1. 73, (1004), 79-05.

[R] C. Richm, Ezplicit spin represe and Lie algebras of H bery type , J.
London Math. Soc. 29, (1984), 49-62.

IS] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, Pub-
lish or Perish, Berkeley, 1979,

[Wa] F. Warner, Foundations of Differentiable Manifolds, Springer, New York, 1983

{Wi] E. Wilson, Isometry groups on homogeneous nilmanifolds , Geom. Dedicata, 12,
(1982), 337-346.

[Wo J. Wolf, Curvature in nilpotent Lie groups , Proc. Amer. Math. Soc. 15, (1964),
271-274,




