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ABSTRACT

Inverse scattering and spectral i | prob are di d sys-
tematically in a self-contained way. Many novel n!ulu due to the author are
presented  The classical results are often presented in a new way. Several high-
lights of the new results include:
1) Analysis of the invertibility of the steps in the Gel'fand-Levitan and Marchenko
inversion procedures,
2) Theory of the inverse problem with I-function as the data and its applications;
3) Proof of the property C for ordinary differential operators, numerous applica-
tions of property C;
4) luverse problems with “incomplete” data;
5) Sph Il metric inverse ing problem with fixed-energy data: anal-
yuis nl the \rvwn Sabatier (NS) scheme for inversion of fixed-energy phase shifts
is given. This analysis shows that the NS scheme is fundamentally wrong, and is
not & valid inversion method.
6) Complete presentation of the Krein inverse scattering theory is given. Consis-
tency of this theory is proved.
7) Quarkonium systems;
8) A study of the properties of I-function;
9) Some new inverse problems for the heat and wave equations are studied.
10} A study of inverse scattering problem for an inhomogeneous Schrodinger
equation

' Key words: property C for ODE, inverse spectral and scattering problems, inverse problems for
PDE aad ODE, spectral and scattering theory
*Math subject classification: 35R30, 34B25, 34A55, 81F05, 81F15
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1. Introduction

1.1 Why is this paper written?

There are excellent books [M] and (L], where inverse spectral and scattering problems
are discussed in detail. The author decided to write this paper for the following rea-
sons: 1) He gives a new approach to the uni of the sol to these problems.
This approach is based on property C for Sturm-Liouville operators; 2) the inverse
problem with J-function as the data is studied and applied to many inverse problems;
3) a detailed analysis of the invertibility of the steps in Marchenko and Gel'fand-
Levitan (GL) inversion procedures is given; 4) inverse problems with “incomplete”
data are studied; 5) a detailed presentation of Krein's inversion method with proofs is
given apparently for the first time; 6) a number of new results for various inverse prob-
lems are presented. These include, in particular, a) analysis of the Newton-Sabatier
(NS) inversion scheme for finding a potential given the corresponding fixed-energy
phase shifts: it is proved that the NS scheme is fundamentally wrong and is not an
inversion method; b) a method for finding confining potential (a quarkonium system)
from a few experimental data; ¢) solution of several new inverse problems for the
heat- and wave equations; d) a uniqueness theorem for finding a potential ¢ from a
part of the corresponding fixed-energy phase shifts; and many other results which are
taken from [R], [R1)-(R29).

Due to the space limitations, several important questions are not discussed: in-
werse scattering on the full line, iterative methods for finding potential g: a) from two
spectra [R][R5], b) from S—matrix alone when g is compactly supported [R9], ap-
proximate methods for finding ¢ from fixed-energy phase shifts [R14],[R15), property
of resonances [R], [R29), inverse scattering for systems of equations, etc.

1.2 Auxiliary results

Ll:l q(z) € Ly, Lim = {q : q(z) = q(z), f:e(l + 1)™|g(z)|dz < o0, and g €
Li.(R.)}. where Lf, (IR.;.) consists of functions belonging to L*(0, a) for any a < 00,
and overline stands for complex conjugate.

Consider the differential expression fu = —u" 4 g(z)u with domain of definition
Dils) = {u - u(0) = 0, u € C3(0,00)}, where C2(0, 0) is the set of C? (IR )-functions
vanishing in a neighborhood of infinity, Ry := [0,00). If H is the Hilbert space
LF(R.), then £ is densely defined symmetric linear operator in H, essentially self-
adjoint, that is, the closure € of £ in H is selfadjoint. It is possible to construct
a selfadjoint operator ¢ without assuming that ¢ € L2 (Ry). Such a theory is
technically more difficult, because it is not even obvious a priori that the set D(£o)u =
{u:uwe CIR,), u€ L*(IRy)) is dense in H (in fact, it is dense). Such a theory is
presented in [Nai]. If one drops the assumption ¢ € L2, then D(£p) is not a domain
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of definition of £ since there are functions u € D() for which fu ¢ L*(Ry). In the
future we mean by £ a self-adjoint operator generated by the differential expression l
and the boundary condition u(0) =

This op has absolutely spectrum, which fills (0, ), and discrete,
finite, negative spectrum {— k’)ISISJ' where —k7 are the eigenvalues of £, all of them
are simple,

bpy =~ +qpy = =kjpj, 9i(0)=0, &0 =1, (1.2.1)
where i, are corresponding eigenfunctions which are real-valued functions, and

dhy /m ¥} dz. (1.2.2)
oy 0
The functions @(z, k) and 8(z, k) are defined as the unique solutions to the prob-
loms:
to=ko >0, ¢(0,k)=0, o'(0,k)=1, (1.2.3)

0=k0, z>0; 6(0,k)=1, &0k =0. (1.2.4)

These functions are well defined for any q(z) € L}, (IR ). Their existence and unique-
ness can be proved by using the Volterra equations for ¢ and 8. If g € L, ;, then the
Jost solution f(x, &) exists and is unique. This solution is defined by the problem:

Uf v= = f" % qf = K[, f(z,k) = exp(ikz) + o(1) as = = +o0; f(0,k) := f(k).
(1.2.5)

Existence and uniqueness of f is proved by means of the Volterra equation:

w ()£ (¢, k)dt. (1.2.6)

J(z,k) = exp(ikz) +/

If ¢ € Ly, then this equation implies that f(x, k) is an analytic function of k in
€y = {k: Imk > 0), f(z,k) = f(x,~k) for k > 0. The Jost function is defined as
J(k) = f(0,k). It has exactly J simple roots ik;, k; > 0, where ~kj, 1<4 < J
are the negative eigenvalues of £, The number k = 0 can be a uaro of f(k)
£(0) = 0, then f(0) # 0, where f(k) := ﬂ- Existence of f(0) is a fine result under
the only Amnmpuon q € Ly, ( see Theorem 3.1.3 below, and [R]) and an easy one if
q€lhai={g:9=§, fu (14 2%)|q()|dz < co}. The phase shift &(k) is defined by
the formula

JE) = 1f(k)lezp(=i6(k)),  &(e0) =0, f(eo) =1, (1.2.7)

where the last equation in (1.2.18) follows from (1.2.6). Because g(z) = q(x), one has
8(~k) = ~&(k) for k € R. One defines the S-matrix by the formula

S(k) = %? kER. (1.2.8)

P
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The function S(k) is not defined for complex k if g € L, ;, butif |g(z)| < eyezp(—eslz]?),
% > 1, then f(k) is an entire function of k and S(k) is meromorphic in €. If g(z) =
for = > a, then f(k) is an entire function of exponential type < 2a (see Section 5.1).

If g € Ly, then at k* = —kj,k; > 0, the Jost solution f;(z) := f(z,iky) is
proportional to ¢;(z) = @(x,ik;), f; and @; both belong to L*(Ry). The integral
equation for ¢ is:

oz, k) =

e -
“‘“( )b S '/0 ﬂ‘:—"q(.)w,km. (129)

One has: S (—k W7k

ol k) = M%)__)_ (1.2.10)
because the right-hand side of (1.2.10) solves equation (1.2.5) and satisfies conditions
(1.2.3) at = = 0. The first condition (1.2.3) is obvious, and the second one follows
from the Wronskian formula:

£'(0, k) f(=k) = (0, —k) f (k) = 2ik. (1.2.11)

If &k = ik, then f;(z) € L*(IRy), as one can derive easily from equation (1.2.6). In
fact, (n' <ce ™% 2 >0. Il k>0, then f(z,—k) = f(z,k). If g =G then f;(z)
is a real-valued fnncv.mn The function f(x, k) is analytic in €4 but is, in general,
not defined for k € C_ := {k : Imk < 0}. In particular, (1.2.11), in general, is
valid on the real axis only. However, if |g(z)| < ciezp(—=ca|z|?), 7 > 1, then f(k)
is defined on the whole complex plane of k, as was mentioned above. Let us denote
Jlz. k) = folz. k) for k € € and let f_(x,k) be the second, linearly independent,
solution to equation (1.2.5) for k € Cy. If fi € L*(Ry), then f- ¢ L*(Ry). One
can write a formula, similar to (1.2.10), for k € C:

Gl k) = e(k)f- (0, k) F(x, k) — F(0,k)f (2 )], (1212)

where k) = const # 0. For p(x,ik;) € L*(IRy), it is necessary and sufficient that
J(ik;) = 0. In fact

flik;) =0, f(iky) #0, 1<j<J, (1.2.13)
where [ = " To prove the second relation in (1.2.13), one differentiates (1.2.5) with
respect to k and gets y e

S+ K f —qf = <2kf. (1.2.14)
Existence of the derivative f with respect to k in €, follows easily from equation

1.26). Multiply (1.2.14) by f and (1.2.5) by f, subtract and integrate over Ry,
then by parts, put k = ik;, and get:

2ty [ fide = (11~ 1IN = 110.ik,) )
Thus
/ fidz = L ORI (ik) UL e (1.2.15)

2|L s
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It follows from (1.2.15) that f(l'k,) # 0. The numbers s; > 0 are called the norming

constants:

fED 2ik,
LT ik fliky)
Definition 1.2.1. Scattering data is the triple:

1€j < (1.2:16)

S = {S(k) kyony, 15 <), S(h) = /7((’# k>0, ;>0 (1L2.17)
The Jost function f(k) may vanish at & = 0. If f(0) = 0, then the point k = 0
is called o resonance. If |g(x)| € eyeap(=ca|z|?), ¥ > 1, then the zeros of f(k) in C-
are called resonances. As we have seen above, there are finitely many zeros of f(k)
in @, these zeros are simple, their number J is the number of negative cigenvalues
k;’ 1 € ) < J, of the selfadjoint Dirichlet operator £. If g € Ly ; then the negative
spectrum of £ is finite [M).
The phase shift 6(k), defined in (1.2.18), is related to S(k):

S(k) = 20 (1.2.18)

so that S(k) and 8(k) arc interchangeable in the scattering data. One has f;(z) =
J'(0,ik; ) (), because ﬁé‘—'ﬁﬁ solves (1.2.3). Therefore

o 1 1
e ln
-/n 2 8110,k T e i)
Thus e
¢ = cale il s, <j< (1.2.20)

dagy =
In Section 4.1 the notion of spectral function p(A) is defined. It will be proved in
Section 6.1 for g € Ly, that the formula for the spectral function is:

VAdA
—— AB0;
mlf (VAR T
dp(\) = ¢ (1.2.21)
Do eb(A+A)dN, A <0,

=1

where ¢; are defined in (1.2.19)-(1.2.20). The spectral function is defined in Section 4.1
for any q € L}, (R.), ¢ = §. Such a ¢ may grow at infinity. On the other hand, the
scattering theory is constructed for ¢ € L, .

Lot us define the index of S(k):

1 Bl
J = ind S(k) := 37 Amarg S(k) = m/_mdlnS(k). (1.2.22)

P =g\
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This definition implies that ind S(k) = ind f(=k) = ind f(k) = ~2ind f(k). There-
fore:

N 273 £(0) #0,
-2J - 1if f(0) =0,

because a simple zero k = 0 contributes % to the index, and the index of an analytic
in €. function f(k), such that f(co) = 1, equals to the number of zeros of f(k) in
€, plus half of the number of its zeros on the real axis, provided that all the zeros
are simple. This follows from the argument principle.

In Section 4.2 and Section 5.2 the existence and uniqueness of the transformation
(transmutation) operators will be proved. Namely,

ind S(k) = { (1.2.23)

= in(k.
olek) = aule )+ [ Klaadoodys= U+ Khpn, o= 5, (1229
and
J(z.k) = e** 4+ /.,., A, p)e™vdy := (I + A)fo, fo:=e*=, (1.2.25)

and the properties of the kernels A(z,y) and K(z,y) are discussed in Section 5.2
and Section 4.2 correspondingly. The transformation operator I + K transforms the
solution ¢y to the equation (1.2.3) with ¢ = 0 into the solution ¢ of (1.2.3), satisfying
the same as o, boundary conditions at z = 0. The transformation operator [ + A
transforms the solution fy to equation (1.2.5) with ¢ = 0 into the solution f of (1.2.5)
satisfying the same as fo “boundary conditions at infinity”.

One can prove (see [M] and Sec. 5.7) the following estimates

|A(z, )| € co (lﬂ) , c=const >0, ofz):= / lq(t)|dt, (1.2.26)

Pz + 3o (1) |+ [antew + o (55Y) | < wotore (552) , 2m

2 2
and A(z,y) solves the equation:

L] 00 5
Alz,y) = % /‘P qds + /_}l da/ dtg(s = t)A(s —t, s+ ). (1.2.28)
L 2 (5

By H™ = H™(IR4) we denote Sobolev spaces W™, The kernel A(z,y) is the unique
solution to (1.2.28), and also of the problem (5.1.1)-(5.1.3).

1.3 Statement of the inverse scattering and inverse
spectral problems.
ISP: Joverse Scattering problem (ISP) consists of finding ¢ € L, from the corre-

sponding scattering data S (see (1.2.6)).
A study of ISP consists of the following:



One-di ional inverse ing and sp pr 321

1) One proves that ISP has at most one solution (see Theorem 5.2.1).

2) One finds necessary and sufficient conditions for S to be scattering data corre-
sponding toa g € Ly, (ch ization of the ing data problem).

3) One gives a reconstruction method for calculating g € L, ; from the corresponding

S

In Chapter 5 these three problems are solved.

ISpP: Tuverse spectral problem consists of finding g from the corresponding spec-
tral function

A study of ISpP consists of the similar steps:

1) One proves that ISpP has at most one solution in an appropriate class of ¢: if q
and ¢y from this class generate the same p(A), then ¢, = g2

2) One finds necessary and sufficient conditions on p(\) which guarantee that p(\)
18 & spectral function corresponding to some ¢ from the above class.

3) One gives a reconstruction method for finding g(x) from the corresponding p()).

1.4 Property C for ODE.

Denote by £., operators £ corresponding to potentials g, € Ly 1, and by fim(z, k) the
corresponding Jost solutions, m = 1,2,

Definition 1.4.1. We say that a pair {£,,£;) has property Cy iff the set
{fi(z k) fa(2. k) }vasa is complete (total) in L'(IR.).

This means that if h € L'(IR,,) then
o
{[ () fs (2, K)o, K)dz = 0 Vk>0} SH=0, (14.1)
o
We prove in Section 2.1 that a pair {£,6,} does have property Cy. if g € Ly 5.
Lot g = — " + glz)p, and let ¢; correspond to g = g,

lo-Kp =0, ¢l0.k)=0; ¢'(0,k)=1; B-k6=0, 6(0,k)=1, 6'(0,k)=0.
(1.4.2)

Definition 1.4.2. We say that a pair {:.t2} has property C, iff the set
{01 (- k)ga( )} s complete in L'(0,b) for any b>0, b < oo,

This means that if h € L'(0,b), then:

{[h(z)m(t.k)w(z.k)dr} >h=0. (1.4.3)

Yh>0

Py
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In Theorem 2.2.2 we prove that there is a h # 0 for which
0
/ NI EHOL i /251
o

for a suitable gy # g2, q1,¢2 € L1,1. Therefore Property C, with b = oo does not
hold, in general.

Property Cy is defined similarly to Property C., with functions 8;(z, k) replacing
wylz, k).

In Chapter 2 we prove that properties Cy., €, and Cy hold, and give many appli-
cations of these properties throughout this work.

1.5 A brief description of the basic results.

The basic results of this work include:

1) Proof of properties Cy., €', and Cp. Demonstration of many applications of these
properties.

2) Analysis of the invertibility of the steps in the inversion procedures of Gel'fand-
Levitan (GL) for solving inverse spectral problem:

= L=>K=q, (1.5.1)

where
i 2dl\’ (z,x) 3

= (152)

the kernel L = L(z,y) is:

me:/’ el Apo(uy N (), do(3) = dip(A) = pol(N)), (1.5.3)

{ \/Xd,\' K57!
dpo =

x
0, A<0.

po = o p is the spectral function of £ with ¢ = 0, and K solves the Gel'fand-
Levitan equation

Kix.y) + / K(x,8)L(s,y)ds + L(z,y) =0, 0<y<z. (1.5.4)
o

Our basic result is a proof of the invertibility of all the steps in (1.5.1):

pes Lo K e, (1.5.5)
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which holds under a weak assumption on p. Namely, assume that
PEG, (1.5.6)

whore ¢ Is the set of nondecreasing functions p of bounded variation on every interval
(~00,b), b < oo, such that the following two assumptions, 4,) and Az) hold.
Denote L3(R.,) the set of L*(IRy) functions vanishing in a neighborhood of in-
finity. Let h € L3(R.) and H(}) := [ h(z)po(z, N)dz.
Assumption A;) is:

If h € Lj(R,) and /m H*(\)dp(\) = 0, then h = 0. (1.5.7)

Lot o
M= (H(\):he CP(RL)), H(N) :=/ h(z)¢o(z, \)dz, (15.8)
0

where py and p; belong to P and v := p, — py, see Section 4.2.
Assumption A;) is:

~
If / H*(N)dv =0 VH €M, then v =0. (1.6.9)
—x

In order to insure the to-one correspondence b spectral functions p and
solfadjoint operators £, we assume that ¢ is such that the corresponding € is “in the
limit point at infinity case”. This means that the equation (£ = z)u = 0, Imz > 0
has exactly one nontrivial solution in L*(IR.), fu = —u" + g(z)u. If g € Ly then ¢

is “in the limit point at infinity case”.

3) Analysis of the invertibility of the Marchenko inversion procedure for solving ISP:

S=F=Ag, (1.5.10)
where
1 ye ks L -kyz
Flz) = o [Q[I ~ S(k))e™* da + J};Ia,c 1% = F,(z) + Fy(z), (1.5.11)
dA(z, x)
q(z) = -ZT. (1.5.12)

and A(x, y) solves the Marchenko equation
~
Az, y) + [ A, O)F(s+y)ds + F(x+y) =0, 0<zr< v < o0, (1.5.13)
.

Our basic result is a proof of the invertibility of the steps in (1.5.10):
SeFedeg (1.5.14)

undor the assumption ¢ € L, ;. We also derive a new equation for

Y ——
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A(0,y), 0,
A(u)::{ o

This equation is:
F+ AW+ [ AWFG+i)e= Ay, —o<y<em (151
The function Aly) is of interest because
10 =1+ [ Awetay =14 A0 (15.16)
Therefore the knowledge of A(y) is equivalent to the knowledge of f(k).

In Section 5.5 we give y and sufficient conditions for S to be the scattering
data corresponding to ¢ € L;,;. We also prove that if

la(z)| < crexp(=ealz|?), 7> 1, (1.5.17)

and, in particular, if

q(z) =0 for z > a, (1.5.18)
then S(k) alone determines ¢(x) uniquely, because it determines ky, s; and J uniquely
under the assumption (1.5.17) or (1.5.18).

4) We give a very short and simple proof of the uniqueness theorem which says that
the [-function,
£'(0,k)

Ik "
g € Ly, uniquely. The /-function is equal to Weyl's m-function if

I(k) =

Yk >0, (1.5.19)

9€ L,y

We give many applications of the above uniqueness theorem. In particular, we
e short and simple proofs of the uni th of Marchenko which say that
S determines g € Ly uniquely, and p(A) determines ¢ uniquely. We prove that if

1.5.18) (or (1.5.17)) holds, then cither of the four functions S(k), 8(k), f(k), f'(0,k),
determines glz) uniquely. This result is applied in Chapter 10 to the heat and wave
oquations. It allows one o study some new inverse problems. For example, let

Ut = Uge = q(z)u, >0, t>0, (1.5.20)
u=uy=0att=0. (1.5.21)
u(0,t) = §(t) or u'(0,t) = 4(¢). (1.5.22)
Assume
g=0forz>1, ¢=7§, g¢e€L'0,1), (1.5.23)

TTUTTIEEEEEREN
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and let the extra data (measured data) be
u(l,t) =a(t) Vt>0. (1.5.24)
The inverse problem is: given these data, find q(z).
Another example: Let
W=, -qzu, 0<z<1, t>0, gelL'[o1), (1.5.25)
u(z,0) =0 (1.5.26)
u(0,) =0, wu(l,t)=a(t), a(t)€L'(Ry), a#0. (1.5.27)
The extra data are
ug(1,t) =b(t) Vet >0. (1.5.28)

The inverse problem is: given these data, find q(z).
Using the above uniqueness results, we prove that these two inverse problems have
at most one solution. The proof gives also a constructive procedure for finding ¢.

6) We have already d uni h for some inverse problems with
“incomplete data” "lncomplcle data" means the data which are a proper subset
ul (M ! I data, but i I " of the data is compensated by the

| on q. For le, the classical scattering data nre
the triple (1117) but if (1.5.18) or (1.5.17) is d, then the |
data” alone, such as S(k), or 8(k), or f(k), or f'(0,k), ¥k > 0, determine ¢
uniquely. Another general result of this nature, that we prove in Chapter 7, is
the following one.

Consider, for example, the problem

by =Xy, 0Sz<]; 9;(0)=p;(1)=0. (1.5.29)
Other bound: di can also be idered
Assume lh.u the following data are given.
{AainVii alz), b<z <1}, q(z) € L'[0,1),9=7, (1.5.30)

where 0 < b < 1, and

M) =2046), lgl <1, ¢ 0asj >0, 0= const, 0<o <2 (L5.31)
Assume also
o
Y lyl < oo. (1.5.32)
J=1
We prove
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Theorem 1.5.1. Data (1.5.30)-(1. 531) delermmc uuqulyq(z) ondmmlamlo<
r<hifa>2b If (15.32) is then q is uniquely determined
o >2b.

The ¢ gives the “part of the spectra” sufficient for the unique recovery of g on [0, 4],
For example, if b= § and (L5 32) holds, thcn o =1, s0 “one spectrum” determines
uniquely ¢ on [0, %] My = 1, then ¢ = §, so “half of the spectrum” determines
uniquely g on [0, 5], If b= 5 then “’ of the spectrum” determine uniquely ¢ on
[0} Ho=1, ﬂll‘n o = 2, and “two sp(‘clra determine ¢ uniquely on the whole
interval [0,1). The last result belongs to Borg [B]. By “two spectra™ one means
{A, ) Ufs; ). where pi; are the eigenvalues of the problem:

tuy = pyuy,  wi(0) =0, wuj(1)+ hug(1) = 0. (1.5.33)
In fact, two spectra determine not only ¢ but the boundary conditions as well [M],

6) Our basic results on the spherically symmetric inverse scattering problem with
fixed-energy data are the following.

The first result: 1f g = q(r) = O for r > a, a > 0 is an arbitrary large fixed number,
ro= ol 2 € RY, g =7, and [)'r*|q(r)[*dr < oc, then the data {6 }veec determine
qir) uniquely. Here 6, is the phase shift at a fixed energy &* > 0, £ is the angular
momentum, and £ is any fixed set of positive integers such that

il
lEC’

=00, (1.5.34)

The second result is: 1f ¢ = q(z), € R, ¢ = 0 for |z| > a, g € L*(B,), where
8, = {2« |z] < a}, then the knowledge of the scattering amplitude A(a’,a) at a
fixed energy k¥ > 0 and all o' € §} determine g(x) uniquely [R], [R7). Here 5"
J = 1.2, are arbitrary small open Nuh.«'u in §% and $? is the unit sphere in R*. Thv
seattening amplitude is defined in Section 6.1.

The third result is: The Newton-Sabatier inversion procedure (see [CS), [N]) is
fundamentally wrong.

7) Following [R16] we present, apparently for the first time, a detailed exposition
with proofs) of the Krein inversion theory for solving inverse scattering problem
and prove the consistency of this theory.

8) We give a method for recovery of a quarkonium system (a confining potential)
from a few experimental measurements.

9) We study various propertics of the I-function.

10) We study an inverse scattering problem for inhomogenoeous Schrédinger equation.
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2. Property C for ODE
2.1 Property Cy
By ODE in this section, the equation
(€= k)u = —u" +q(z)u - Ku=0 (2.1.1)

is meant. Assume ¢ € Ly,. Then the Jost solution f(z,k) is uniquely defined. In
Section 1.4 Definition 1.4.1, property C.. is explained. Let us prove

Theorem 2.1.1. If q € Ly, j = 1,2 then property Cy holds.
Proof. We use (1.2.25) and (1.2.26). Denote A(z,y) := Ai(z,y) + Az(zs). Let

A /:w dzh(z) fy (x, k) f2(z, k)
= /o“ dzh(x) [l'”"" + /.s Az, y)e**dy 2.12)
™ /"‘ /“ flll"“h(f'v)fl:(:.:)e"""’]
for some A € L'(R,). Set y+z =8,y - 2 = o and get

R %
/ / Ay, y) Aa (2, 2)e 0+ dyds = / T(z,5)e™ds, (2.1.3)
" . 2z

Dl i s+a s-a
T(z,s) = 5/-(-4.,‘4‘ (x.T).-\, (x. Z )da, (2.1.4)

Using (2.1.3) and (2.1.4) one rewrites (2.1.2) as

where

o / dye e {n(.; + 2/' A(z)28 - 2)h(z)dz + 2/' T(z,25)h(z)dz| ,Vk > 0.
0 0 0

(2.1.5)
The right-hand side is an analytic function of k in € vanishing for all k > 0. Thus,
it vanishes identically in C, and, Iy, for k < 0. Theref

h(s) + 2‘]‘ Alz, 28 = 2)h(z)dz + 2/. T(x,25)h(z)dz = 0,%s > 0. (2.1.6)
. 0

Since A(z,y) and T(z,y) are bounded continuous functions, the Volterra equation
(2.1.6) has only the trivial solution h = 0. (u]

P ————
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Define functions g4 and fi as the solutions to equation (1.2.5) with the following
asymptotics:
g4 = exp(xikz) +o(1), z— —o0, (217
f& = exp(kikz) +of1), = — 400, (2.1.8)
Let us denote fy = f and g4 = g.

Definition 2.1.2. The pair ({1, €} has property C_ iff the set {g 92 )viso is complete
m L'(R.)

Similar definition can be given with (g- ;) replacing g,, j = 1,2.
As abowve, one proves:

Theorem 2.1.8. If g; € Ly )(IR-),j = 1,2, then property C_ holds for {{,,(;}.

By L, (R) we mean the set

Liy(R) = {qg:q= ﬂ,/ (1 + |z|)lg()ldx < oo}. (2.19)

2.2 Properties C, and Cj.

We prove only property C,. Property Cp is proved similarly. Property C., is defined
in Section 1.4

Theorem 2.2.1. If q; € Ly,,,j = 1,2, then property C, holds for {{;,(3}.

Proaf. Our proof is similar to the proof of Theorem 2.1.1. Using (1.2.24) and denoting
0= kg, K = K, 4 K3, one writes

6163 =sin? (k) + / K (2,y) sin(kz) sin(ky)dy
0

1 (22.1)
+ -i/ / Ky (2,y)Ka(z, 5){cos[k(y — 5)] — cos[k(y + s)]}dyds.
0 o
Assume: "
0=/ hz)dy (x, k)2 (z, k)dz ¥k > 0. (2.22)
0
Then . i
0=/ rlxh(:)-/ dxh(x) cos(2kx)
o 0
b s
4»/‘: dnma(kn)/ dzh(z)K(z,z - s) (223)

2 min(b.e)
- [ drconthe) [ w041,
9 H

| =
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where
rem [ aenie) [ [ ato 00K e, ) (conlkly = ) - coslty + ).
o Jo
Lot y = o i= £, y+ 4 2= v. Then
/° J /., " Ku K coslk(y - o))dyds = /o Jo cosER B (3, 2),

where By(z,4) =
| e

- = i St
if, [ ';")A’, (z. "2 ') + K (x. < 5 ’) Ka (z. = "')} v,
" 2z
/ /‘ K Ky conlk(y + ) dgde = / Ba(z, ) cos(ks)ds,
o ] 0

O t+s s—t
= = oy —— ) a2 —— e
By(z,s) : 3 -Hmkn(r. = )l\: (: 2 )
amdw=sH0Ls<riw=2r-sifz <8< 2z

Therefore

b + 25 s
Is/ dxrm{h)/ dah(x) B, (x,8) -/ dsros(ka)/ dxh(z)By(x,8). (2.2.4)
o . 0 s
From (2.2.3) and (2.2.4), taking k = 0o, one gets:

b
/ h(z)dz =0,
0

and (using completeness of the system cos(ks), 0 < k < oo, in L*(0,)) the following
equation:

min(b.e)
0=~ h—?—) - fK(:.: = 8)h(z)dz ~ / dzh(z)K(z,s — z)
. : o2 : (2.25)
dah(z) By (x,5) ~ dzh ,8).
+ [ deh@ e, - [ dshie)Bate,0

The kernels K, 8, and B; are bounded and continuous functions. Therefore, if b < 0o
and A(x) = 0 for z > b, (2.2.5) implies:

13 1)
[hw)l o /, @iz +c [ o),
v v

where ¢ > 0 ks & constant which bounds the kernels 2K, 2B, and 2B, from above and
2y = s, From the above inequality one gets

s (W)l < ce, max Jh(v)], (2:2.6)
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where ¢, 0 < ¢ < b, is sufficiently small so that cc < 1 and b~ ¢ < 2b - 2. Then
inequality (2.2.6) implies h(z) = 0ifb-e <z < b. Repeating this argument, one
proves, in finitely many steps, that i(z) =0,0<x < b.

Theorem 2.2.1 is proved. o

The proof of Theorem 2.2.1 is not valid if b = co. The result is not valid cither if
b= oo Let us give a counterexample.

Theorem 2.2.2. There exists qy,q2 € Ly, and an h # 0, such that
00
/ h(z)pr (@, k)pa(z, k)dz =0 Yk > 0. (227
0

Proof. Let g and gy are two potenetials in Ly, such that S;(k) = Sy(k) Vk > 0,
¢, and £; have one negative cigenvalue — k7, which is the same for £; and £, but
5, # %, o that g # ga. Let b= q2 — q. Let us prove that (2.2.7) holds. One has
fioy = B3y, Lapy = k*py. subtract from the first equation the second and get:

- = Ketqp=hor, pi=p1 -2 9(0,k)=¢0k) =0 (228

Multiply (22.8) by ¢, Integrate over (0,00) and then by parts to get
i o
/ heapydr = (pp) = ¢'1)|g =0, Yk>0. (2.29)
o

At r = 0 we use conditions (2.2.8), and at r = co the phase shifts corresponding to
¢ and g; are the same (because S, (k) = Sa(k)) and therefore the right-hand side of
(229) vanishes. Theorem 2.2.2 is proved.

o]

3. Inverse problem with I-function as the
data

3.1 Uniqueness theorem

Comsider equation (1.2.5) and assume ¢ € Ly Then f(x, k) is analytic in €. Define
the |-function
1'(0, k)
J(k)

From (3.0.1) it follows that /(k) is meromorphic in €, with the finitely many simple
pobes ik, 1 < 5 < J. Indeed, ik, are simple zeros of f(k) and f'(0, ik;) # 0 as follows

I(k) =

(3.1.1)

B . 0
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from (1.2.4). Using (1.2.20), one gets

- LOk) o s ao = ]lo,_o)' (3.1.2)

& = Remems, 1) = SESs g M 7(0)
where Ima; > 0,1 € j € J, and Imag 2 0, ap # 0iff f(0) = 0. We prove that if
q € Ly, and f{0) = 0 then £10) exists and f(0) # 0 (Theorem 3.1.3 below). This is
a fine result.
Lemma 3.1.1. The I(k) equals to the Weyl function m(k).
Proof. The mk) is a function such that 8(z, k) + m(k)p(z, k) € L*(R..) if Imk > 0.
Clearly
Sz, k) = e(k)[0(x, k) + m(k)(z, k)],

where e(k) # 0, Imk > 0. Thus I(k) = 523 2 — m(k) because of (1.2.3)
and (1.2.4) (w]

Our basic uniqueness theorem is:
Theorem 3.1.2. If q; € Ly, j = 1,2, generate the same I(k). then gy = qa.
Proof. Let p == g3 =gy, f; be the Jost solution (1.2.5) corresponding to g;, w = fi—fa.
Then one has
" s qw=Kw=pfy, |ul+w'|=0(1), -+ (3.1.3)

Multiply (3.1.3) by fy, integrate over IR, then by parts, using (3.1.3), and get

| ptstits = @10 - w011
= [100,6)fa(k) = f3(0,k) fr (k) = fi(k) fa(k)[1y (k) = La(K)] = 0. (3.1.4)
By property C. (Theorem 2.1.1), p(x) = 0. (6]
Theorem 3.1.3. If g € Ly, and f(0) = 0, then f(0) exists and £(0) # 0.

Proof. Let us prove that f(k) = ikAy(k), 4,(0) # 0, A, == [ e™A, (t)dt, and
A € LY(R,). Let A1) := L" A(s)ds, A := f(k) - 1, and A(y) = A(0,y), where
Alz,y) I8 defined in (1.2.25) and A(y) € L'(R!) by (1.2.26). Integrating by parts,
one gots A(k) = —exp(ikt) Ay (t)[§° + ikAy = ikA; - 1. Thus f(k) = ikA,. The basic
difficulty is to prove that A, € L'(IR,). If this is done, then limy .o Lkﬂ = £(0) exists
and f(0) = £4,(0). To prove that £(0) # 0, one uses the Wronskian formula (3.2.2)
with 2 = 0 f(~k) (0, k) - /(k)/'(0,~k) = 2ik. Divide by k and let k — 0. Since
existence of f(0) i proved, one goets -](0)]'(0.0) =i, 50 f(0) # 0. We have used
here the existence of the limit limyo f'(0,k) = £'(0,0). The existence of it follows
from (1.2.25)

F10.k) = ik = A(0,0) + [ A,(0,y)e* dy, (3.1.5)

-\
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and
1'(0,0) = ~A(0,0) + /: Az(0,y)dy. (3.1.6)
From (1.2.27) one sees that A, (0,y) € L'(IR.). Thus, to complete the proof, one has

to prove Ay € L'(Ry). To prove this, use (1.5.13) with z = 0 and (1.5.11). Since
f(ik;) = 0, one has A(ik;) = =1. Therefore (1.5.13) with x = 0 yields:

Aw+ [ T AWRE+de+ Fy) =0, y>0. @17
Integrate (3.1.7) over (x,00) to get:
Ai() + ]: Alt) /f Pyt + y)dy dt + /:s R)dy=0, =20, (318)
where F,(y) € L'(IR,.). Integrating by parts yields:
/.,‘ .m]' Flt+y)dydt = .4.(0)/‘°° A= F AOF, (= + t)dt. (3.19)

Becanse 0 = f(0) = 1+ _l'o"b A(y)dy, one has A;(0) = ~1. Therefore (3.1.8) and
3.1.9) imply

A,(z)—/ﬂm.Al.(:)r.(”a)m =0, z>0. (3.1.10)

From this equation and from the inclusion F,(¢) € L' (IR4), one derives Ay € L'(Ry)
as follows. Choose a T(t) € C°(IR4) such that [|F, — Tllsm,) < 0.5, and lot
Q= F, =T Then (3.1.10) can be written as:

Ar(z) - [R Qlz + )Ay(t)dt = a(z) := /‘K T(z+t)A()dt, z>0. (3.1.11)
L o

Since T € CF(Ry) and A € L'(IRy), it follows that A, is bounded. Thus a €
L'(R.). The operator QA; := [ q(z + t)A;(t)dt has norm I|Q||u(n.)-d.'(lt.l
< 0.5. Theredore equation (3.1.3) is uniquely solvable in L'(R.) and A; € L'(R4):
Theorem 3.1.3 is proved.

o
3.2 Characterization of the I-functions
One has
['(0.k) _ f'(0,k) k

1m I (k =) = ——, 321

kg ( " Tm ) P g
where the Wronskian formula was used with z = 0:

TEB S (2.k) - f(z, k)] (z, k) = 2ik. (3.22)

.. &
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From (1.2.21) and (3.2.1) with k = VX, one gets:
"—r ImI(VA)dA =dp, A20. (3.2.3)

The I(k) determines uniquely the points ik;, 1 € j € J, as the (simple) poles of
(k) on the imaginary axis, and the numbers ¢; by (3.1.2). Therefore I(k) determines
uniquely the spectral function p(A) by formula (1.2.21). The characterization of the
class of apectral functions p(A), given in Section 4.6 induces a characterization of the
class of I-functions.

The other characterization of the I-functions one obtains by establishing a one-
to-one correspondence Iy the Ifunction and the ing data S (1.2.17).
Namely, the numbers &; and J, 1 € j < J, are obtained from /(&) since ik; are the
only poles if 7(k) in €, the numbers a; are obtained by the formula (see (1.2.16)
and (3.1.2))

2ik
8y =- - y
a;[f(iky))*
il J(k) s found from J(k). Finally, f(k) can be uniquely recovered from I(k) by
solving & Riemann problem. To derive this problem, define

(3.2.4)

J
k~ ik
p(k) 1= el (e
w(k): ,I:'I’k“h if 1(0) < o, (3.2.5)
and "
(k)= ulk), T1(0)=co, x#K Vi (3.2.6)

Assumption (3.2.5), means that f(0) # 0, and (3.2.6) means £(0) = 0.
Define

hik) = w ' (k) f(k), 1(0) < oo (8.2.7)
hak) 1= wy ' (k) f(k),  1(0) = oo, (3.2.8)

Write (3.2.1) as (k) = yhoe rbs or
ho(k) = g(k)ho(k), =00 <k < oo, (3.2.9)

where Ay (k) = A(k) is analytic in €, hy (k) # 0 in €4, the closure of €., h(o0) = 1
in T, ho (k) == A(=k) has similar properties in €.,

k KB+1

| o
(k) = m if 10) < o0, g(k)= WT if I(0) = oo, (3.2.10)

g(k) > 0 for & > 0, g(k) is bounded in a neighborhiood of k = 0 and has a finite limit
at k= 0. From (32.9) and the properties of h, one gots:

hik) = exp (# l:'+‘?a) 3 (3.2.11)

P
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and
S8 = w(k)h(k), Imk >0, (3212)

In Section 3.4 we prove:
1 AR o z t
2_m/ [1(k) = ikle™*tdk = = — ere" PRt<i0] (32.13)
-0 =1

where r; = —ia;. Taking t = =00 in (3.2.13), one finds step by step all the numbers
v &y and J. 1f 1(0) < o0, then rg = 0. Thus the data (1.2.17) are algorithmically
recovernd from (k) known for all & > 0.

A characterization of 8 is given in Section 5.5, and thus an implicit characterization
of I{k) & also given.

3.3 Inversion procedures.

Baoth procedures in Section 3.2, which allow one to construct either p()) or § from
I{k) can be considered as inversion procedures I = g because in Chapter 4 and
Chapter 5 reconstruction procedures are given for recovery of g(z) from either plA)
or 8 Al three data, I(k), p(A) and S are equivalent. Thus, our

ane

I(k) = p(A) = q(z), (331)
I(k) = 8§ = q(x), (332)

where (1.5.1) gives the details of the step p(A) = g(z), and (1.5.10) gives the details
of the step S = g(z),

3.4  Properties of (k)

In this section, we derive the following formula for 7(k):
Theorem 3.4.1. One has

J o0
- a = iy &
1(k) = ik + 'E_o k—L_— W +a(k), a(k) _/o a(t)e*dt, (341)

where by, Tmog > 0 if and only if £(0) = 0, a; are the constants defined in (3.1.2),
fme, >0.1<5<J,a(t) € L'(Ry) of (0) # 0 and g € Ly, at) € L'(Rs) ¥
f(0) = 0 and g € L, 2(R,)

We prove this result in sevoral steps which are formulated as lemmas, Using
1.2.25) one gots

1(k) = %= A0.0) + [~ A (O,y)e%dy

1+ A(k) @342)
Aly) = A, y), Alk) = / Alg)e™vdy.
L)
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One has (cf. (3.2.5))

. Lk —ik 4
J06) = 14 A(k) o l.(k)u(k)m. wk) := 11 ;T:—kfx #k Vi (343)
Jo(k) #0in €y, fo(e) =1, (3:4.4)

Jolk) is analytic in €,, the factor ¢4, in (3.4.3) is present if and only if £(0) = 0,
and w(k) i = wo(k).
Lemma 3.4.2. If f(0) # 0 and q € Ly (IRy) then

(k) = 1+ B0, (e € W), lwracsy = [ Gl + e < oo

(3.4.5)
Proof. It is suficient to prove that, for any 1 € j < J, the function
'—'—‘—'—"il(k) =14 / g0 dt, g, € WH(R.). (3.4.6)

ik

Since n& =]+ i’—“.f and since A(y) € W' (IR,) provided that g € L, (R)
(sew (1.2, 26} (1.2.27)), it is sufficient to check that

I “') / a(t)e™de, ge W' (R,). (3.4.7)
Note that
k- ik, e - e >
ﬁ‘i = [lc"' [8(0) = 2kje=Mta(t)] de, 8(t) == { o ;; g. (3.4.7')

One has f(ik;) = 0, thus

¥ CR CE ) oy
=ik, - k=i / HAW) g — ey
= /o A(”),-A.u,-/n elh=iky)e gy /: &1, (s) ds,
where s i
hyla) =i / Aly)e -2 dy = / At + s)e=b gy, (3.4.8)
From (3.4.8) one obtains (3.4.7) since Aly) € WHY(R,).
Lemma 3 4.2 is proved. o

Lemma 3.4.3. Jf £(0) = 0 and q € L, 3(R, ), then (3.4.5) holds.

_ [——
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Proof. The proof goes as above with one difference: if £(0) = 0 then kg = 0 is present
in formula (3.4.1) and in formula (3.4.8) with kqy = 0 one has

ho(s) = l'/:l’ At + 5)dt. (3.4.9)

Thus, using (1.2.26), one gets

/““lﬁa(ﬂ)ldﬂ < r'/:B d.-/: dt /: lq(u)| du
=2r/ow dn/!m du/":‘lq(u)hiuS%/ﬂ’mdal’mlq(u)lndu

00
= 4(*/ wlg(u)|du <00 if g€ Lya(Ry),
0
where ¢ > 0 is a constant. Similarly one checks that hj(s) € L'(IRy) if g € L, :(R..)
Lemma 3.4.3 is proved.
Lemuma 3.4.4. Formula (3.4.1) holds.
Proof. Write

Clearly
iz f[ il s Z =0, k>0
Rk T e e Bt
By the Wiener-Levy theorem [GRS. §17), one has
1 0
| +/ bit)e'* dt, b(t) € WI(R,), (3.4.5)
Jo(k) o
where fo(k) is defined in (3.4.3). Actually, the Wiener-Levy theorem yields b(t) €

L'(IL) However, since by € WUY(IRy), one can prove that b(t) € W' (IR,.).
Indeed, b and by are related by the equation:

(1+bh)(1+8) =1, YkeR,
which implies . .
b= —by — bod,
t
b(t) = —bo(t) = /o bo(t — s)b(s) ds == ~by — by » b, (3.4.10)

where « is the convolution operation.



N

One- jonal inverse and sp I probl 337

Sisce & € L'(R,) and b € L'(IR,) the convolution & « b € L'(Ry). So,
differentiating (3.4.10) one sees that b’ € L'(R.), as claimed.
From the above formulas one gots:

J J
& B CEERE e
1(k) = (5~ A(0)+ Ay) (1) (H'J_zak-ik,) nk+c+,§k_ih +a, (3.4.11)

where ¢ s & constant defined in (3.4.13) below, the constants a, are defined in (3.4.14)
and the function @ is defined in (3.4.15). We will prove that ¢ = 0 (see (3.4.17)).
To desive (3.4.11), we have used the formula:

b= ik [Spge)|” - l/u Wiy (t)de| = ~b(0) - 7
T IS T g =al0)mb,
and made the following transformations:
J ,
1(k) = ik = A(0) = b(0) = ¥ -+ &, ~ A@O)b+ 4,53 oyt
= k—ik;
J J - ~rs J -
;1 A(0) + b(0)] a(k) = gliky) glik;)c,
- y + g + S 3.4.12
,;o k - ik; J; g ‘gn'.'—lk, ( )
where
F(k) 1= =0 + A, = A0)b+ A,5.
Comparing (3.4.12) and (3.4.11) one concludes that
J
ci= =A(0) - b(0) +i )¢y, (3.4.13)
j=0
ay 1= =c; [ky -+ A(0) + b(0) - G(iky)] , (3.4.14)
= (k) = (ik;)
k) = k) + 3 T, (3.4.15)
=0 - ik;

To complete the proof of Lemma 3.4.4 one has to prove that ¢ = 0, where ¢ is
defined i (34.13). This follows from the asymptotics of /(k) as k = co. Namely,
one has .

- A0) 1 -,
AR oot = A (3.4.16)
From (3.4.16) and (3.4.2) one gots:

I(8) = (k- A(0) + A)) [1 i L’:’) i (l)}"

i k
-(u-mnj.)(l-pf‘-.,(kl)n(i))=.1+ou). k= 400, (3.4.17)
From (X417) and (3.4.11) it follows that ¢ = 0. Lemma 3.4.4 is proved. (u]

P —
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Lemma 3.4.5. One has a; = irj, r; >0, 1 < j < J, and ro = 0 if f(0) # 0, and
ro > 0 if f(0) =0.

Proof. From (3.1.2) one gets: -

T LT IS . o5 ) :
a; = %k, l?kj =irj, Tj 2%, = = (3.4.18)
If j = 0, then
£'(0,0)
= ResI(k) := —/———. 3.4.19
ao = Res I (k) 70) (3.4.19)

Here by Resi=o I(k) we mean the right-hand side of (3.4.19) since I(k) is, in general,
not analytic in a disc centered at k = 0, it is analytic in € and, in general, cannot

be continued analytically into C_. By Theorem 3.1.3 the right-hand side of (3.4.19)
is well defined and

Gy e iy = (3.4.20)

ot 1
O
From (1.2.25) one gets:
jo =i [ Awyd. (3421)
o

Since A(y) is a real-valued function if g(z) is real-valued (this follows from the
integral equation (1.2.28), formula (3.4.21) shows that

ool
[f (0)] <0, (3.4.22)
and (3.4.20) implies
o > 0. (3.4.23)
Lemma 3.4.5 is proved. o

One may be interested in the properties of function a(t) in (3.4.1). These can be
obtained from (3.4.15) and (3.4.5) as in the proof of Lemma 3.4.2 and Lemma 3.4.3.
In particular, the statements of Theorem 3.4.1 are obtained.

Remark 3.4.6. Even if q(z) Z 0 is compactly supported, one cannot claim that a(t)
is compactly supported.

Proof. Assume for simplicity that J = 0 and f(0) # 0. In this case, if a(t) is compactly
supported then I(k) is an entire function of exponential type. It is proved in (R,
p-278] that if g(z) # 0 is compactly supported, ¢ € L'(IR..), then f(k) has infinitely
many zeros in €. The function f'(0,2) # 0 if f(z) = 0. Indeed, if f(z) = 0 and
£'(0,z) = 0 then f(z,2) = 0 by the uniqueness of the solution of the Cauchy problem
for equation (1.2.5) with k = 2. Since f(x,2) # 0, one has a contradiction, which
proves that f'(0,z) # 0 if f(z) = 0. Thus I(k) cannot be an entire function if
q(z) 20, g(z) € L'(R4) and g(z) is compactly supported. o
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Let us consider the following question:
What are the potentials for which a(t) = 0 in (3.4.1)?
In other words, let us assume

4
= il
I(k)_zk+§_ T
=0

(3.4.24)

and find g(z) corresponding to I-function (3.4.24), and describe the decay properties
of g(z) as z = +o0.

We give two approaches to this problem. The first one is as follows.

By definition

£'(0,k) = I(k)f(k), f'(0,~k)=1I(=k)f(~k), ke€R. (34.25)
Using (3.4.25) and (1.2.11) one gets [I(k) — I(—k)]f(k) f(—k) = 2ik, or

f(R)f(=Fk) = Iml;(k), Vk € R. (3.4.26)

By (3.4.18) one can write (see (1.2.21)) the spectral function corresponding to the
I-function (3.4.24) (VA = k):

Q) gy, A>0,
dp(A) = - (3.4.27)
Z 1 2k;ri6(X + k3)dA, A <0,
where d()) is the delta-function.
Knowing dp(A) one can recover g(z) algorithmically by the scheme (1.5.1).
Consider an example. Suppose f(0) #0, J=1,

50 e iry(k +ik1) _ . mk L
1) =ik + o =ikt Tt =i (ke i ) - e (0429

Then (3.4.27) yields:

dA vV
doy={ ™ (Vi+33), 2>, (3.4.29)
Wi 6(A+ k2)dX, A <O.

Thus (1.5.3) yields:

) 1/ r;\/_ sm\/Xzsm\/—y sh(kiz) sh(kiy)

ey e o (3.4.30)
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and, setting A\ = k? and taking for simplicity 2k;r, = 1, one finds:
_2r [ dkk® sin(kz)sin(ky)

UHeRN= S5 o B =
_2n /°° dk sin(kz) sin(ky)
el K + K (3.4.31)
_ 1 [ dk[cosk(z —y) — cosk(z +y)]
Tl k2 + k2
= T (o—kile—yl _ g=ki(z+v)
,Zkl(e 1 e ), k>0,
where the known formula was used:
1 [* coskz 1
— ——dk = —e % 5 4.
= ZaE . a>0, z € R (3.4.32)
Thus
_ T [mkilemyl _ pmki(ety)] 4 ShK1Z) sh(kiy)
L@y = g [e e ] e B (3.4.33)

Equation (1.5.4) with kernel (3.4.33) is not an integral equation with degenerate
kernel:

z ekilt=yl _e=ki(t+y)  gh(k,t) sh(kiy)
K+ [ K [ e o (GG
_ethilevl_ emhGH) sh(kiz) sh(kyy)
2k /11 ky B

This equation can be solved analytically [Ra], but the solution is long. By this
reason we do not give the theory developed in [Ra], but give the second approach to
a study of the properties of g(z) given I(k) of the form (3.4.28). This approach is
based on the theory of the Riemann problem [G].

Equations (3.4.26) and (3.4.28) imply

k% + k}

F(k)f(=k) = ol 2=k 4. (3.4.35)
1%
The function k4 ik
K o
folk) := £(k) 7= iki #0 in C4. (3.4.36)
Write (3.4.35) as
k- ik k+ik _ K2+ k2

SR ik SR = T 7

Thus
K+ K}
folk) = 13 o

h (k)= fo_(l—B (3.4.37)
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The function fo(—k) #0in C_, fo(c0) = 1in €, s0 h:= 7L is analytic in C_.
Consider (3.4.37) as a Riemann problem. One has

Bk 1 e R4k
mdmm b= _wdlnm =0. (3.4.38)

Therefore (see [G]) problem (3.4.37) is uniquely solvable. Its solution is:

_ k+iky _k—in
RS e S CR s (3.4.39)
as one can check.
Thus, by (3.4.36),
- ik‘
ey = k T (3.4.40)

The corresponding S-matrix is:

_ f(=k) _ (k+ika)(k +im)
=" = G mE= )

Thus
Fy(z) = % /_ :[1 - S(k)le**dk = O (e7*%) for z >0, (3.4.42)
Fi(a)=s1e- %,
= F(z) = Fy(z) + Fy(z) = O (e7™7). (3.4.43)

Equation (1.5.13) implies A(z,z) = O (e=2417), s0

4(z) = O (e=2ki%) | i Ao (3.4.44)

Thus, if £(0) # 0 and a(t) = 0 then g(x) decays exponentially at the rate deter-
mined by the number ki, k, = lmln k;.

<
If £(0) =0, J =0, and q(t) = 0, then

I(k) = ik + ﬂ (3.4.45)

f(k)f(=k) = k2 e o> 0. (3.4.46)

Let fo(k) = &%ﬂﬂ Then equation (3.4.46) implies:

olk)fo(~K) = ::::2, VA= T (3.4.47)
()

[ e



342 A.G. Ramm

and fo(k) #0 in C..
Thus, since ind g £l = 0, fo(k) is uniquely determined by the Riemann problem

k2 4ug
(3.4.47).
One has:
k+i k="
=z —k) =
Aol = e el-B=
and
k _ f(=k) _k+iy
HRls s S Gl (3:4.48)
0 e k+ivg\ e
; oo gikz
= -2“'0/ g fik = 2upe= %, 13 >0,
21 Je k10
and Fy(z) = 0.
So one gets:
F(z) = Fy(z) = 2we™"°%, o >0 (3.4.49)

Equation (1.5.13) yields:
L
A+ [ Al ge o = <2e Y, y2az0. @45

Solving (3.4.50) yields:
1

A(z,y) = _2u0e*”°‘1+V’m, (3.4.51)
The corresponding potential (1.5.12) is
a(z) =0 (e>*%), =z =¥eo. (3.4.52)

If g(z) = O (e7*%), k > 0, then a(t) in (3.4.1) decays exponentially. Indeed, in this
case b'(t), Ai(y), b(t), Ay * b decay exponentially, so g(t) decays exponentially, and,
by (3.4.15), the function ﬂkz:qu(:kl_) := h with h(t) decaying exponentially. We leave
the details to the reader.

4. Inverse spectral problem

4.1 Auxiliary results

4.1.1 Transformation operators

If A, and A, are linear operators in a Banach space X, and T is a boundedly invertible
linear operator such that AT = T A,, then T is called a transformation (transmuta-
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tion) operator. If Ay f = Af then AyTf = AT f, so that T' sends eigenfunctions of A,
into eigenfunctions of Ay with the same eigenvalue. Let ¢; = —“gg +q;(@), 5 = 1,2, be
selfadjoint in H := L?(0, c0) operators generated by the Dirichlet boundary condition
at @ = 0. Other selfadjoint boundary conditions can be considered also, for example,
w'(0) = ha(0) = 0, h = const > 0.

Theorem 4.1.1. Transformation operator for a pair {€y, €} exists and is of the form
Tf = (I+K)f, where the operator I+ K is defined in (1.2.24) and the kernel K (,y)
1s the unique solution to the problem:

Fanl9) — 1)K (5,8 = Ky = K, @1
K(2,0) =0 (4.1.2)

il
Klo0)= 3 [ (0= . (413)

Proof. Consider for simplicity the case g2 = 0, g1 = g. The proof is similar in the
case go # 0. If g = 0, then (4.1.3) can be written as
dK (z,a
@) = 2—((12’—”, K(0,0) = 0. (4.1.4)

It 6T = Tlof and Tf = f + [ K(z,9)f dy, then
K (z,x &
'@ + a0 - (K@) - 0D J = (15)

"= [ K wtuty= - [ Knsas-Kea)s [} + Ko,

Since f € D(£,), f(0) = 0, and f is arbitrary otherwise, (4.1.5) implies (4.1.1),
(4.1.2) and (4.1.4). Conversely, if K (z,y) solves (4.1.1), (4.1.2) and (4.1.4), then I+ K
is the transformation operator. To finish the proof of Theorem 4.1.1 we need to prove
existence of the solution to (4.1.1), (4.1.2) and (4.1.4). Let £ =z +y, n = & —y,
K(z,y) := B(€,7). Then (4.1.1), (4.1.2) and (4.1.4) can be written as

§/2
B=30(537) 5 BE0 =5 [ o Beo=0. @1
Integrate (4.1.6) to get
n
Bi(e = 1g (%) s (5 u ”) B(e, T)dr. (L)

Integrate (4.1.7) with respect to & over (1,€) and get

B(&n) = %/: g (3)ds+ %/f /qu (S ; ’) B(s,7)dnds: (4.1.8)

This is a Volterra integral equation which has a solution, this solution is unique, and
it can be obtained by iterations.
Theorem 4.1.1 is proved. (]
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4.1.2 Spectral function

Consider the problem (1.2.1). The classical result, going back to Weyl, is:

Theorem 4.1.2. There ezists a 17 inereasing functi p(X), possibly

nonunique, such that for every h € L%(0,00), there egists 71()\) € L*(R;dp) such
that

[ van= [T R, 5= i [ s@ela s, w1s)
A i Jim |

where the limit is understood in L?(IR, dp) sense. If the potential q in (1.2.1) generates
the Dirichlet operator € in the limit point at infinity case, then p(\) is uniquely defined
by q, otherwise p(\) is defined by q nonuniquely. The spectral function of € has the
following properties:

0
/ P20 oo ¥ S 0 p(N)i= 31”»*/2 +o(32), A= oo, (41.10)
o

Theorem 4.1.3. (Weyl). For any A, ImX # 0, there ezists m()\) such that
W(z,X) = @(z, \) + m(A)p(z, A) € L (R4). (4.1.11)
The function m()) is analytic in C4 and in C_.
The function m()) is called Weyl’s function, or m-function, and W is Weyl’s
solution. Theorem 4.1.2 and Theorem 4.1.3 are proved in [M].
4.2 Uniqueness theorem
Let p(\) be a non-decreasing function of bounded variation on every compact subset
of the real axis. Let h € L§(IRy), where L3(IR4) is a subset of L?(IR4) functions
which vanish near infinity. Let o := ﬂ\k_ﬁl and
o0
H()\) =/ h(z)po(z, N)dz. (4.2.1)
(1

Our first assumption 4;) on p(}) is:
oo
/ H*(\)dp(A\) =0, = h(z)=0. (4.2.2)
oo

This implication should hold for any h € LE(IR+.). It holds, for example, if dp()) # 0
on a set which has a finite limit point: in this case the entire function of A, H()),
vanishes identically, and thus h = 0.
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Denote by P a subset of p(A) with the following property: if p1,p2 € P, v =
p1— p2, and H := {H()) : h € C§°(IR+)}, where H()) is defined in (4.2.1), then

oo
{/ H2(\dv(\) =0 VH e u} = v(\) =0. (4.2.3)
—oo0
Our second assumption Az) on p(A) is:
peEP. (4.2.4)

Let us start with two lemmas.

Lemma 4.2.1. Spectral functions p()) of an operator £, = —di:y + q(x) in the limit-
point at infinity case belong to P.

Proof. Let p1,p2 be two spectral functions corresponding to ¢1 and &, ¢ = £,
j=1,2,v=p; —ps and (¥) ff; H*(\)dv =0Vh e L3(Ry). Let I+V and I+ W
be the transformation operators corresponding to ¢; and £> respectively, such that

o= (I +V)pr = (I + W)ga, (4.2.5)
where ; is the regular solution (1.2.1) corresponding to g;. Condition () implies
I(Z + V)Rl = [I(I + W*)h|| - Vh € L*(0,b), (4.2.6)

where, for example,

i b
vh= [ Vaphod, V= [ Voo, @27)

It follows from (4.2.6) that
I+V* =UI+W*), (4.2.8)

where U is a unitary operator in L?(0,b). Indeed, U is an isometry and it is surjective
because I + V* is.

To finish the proof, one uses Lemma 4.2.2 below and concludes from (4.2.8) that
V=W s0oV =W, p1 = ¢, and ¢ = g2 := ¢. Since, by assumption, ¢ is in the
limit-point at infinity case, there is only one spectral function p corresponding to g,
50 p1 = p2 = p.

Lemma 4.2.2. If U is unitary and V and W are Volterra operators, then (4.2.8)
implies V = W.

Proof. From (4.2.8) one gets I + V + (I + W)U*. Since U is unitary, one has (I +
V)(I+V*) = (I+W)(I+W*). Because V is a Volterra operator, (I+V)~! = I+V;,
where 1/ is also a Volterra (of the same type as V in (4.2.7)). Thus,(I+Vi)(I+W) =
(I+V*)(I+Wy),or

Vi+ W+ VW = V* + Wi + V' W} (429

—_—
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The left-hand side in (4.2.9) is a Volterra operator of the type V in (4.2.7), while its
right-hand side is a Volterra operator of the type V*. Since they are equal, each of
them must be equal to zero. Thus, Vi(I + W) = —W, or (I + V)" (I+ W) =1, or
V=W. (u]

Theorem 4.2.3. (Marchenko) The spectral function determines £, uniquely.

Proof. If £, and £, have the same spectral function p()), then
oo oo
WiE = [ EmOPde= [~ 1m)Pde Ve 130.), (4.210)
- —oo0

where o
Hj(\) ;=/ h(z)p;(z,k)dz, k=VA, j=1,2.
0

Let I + K be the transformation operator @, = (I + K)y1, and g := (I + K*)h. Then
Ha = (h,02) = (h, (I + K)p1) = (g,1). From (4.2.10) one gets [[h] = (I + K*)h.
Thus I + K* is isometric, and, because K* is a Volterra operator, the range of I + K*
is the whole space L?(0,b). Therefore I+ K* is unitary. This implies K* = 0. Indeed,
(I+ K*)~! =1+ K (unitarity) and (I + K*)~! = I + V* (Volterra property of K*).
Thus K = V*, so K = V* = 0. Therefore v, = ¢, and q1 = g2, 50 €y, = £g,. o

Remark 4.2.4. If py = cpy, ¢ = const > 0, then the above argument is applicable
and shows that ¢ must be equal to 1, ¢ = 1 and q; = g. Indeed, the above argument
yields the unitarity of the operator \/c(I + K*), which implies c =1 and K* = 0.

The following lemma is useful:

Lemma 4.2.5. If bl + Q = 0, where b= const and Q is a compact linear operator,
then b=10 and Q = 0.

A simple proof is left to the reader.

4.3 Reconstruction procedure

Assume that p(}), the spectral function corresponding to £,, is given. How can one
reconstruct £, that is, to find ¢(z)? We assume for simplicity the Dirichlet boundary
condition at z = 0, but the method allows one to reconstruct the boundary condition
without knowing it a priori.

The reconstruction procedure (GL, the Gel'fand-Levitan procedure,) is given in
(1.5.1)-(1.5.4). Its basic step consists of the derivation of equation (1.5.4) and of a
study of this equation.

Let us derive (1.5.4) We start with the formula

/ " ola, Ry, VR = (z - y), (431)
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and assume that L(z,y) is a continuous function of z,y in [0,b) x [0,b) for any b €
(0,00).
If 0 < y < z, one gets from (4.3.1) the relation:

~
/ @@, VNp(y, VA)dp(A) =0, 0<y<a. (4.3.2)
-
Using (1.2.24), one gets oo = (I +K)~'¢. Applying (I+K)~! to ¢(y, VA) in (4.3.2),
one gets
0= / Vo (y, VN dp = I(z,y), 0<y<a. (4.3.3)

The right-hand side can be rewritten as:

Hew = [ ™ (o + Koo(®)eov, VAo - po)

+ [+ Ken)@polys VR)doo
= L(z,y) + /I K(z,8)L(s,y)ds + 6(z — y) + /1 K(z,s)d(s — y)ds
o o
= L(z,y) + /I K(z,8)L(s,y)ds + K(z,y), 0<y<uz. (4.3.4)
0

From (4.3.3) and (4.3.4) one gets, using continuity at y = z, equation (1.5.4).

In the above proof the integrals (4.3.2)-(4.3.4) are understood in the distributional
sense. If the first inequality (4.1.10) holds, then the above integrals over (—oc,n) are
well defined in the classical sense. If one assumes that the integral in (4.3.5) converges
to a function L(x) which is twice differentiable in the classical sense:

L(z) = lim Ly(z) := lim / 1_COS I\/_ do()),

then the above proof can be understood in the classical sense, provided that
(%) SUP, z(a ) [En(@)| < c(a,b) for any —co < a < b < oo. If p()) is a spectral
function corresponding to ¢, then the sequence Ln(z) satisfies (x). It is known (see
[L]) that the sequence

wuzn)= [ ol Mol D) - [ Bl sV

-
satisfies (*) and converges to zero.
Lemma 4.3.1. Assume (4.2.2) and suppose that the function L(z) € H}, (IRy),

B = /m icon(zv)) C";A(I‘/X)dau)

—o0

(4.3.5)

Then equation (1.5.4) has a solution in L?(0,b) for any b > 0, and this solution is
unique.

"\
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Proof. Equation (1.5.4) is of Fredholm-type: its kernel

L(z,y) = Lz +y) - L(z - y), L(z,2) = L(2z), L(0)=0, (4.3.6)
is in H'(0,b) x H*(0,b) for any b € (0, 00). Therefore Lemma 4.3.1 is proved if it is
proved that the homogeneous version of (1.5.4) has only the trivial solution. Let

h(y) + /0Z L(s,y)h(s)ds =0, 0<y<=z, heL*0,z). (4.3.7)

Because L(z,y) is a real-valued function, one may assume that h(y) is real-valued.
Multiply (4.3.7) by h(y), integrate over (0,z), and use (4.2.1), (1.5.3) and Parseval’s
equation to get

o=+ [~ B o =+ [ H V- = [ . (438

From (4.2.2) and (4.3.8) it follows that h = 0. ]
If the kernel K (z,y) is found from equation (1.5.4), then g(z) is found by formula

(4.1.4).

4.4 Invertibility of the reconstruction steps

Our basic result is:

Theorem 4.4.1. Assume (4.2.2), (4.2.3), and suppose L(z) € H}, (Ry). Then each
of the steps in (1.5.1) is invertible, so that (1.5.5) holds.

Proof. 1. Step. p = L is done by formula (1.5.3). Let us prove L => p. If there are
p1 and p corresponding to the same L(z,y), and v := p; — p,, then

0= [~ eot@VRnts, VR (41)
Multiply (4.4.1) by h(z)h(y), h € C§°(IR+), use (4.2.1) and get
0= /w H’(A)du()\) VH € H. (4.4.2)
—o0
By (4.2.3) it follows that v = 0, 50 py = p,. Thus L = p. o

2. Step. L = K is done by solving (1.5.4). Lemma 4.3.1 says that K is uniquely
determined by L. Let us do the step K = L. Put y = z in (1.5.4), use (4.3.5) and
(4.3.6) and get:

L(2z) + Ax K(z,s)[L(z + s) = L(z - 5)}ds = —K(z,z), (4.4.3)
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or
2z T
10+ [ K@y - o))y - /0 K(@,2-y)LW)dy = -K(z,2).  (44.4)

This is a Volterra integral equation for L(z) which has a solution and the solution is
unique. Thus the step K = L is done. The functions L(z) and K (,x) are of the
same smoothness. o

9. Step. K = q is done by formula (4.1.4), g(x) is one derivative less smooth than
K(z,x) and therefore one derivative less smooth than L(z). Thus ¢ € L} (IRy).
The step ¢ = K is done by solving the Goursat problem (4.1.1), (4.1.2), (4.1.4) (with
g2 = 0), or, equivalently, by solving Volterra equation (4.1.8), which is solvable and has
a unique solution. The corresponding K (z,y) is in Hj, (R4 x Ry) if ¢ € L} (Ry.).
a

Theorem 4.4.1 is proved. (=]

Let us prove that the g obtained by formula (4.1.4) generates the function K (z,y)
identical to the function K obtained in Step 2. The idea of the proof is to show that
both K and K, solve the problem (4.1.1), (4.1.2), (4.1.4) with the same ¢; = ¢
and go = 0. This is clear for K;. In order to prove it for K, it is sufficient to
derive from equation (1.5.4) equations (4.1.1) and (4.1.2) with ¢ given by (4.1.4).
Let us do this. Equation (4.1.2) follows from (1.2.5) because L(z,0) = 0. Define
19)= 8%’7 - BB—:'} =03 33. Apply D to (1.5.4) assuming L(z,y) twice differentiable
with respect to = and y, in which case K(z,y) is also twice differentiable. (See
Remark 4.4.3). By (4.3.6), DL = 0, so

DK + LK@, 2)L(0,0) + Ko, 1)L, 0)
z z
+/ Kaz(w,8)L(s,y)ds — / K (z,5)Lyy(s,y)ds = 0.
0 o
Integrate by parts the last integral, (use (4.1.2)), and get

(DK)(z,y) + /DZ(DK)(Z, S)L(s,y)ds + KL+ (K: + Ky)L(z,y)

+ K (La(2,y) = Lo(5,y)ls=2) =0, 0<y<g,

(4.4.5)

where K = K(z,z), L = L(z,y), K = %i‘—’), K. + K, = K, and L,(z,y) —
Ly(5,u)|s== = 0. Subtract from (4.4.5) equation (1.5.4) multiplied by g(), denote
DK (z,y) — q(z)K(z,y) := v(z,y), and get:

o)+ | e e 0 O <y = = (446)
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provided that —g(2)L(z,y) + 2K L(z,y) = 0, which is true because of (4.1.4). Equa-
tion (4.4.6) has only the trivial solution by Lemma 4.3.1. Thus v = 0, and equation
(4.1.1) is derived.

We have proved

Lemma 4.4.2. If L(z,y) is twice differentiable continuously or in L?-sense then the
solution K (z,y) of (1.5.4) solves (4.1.1), (4.1.2) with q given by (4.1.4).

Remark 4.4.3. If a Fredholm equation
(I + A(z))u = f(z) (4.4.7)

in a Banach space X depends on a parameter x continuously in the sense limy_o ||A(z+
h) — A(z)|| = 0, limpo || f(z + h) — f(x)|| = 0, and at = = zo equation (4.4.7) has
N(I + A(zo)) = {0}, where N(A) = {u : Au = 0}, then the solution u(z) exists,
is unique, and depends continuously on x in some neighborhood of zo, |z — 0| < .
If the data, that is, A(z) and f(z), have m derivatives with respect to z, then the
solution has the same number of derwatives.

Derivatives are understood in the strong sense for the elements of X and in the
operator norm for the operator A(z).

4.5 Characterization of the class of spectral func-
tions of the Sturm-Liouville operators

(From Theorem 4.4.1 it follows that if (4.2.2) holds and L(z) € H} (Ry), then
q € L},.(IR4). Condition (4.2.3) was used only to prove L = p, so if one starts with
a g € L}, (IRy), then by diagram (1.5.5) one gets L(z,y) by formula (4.3.6), where
L(z) € H.,.(Ry). If (4.2.3) holds, then one gets from L(z) a unique p()).

Recall that assumption 4, ) is (4.2.2). Let A3) be the assumption L(z) € H™H (R).

loc

Theorem 4.5.1. If A;) holds, and p is a spectral function of €, ¢ € H[».(IR4),
then assumption A3) holds. Conversely, if assumptions A;) and A3) hold, then p is
a spectral function of €y, q € H(IRy).

Proof. 1f A;) holds and q € H[?,(IR), then L(z) € H"*'(IR4) by (4.1.4). If 4;) and
Ajy) hold, then g € H}}, (IR4) by (1.5.2), because equation (1.5.4) is uniquely solvable,
and (1.5.5) holds by Theorem 4.4.1. o

4.6 Relation to the inverse scattering problem

Assume in the section that ¢ € Ly . Then the scattering data S are (1.2.17) and the
spectral function is (1.2.21).
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Let us show how to get dp, given S. If S is given then s;, k; and J are known. If
one finds f(k) then dp is recovered because

4k} 1
ST =
[ (k)] 85

as follows from (1.2.20) and (1.2.16). To find f(k), consider the Riemann problem

(4.6.1)

f(k) = S(=k)f(=k), keR, f(x)=1, (4.6.2)
which can be written as (see (3.4.3)):
k) = S(-0 28 fo ()i ina (k) = 2, (69)
[ ol )i ks s vllnen o, e
Jo(k) = S(=k) W) k—mf“( k) if indS(k) = —-2J - 1. (4.6.4)

Note that w(—k) = T(‘kS if k € IR. The function fo(k) is analytic in €, and has
no zeros in €4, and fo(—k) has similar properties in €. Therefore problems (4.6.3)
and (4.6.4) have unique solutions:

/ﬂk):exp{%/w M’l‘ﬁ} if ind S(k) = —2J, Imk >0,

- =

(4.6.5)
& 1 [ log[S(-t)w=2(t) ]
folb) e {Tm ./_m t—k a (4.6.6)
if indS(k) = —2J -1, TImk >0,
and

F(k) = fo(k)yw(k) if indS(k) = ~2J, Imk >0, (4.6.7)
1K) = j.,(k)w(k)k—:i; if indS(k) = -2/ -1, Imk>0. (4.6.8)

One can calculate f(z) for k > 0 by taking k = k + i0 in (4.6.7) or (4.6.8). Thus,
to find dp, given S, one goes through the following steps: 1) one finds J, s;, kj,
1< j < J; 2) one calculates ind S(k) := J. If 7 = —2J, then one calculates f(k) by
formulas (4.6.5), (4.6.7), where w(k) is defined in (3.4.3), and ¢; by formula (4.6.1),
and, finally, dp by formula (1.2.21).

If 7 = —=2J — 1, then one calculates f(k) by formulas (4.6.6) and (4.6.8), where
& > 0 is an arbitrary number such that & # k;, 1 < j < J. If f(k) is found, one
calculates ¢; by formula (4.6.1), and then dp by formula (1.2.21). Note that fo(k) in
(4.6.6) depends on &, but f(k) in (4.6.8) does not.

This completes the description of the step S = p.

Let us show how to get S given dp(\).

From formula (1.2.21) one finds J, k;, ¢; and |f(k)|. If | £(0)| # O, then |fo(k)| =
|f(k)| if k € R. Thus, if |f(0)| # 0, then log fo(k) is analytic in C,. and vanishes at

W 2\
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infinity. It can be found in € from the values of its real part log | fo(k)| by Schwarz’s
formula for the half-plane:

log fo(k) = / l°§ ol 4y 1m0, (4.6.9)
It £(0) # 0, then f = fow, so
f(k) = exp { /_m W} w(k), Imk>0. (4.6.10)

If | £(0)| = 0, then the same formula (4.6.10) remains valid. One can see this because
——%ﬂ is analytic in €4, has no zeroes in C4, tends to 1 at infinity, and |w(k)[ = |f(k)|
if k € R.

Let us summarize the step dp => S: one finds J, k;, c;, calculates f(k) by formula

(4.6.10), and then S(k) = —/L(‘—)l, and s; are calculated by formula (4.6.1). To calculate

f(k) for k > 0 one takes k = k + 10 in (4.6.10) and gets:
o) d
109 =exp{ L [~ EOME L rog) st} wit

2 (4.6.11)
= | f(k)|w(k exp{ P/ ——‘°g‘/(t”‘"} k>0.

5. Inverse scattering on half-line

5.1 Auxiliary material

5.1.1 Transformation operators

Theorem 5.1.1. If ¢ € Ly, then there exists a unique operator I + A such that
(1.2.25) - (1.2.28) hold, and A(z,y) solves the following Goursat problem:

Azz —q(@)A = Ay,0<z <y < o0, (5.1.1)
1 [
A(z)= 3 / q(s)ds, (5.1.2)
,J,‘,m A(z,y) = ];Tx Az (z,y) = “\];rgx Ay(z,y) =0. (5.1.3)
Proof. Equations (5.1.1) and (5.1.2) are derived similarly to the derivation of the

similar equations for K(z,y) in Theorem 4.1.1. Relations (5.1.3) follow from the
estimates (1.2.26) - (1.2.27), which give more precise information than (5.1.3). Esti-
mates (1.2.26) - (1.2.28) can be derived from the Volterra equation (1.2.28) which is

I O\
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solvable by iterations. Equation (1.2.28) can be derived, for example, similarly to the
derivation of equation (4.1.8), or by substituting (1.2.25) into (1.2.6).
A detailed derivation of all of the results of Theorem 5.1.1 can be found in [M]. O

5.1.2 Statement of the direct scattering problem on half-axis.
Existence and uniqueness of its solution.

The direct scattering problem on half-line consists of finding the solution v = (r, k)
to the equation:

Y+ k) —q(r)Y =0, r>0, (5.1.4)
satisfying the boundary conditions at 7 = 0 and at r = oco:
$(0) =0, (5.1.5)
%(r) = e sin(kr 4 8) +o(1), r — 400, (5.1.6)
where 6 = §(k) is called the phase shift, and it has to be bound. An equivalent
formulation of (5.1.6) is:

= ;;[e"k' — S(R)e™*"] + 0(1), T oo, .1.7)

where S(k) = “ﬁl = ¢?¥(K), Clearly

i k 5
Y(r k) = 3[f(r,~k) = S(K)f(r, k)] = a(k)e(r, k), a(k) := ® (5.1.8)
where @(r, k) is defined in (1.2.1), see also (1.2.10). From (5.1.8), (1.2.7) and (5.1.6)
one gets
o(r k) = U(k =—=sin(kr + d(k)) + 0(1), r— 0. (5.1.9)

Existence and uniqueness of the scattering solution ¥ (r, k) follows from (5.1.8) because
existence and uniqueness of the regular solution ¢(r, k) follows from (1.2.1) or from
(1.2.9).

5.1.3 Higher angular momenta.
If one studies the three-dimensional scattering problem with a spherically-symmetric

potential g(z) = q(r), € R?, |z| = r, then the scattering solution ¥(r, a, k) solves
the problem:

[V2 +k* - q(r)]¥ = 0in R® (5.1.10)

ikaz ' ety 1 SR 2
y=e¢ +A(a,u,k)T+o S hTE= |z| =& 00,0’ := ;,aeS. (5.1.11)
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Here S? is the unit sphere in R® a € S? is given, A(a, @, k) is called the scattering
amplitude. If ¢ = ¢(r), then A(a’,a,k) = A(a' - @, k). The converse is a theorem of
Ramm [R], p.130. The scattering solution solves the integral equation:

eiklz—yl

¥ = ekaT — /w 9(@,y,k)aW)b(y, o, k)dy, g:= (5.1.12)

4w — gy’

It is known that

. A ug(kr) — z —
ikaoz _ ;C ' = = il
e = ;_0 i Yi(@')Ye(a), o := SRS J,+%, (5.1.13)

Y¢(a) are orthonormal in L?(S?) spherical harmonics, ¥ = Yim, —¢ < m < ¢, and
summation over 7 in (5.1.13) is understood but not shown, and J¢(r) is the Bessel
function.

If ¢ = q(r), then

o
4 7,k —
w=3 T"w——[(r )y o e@), (5.1.14)
=0
where T
gar
B+ K — alr)ibe — ( = Jy=o, (5.1.15)
e o
e = €' sin kr—7+61 +0(1), 700, (5.1.16)
$e=0@"*), 70 (5.1.17)
Relation (5.1.16) is equivalent to
i%(¢+1)
he = %’ [e7#* — e Spe*™] + o(1), T = oo, (5.1.18)

similar to (5.1.8), which is (5.1.18) with £ = 0. If ¢ = g(r), then the scattering
amplitude A(a',a,) = A(e - @, k) can be written as

Al ayk) = A(k)Yi(e')Ye(a), (5.1.19)
=0

while in the general case g = (), one has
Ao, k) = Ay, k)Ye(a). (5.1.20)
=0
If ¢ = q(r) then S¢ in (5.1.18) are related to A¢ in (5.1.19) by the formula

k
Se=1-5—Ac (5.1.21)
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In the general case ¢ = g(z), one has a relation between S-matrix and the scattering
amplitude: -

S=I--—A (5.1.22)
50 that (5.1.21) is a consequence of (5.1.22) in the case ¢ = g(r) : S¢ are the eigenvalues
of S in the eigenbasis of spherical harmonics. Since S is unitary, one has |S,| = 1,
50 8¢ = e*% for some real numbers &, which are called phase-shifts. These numbers
are the same as in (5.1.17) (cf. (5.1.18)). From (5.1.21) one gets

Ag(k) = ‘%’e""' sin(d¢). (5.1.23)
The Green function ge(r, p), which solves the equation
@ o e+ Bg: .
(F RS T) 9e==8(r=p), - —ikge 3 0, (5.1.24)

can be written explicitly:

g,(r,m:{ ' pulbp)futhr) r2p Fui= %,

ot (5.1.25)
Fy' Qotlkr)forlkp), 1< p, or(kr) = %40,
and the function ¥¢(r, k) solves the equation:
2
vl k) = wtr) = [ ot atovalo, R (5.1.26)
0

The function Fy(k) is the Wronskian W(foe, @o,¢); @or(kr) is defined in (5.1.25) and
for is the solution to (5.1.15) (with ¢ = 0) with the asymptotics

for =€*" +0(1), 1400, forlkr) = e T (up(kr) + ive(kr)),

(5.1.27)
v = \/??;Nlﬂ (kr).

Let @¢(r, k) be the regular solution to (5.1.15) which is defined by the asymptotics as

el 41
Pulr k) = m +o(rt*Y), r—0. (5.1.28)
Then
wi(r, k) = ae(k)pe(r, k),
@e(r,k) = 'f’k(?%sin (kr = %” +6,) +o0(1), r—o0. 0r:29)
Lemma 5.1.2. One has:
sup |ae(k)| < oo, (5.1.30)

=012,
where k > 0 is an arbitrary fived number.

We omit the proof of this lemma.

(AT
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5.1.4 Eigenfunction expansion
We assume that g € Ly and h € C3°(R4), th = —h" + q(x)h, A = k?, let g =
ﬂ%&/ﬁﬂl, y >« > 0, be 'the resolvent kernel of £ : (£ — \)g = §(z — y), gh =
XY HA= f0°° 9(z,y, \)hdy, and f; = f(y,ik;). Then % = —gh+ }&gh. Integrate this
with respect to A € € over [A| = N and divide by 2i to get h = — ;L. IAi=n 9hd) +
ﬁfm:N %ﬁdA := I + I,.The function gh is analytic with respect to A on the
complex plane with the cut (0,00) except for the points A = —Ic2 B
which are simple poles of gh, and limy 00 Io = 0, because |égh| = o( ) as N = oo.
Therefore:

/ [g(X +i0)h — g(\ — 70) h]dA+ZZm fi B (5.1.31)

IA+A2]|= 6
One has (cf. (1.2.10)):

9(A +i0) — g(A —i0) _ f(=R)f (k) = fly, —k)F (k)

% Lol 2R
= ﬁw(z,k}cp(y,k), E=H/AI08
Also
—ﬁ %AH’I b ghd\ = — Res)\:_kja gh
ik £
/ £y ;?;))m = s, fi(x)h;, hj - /., fhdy,

s; are defined in (1.2.16), and

oy = J@ik) _ fi(x)
¢(m,zkj)_f,(0’ikj) _f,((’)‘ikj). (5.1.32)

Therefore
J

S & 2k dk
we) = [ ([ ety ) oty 20 O IUICTCEY
This implies (cf. (1.2.21), (1.2.20), (1.2.16)):

: ey Kk
e ;/O e R, ) e + ]; s 55(2)£;(v) s

= [ ote VR0, VN

We have proved the eigenfunction expansion theorem for h € C§°(IR,.). Since this
set is dense in L?(IRy), one gets the theorem for h € L*(IR).
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Theorem 5.1.3. Ifq € L1, then (5.1.33) holds for any h € L*(IR+) and the integrals
converge in L*(IR.) sense. Parseval’s equality is:

i oo & 2 i3 o
s = sl + 2 [~ ROP e Fo= [ b b (.15
=1

5.2 Statement of the inverse scattering problem on
the half-line. Uniqueness theorem

In Section 1.3 the statement of the ISP is given. Let us prove the uniqueness theorem.
Theorem 5.2.1. If q1,q2 € Ly, generate the same data (1.2.17), then q1 = q,.

Proof. We prove that the data (1.2.17) determine uniquely /(k), and this implies
¢ = g2 by Theorem 3.1.2.

Claim 1. If (1.2.17) is given, then f(k) is uniquely determined.
Assume there are fi(k) and fy(k) corresponding to the data (1.2.17). Then

() (5 ) 4 ;
O e s S (5.2.1)

The left-hand side of (5.2.1) is analytic in C; and tends to 1 as |k| — oo, k € Cy,
and the right-hand side of (5.2.1) is analytic in C_, and tends to 1 as |k| = oo,
k € C_. By analytic continuation #- k) is an analytic function in €, which tends to

2 (K
1 as |[k| = o0, k € €. Thus, by Liouville theorem, % = = i [a]

Claim 2. If (1.2.17) is given, then f'(0,k) is uniquely defined.
Assume there are f] (0, k) and £3(0, k) corresponding to (1.2.17). By the Wronskian
relation (1.2.11), taking into account that fi (k) = fa(k) := f(k) by Claim 1, one gets

[£1(0, k) = £3(0, k)] f(=k) = [£{(0, =k) = f3(0, k)] £ (k) = 0. (5.2.2)
Denote w(k) := £{(0,k) — f3(0, k). Then:
w(k) _ w(=k) i
=B = R FeR (5.2.3)
The function %% is analytic in €. and tends to zero as [k| = oo, k € €, and %j—g

J(k)
has similar properties in €_. It follows that % =0, so f{(0,k) = f4(0,k). Let us
check that %%' is analytic in €. One has to check that w(ik;) = 0. This follows
from(1.2.16): if f(k), s; and k; are given, then f'(0,1k;) are uniquely determined.
Let us check that w(k) — 0 as |[k| = oo, k € C4. Using (3.1.5) it is sufficient
to check that A(0,0) is uniquely determined by f(k), because the integral in (3.1.5)

R N
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tends to zero as |k| = oo, k € €4 by the Riemann-Lebesgue lemma. From (1.5.16),
integrating by parts one gets:

o
OIS = ﬁ/o eV 4,(0,y)dy. (5.2.4)
Thus
A(0,0) = — lim [ik(f(k) — 1)]. (5.2.5)
k—aoo
Claim 2 is proved. o
Thus, Theorem 5.2.1 is proved. o

5.3 Reconstruction procedure

This procedure is described in (1.5.10).
Let us derive equation (1.5.13). Our starting point is formula (5.1.34):
J
= 2k*dk
[ vtebrotn ) T + S0 =0 voa20 63
From (1.2.10) and (1.2.25) one gets:
ko(z, k)

H0) = sin(kz + 6) +/wA(z,y)sin(ky + 0)dy

(5.3.2)
= (I + A)sin(kz +6), & =204(k).
Apply to (5.3.1) operator (I + A)~!, acting on the functions of y, and get:

2 oc)“’,,(zk) —kjy —
"/0 T sm(ky+6dk+>:;s,f] =0, y>z>0. (5.33)

From (5.3.2), (5.3.3), and (1.2.25) with k = ik;, one gets:

(I +4) (% /00 sin(kz + §) sin(ky + J)dk)
0

J (5.34)
(i A) Z ehEH) =0y 5 2 >0

One has

2 = o
:/ sin(kz + 6) sin(ky + 6)dk = %/ coslk(z — y)Jdk
7 Jo 7 Jo
1873 e
£ ;/ cos{k(z + y) + 26(k))dk = 5(z, y) — 2_/ (€2806) _ 1) gik(z49) g
T Jo /e

1 [
=d(z — — = )] ik () g7,
(z~y)+ o= /ﬂJl S(k)e dk.
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] From (1.5.11), (5.3.4) and (5.3.5) one gets (1.5.13). By continuity equation (1.5.13),
derived for y > = > 0, remains valid for y > 2 > 0. (@]

i Theorem 5.3.1. If g € Ly, and F is defined by (1.5.11) then equation (1.5.13) has
a solution in L'(R;) N L®(IR;), R, := [z,00), for any = > 0, and this solution is
unique.

Let us outline the steps of the proof.
Step 1. Ifq € Ly, then F(z), defined by (1.5.11) satisfies the following estimates:

|F(22)] < eo(a), IF(22) + Ale,2)] < eo(e), IF'20) - L2 < eot(@),  (5:86)
where o(z) is defined in (1.2.26), and

IFl 22wy + 1F Nl ry) + IF 2o ryy + [12F (@)1 gy ) < 00, (5.3.7)

0 oo
/ / |F(s + y)|dsdy < oo. (5.3.8)

o Jo
Step 2. Equation

(I + F7)h := h(y) +/ h(s)F(s+y)ds=0, y>z>0 (5.3.9)

is of Fredholm type in L' (IR.), L*(R;) and in L®(IR.). It has only the trivial solution
h=0.

Using estimates (5.3.6) — (5.3.8) and the criteria of compactness in L?(IR;), p =
1,2,00, one checks that F, is compact in these spaces for any x > 0. The space
L' L* C L? because |||z < [All1[lAlloo; where [|hllp := [|h]|lzr(w,). We need the
following lemma:

Lemma 5.3.2. Let h solve (5.3.9). If h € L' := L'(R;), then h € L®. Ifh € L',
then h € L*. If h € L?, then h € L.

Proof. If h solves (5.3.9), then [|Alle < [|Allx suppqx |F(y)| < e(@)||hlli < oo, where
o(x) = 0 as = — oo. Also [|All} < [ dyo*(ZE2)[[A} < ex(@)]|RI} < oo, ci(z) = 0
as z — 0o. So the first claim is proved.

Also [lAlly < [[hllsupys, f5° 1F(s + w)ldy = ea(@)|hlly, e2(z) = 0 as & — oo. If
h € L%, then [|h]|os < [|hll25upy>2 (f7 [F(s +y)ds)* = ca(@)lIhfle, cs(x) - 0 as
T — 0. a

Lemma 5.3.3. If h € L' solves (5.3.9) and & > 0, then h = 0.

| N
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Proof. By Lemma 5.3.2, h € L2 N L*. It is sufficient to give a proof assuming z = 0.
The function F(z) is real-valued, so one can assume that h is real-valued. Multiply
(5.3.9) by h and integrate over (z,0) to get

1™ . J o 2
(B2 + o= [ [1= SR (k)dk+ D s; e *i*h(s)ds) =0,
2 /‘“’ i=1 (/ ) (5.3.10)

-~ 00 1i
= / e h(s)ds,
L

where [|hl] = [[hllz2(w) one gets %o h(K)dk = 0. Also, |3 [°2, S(k) h*(k)dk| <
& [, [h(K)[dk = ||h||*. Therefore (5.3.10) implies s; =0, 0 = h; := [ he~%%ds,
1<j<J,and

(h,}) = (h, S(~k)h(~k)), (5311)

where (h,§) := f:o Z(k)Tk)dk. Since h is real valued, one has 7:(—]:). The unitarity
of § implies S~ (k) = S(~k) = S(k), k € IR, and [|S(~k)h(=k)|| = ||7;(—k)||A Because
of (5.3.11), one has equality sign in the Cauchy inequality (I’L,S(—k)ﬁ(—k) < ||71||7.
This means that h(k) = S(—k)h(=k), and (1.2.17) implies

N ) (5.3.12)

Because h; = 0, one has h(ik;) = 0, and if £(0) # 0, then 9%3 is analytic in €, and

vanishes as |k| = oo, k € o0, k € C4. Also 9{:—3 is analytic in C_ and vanishes

as |k| = oo, k € C_. Therefore, by analytic continuation, 5‘—?% is analytic in € and
vanishes as [k| — co. By Liouville theorem, 33 = 0, so h(k) = 0 and h = 0.

If f(0) = 0, then, by Theorem 3.1.3, f(k) = ik/I,(k)v A,(0) # 0, and the above
argument \\'kas. a

Because F; is compact in L?(IR;), the Fredholm alternative is applicable to (5.3.9),
and Lemma 5.3.3 implies that (1.5.13) has a solution in L?(IR;) for any z > 0, and
this solution is unique. Note that the free term in (1.5.13) is —F(z + y), and this
function of y belongs to L*(R;) (cf. (5.3.8)). Because F, is compact in L'(IR;),
Lemma 5.3.3 and Lemma 5.3.2 imply existence and uniqueness of the solution to
(1.5.13) in L'(IR;) for any > 0, and F(z +y) € L*(RR;) for any = > 0. Note
that the solution to (1.5.13) in L'(IR;) is the same as its solution in L?(IR;). This is
established by the argument used in the proof of Lemma 5.3.2.

We give a method for the derivation of the estimates (5.3.6) - (5.3.8). Estimate

T 0 5
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(5.3.8) is an immediate consequence of the first estimate (5.3.6). Indeed,

00 OO oc 2
L e pdsay < ([ maxirt vy

< c</0m/:olqialmy)2 < C(/Dmt|q(t)|dt)2 s

Let us prove the first estimate (5.3.6). Put in (1.5.13) z = y:
00
Az, z) + / A(z,8)F(s + z)dz + F(2z) = 0. (5.3.13)
»
Thus o
|F(2x)| < |A(z, )| +/ |A(z, 8)F(s + z)|dz. (5.3.14)
z

From (1.2.26) and (5.3.14) one gets

|F(22)] < co(a) + c/mg (’%*) |F(s +2)|ds

o (5.3.15)
< co(x) + ca(z)/ |F(s + z)|ds < co(x),

where ¢ = const > 0 stands for various constants and we have used the estimate

0o o
sup/ |F(s + x)|ds < / |F(t)|dt = ¢ < oo.
z 0

220

This estimate can be derived from (1.2.26). Write (1.2.26) as
o0
A(z,z—z) +/ At +2 - z)F(t)dt+ F(2) =0, z>2x>0. (5.3.16)

Let us prove that equation (5.3.16) is uniquely solvable for F in LP(IRy), p = oo,
p=1forallz > ¥ where N is a sufficiently large number. In fact, we prove that the
operator in (5.3.16) has small norm in LP(IRy) in NV is sufficiently large. Its norm in
L*(IRx) is not more than

00 oo
sup/ |A(z,t + 2 — z)|dt < c/ la(s)|ds
D>NIN T+ 5N

00 o0 o0
< c/ dt/ lg(s)|ds = c/ (s = N)lg(s)|ds < 1
N t N
because g € L, ;. We have used estimate (1.2.26) above. The function A(z,—z) €

L¥(IRy). so our claim is proved for p = oo. Consider the case p = 1. One has
the following upper estimate for the norm of the operator in (5.3.16) in L'(IRy):

Y, @3 N
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supsy [ |A(@t+ 2 = 2)ldz < supsy o Az, + v)ldo < [ dv [73 lalds =
2f:°(s - z)lglds > Oasx — oo. Also [y |A(z,z — z)|dz < co. Thus equation
(5.3.16) is uniquely solvable in- L} (IRy) for all z > —';! if N is sufficiently large. In
order to finish the proof of the first estimate (5.3.6) it is sufficient to prove that
||F||zs(0,n) < ¢ < oo. This estimate is obvious for Fy(z) (cf. (1.5.11)). Let us prove
it for Fy(z). Using (3.4.3), (3.4.5), (3.4.5'), (3.4.6), one gets

_ oy k) = F-R)(REEE), s S o ix
1- 5 = TEZLRE — (e A(Ic)](l+b(k))(1+§)(1+ (@2;7)

where all the Fourier transforms are taken of W!(IR;) functions. Thus, one can
conclude that Fy(z) € L®(IRy) if one can prove that [ := ABW-A®) 5 the Fourier

transform of L*(IR) function. One has I = fow dyA(y) ‘."T

oo 00 00 ik(z+y) _ gik(z—y)
/ e** I(k)dk = / dyA(y) / e
=i ) ! (5.3.18)

= / dyA(y)in[l — sgn(z —y)] = 2i1r/ dyA(y).
0 T

and

From (1.2.26) it follows that f:o A(y)dy € L*(IR.). We have proved that ||F|| = (g, )+
1P|l 1w, < oo. Differentiate (5.3.13) to get.

2F'(2z) + A(z,z) — A(z,z)F(2z) + /oc A;(z,s)F(s + z)ds
dA(z,2) (5.3.19)
-

oo
+ / Az, s)F'(s +z)ds =0, A:=
or

F'(2z) = "(I) Az, z)F(20) ——/ [A:(x,5) — Au(z, 5)]F(s + x)ds.  (5.3.20)

Onehas [ zlqld < oo, [§° al Az, 2)[[F (22)ldz < sup, so(al Az, ) [§° |F(2a)lds <
¢. Let us check that [ := f0°° :tlf:c[A,(I.S) — Ay(z,8)]F(s + z)ds| dz < oo. Use
(12.27) and get I < ¢ [;° zo(x) [ o (52) |F(s+2)|dsdz < ¢ [;° o(z)dz [;° |F(y)|dy:
SUP,; 30,632 20 (%3* %) < ¢ < 00. The desired estimate is derived.

The third estimate (5.3.6), |F'(2z) — “2| < co?(z) follows from (5.3.20) be-
cause |A(z,7)| < co(z), |F(2x)| < co(x), and f’x |Az(z,s) — Ag(z,8)||F(s + z)ds <
ca(z) [ o (5£2) |F(s + 7)|ds < co®(z) [ |F(s + z)lds < co*(z). The estimate
|F(27) + A(x,7)| < co(z) follows similarly from (5.3.13) and (1.2.26). Theorem 5.3.1
is proved.
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5.4 Invertibility of the steps of the reconstruction
procedure

The reconstruction procedure is (1.5.10). 1. The step S = F is done by formula
1.5.11).
( To do the step F' = S, one takes £ - —oo in (1.5.11) and finds s, kj, and J.
Thus Fy(z) is found and Fy = F — Fy is found. From Fy(z) and finds 1 — S(k) by the
inverse Fourier transform. So S(k) is found and the data S (see (1.2.17)) is found

2. The step F = A is done by solving equation (1.5.13). By Theorem 5.3.1 this
equation is uniquely solvable in L' (IRz) N L=(IR) for all z > 0if g € Ly 3, that is, if
F came from S corresponding to q € Ly ;.

To do the step A = F, one finds f(k) =1+ fu'x A(0, y)e**¥dy, then the numbers
ikj, the zeros of f(k) in @, the number J, 1 < j < J, and S(k) = ,‘k‘)’ . The
numbers s; are found by formula (1.2.16), where

F1(0,ik;) = —k; — A(0,0) + /0 * 420, )ebvdy. 41)

Thus A = S and S = F by formula (1.5.11). We also give a direct way to do the
step A = F.
Write equation (1.5.13) with z =2 +y, v = s+ y, as

(I+B,)F := F(:)+/oD A(z,v+z—2)F(v)dv = —A(z,2—1), 2>22>0. (54.2)

The norm of the operator B; in L}, is estimated as follows:

; ; v 5
1821 < sup [ 1AGe,v o - 2z < csup [ a(z+u)dz5c/ o(tydt,
v>0Jo v>0Jo 2 =

(5.4.3)
where o(z) = fxm |q(t)|dt and the estimate (1.2.26) was used. If zp is sufficiently large
then ||B;|| < 1 for 2 > z because [° o(t)dt — 0 as z — o if g € L. Therefore
equation (5.4.2) is uniquely solvable in L}, for all z > z (by the contraction mapping
principle), and so F'(z) is uniquely determined for all z > 2z.

Now rewrite (5.4.2) as

220 o
F(:)+/ Az, v+z-2)F(v)dv = —-A(z,z—:r)—/ Az, v+z-2)F(v)dv. (5.4.4)

This is a Volterra equation for F(z) on the finite interval (0, 2xo). It is uniquely
solvable since its kernel is a continuous function. One can put = 0 in (5.4.4) and
the kernel A(0,v - z) is a continuous function of v and z, and the right-hand side of
(5.4.4) at = 0/is a continuous function of z. Thus F(z) is uniquely recovered for all
2 > 0 from A(z,y), y > = > 0. Step S = F is done.

3. The step A = g is done by formula (1.5.12). The converse step ¢ = A is done
by solving Volterra equation (1.2.28), or, equivalently, the Goursat problem (5.1.1)
(5.1.3).
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‘We have proved:
Theorem 5.4.1. If ¢ € Ly, and S are the camespandmg data (1.2.17), then each

T

step in (1.5.10) is invertible. In particular, the by the p
(1.5.10) equals to the original potential q.

Remark 5.4.2. If g € L1, and A, := Ay(x,y) is the solution to (1.2.28), then A,
satisfies equation (1.5.13) and, by the uniqueness of its solution, A, = A, where A
is the function obtained by the scheme (1.5.10). Therefore the q obtained by (1.5.10)
equals to the original q.

Remark 5.4.3. One can verify directly that the solution A(z,y) to (1.5.13) solves the
Goursat problem (5.1.1) - (5.1.3). This is done as in Section 4.4, Step 3. Therefore
q(z), obtained by the scheme (1.5.10), generates the same A(z,y) which was obtained
at the second step of this scheme, and therefore this q generates the original scattering
data.

Remark 5.4.4. The uniqueness Theorem 5.2.1 does not imply that if one starts with a
qo = Ly, computes the corresponding scattering data (1.2.17), and applies inversion
scheme (1.5.10), then the q is obtained by this scheme is equal to qo. Logically it is
possible that this q generates data S, which generate by the scheme(1.5.10) potential
q1, ete. To close this loop one has to check that g = qo. This is done in Theorem 5.4.1,
because go = 72'1—"},;5-] =1 (@)E

5.5 Characterization of the scattering data

In this Section we give a necessary and sufficient condition for the data (1.2.17) to be
the scattering data corresponding to ¢ € Ly ;. In Section 5.7 we give such conditions
on S for ¢ to be compactly supported, or ¢ € L?(IR.).

Theorem 5.5.1. If ¢ € Ly, then the /allawiny conditions hold: 1) (1.2.23); 2)
ki >0,8>0,1<j<J, Sk)=_S8(-k)=S"'(k), k>0, S() =1; 3) (53.7)
hold. Conversely, if S satisfies conditions 1) - 3), then S corresponds to a unique
q€ L.

Proof. The necessity of conditions 1) - 3) has been proved in Theorem 5.3.1. Let
us prove the sufficiency. If conditions 1) - 3) hold, then the scheme (1.5.10) yields
a unique potential, as was proved in Remark 5.4.2. Indeed, equation (1.5.13) is of
Fredholm type in L'(IR;) for every = > 0 if F satisfies (5.3.7). Moreover, equation
(5.3.9) has only the trivial solution if conditions 1) - 3) hold. Every solution to (5.3.9)
in L' (IR ) is also a solution in L(IR;) and in L*(IR.), and the proof of the uniqueness
of the solution to (5.3.9) under the conditions 1) - 3) goes as in Theorem 5.3.1. The
role of f(k) is played by the unique solution of the Riemann problem:

f+(k) = S(=k)f-(k) (5.5.1)

which consists of finding two functions fy (k) and f_ (k) satisfying equation (5.5.1)
such that f, is an analytic function in Cy, fi(ik;) = 0, fi(ik;) # 0,1 € j <
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J, fi(o0) = 1, and f_(k) is an analytic function in €_ such that f_(-ik;) = 0,
fo(=iks) # 0,1 < j < J, f-(c0) = 1, and £i.(0) = 0 if indS(k) = —2J - 1,
£4(0) # 0 if ind S(k) —2J. Existence of a solution to (5.5.1) follows from the
non-negativity of ind S(=k) = —ind S(k). Uniqueness of the solution to the above
problem is proved as follows. Denote fi(k) := f(k) and f_(k) = f(=k). Assume
that fi and fa solve the above problem. Then equation (5.5.1) implies

QEA; - 25 ; JkER,  fultky) = fa20ik;) =0, fulik;) #£0;  fa(ik;) £0,
fi(o0) = fa(co) = 1.
(5.5.2)
The function % is analytic in €, and tends to 1 at infinity in €., The function

L(_lm %y is analytic in € and tends to 1 at infinity in C_. Both functions agree on

IR. Thus % is analytic in € and tends to 1 at infinity. Therefore fi(k) = fa(k).
To complete the proof we need to check that g, obtained by (1.5.10), belongs to Ly, ;.
In other words, that g = —2%?’2 € Ly,1. To prove this, use (5.3.19) and (5.3.20).
It is sufficient to check that F'(2z) € Ly, A(z,z)F(2x) € Ly, and f:°[/1,(m,s) =
A (w,8)|F(s + 2)ds € Ly ;. The first inclusion follows from ||F'|| 5y (r,) < oo. Let
us prove that lim_, o[z F(2)] = 0. One has [ sF'ds = 2F(z) — [ Fds. Because
oF" € L'(R+) and F € L'(IRy) it follows that the limit co = limiz—conF exists.
This limit has to be zero: if F' = & +o(%) as & — 00, and ¢ # 0, then F' & L!(IR..).
Now [5= z|F(22) A(z, @)|da < ¢ [ |A(x, @)|de < co. The last inequality follows from
(5.3.13): since F(2z) € L'(IR..) it is sufficient to check that fxm Az, 8)F(s + m)ds €
LY(IR). One has [ dz [°°|A(=, 9)||F(s +z)|ds < [5° dzor(2z) [2° | A, s)|ds < c.

Here
or(3) = SgPIF(y)I» or € L'(Ry). (5.5.3)
vz
Note that limz .~ o (x) = 0 because op () is monotonically decreasing and belongs
to L' (IR+).
(=]
5.6 A new equation of Marchenko-type
The basic result of this Section is:
Theorem 5.6.1. Equation
F(y) + Ay / AQ@)F(t + y)dt = A(=y), —o0 <y < oo, (5:6.1)

holds, where A(y) = A(0,1), A(y) =0 for y < 0, A(,y) is defined in (1.2.25) and
F(z) is defined in (1.5.11).

AT
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Proof. Take the Fourier transform of (5.6.1) in the sense of distributions and get:

) + A(€) + A(-E)F(€) = A(-6), (5.6.2)
where, by (1.5.11),
J
F(&)=1-5(-§)+2r > s;6(6 + ik;). (5.6.3)
=1
Use (1.5.16), the equation S(€)f(€) = f(—€), add 1 to both sides of (5.3.8), and get:
1(6) + F(~)F(€) = f(=8). (5.6.4)

From (5.6.3) and (5.6.4) one gets:

£(8) = f(-O)[S(-8) 2n2s, (€ +iky)]) = £(6) - 2n2s,6(s +ik;) f(=€) = f(€),
U=l I=1

(5.6.5)

where the equation d(¢ + ik;)f(—€) = 0 was used. This equation holds because

flik;) = 0, and the product 6(¢ + ik;) f(—¢) makes sense because f(£) is analytic

in C.. Equation (5.6.5) holds obviously, and since each of our steps was invertible,

equation (5.6.1) holds. o

Remark 5.6.2. Equation (5.6.1) has a unique solution A(y), such that A(y) €
L'(R.) and A(y) =0 fory < 0.

Proof. Equation (5.6.1) for y > 0 is identical with (1.5.13) because A(-y) = 0 for
y > 0. Equation (1.5.13) has a solution in L'(IR) and this solution is unique, see
Theorem 5.3.1. Thus, equation (5.6.1) cannot have more than one solution, because
every solution A(y) € L'(Ry), A(y) = 0 for y < 0, of (5.6.1) solves (1.5.13), and
(1.5.13) has no more than one solution. On the other hand, the solution A(y) €
L'(IR ) of (1.5.13) does exist, is unique, and solves (5.6.1), as was shown in the proof
of Theorem 5.6.1. This proves Remark 5.6.2. (u]

5.7 Inequalities for the transformation operators
and applications

5.7.1 Inequalities for A and F

The scattering data (1.2. l7)s_dmfy the following conditions:
s; >0, S(—k) = S(k) = S~'(k), k € R, S(c0) =1,

B) J := indS(k) f _dlogS(k) is a nonpositive integer,

C)Felr,p=1 .uul p =00, zF' € L', L? := LP(0,00).

If one wants to study the characteristic properties of the scattering data, that is, a
necessary and sufficient condition on these data to guarantee that the corresponding
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potential: belongs to a prescribed functional class, then conditions A) and B) are
always necessary for a real-valued ¢ to be in Ly, the usual class in the scattering
theory, or in some other class for which the scattering theory is constructed, and a
condition of the type C) determines actually the class of potentials g. Conditions
A) and B) are consequences of the selfadjointness of the Hamiltonian, finiteness of
its negative spectrum, and the unitarity of the S — matrix. Our aim is to derive
inequalities for F' and A from equation (1.5.13). This allows one to describe the set
of q, defined by (1.5.13).
Let us assume:
sup |F(y)| ;= op(a) € L', F'€ Ly,. (5.7.1)

V22

The function ¢r is monotone decreasing, |F(z)| < or(z). Equation (1.5.13) is of
Fredholm type in L2 := LP(z,00) Y& > 0 and p = 1. The norm of the operator
F = F, in (1.5.13) can be estimated :

0 5
IR < [~ opa+ )iy Sorr@a), ovnio)= [ oy (672)
z z
Therefore (1.5.13) is uniquely solvable in LL for any = > zq if
o7 (2m0) < 1. (5.7.3)
This conclusion is valid for any F' satisfying (5.7.3), and conditions A), B), and C) are
not used. Assuming (5.7.3) and (5.7.1) and taking = > z, let us derive inequalities
for A = A(z,y). Define
oA(w) i= sup |A(=,y)] := || 4]]-
y2z
From (1.5.13) one gets:
o0
oa(z) < or(22) + oa(z) Sup/ or(s+y)ds < op(22) + ga(z)o1r(22).
v2zJz
Thus, if (5.7.3) holds, then
oA(@) < cop(2z), @ > wo. (5.7.4)
By ¢ > 0 different constants depending on zg are denoted. Let
oo
rua@) =l = [ 4Gz, 0)lds.

Then (1.5.13) yields 1.4(2) < o1r(22) + 014(2)o1p(22)- So
o1a(x) £ corp(23), = > 2o (5.7.5)
Differentiate (1.5.13) with respect to = and y and get:

(I + o)A (@) = A, 2)F(z +y) - Fl(s +3), y222>0, (5.7.6)

Y7 o
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and
Ay(z.y) + / A(z,s)F'(s+y)ds = —F'(z+y), y>z>0. (5.7.7)
Denote iy
0@ = [ PG, o2ela) € L. (678)

Then, using (5.7.7) and (5.7.4), one gets

i &
Il < [ 1P+ ldy+ orate)sup [ IF(s + u)ldy < oar(20){1 + e (20)
z s2xJz

< coar(2z),
(5.7.9)
and using (5.7.6) one gets:
14zl < A(z,2)017(22) + 027 (22) + || Az|1017(22),
SO
[|14zlr £ clo2r(22) + 017 (22)0F(22)). (5.7.10)

Let y = z in (1.5.13), then differentiate (1.5.13) with respect to z and get:

A(z,2) = —2F’(21‘)+A(I,I)F(21‘)—/& A,(:c,e))F(;l:+s)ds—./uD A(z, s)F'(s+x)ds.

(5.7.11)
From (5.7.4), (5.7.5), (5.7.10) and (5.7.11) one gets:

|A(z,2)| < 2|F'(2z)|+co% (2z)+cop (22)[02r (22) +01 £ (22)0F (27))+cop (22)02F (22).
(5.7.12

Thus,
z|A(z,7)| € L', (5.7.13)

provided that zF'(2z) € L', z0}(2z) € L', and z0p(22)02r(27) € L'. Assumption
(5.7.1) implies zF'(2z) € L'. If op(2z) € L', and op(2z) > 0 decreases mono-
tonically, then zop(z) — 0 as ¢ —+ co. Thus zo%(2z) € L', and o2p(22) € L'
because [ dz fzm |F'()ldy = [ |F'(y)|lydy < o, due to (5.7.1). Thus, (5.7.1) im-
plies (5.7.4), (5.7.5), (5.7.8), (5.7.9), and (5.7.12), while (5.7.12) and (1.5.13) imply
q€ Ly where Ly, = {q:q=7, f:: z|q(z)|dz < oo}, and zo > 0 satisfies (5.7.3).

Let us assume now that (5.7.4), (5.7.5), (5.7.9), and (5.7.10) hold, where of € L'
and oy € L' are some positive monotone decaying functions (which have nothing to
do now with the function F, solving equation (1.5.13), and derive estimates for this
function F. Let us rewrite (1.5.13) as:

F(i+y)+/ A(z,8)F (s + y)ds = —A(z,y), yv2z2>0. (5.7.14)

e 2 N



One-di ional inverse ing and spectral problems 369

Letz+y=2z58+y=v. Then,
o
F(z) +/ Az, v+z-2)F(v)dv = -A(z,z—7), z>21. (5.7.15)
From (5.7.15) one gets:
oo
0F(22) < 0a(z) + 0F(27) sup / |A(z,v + z — 2)|dv < 04(z) + 0F(27) || Al]x.
222 )

Thus, using (5.7.5) and (5.7.3), one obtains:
0F(2z) < coalz). (5.7.16)
Also from (5.7.15) it follows that:
a1p(22) = ||Fl = 37 |F(v)ldv
< f |A(z, 2 — z)|dz + fh j: |A(z,v + z — 2)||F(v)|dvdz
< IIAIIx +[1F[a [ Alf (5.7.17)

a.p(?z) < coya(z).

From (5.7.6) one gets:
y
| 1F iy = o2 (20) < con@ana(@) + 14011+ lldlhora(e). (5718)

Let us summarize the results:
Theorem 5.7.1. If z > z¢ and (5.7.1) hold, then one has:

oalz) € cop(2z), 014(2) < corp(22), ||Aylh < 02r(22)(1 + co1r(22)),
[|4:]l1 < clo2r(22) + 017 (22)0F (22)).

(5.7.19)
Conversely, if z > zo and
0A(z) +014(2) + || 4z]l1 + | 4y]l1 < 0, (5.7.20)
then
0r(2z) < coa(x), o17(22) < cova(z), (5.7.21)

a2r(2) < cloa(@)ara(@) + || Az (1 + 014 (2))].

In the next section we replace the assumption z > 2o > 0 by = > 0. The argument
in this case is based on the Fredholm alternative.
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5.7.2 Characterization of the scattering data revisited

First, let us give necessary and sufficient conditions on S for g to be in L; ;. These
conditions are known ([M], [R] [R9], and Section 5.5), but we give a short new ar-
gument using some ideas from [R9]. We assume throughout that conditions A), B),
and C) hold. These conditions are known to be necessary for ¢ € L, ;. Indeed, condi-
tions A) and B) are obvious, and C) is proved in Theorem 5.7.1 and Theorem 5.7.4.
Conditions A), B), and C) are also sufficient for ¢ € L, ;. Indeed if they hold, then
we prove that equation (1.5.13) has a unique solution in L} for all z > 0. This was
proved in Theorem 5.3.1, but we give another proof.

Theorem 5.7.2. If A), B), and C) hold, then (1.5.13) has a solution in L} for any
x > 0 and this solution is unique.

Proof. Since F, is compact in L., Vz > 0, by the Fredholm alternative it is sufficient
to prove that
(I+F)h=0, helLl, (5.7.22)
implies h = 0. Let us prove it for z = 0. The proof is similar for z > 0. If h € L', then
h € L™ because ||h||oo < ||l|z10r(0). If h € L' N L, then h € L? because||h||}. <
||h||z=||h||z1. Thus, if h € L' and solves (5.7.22), then h € L* N L' N L™®.
Denote h = Jo* hx)e*=dz, h € L. Then,

o0
/ h2dk = 0. (5.7.23)

Since F(z) is real-valued, one can assume h real-valued. One has, using Parseval's
equation: a

0 = (I + Fohh) = AP + &[5 - S(k)}h‘ )k + E,— s5h3,
h; := J3° e®=h(z)dz.

Thus, using (5.7.23), one gets

hj=0,1<5<J, (hh)=(S(k)h, h(-k)),

where we have used real-valuedness of h, i.e. h( B)= E(k).Vk € R.

Thus, (h,h) = (h S(- )/l( L)) where A) was used. Since ||S(—k)|| = 1, one has
Hh“- = |(h, S(— k)h( k) | < ||h|]1, so the equality sign is attained in the Cauchy
inequality. Therefore, h(k) S(- k)h( k).

By condition B), the theory of Riemann problem guarantees existence and unique-
ness of an analytic in Cy := {k : Imk > 0} function f(k) := fi(k), f(ik;) =
0, f(ik;) #0,1 < j < J, f(00) = 1, such that

f+(K) = S(=k)f-(k), kER, (5.7.24)

and f_(k) = f(—k)is analyticin C_ := {k : Imk < 0}, f_(o0) = 1inC_, f_(-ik;) =
0, f-(=ik;) # 0. Here the property S(—k) = S~'(k), Vk € R is used.

T
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One has
(k) _ h(=k) = y
vk , k€R, hj:=h(ikj))=0, 1<j<J.
v(k) := T = ok (ik;) <j<

The function ¥(k) is analytic in C; and W(—f) is analytic in C_, they agree on R,
s0 (k) is.analytic in C. Since f(c0) = 1 and h(o0) = 0, it follows that ¥ = 0.
Thus, h = 0 and, consequently, h(z) = 0, as claimed. Theorem 5.7.2 is proved. O

The unique solution to equation (1.5.14) satisfies the estimates given in Theo-
rem 5.7.1. In the proof of Theorem 5.7.1 the estimate z|A(z,z)| € L!(xg,00) was
established. So, by (1.5.13), zq € L' (w9, 00).

The method developed in Section 5.7.1 gives accurate information about the be-
havior of ¢ near infinity. An immediate consequence of Theorem 5.7.1 and Theo-
rem 5.7.2 is:

Theorem 5.7.3. If A), B), and C) hold, then q, obtained by the scheme (1.5.10)
belongs to Ly (xp,0).

Investigation of the behavior of g(z) on (0,z) requires additional argument. In-
stead of using the contraction ing principle and i lities, one has to use the
Fredholm theorem, which says that ||(I + F;)~"|| € ¢ for any = > 0, where the oper-
ator norm is taken for F acting in L2, p = 1 and p = oo, and the constant ¢ does
not depend on z > 0.

Such an analysis yields:

Theorem 5.7.4. If and only if A), B), and C) hold, then g € L, ;.

Proof. It is sufficient to check that Theorem 5.7.1 holds with z > 0 replacing z > .
To get (5.7.4) with zg = 0, one uses (1.5.14) and the estimate:

14wl < 17+ F) 7Pz + )| < cop(22), |-|l= sl;PI x>0, (5.7.25)
vz
where the constant ¢ > 0 does not depend on z. Similarly:
00
Al < csup / [F(s + y)ldy < carp(22), z>0. (5.7.26)
>z )z

From (5.7.6) one gets:

14z (@ W)l < elllF'(2 + )|l + Az, 2)||F(z +v)]]1]

< coap (22) + cop(2w)op(22), x> 0. 1737
From (5.7.7) one gets:
[|4y(z, )l £ clozr(22) + 017(2)02r (22)] < 025 (22). (5.7.28)

Similarly, from (5.7.11) and (5.7.24) - (5.7.27) one gets (5.7.12). Then one checks
(5.7.13) as in the proof of Theorem 5.7.1. Consequently Theorem 5.7.1 holds with
2y = 0. Theorem 5.7.4 is proved. (a]
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5.7.3 Compactly supported potentials

In this Section necessary and sufficient conditions are given for ¢ € L§ | = {g: ¢ =
7,9=0ifz > a, fon z|q|dz < 0}. Recall that the Jost solution is:

flz, k) = e*® + / “ A(z,y)e*vdy, f(0,k) := f(k). (5.7.29)

Lemma 5.7.5. If q € L{,, then f(z,k) = e** for z > a, A(z,y) =0 fory >z >a,
F(r+y)=0 fory >z >a (cf (1.5.13)), and F(z) =0 for = > 2a.

Thus, (1.5.13) with & = 0 yields A(0,y) := A(y) = 0 for z > 2a. The Jost function
2
10 =1+ [ Ay, ) e W00, (5.7.30)
0

is an entire function of exponential type < 2a, that is, |f(k)| < cel¥l| k € C, and
S(k) = f(—k)/f(k) is a meromorphic function in C. In (5.7.30) W is the Sobolev
space, and the inclusion (5.7.30) follows from Theorem 5.7.1.

Let us formulate the assumption D):

D) the Jost function f(k) is an entire function of ezponential type < 2a.

Theorem 5.7.6. Assume A), B), C) and D). Then q € L ;. Conversely, ifq € L,
then A),B), C) and D) hold.
Necessity. If g € L1, then A), B) and C) hold by Theorem 5.7.4, and D) is proved
in Lemma 5.7.5. The necessity is proved.
Sufficiency. If A), B) and C) hold, then g € L, ;. One has to prove that ¢ = 0 for
= > a. If D) holds, then from the proof of Lemma 5.7.5 it follows that A(y) = 0 for
v > 2a.
We claim that F(z) =0 for x > 2a.

If this is proved, then (1.5.13) yields A(z,y) = 0 for y > z > a, and so ¢ = 0 for

z>a by (1.5.13).
Let us prove the claim.
Take z > 2a in (1.5.12). The function 1 — S(k) is analytic in Cy except for J
simple poles at the points ikj. If x > 2a then one can use the Jordan lemma and the

residue theorem and get:

1 2 f(=iky)
R = 5 /,m“ — S(k))e*edk = —x'; Lot s>m (s

Since f(k) is entire, the Wronskian formula
S(0,k) f(=k) = (0, —k) f(k) = 2ik
is valid on C. and at k = ik; it yields:
£(0,ik;) f(—iky) = —2k;,

e 30 &Y
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because f(ik;) = 0. This and (5.7.31) yield
J

R S
F,(z) = ,z=:, f’(O.ikj)f(ikj)e = Zs,e = —F4(z), > 2a.

Thus, F(x) = F,(z) + Fy(x) = 0 for z > 2a. The sufficiency is proved.
Theorem 5.7.6 is proved. ju]

In [M] a condition on 8, which guarantees that ¢ = 0 for z > a, is given under the
assumption that there is no discrete spectrum, that is F = F,.

5.7.4 Square integrable potentials
Let us introduce conditions (5.7.32) - (5.7.34)

k[ (K) - 1+ —] eLXR) =L Q:= fl T (5.7.32)
J

k{1 = S(k) + —] L2, (5.7.33)

K[If (k) = 1] € L2 (5.7.34)

Theorem 5.7.7. If A), B), C), and any one of the conditions (5.7.32) - (5.7.34)
hold, then q € L*(R).

Proof. We refer to [R] for the proof. 8}

6. Inverse scattering problem with
fixed-energy phase shifts as the data

6.1 Introduction

In Subsection 5.1.3 the scattering problem for spherically symmetric ¢ was formulated,
see (5.1.15) - (5.1.17). The §; are the fixed-energy (k = const > 0) phase shifts.
Define

Lrp:= t') = +12 —rq(r)[ ¢ := Lory — rq(r)e, (6.1.1)
where o = g,(r) is a regular solution to

Lege = £(E+ 1)@, (6.1.2)
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such that i
P =ue+ / K(r,p)ue(p)p~*dp, K(r,0)=0, (6.1.3)
0

and u = ‘/TJ,+§(r), Ji(r) is the Bessel function. In (6.1.3) K(r, p) is the transfor-
mation kernel, I + K is the transformation operator. In (6.1.2) we assume that k = 1
without loss of generality. The ¢, is uniquely defined by its behavior near the origin:

£t 41
wu(r) = Qv +o(r*h), r—0. (6.1.4)
For u; we will use the known formula ([GR, 8.411.8]):
1
etig 1= 20(€+ Lug(r) = r* / (1 - &)teirta, (6.0.5)
-1

where I'(z) is the gamma-function.

The inverse scattering problem with fixed-energy phase shifts {0¢}¢=0,1,2... as the
data consists of finding g(r) from these data. We assume throughout this chapter
that g(r) is a real-valued function, g(r) = 0 for r > a,

/nr2|q(r)]7dr < oo0. (6.1.6)
0

Conditions (6.1.6) imply that q € L*(B,), B, := {z:z € R®, |z| < a}.

In the literature there are books [CS] and [N] where the Newton-Sabatier (NS)
theory is presented, and many papers were published on this theory, which attempts
to solve the above inverse scattering problem with fixed-energy phase shifts as the
data. In Section 6.4 it is proved that the NS theory is fundamentally wrong and is
not an inversion method. The main results of this Chapter are Theorems 6.2.2, 6.3.1,
6.5.1, and the proof of the fact that the Newton-Sabatier theory is fundamentally

wrong.

6.2 Existence and uniqueness of the transformation
operators independent of angular momentum
The existence and uniqueness of K (r, p) in (6.1.3) we prove by deriving a Goursat

problem for it, and investigating this problem. Substitute (6.1.3) into (6.1.3), drop
index £ for notational simplicity and get

0= —rq(r)u+ (r* = r'a(r)) [ Kir,p)ur~dp
0

7/ A'(r.p)p*’l,u,,udpn’a,’/ K(r,p)up~*dp. (6.2.1)
0 0
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We assume first that K(r,p) is twice continuously differentiable with respect to
its variables in the region 0 < r < o0, 0 < p < r. This assumption requires
extra smoothness of g(r), g(r) € C'(0,a). If g(r) satisfies condition ((6.1.6)), then
equation (6.2.7) below has to be understood in the sense of distributions. Eventually
we will work with an integral equation (6.2.34) (see below) for which assumption
((6.1.6)) suffices.

Note that

/ I\'(r,p)p"Lo,udp — / LapK(r,p)up‘2dp + K(r,r)u, — K,(r,r)u, (6.2.2)
0 0

provided that
K(r,0) = 0. (6.2.3)
We assume (6.2.3) to be valid. Denote

o dK(rr)
K= T (6.2.4)
Then
r’@f/ K(r,pup2dp = Ku+ K(r,r)u, — ;I\'(r.r)u+
o
K,.(r,r)n+r2/ K. (r,p)up~?dp. (6.2.5)
o

Combining (6.2.1) - (6.2.5) and writing again u, in place of u, one gets

o ,[ [LeK(r,p) = LopK (1, p)Jue(p)p~*dp + ue(r)[-r?q(r) + K~
0

M + Ko(r,r) + Ko(r,r)], ¥r>0, £€=0,1,2,... (6.2.6)
Let us prove that (6.2.6) implies:
L K(r,p) = LopK(r,p), 0<p<r, (6.2.7)
_2K 2K(nr) _2dK(rr)
ar) =73 e ! (6.2.8)

This proof requires a lemma.
Lemma 6.2.1. Assume that pf(p) € L'(0,r) and pA(p) € L'(0,r). If

0= /' f(p)ue(p)dp + ue(r)A(r) ¥E=0,1,2,.., (6.2.9)
0

then
£(p) =0 and A(r) = 0. (6.2.10)
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Proof. Equations (6.2.9) and (6.1.5) imply:

0= / a1 -y (5 ) [ oot
rA(r) /_ e (E) eirtdt.

Therefore

/ dt / dppf(p)e’ +rA(r)e™], 1=0,1,2,... (6.2.11)

Recall that the Legendre polynomials are defined by the formula

Lo

P = 55 gt

= bl (6.2.12)
and they form a complete system in L*(—1,1).
Therefore (6.2.11) implies

/ dppf(p)e”t +rA(r)e™ =0 Vte[-1.1]. (6.2.13)
0
Equation (6.2.13) implies

/r dppf(p)e”t =0, Vte[-1,1], (6.2.14)
0

and
A ()] (6.2.15)

Therefore A(r) = 0. Also f(p) = 0 because the left-hand side of (6.2.14) is an entire
function of ¢, which vanishes on the interval [~1,1] and, consequently, it vanishes
identically, so that pf(p) = 0 and therefore f(p) = 0

Lemma 6.2.1 is proved. s}

We prove that the problem (6.2.7), (6.2.8), (6.2.3), which is a Goursat-type prob-
lem, has a solution and this solution is unique in the class of functions K (r, p), which
are twice continuously differentiable with respect to p andr, 0<r<oo, 0<p<r.

In this section we assume that g(r) € C'(0,a). This assumption implies that
K(r.p) is twice continuously differentiable. If (6.1.6) holds, then the arguments in
this section which deal with integral equation (6.2.34) remain valid. Specifically,
existence and uniqueness of the solution to equation (6.2.34) is proved under the only
assumption [’ r|g(r)|dr < oo as far as the smoothness of g(r) is concerned.

By a limiting argument one can reduce the smoothness requirements on ¢ to the

condition (6.1.6), but in this case equation (6.2.7) has to be understood in distribu-
tional sense.
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Let us rewrite the problem we want to study:

r*Kee = p*Kpp + [r? = r?q(r) = p*)K(r,p) =0, 0<p<r, (6.2.16)
K(rr) = :—,/ﬂ sq(s)ds := g(r), (6.2.17)
K(r,0) = 0. (6.2.18)

The difficulty in the study of this Goursat-type problem comes from the fact that the
coefficients in front of the second derivatives of the kernel K (r, p) are variable.

Let us reduce problem (6.2.16) - (6.2.18) to the one with constant coefficients. To
do this, introduce the new variables:

E=Inr+Inp, n=Inr—Inp. (6.2.19)
Note that .
r=et, p=e'T, (6.2.20)
7120, —00<E< o0, (6.2.21)
and 1 1
0= 0+ 00, 8 =2(0 - ). (6.2.22)
Let

K(r,p) := B(§n)-
A routine calculation transforms equations (6.2.16) - (6.2.18) to the following ones:

Beo(6) - 3Ba(&m) +QEMB =0, 120, —<f<oo,  (6229)
BE0) =g (ef) =G(f), -0<E<o (6.2.24)
B(-o00,n) =0, n>0, (6.2.25)

where g(r) is defined in (6.2.17).
Here we have defined

1 2
i ST oE4ng (S — of—n .
Qe m) i= 7 [e67 ~ ebtrg (e47) — et (6.2:26)
and took into account that p = r implies n = 0, while p = 0 implies, for any fixed
72 0, that £ = —o0.
Note that
sup e $G(e) <, (6.2.27)
~o0<€<oo
A
sup [ Qs mlds < (4, B), (6.2.28)
0<n<B /-0

for any 4 € R and B > 0, where ¢(4, B) > 0 is a constant.
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To get rid of the second term on the left-hand side of (6.2.23), let us introduce
the new kernel L(&,7) by the formula:

L(E,n) := B(g,me 4. (6.2.20)
Then (6.2.23)- (6.2.25) can be written as:

Loye(&,m) +Q(6,mL(En) =0, 720, -0<E§< 00, (6.2.30)
"
Le0 =e86@=0@ = [ salo)is, —so<E<oo, (623D
0
L(-o00,n) =0, n20. (6.2.32)
We want to prove exi and uni of the solution to (6.2.30) - (6.2.32). In

order to choose a convenient Banach space in which to work, let us transform problem
(6.2.30) - (6.2.32) to an equivalent Volterra-type integral equation.
Integrate (6.2.30) with respect to 7 from 0 to 7 and use (6.2.31) to get

n
Lelem -6+ [ Qe L(E Nt =0. 6239
0
Integrate (6.2.33) with respect to € from —oo to € and use (6.2.33) to get
3 Ul
L(&n) = -/ da/ dtQ(s,t)L(s,t) + b(€) := VL + b, (6.2.34)
- Jo
where
L3 n
VL:= —/ ds/ dtQ(s, t)L(s,t). (6.2.35)
~00 0
Consider the space X of continuous functions L(£,7), defined in the half-plane 1 >
0, -0 <€ < oo, such that for any B > 0 and any —oc < A < oo one has
[IZN| = Lllap == sup  (e™*|L(s,t)]) < oo, (6.2.36)
~co<agA
0<t<B

where 5 > 0/is a number which will be chosen later so that the operator V in (6.2.34)
will be a contraction mapping on the Banach space of functions with norm (6.2.36)
for a fixed pair A, B. To choose ¥ > 0, let us estimate the norm of V. One has:

13 n
vy < sup (/ d.c/ duo(&¢)|f“"*“c-W‘|Lu,t)|)
~20<€€A0<n<B \J-oo 0

£ n
<|IL sup / d.v/ dt (2e*+t 4 e+t - ~1(n-t) ¢« £
SO, O Wl M et Sl |

(6.2.37)
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where ¢ > 0 is a constant depending on A, B and I rlq(r)|dy Thdsed I
- eed, one has:
A n n
2/ da/ dte*tt-7n-t) — 26/\/ dte""‘"")dg < eA+Bl— e8¢
- Jo (1 > N s oot
(6.2.38)

and, using the substitution o = eif", one gets:

A n %
/ d.s/ dte**|g(e™F)|em11-0 =
-0 0

n A
= / dw—v(n—t)/ dse*t|q (ﬁ-‘) i
(i —0

" o4
=2/ dte"""“/ doo|g(a)| =
0 (
2(1 — e_TB) a ¢
= — )
= /0 doglg(o)] == = (6239)
rom these estimates inequality (6.2.38) follows.

It follows from (6.2.38) that V is a contraction mapping in the space X,z of
continuous functions in the region —co <€ < A, 0< 7 < B, with the norm (6.2.36)
provided that

y>e (6.2:40)
Therefore equation (6.2.34) has a unique solution L(&,n) in the region

—0<é<4, 0<n<B (6.2.41)

for any real A and B > 0 if (6.2.40) holds. This means that the above solution is
defined for any € € R and any > 0.

Equation (6.2.34) is equivalent to problem (6.2.30) - (6.2.32) and, by (6.2.29), one
has:

B(€,n) = L(§ et (6:2.42)

Therefore we have proved the existence and uniqueness of B(€,7), that is, of the
kernel K(r, p) = B(n) of the transformation operator (6.1.3). Recall that » and p
are related to € and 75 by formulas (6.2.20).

Let us formulate the result:

Theorem 6.2.2. The kernel K(r,p) of the transformation operator (6.1.3) solves
problem (6.2.16) - (6.2.18). The solution to this problem does exist and is unique
in the class of twice continuously differentiable functions for any potential q(r) €
C'(0,a). If glr) € L=(0,a), then K (r,p) has first derivatives which are bounded and
equation (6.2.16) has to be understood in the sense of distributions. The following
estimate holds for any r > 0:

/' |K(r,p)lp™ " dp < oo (6.2:43)
0
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Proof of Theorem 6.2.2. We have already proved all the assertions of Theorem 6.2.2
except for the estimate (6.2.43). Let us prove this estimate.
Note that

/r |K(r,p)|p~"dp = r/ |L(2Inr — n,n)le#dy < 00 (6.2.44)
0 o0

Indeed, if r > 0 is fixed, then, by (6.2.20), £+n = 2Inr = const. Therefore df = —dy,
and p~'dp = }(d€ —dn) = —dn, €&=2Inr —n. Thus:
& bt 2ln e~ i
[ KCol o= [ p@inr = le* =t n = [ iLi2inr - gl dan
0 o

(6.2.45)
The following estimate holds:

L(& )| < ce@renllma(esmid* (6.2.46)

where ¢; > 0, j = 1,2, are arbitrarily small numbers and y, is defined in formula
(6.2.52) below, see also formula (6.2.49) for the definition of u.

Estimate (6.2.46) is proved below, in Theorem 6.2.2.

From (6.2.45) and estimate (6.2.56) (see below) estimate (6.2.43) follows. Indeed,
denote by I the integral on the right-hand side of (6.2.45). Then, by (6.2.56) one
gets:

00 n
r<242y [—2“—‘(3'::’"—’”- = 2exp[2p1 (2logr)] < oo. (6.247)
; !
Theorem 6.2.2 is proved. o
Theorem 6.2.3. Estimate (6.2.46) holds.
Proof of Theorem 6.2.9. From (6.2.34) one gets:
m(&,n) < co+ (Wm)(& ), m(&,n) := |L(§n)l, (6.2.48)

where co = SUP_ oo [D(E)] < § J3 8la(s)|ds (see (6.2.31)), and

3 n 1
Wm:= / d.u/ dtp(s + t)m(s,t), p(s):= ie' (1+ |gle)]) . (6.2.49)
00 0

It is sufficient to consider inequality (6.2.48) with ¢ = 1: if g = 1 and the solution
mo(§, 1) to (6.2.48) satisfies (6.2.46) with ¢ = ¢y, then the solution m(€,7) of (6.2.48)
with any ¢y > 0 satisfies (6.2.46) with ¢ = cgey.

Therefore, assume that cg = 1, then (6.2.48) reduces to:

m(&,n) <1+ (Wm)(&,n) (6.2.50)

Inequality (6.2.46) follows from (6.2.50) by iterations. Let us give the details.
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Note that
3 n n 3 n
w1=/ .o/ dtp(a+t)=/ dt/ dap(s+!)=/ dtp (€ +1) < (€ +1).
-0 0 0 -0 (]
(6.2.51)

Here we have used the notation
£
m(§) = / p(s)ds, (6.2.52)
—c0

and the fact that p(s) is a monotonically increasing function, since u(s) > 0. Note
also that py(s) < oo for any s, —00 < § < 00.

Furthermore,
3 n
W 5/ da/ dip(sHt)tu (5:+1) < / dtt/ dsp(s+Opm(s+) = T #
o3 o !
(6.2.53)
Let us prove by induction that
wr< n (€ +n) (E+n) (6.2.54)
For n = 1 and n = 2 we have checked (6.2454)A Suppose (6.2.54) holds for some n,
then
Wntl] < “(!":, n"+n) =f0"d! f{ dsp(s + t)£L+0 (n+t
(6.2.55)
bl )
< ot 'J(IIT;L
By induction, estimate (6.2.53) is proved for all n = 1,2,3,.... Therefore (6.2.50)
implies
o0 non i
mign) <1+ 3 THELD o aratmimart+, (6.2.56)
n=

where we have used Theorem 2 from [Lev, section 1.2}, namely the order of the entire
function F(z):=1+ Y, (—5’ is - and its type is 2. The constant ¢ > 0 in (6.2.46)
depends on ¢, j = 1,2.
Recall that the order of an entire function F(z) is the number
2 Inin Mg(r)
= limsup ————=
r—ce inr

, where Mp(r) := maz.=.|F(z)|. The type of F(z) is

M It is known [Lev], that if F(z) = 02, ca2™ is

an entire function, then its order p and type o can be calculated by the formulas:

the number o := limsup

n ln u Ilfls:)p("’r"l %)
= lim sup ——— L T,
naoo N '—[ ep

(6.2.57)
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If ¢;, = ——. then the above formulas yield p = % and 0 = 2. Theorem 6.2.3 is

(GO

proved. 0

6.3 Uniqueness theorem.

Denote by £ any fixed subset of the set N of integers {0,1,2,...} with the property:

Z% L s (6.3.1)

teL
70

Theorem 6.3.1. ([R10]) Assume that q satisfies (6.1.6) and (6.3.1) holds. Then
the data {8¢}viec determine q uniquely.

The idea of the proof is based on property C-type argument.
Step 1: If g; and gy generate the same data {0/ }veec, then the following orthogo-
nality relation holds for p:= q; — qa:

h(t) = / P(r)re(r)dar(r)dr =0 VL€ L, (6.3.2)
0

where @,/ is the scattering solution corresponding to ¢;. j = 1.2.

ep 2: Define by () := 2*(I'(€+ 1)]*h(£), where T is the Gamma-function. Check
that /() is holomorphic in Iy := {€: Ret > 0}, £=0¢ +ir, o >0, and 7 are
real numbers, iy (€) € N (where N is the Nevanlinna class in 1), that is

sup/ log" |Il|( )|d,,<x
0<r<l S

logx if logz > 0,
0if logz < 0.
and, by property C,, p(r) = 0. Theorem 6.3.1 is proved. O

where log* z = If hy € N vanishes ¥¢ € £, then hy = 0 in ITy,

6.4 Why is the Newton-Sabatier (NS) procedure
fundamentally wrong?

The NS procedure is described in [N] and [CS]. A vast bibliography of this topic is
given in [CS] and [N].

Below two cases are discussed. The first case deals with the inverse scattering
problem with fixed-energy phase shifts as the data. This problem is understood as
follows: an unknown spheric; symmetric potential ¢ from an a priori fixed class, say
generates fixed-energy phase shifts 6,1 = 0,1,2,.
The inverse scattering problem consists of recovery of ¢ from these data.

The second case deals with a different problem: given some numbers &,l =
0.1.2, .. which are assumed to be fixed-energy phase shifts of some potential g,

L a standard scattering ¢
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from a class not specified, find some potential ¢, which generates fixed-energy phase
shifts equal to 6,0 = 0,1,2,...,. This potential g; may have no physical interest
because of its non-physical” behavior at infinity or other undesirable properties.

We first discuss NS procedure assuming that it is intended to solve the inverse
scattering problem in case 1. Then we discuss NS procedure assuming that it is
intended to solve the problem in case 2.

Discussion of case 1:

In [N2] and [N] a procedure was proposed by R. Newton for inverting fixed-energy
phase shifts &,1 = 0,1,2,..., corresponding to an unknown spherically symmetric
potential g(r). R. Newton did not specify the class of potentials for which he tried
to develop an inversion theory and did not formulate and proved any results which
would justify the inversion procedure he proposed (NS procedure). His arguments
are based on the following claim, which is implicit in his works, but crucial for the
validity of NS procedure:

Claim N1: The basic integral equation.
s dt
K(r,s) = f(r,s) / K(r.t)f(l,s)ﬁ. 0<s<r<m, (6.4.1)
0

is uniquely solvable for all r > 0.

Here o
flri8) = 3 cn(ryuls), wi= @J,,;m (6:4.2)
1=0

¢ are real numbers, the energy k? is fixed: k = 1 is taken without loss of generality,
.I,,!(r) are the B«sscl functions. If equation (6.4.1) is uniquely solvable for all » > 0,
then the p l gy, that NS p dure yields, is defined by the formula:

2d K(r, r)
a(r) = _;E F (6.4.3)
Tlm R. Ncwtun's ansatz (6.4.1) - (G 4.2) for the transformation kernel K (r,s) of the
, corresp g to some q(r), namely, that K (r, s) is the unique
solution to (64 1)- (64 2), is not camzcl for a generic potential, as follows from our
argument below (see the justification of Conclusions).

If for some r > 0 equation (6.4.1) is not uniquely solvable, then NS procedure
breaks down: it leads to locally non-integrable potentials for which the scattering theory
1, in general, not available (see [R9] for a proof of the above statement) .

In the original paper [N2] and in his book [N] R. Newton did not study the
question, fundamental for any inversion theory: does the reconstructed potential q;
generate the data from which it was reconstructed?

In [CS, p. 205), there are two claims:

Claim i) that g, (r) generates the original shifts {§;} “provided that {§} are not

"exceptional™”, and
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Claim ii) that NS procedure "yields one (only one) potential which decays faster
than r~ " and generates the original phase shifts {5}

If one considers NS procedure as a solution to inverse scattering problem of finding
an unknown potential ¢ from a certain class, for example g(r) € Ly = {g: ¢ =
a. fn" rlg(r)|dr < oo}, from the fixed-energy phase shifts, generated by this g, then the
proof, given in [CS], of Claim i) is not convincing: it is not clear why the potential g;,
obtained by NS procedure, has the transformation operator generated by the potential
corresponding to the original data, that is, to the given fixed-energy phase shifts,
In fact, as follows from Proposition 6.4.1 below, the potential ¢ cannot generate
the kernel K(r,s) of the transformation operator corresponding to a generic original
potential g(r) € Ly, :={q:q=7, fo“’ rlg(r)|dr < o0}.

Claim ii) is incorrect because the original generic potential g(r) € L, ; generates
the phase shifts {&;}, and if ¢,(r), the potential obtained by NS procedure and there-
fore not equal to g(r) by Proposition 6.4.1 generates the same phase shifts {6}, then
one has two different potentials q(r) and g, (r), which both decay faster than r~¥ and
both generate the original phase shifts {&;}, contrary to Claim ii).

Our aim is to formulate and justify the following

Conclusions: Claim N1 and ansatz (6.4.1) - (6.4.2) are not proved by R. Newton
and, in general, are wrong. Moreover, one cannot approzimate with a prescribed accu-
racy in the norm ||g|| : = [5° rlq(r)|dr a generic potential g(r) € L, by the potentials
which might possibly be obtained by the NS procedure. Therefore NS procedure cannot
be justified even as an approzimate inversion procedure.

Let us justify these conclusions:

Claim N1 formulated above and basic for NS procedure, is wrong, in general, for the
following reason:

Given fixed-energy phase shifts, corresponding to a generic potential ¢ € L, ;, one
vither cannot carry through NS procedure because:

a) the system (12.2.5a) in (CS], which should determine numbers ¢; in formula
6.4.2), given the phase shifts &, may be not solvable, or

b) if the above sys! solvable, equation (6.4.1) may be not (uniquely) solvable
for some r > 0, and in this NS procedure breaks down since it yields a potential
which is not locally integrable (see [R9] for a proof).

If equation (6.4.1) is solvable for all » > 0 and yields a potential ¢, by formula
(6.4.3), then this potential is not equal to the original generic potential g € Ly, as
follows from Proposition 6.4.1 which is proved in [R9] (see also [ARS]):

Proposition 6.4.1. If equation (6.4.1) is solvable for all r > 0 and yields a potential
@1 by formula (6.4.3), then this q, is a restriction to (0,c) of a function analytic in
a neighborhood of (0, 00).

Since a generic potential ¢ € Ly, is not a restriction to (0,00) of an analytic
function, one concludes that even if equation (6.4.1) is solvable for all » > 0, the
potential g,, defined by formula (6.4.3), is not equal to the original generic potential
q € Ly, and therefore the inverse scattering problem of finding an unknown ¢ € Ly
from its fixed-energy phase shifts is not solved by NS procedure.
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The ansatz (6.4.1) - (6.4.2) for the transformation kernel is, in general, incorrect,
as follows also from Proposition 6.4.1

Indeed, if the ansatz (6.4.1) - (6.4.2) would be true and formula (6.4.3) would
yield the original generic g, that is ¢ = g, this would contradict Proposition 6.4.1 If
formula (6.4.3) would yield a ¢ which is different from the original generic g, then NS
procedure does not solve the inverse scattering problem formulated above. Note also
that it is proved in [R10] that independent of the angular momenta [ transformation
operator, corresponding to a generic ¢ € Ly, does exist, is unique, and is defined
by a kernel K(r,s) which cannot have representation (6.4.2), since it yields by the
formula similar to (6.4.3) the original generic potential g, which is not a restriction of
an analytic in a neighborhood of (0, 00) function to (0, o).

The lusion, concerning impossibility of approximation of a generic ¢ € Ly
by potentials gy, which can possibly be obtained by NS procedure, is proved in
Claim 6.4.3 section 2, see proof of Claim 6.4.3 there.

Thus, our conclusions are justified. (u]

Let us give some additional comments concerning NS procedure.

Uniqueness of the solution to the inverse problem in case 1 was first proved by
A. G. Ramm in 1987 (see [R7)) for a class of compactly supported potentials, while R.
Newton's procedure was published in [N2], when no uniqueness results for this inverse
problem were known. It is still an open problem if for the standard in scattering theory
class of Ly, potentials the uniqueness theorem for the solution of the above inverse
scattering problem holds.

We discuss the inverse scattering problem with fixed-energy phase shifts (as the
data) for potentials ¢ € L, ;, because only for this class of potentials a general theo-
rem of existence and uniqueness of the transformation operators, independent of the
angular momenta [, has been proved, see (R10]. In [N2], [N], and in [CS] this result
was not formulated and proved, and it was not clear for what class of potentials the
transformation operators, independent of {, do exist. For slowly decaying potentials
the existence of the transformation operators, independent of I, is not established, in
general, and the potentials, discussed in [CS)] and [N] in connection with NS procedure,
are slowly decaying.

Starting with [N2], [N, and [CS] Claim N1 was not proved or the proofs given (see
[CT]) were incorrect (see (R11]). This equation is uniquely solvable for sufficiently
small ¥ > 0, but, in general, it may be not solvable for some r > 0, and if it is solvable
Jor allr > 0, then it yields by formula (6.4.3) a potential gy, which is not equal to the
original generic potential q € Ly,1, as follows from Proposition 6.4.1

Existence of "transparent” potentials is often cited in the literature. A "transpar-
ent” potential is a potential which is not equal to zero identically, but generates the
fixed-energy shifts which are all equal to zero.

In [CS, p. 207], there is a remark concerning the existence of "transparent” poten-
tials. This remark is not justified because it is not proved that for the values ¢, used
in [CS, p. 207), equation (6.4.1) is solvable for all r > 0. If it is not solvable even for
one r > 0, then NS procedure breaks down and the existence of transparent potentials
18 not established.

AT
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In the proof, given for the exi of the "t ®, ials in (CS, p, 197),
formula (12.3.5), is used. This formula involves a certain infinite matrix M. It is
claimed in [CS, p. 197), that this matrix M has the property MM = I, where I is
the unit matrix, and on [CS, p. 198], formula (12.3.10), it is claimed that a vector
v # 0 exists such that Mv = 0. However, then MMv = 0 and at the same time
M Muv = v # 0, which is a contradiction. The difficulties come from the claims about
infinite matrices, which are not formulated clearly: it is not clear in what space M, as
an operator, acts, what is the domain of definition of M, and on what set of vectors
formula (12.3.5) in [CS) holds.

The construction of the "transparent” potential in [CS] is based on the following
logic: take all the fixed-energy shifts equal to zero and find the corresponding ¢
from the infinite linear algebraic system (12.2.7) in [CS]; then construct the kernel
f(r.s) by formula (6.4.2) and solve equation (6.4.1) for all r > 0; finally construct the
“transparent” potential by formula (6.4.3). As was noted above, it is not proved that
equation (6.4.1) with the constructed above kernel f(r,s) is solvable for all r > 0.
Therefore the existence of the ”transparent” potentials is not established.

The phys s have been using NS procedure without questioning its validity for
several decades. Apparently the physicists still believe that NS procedure is “an ana-
log of the Gel'fand-Levitan method” for inverse scattering problem with fixed-energy
phase shifts as the data. In fact, the NS procedure is not a valid inversion method.
Since modifications of NS procedure are still used by some physicists, who believe
that this procedure is an inversion theory, the author pointed out some questions
concerning this procedure in [ARS] and [R9] and wrote this paper.

This concludes the discussion of case 1. (sl

Discussion of case 2:

Suppose now that one wants just to construct a potential gy, which generates the
phase shifts corresponding to some q.

This problem is actually not an inverse scattering problem because one does not
recover an original potential from the scattering data, but rather wants to construct
some potential which generates these data and may have no physical meaning. There-
fore this problem is much less interesting practically than the inverse scattering prob-
lem

However, NS procedure does not solve this problem either: there is no guarantee
that this procedure is applicable, that is, that the steps a) and b), described in the
yustification of the conclusions, can be done, in particular, that cquation (6.4.1) is
uniguely solvable for all r > 0.

If these steps can be done, then one needs to check that the potential g, obtained
by formula (6.4.3), generates the original phase shifts. This was not done in [N2] and

1

T'his concludes the discu

The rest of the paper contains formulation and proof of Remark 6.4.2 and
Claim 6.4.3

It was mentioned in (N3] that if Q := [[* rq(r)dr # 0, then the numbers ¢ in
formula (6.4.2) cannot satisfy the condition 3o lerl < oo, This observation can be

sion of case 2. o
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brained also from the foll

Remark 6.4.2. For any potential q(r) € Ly, such that Q := fow rq(r)dr # 0 the
basic equation (6.4.1) is not solvable for some r > 0 and any choice of ¢; such that

Tisolal < oo

Since generically, for ¢ € Ly 1, one has @ # 0, this gives an additional illustration
to the conclusion that equation (6.4.1), in general, is not solvable for some r > 0.
Conditions 575, |er] < 00 and Q # 0 are incompatible.

In [CS, p. 196), a weaker condition 377 17|/ < oc is used, but in the examples
([CS, pp. 189-191)), ¢ = 0 for all I > Iy > 0, so that 3, || < oo in all of these
examples.

Claim 6.4.3. The set of the potentials v(r) € Ly, which can possibly be obtained by
the NS procedure, is not dense (in the norm ||q|| := f;‘ rlg(r)ldr) in the set Ly ;.

Let us prove Remark 6.4.2 and Claim 6.4.3.

Proof of Remark 6.4.2. Writing (6.4.3) as K(r,r) = =% o'nq.(n)da and assuming
Q # 0, one gets the following relation:

K(r,r)=—%[1+()(l)]—bxmr—~x. (6.4.4)

If (6.4.1) is solvable for all » > 0, then from (6.4.2) and (6.4.1) it follows that
K(r,s) = Yoo api(r) w(s), where oi(r) := w(r) - fn’ K(r.liu,(l)‘#. so that I - K
is a transformation operator, where K is the operator with kernel K(r,s), o[ + ¢ ~
ULl o — qulr)gr = 0, qu(r) is given by (6.4.3), g1 = O(r'*1), as r = 0,

uy(r) ~ sin (I‘ - %r) , @u(r) ~ |Fi|sin (r - ’—;— + 6,) as r — 00,
where & are the phase shifts at k = 1 and F; is the Jost function at k = 1. One can
prove that sup; |Fi| < oo. Thus, if 3,2 |ei| < oo, then

K(r,r) = O(1) as r = oo. (6.4.5)

1£Q # 0 then (6.4.5) contradicts (6.4.4). It follows that if Q # 0 then equation (6.4.1)
cannot be uniquely solvable for all r > 0, so that NS procedure cannot be carried
through if Q # 0 and 3°7° || < 00. This proves Remark 6.4.2. 8]

Proof of Clasm 6.4.5. Suppose that v(r) € Ly, and Q, := [;* ru(r)dr = 0, because
otherwise NS procedure cannot be carried through as was proved in Remark 6.4.2.
If Q. = 0, then there is also no guarantee that NS procedure can be carried
through. However, we claim that if one assumes that it can be carried through,
then the set of potentials, which can possibly be obtained by NS procedure, is not
dense in Ly, in the norm ||q|| := f:n rlg(r)|dr. In fact, any potential ¢ such that
Q = J;" rqlr)dr # 0, and the set of such potentials is dense in Ly, cannot be
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approximated with a prescribed accuracy by the potentials which can be possibly
obtained by the NS procedure.
Let us prove this. Suppose that ¢ € Ly,

Q= / ra(r)dr # 0, and |lus — gl| = 0 as 1 = o,
0

where the potentials v, € L, are obtained by the NS procedure, so that Q, :=
jn‘ ru,(r)dr = 0. We assume v, € L because otherwise v, obviously cannot con-
verge in the norm || - || to ¢ € Ly,,. Define a linear bounded on L, functional

s = [ " rarydr, 15(@) < lall

where |jgl| := f;" rlg(r)|dr. The potentials v € L, ;, which can possibly be obtained
by the NS procedure, belong to the null-space of f, that is f(v) = 0.

If limy e [|on —g|| = 0, then limp 00 | f(g—vn)| € limpsec [lg—vnll = 0. Since £ is
a linear bounded functional and f(v,) = 0, one gets: f(g—va) = f(g) = f(va) = f(q)-
So if flg) # 0 then lim, - |f(¢ — va)| = | f(q)| # 0. Therefore, no potential ¢ € L ;
with @, # 0 can be approximated arbitrarily accurately by a potential v(r) € L,
which can possibly be obtained by the NS procedure. Claim 6.4.3 is proved. a]

6.5 Formula for the radius of the support of the
potential in terms of scattering data

The aim of this section is to prove formula. Let us make the following assumption.
As ption (A): the j Lq(r), r = |z|, is spherically symmetric, real-valued,
[y lgifdr < o, and q(r) = 0 for r > a, but ¢(r) # 0 on (a — €,a) for all sufficiently
small £ > 0

The number a > 0 we call the radius of compactness of the potential, or simply the
radius of the potential. Let A(a',a) denote the scattering amplitude corresponding
to the potential g at a fixed energy k% > 0. Without loss of generality let us take
& = 1in what follows. By a',a € S? the unit vectors in the direction of the scattered,
respectively, incident wave, are meant, S? is the unit sphere in R*. Let us use formulas
(5.1.19) and (5.1.20).

It is of interest to obtain some information about g from the (fixed-energy) scat-
tering data, that is, from the scattering amplitude A(a’, a), or, equivalently, from the
coefficients A(a). Very few results of such type are known.

A result of such type is a necessary and sufficient condition for g(z) = g(|z|): it
was proved [R, p.131], that q(z) = q(|z|) if and only if A(a’,a) = A(a’-a). Of course,
the necessity of this condition was a common knowledge, but the sufficiency, that is,
the implication: A(a',a) = A(a' - a) = g(z) = q(|z|), is a new result [R2).

A (modified) conjecture from (R, p.356] says that if the potential g(z) is compactly
supported, and a > 0 is its radius (defined for non-spherically symmetric potentials
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in the same way as for the spherically symmetric), then
]
= b4
o=t | 2| sup @] | =Meaes (—16,|4") P
€ | aes? L
—temet
where §; are the fixed-energy (k = 1) phase shifts. We prove (6.5.1) for the spherically
symmetric potentials ¢ = g(r).
If g = q(r) then Ay, (@) = @Yy (@) where @; depends only on ¢ and k, but not on

aor o', Since k = 1is fixed, a; depends only on £ for ¢ = g(r). Assuming ¢ = ¢(r),
one takes Ala’,a) = A(a’ - a) and calculates Ay (a) = L., Ala' - a)Yim(a') da' =

W Yim(@), where G := ::-}%“—) f_‘l A(l)C}h(l)dl. {=0,1,2,... Here we have used
formula (14.4.46) in [RK, p.413), and ('}"’(t) are the Gegenbauer polynomials (see
[RK, p.408]). Since C;!) = Py(t), Pe(1) = 1, where P(t) are the Legendre polynomials
(see, e.g., [RK, p.409)), one gets: a = 27 fjl A(t)Py(t) dt.

Formula (6.5.1) for ¢ = ¢(r) can be written as a = Mg (-“%’-—'IE,M).

Indeed, sup .3 |Yim| =0 (M), as is well known (see, e.g., [MP, p.261]). Thus
r<m<i

}
Timae (sup ags® ])',,,,(n)|) = 1, and formula for (6.5.1) yields:
~r<m<t

e 3
a= Sl (tla,m) p (6.5.2)

Note that assumption (A) implies the following assumption
ption (A’): the p ial q(r) does not change sign in some left neighbor-
hood of the point a.
This assumption in practice is not restrictive, however, as shown in (R, p.282], the
potentials which oscillate infinitely often in a neighborhood of the right end of their
support, may have some new properties which the potentials without this property
do not have. For example, it is proved in [R, p.282], that such infinitely oscillating
potentials may have infinitely many purely imaginary resonances, while the potentials
which do not change sign in a neighborhood of the right end of their support cannot
have infinitely many purely imaginary es. Therefore it is of interest to find
out if assumption A’ is necessary for the validity of (6.5.2)
The main result is:

Th 6.5.1. Let ption (A) hold. Then formula (6.5.2) holds with lim
replaced by lim.

This result can be stated equivalently in terms of the fixed-energy phase shift d;:

lim (Mw,p") =a. (6.5.3)
oo I3
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Below, we prove an auxiliary result:

Lemma 6.5.2. If g = q(r) € L*(0,00), q(r) is real-valued and does not change sign
n some nterval (a),a) where aj < a, and a is the radius of q, then

a=limm-eo

0o =
/ q(r)r"'drl m=12,... (65.4)
0

Below we prove (6.5.3) and, therefore, (6.5.1) for spherically symmetric potentials.

Proof of Lemma 6.5.2. First, we obtain a slightly different result than (6.5.4) as an
immediate consequence of the Paley-Wiener theorem. Namely, we prove Lemma 6.5.2
with a continuous parameter ¢ replacing the integer m and lim replacing lim. This is
done for g(r) € L*(0,a) and without additional assumptions about ¢. However, we
are not able to prove Lemma 6.5.2 assuming only that g(r) € L*(0,a).

Since g(r) is compactly supported, one can write

o0 a Ina
I(t) := / q(r)rtdr = / q(r)e'"rdr = / qle")e et du. (6.5.5)
0 0 -oo

Let us recall that Paley-Wiener theorem implies the following claim (see (Lev]):
If f(2) = f:" g(u)e™"*du, [by,by] is the smallest interval containing the support
of glu), and g(u) € L*(by,by), then

by = Ty oo (671 In[£(i)]) = im0 (6.5.6)

) ’ (6.5.7)

Formula (6.5.7) is similar to (6.5.4) with m replaced by ¢ and lim replaced by lim.

Remark 6.5.3. We have used formula (6.5.6) with by = —o0, while in the Paley-
Wiener theorem it is assumed that by > —o0o. However, Jor by < by, g #0 on
[by = €,b3) for any € > 0, one has:

In| [y g(u)e™du|
g
Thus, using (6.5.5) and (6.5.6), one gets:

Ina
Ina = fimg— 400 (l" In / qle*)ee™du
-

b b by
/ g(u)e'du = / g(u)e™du +/ glu)e'™du := hy(t) + ha(t).
L -00 b

Thus lim,_, % =0, and

L lh.(l)l«o- ha(t)|

SR TIEL T P

[
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Therefore formula (6.5.7) follows.

To prove (6.5.4), we use a different approach independent of the Paley-Wiener
theorem. We will use (6.5.4) below, in formula (6.5.19). In this formula the role of
q(r) in (6.5.4) is played by rq(r)(1 + e(r, £)], where € = O(}). Let us provl- (6.5.4).

Assume without loss of generality that ¢ > 0 near a. Let [ := fu n)rmdn =

q(r)r"‘dr+f q(r)r™dr := I + I. We have || < cal*, e;(a—n)™ < I < ca™,
whcﬂ. 7 is an arbnlmry small positive number. Thus, I > 0 for all sufficiently large
m, and I"V/™ = l”"'(l 4 7‘;)‘/"‘ One has a —n < I”"I <aand 1: —0asm — co.
Since 7 is arbitrary small, it follows that limy, -~ I'/™ = a. This completes the proof

of (6.5.4). Lemma 6.5.2 is proved. (8]
Proof of formula (6.5.3). From (5.1.19) and (5.1.23) denoting a; = €' sind;, one
gots A(a’ - a) = SnoaYe(a)Ye(o!) = dx Yo, aYela)Yila'), where, a; = :1‘,.
k=1, and as = %‘ = "% gin dy,
o
—/ drug(r)g(r)ve(r). (6.5.8)
where u(r) = rji(r) ~ sin (r - —) as r —» 00, je(r) are the spherical Bessel functions,

Jilr) := \/,':.I,,!(r) and ¥ (r) solves (5.1.15) - (5.1.17), and the integral

vie(r) = ug(r) +/0 9e(r,8)q(s)ve(s)ds, k=1, (6.5.9)

where
9dlr.s) = ~ug(r)we(s), r<s  gelr,s) = guls,r), (6.5.10)

we(s) := '\/_fo)ﬁ (s), u(r) = EJ,‘QU). (6.5.11)

and H,"" is the Hankel function.
It is known [RK, p.407] that

TN LDy o \/T TN
) (2v) Vo' 2£) * (211) 4 (6.5.12)
JHM(r) ~ —#.u = +00,

and (AR, Appendix 4]:
=&
Pemae) < (2-5) " vs 1 (6:5.19)

It follows from (6.5.12) that u(r) does not have zeros on any fixed interval (0,a) if £
is sufficiently large. Define v(r) := %}E{- Then (6.5.9) yields

v(r) =1+ Au “"(:"h:():;(’—)q(s)w(s)ds. (6.5.14)
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From (6.5.10) and (6.5.12) one gets

ol ) ~ gy (S)' Py EE B (65.15)
w(s) 8\ ¢+l
P (;) . €S 4on. (6.5.16)
Thus
ue(s) 5

ge(r,s) (6.5.17)

ur) T AFT
This implies that for sufficiently large € equation (6.5.14) has small kernel and there-
fore is uniquely solvable in C'(0,a) and one has

welr) =ue(r) [1 +0 (;)] asl— 40, 0<r<a, (65.18)

uniformly with respect to r € [0,a].

In the book [N] formula (12.180), which gives the asymptotic behavior of S; for
large £, s nusleading: the remainder in this formula is of order which 1s much greater,
in general. than the order of the main term in this formula. That is why we had to
find a different approach, which yielded formula (6.5.18).

From (6.5.8), (6.5.11), (6.5.12), and (6.5.18) one has:

ag = /“‘ drq(r)uj(r) [1 +0 (;)]

- 1 1 e\ (6.5.19)
o ) Lo I e %
A drq(r)r'r [1+O(1)] -l[+2(2l$l)
Therefore, using (6.5.4), one gets:
2 - &
Jim ( - l|,.,|h) = Jim /n drornrd] =% (6.5.20)
Theorem 6.5.1 is proved. o

Remark 6.5.4. Since & = 0 as £ = 400, and sind; ~ &, e ~ 1, as & — 0,
Jormulas (6.5.20) and a; = ' sin &, imply lim-.n. (IL:“llbllﬁ) = a, where & is the
phase shuft at a fived positive energy. This is formula (6.5.3).
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7. Inverse scattering with “incomplete
data”

7.1 Uniqueness results

Consider equation (1.2.3) on l.he imcrvnl [0,1] with boundar\ condltmns u(()) =
u(l) = 1 (or some other self: i )y
and g =4, 9 € L'[0,1]. Fix0<b< 1. Assume q(z) on [b,1] is known and a subset
{Amn) Jwn=1.23, of the eigenvalues A, = k2 of the operator £ corresponding to the
chosen boundary conditions is known. Here

M = 5(1 +€p), o=const >0, |ea] <1, €,=0. (7.1.1)

We assume sometimes that

o
Y- lenl < oo. (7.1.2)
n=1

Theorem 7.1.1. If (7.1.1) holds and o > 2b, then the data {g(x),b < z < 1;

{A(n) bvn ) determine g(z) on [0,0] uniquely. If (7.1.1) and (7.1.2) hold, the same
conclusion holds also if o = 2b.

The number o is “the percentage” of the spectrum of £ which is sufficient m
determine ¢ on [0,8] if @ > 2b and (7.1.2) holds. For example, if ¢ = l und Ir =5
then “one spectrum” determines ¢ on the half-interval [0,}]. 1f b=}, 0 = Lhcn
“half of the spectrum” determines ¢ on [0, ]. Of course, g is assumed knnwu on [1: 1].
Ifb =1, ¢ = 2, then “two spectra” determines ¢ on the whole interval. By “two
spectra” one means the set {A,} U (i, }, where {p,} is the set of eigenvalues of ¢
cor ding to the same b lary dition u(0) = 0 at one end, say at z = 0,
and some other selfadjoint boundary condition at the other end, say u/(1) = 0 or
w'(1) + hu(l) = 0, h = const > 0. The last result is a well-known theorem of Borg,
which was strengthened in [M], where it is proved that not only the potential but the
boundary conditions as well are uniquely determined by two spectra. A version of
“one spectrum” result was mentioned in (L1, p.81].

Proof of Theorem 7.1.1. First, assume o > 2b. If there are ¢; and gu which produce
the same data. then as above, one gets

1] 1]
G(A) i= g(k) := /o px)pi(x, k)pa(z, k) dz = (pyu' — &) u'\lo = (' - plw) I;h.
(7.1.3)
where w = g, — @3, pi= gy - @2, k = V. Thus
g(k) =0 at k = &,/ A := 2kn. (7.1.4)
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The function G()) is an entire function of A of order § (see (1.2.11) with k = /),
and is an entire even function of k of exponential type < 2b. One has

Imi|
lg(k)| < THIRE (7.1.5)
The indicator of g is defined by the formula
i
h(0) = hy(0) := Tim_ M (7.1.6)

where & = re'. Since |Imk| = r|sin ], one gets from (7.1.5) and (7.1.6) the following
estimate

() < 2b)sin 6. (7.1.7)

It is known [Lev, formula (4.16)] that for any entire function g(k) # 0 of exponen-
tial type one has:

2w
lim — < —l—/ hy(8)d8, (7.1.8)
7 Jo

where nir) is the number of zeros of g(k) in the disk |k| < r. From (7.1.7) one gets

% /:" hy(0)de < g /o“ |sin 8| df = 4;’-) (7.1.9)
From (7.1.2) and the known asymptotics of the Dirichlet eigenvalues:
An = (mn)? +c+o(l), n-oo, c=const, (7.1.10)
one gets for the number of zeros the estimate

R 1—2£[l+o(l)] r— oo (7.1.11)
22 [1ho( )] <r

From (7.1.8), (7.1.9) and (7.1.11) it follows that

o< 2. (7.1.12)

Therefore, if o > 2, then g(k) = 0. If g(k) = 0 then, by property C,, p(z) = 0.
Theorem 7.1.1 is proved in the case o > 2b.
Assume now that o = 2b and

~

D" lenl < co. (7.1.13)

We clavm that if an entire function G(A) in (7.1.3) of order % vanishes at the points

niz
An = —5

(7.1.14)



One-di jonal inverse ing and sp ! proble 395

and (7.1.13) holds. then G(A) = 0. If this is proved, then Theorem 7.1.1 is proved as

above.
Let us prove the claim. Define

o) = ﬁ (1 L Ai) (7.1.15)
P <
and recall that
®o(A) = """\’/‘[) ,.lj. (1 ¥ “i) T % (7.1.16)
Since G(A,) = 0, the function
w(A) = 2:—:; (7.1.17)

is entire, of order < ! Let us use a Phragmen-Lindelof lemma.
Lemma 7.1.2. [Lev, Theorem 1.22] If an entire function w(A) of order < 1 has
the property sup._ «cycoo [W(iy)| € ¢, then w(X) = c. If, m addition w(iy) = 0 as
v = 40, then w()) = 0.

We use this lemma to prove that w(A) = 0. If this is proved then G(\) = 0 and
Theorem 7.1.1 is proved.

The function w(A) is entire of order } g<l

Let us check that

sup  |w(iy)| < oo, (7.1.18)
“oodp<on

and that
lw(iy)] = 0 as y = +0c. (7.1.19)
One has, using (7.1.5), (7.1.15), (7.1.16) and taking into account that o = 2b:

ki ]
Gliy) ®oliy)| _ ®ImVisl [ golimyis V=14 i
9 )| = —_— —_—
= e | < T \ 1)\ E

i
e 2 c
-—;“M H w2 51+Iv|’ H (l+|t..|)<]+|y”

{nidaSAn ) (npn €Aa)
Here we have used elementary incqualities:

I a 1+a
<- > s
ThdSg if a>d>0; Ttd

with a .= 5. d= E and the assumption (7.1.13).

<1 if 0<a<d, (7.1.20)
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We also used the relation:

sin(oy/iy) | eclimviEl
oViy 20|V/iy|

Estimate (7.1) implies (7.1.18) and (7.1.19). An estimate similar to (7.1) has been

used in the literature (see [GS]).
Theorem 7.1.1 is proved. (5]

as y — +00.

7.2 Uniqueness results: compactly supported po-
tentials

Consider the inverse scattering problem of Section 5.2 and assume
qg=0forz>a>0. (7.2.1)

Theorem 7.2.1. If q € Ly, satisfies (7.2.1), then any one of the data S(k), d(k),
Jlk), f'(k). determine q uniquely.

Proof. We prove first S(k) =» ¢. Note that without assumption (7.2.1), or an assump-
tion which implies that f(k) is an entire function on C, the result does not hold. If
(7.2.1) holds, or even a weaker assumption:

lg@)| € cre™®=’ y>1, e,02>0, (7.22)

then f(k), the Jost function (1.2.5), is an entire function of k, and S(k) is a meromor-

phic function on C with the only poles in C; at the points ik;, 1 < j < J. Thus, k;
and J are determined by S(k). Using (1.2.16) and (1.2.11), which holds for all k € C,
because f(k) and f(z,k) arc entire functions of k, one finds s; = i Respa, S(k).
Thus all the data (1.2.17) are found from S(k) if (7.2.1) (or (7.2.2)) holds. If the data
1.2.17) are known, then ¢ is uniquely determined, see Theorem 5.2.1.

16 §(k) is given then S(k) = 2%}, 50 §(k) = q. If £(k) is given then S(k) = Lol
so f(k) = q. If f'(0, k) is given, then one can uniquely find f(k) from (1.2.11). Indeed,
assume there are two f(k), fi and f;, corresponding to the given f'(0, k). Subtract
from (1.2.11) with f = f; equation (1.2.11) with f = f;, denote f, — f2 := w, and
get (o) f(0,k)w(=k) = f(0, —k)w(k) or ,-“L,!;-, = Fro=ty Since w(oc) = 0, and
F0,k) = ik = A0,0) + [;¥ Az(0,y)e***dy, one can conclude that w = 0 if one can
check that 71‘#}-’ is analytic in C,. The function f*(0, k) has at most finitely many
seros in Co and these zeros are simple. From () one concludes that if f/(0,x) = 0,
x € Co then w(k) = 0, because if (0, x) = 0 then f'(0, —x) # 0 (sce (1.2.11)). Thus
Fre47 & analytic in Cy. Similarly r'(-},;‘—z—, is analytic in C,. These two functions
agree on the real axis, 50, by analytic continuation, the function ﬁyih is analytic in
C. and vanishes at infinity. Thus it vanishes identically. So w(k) = 0, fy = fz, and
J k) is uniquely determined by f'(0, k). Thus Theorem 7.2.1 is proved. o
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7.3 Inverse scattering on the full line by a potential
vanishing on a half-line
The scattering problem on the full line consists of finding the solution to:

fu-ku=0, z€R, (7.3.1)
u=e* 4r(k)e ™ 4 0(1), z— -, (7.3.2)
u = t(k)e** +0(1), z - 400, (7.3.3)

where r(k) and t(k) are, respectively, the reflection and transmission coefficients. The
above scattering problem describes plane wave scattering by a potential, the plane
wave s incident from — oo in the positive direction of the r-axis. The inverse scattering
problem consists of finding ¢(x) given the scattering data

{r(k) Ky 05,1 €5 < ), (7.3.4)

where s, > 0 are norming constants, k; > 0, and —k;‘ are the negative eigenvalues of
the operator £,.

It is known [M). that the data (7.3.4) determine g € Ly ,(R) == {g: g =7, [" (1+
|2|)|qldx < a0} uniquely. Assume that

q(z) =0, z<0. (7.3.5)

Theorem 7.3.1. If g € L, (R) and (7.3.5) holds, then {r(k)}viso determines q
uniquely

Proof. If (7.3.5) holds, then u = e'** + r(k)e~"** for z < 0, and u = t(k)f(z, k) for
x >0, where f(k z) is the Jost solution (1.2.5). Thus
k(1= r(k) _ u'(=0,K) _ u'(+0,k) _ £'(0,k)
L+r(k) — u(=0,k) ~ u(+0,k) f(k)

= I(k). (7.3.6)

Therefore (k) determines I(k), so by Theorem 3.1.2 ¢ is uniquely determined. O

8. Recovery of quarkonium systems

8.1 Statement of the inverse problem

The problem discussed in this Section is: to what extent does the spectrum of a
konium system together with other experi | data determines the interquark

17 This problem was di d in [TQR], where one can find further ref-
erences. The method given in [TQR) for solving this problem is this: one has few
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scattering data Ej, 85, which will be defined precisely later, and one constructs us-
ing the known results of inverse scattering theory a Bargmann potential with the
same scattering data and siders this ial a solution to the probl This
approach is wrong because the scattering theory is applicable to the potentials which
tend to zero at infinity, while our cunﬁnmg polcnual.a grow w infinity at infinity and
0o Bargmann potential can approxi P ial on the whole semiaxis
(0.2¢). Our aim is to give an ulgomhm which is consistent and yields a solution
to the above problem. The algorithm is based on the Gel'fand-Levitan procedure of
Section 4.3
Let us formulate the problem precisely. Consider the Schroedinger equation

=V s+ a(r)yy = Eygy in R, (8.1.1)
where g(r) is a real-valued spherically symmetric potential, r := |z|,z € R?,
q(r) =r+p(r), plr)=o(l)asr - oo. (8.1.2)

The functions vy(x), |[Vy]lz3re) = 1, are the bound states, E; are the energies of
these states. We define u;(r) := riy;(r), which correspond to s-waves, and consider
the resulting equation for u;:

luy = —uf +q(r)uy = Bjuj, r>0, ug(0)=0, |lugllezoe) =1  (8:13)

One can measure the energies £ of the bound states and the quantities s; = u}(0)
experimentally.

Therefore the following inverse problem (IP) is of interest:

(IP): given:

{Ej 85 vi=1, (8.1.4)
can one recover p(r)?

In [TQR] this question was considered but the approach in [TQR] is inconsistent
and no exact results are obtained. The inconsistency of the approach in [TQR] is the
following: on the one hand [TQR] uses the inverse scattering theory which is applicable
10 the potentials decaying sufficiently rapidly at infinity, on the other hand, [TQR]
& concerned with potentials which grow to infinity as r — 400, It is nevertheless of
some interest that numerical results in [TQR] seem to give some approximation of
the potentials in a neighborhood of the origin.

Here we present a rigorous approach to IP and prove the following result:

Theorem 8.1.1. /P has at most one solution and the potential q(r) can be recon-
structed from data (8.1.4) algorithmically.

The reconstruction algorithm is based on the Gel'fand-Levitan procedure for the
reconstruction of ¢(x) from the spectral function. We show that the data (8.1.4) allow
one to write the spectral function of the selfadjoint in L*(0,00) operator £, defined
by the differential expression (8.1.3) and the boundary condition (8.1.3) at zero.

In Section 8.2 proofs are given and the recovery procedure is described.

e



g and ! probl 300

Since in experiments one has only finitely many data { £}, s;}1<;<s. the question
arises:

How does one use these data for the recovery of (he patenhnl'

We give the following recipe: the unknown fi | is 1 to be
of the form (8.1.2), and it is assumed that for j > J the data {E;.5;}5>a for this
potential are the same as for the unperturbed potential go(r) = r. In this case an
casy algorithm is given for finding q(r).

This algorithm is described in Section 8.3.

8.2 Proofs

We prove Theorem 8.1.1 by reducing (IP) to the problem of recovery of g(r) from the
spectral function.

Let us recall that the selfadjoint operator L has discrete spectrum since g(r) —
400, The formula for the number of eigenvalues (energies of the bound states), not
exceeding A, is known:

=N~z gt
qir)<

Byea

This formula yields, under the assumption g(r) ~ r as r =+ oo, the following asymp-
totics of the eigenvalues:

By~ (%’—rj)i as j = +o0.

The spectral function p(A) of the operator L is defined by the formula

P\ = Z — (8.2.1)

Ey<A gy

where a; are the normalizing constants:

(8.2.2)

Here ¢,(r) := ofr, E,) and ¢(r, B) is the unique solution of the problem:
Lo = ~¢" 4+ q(r)o = Bd, r >0, 6(0,E) =0, ¢'(0.E) = 1. (8.2.3)

IfE = B, then ¢, = ¢(r, ;) € L*(0, ). The function é(r, E) is the unique solution
to the anmn integral equation:

e sin(VEr) " sin[VE(r - y)]
L e

a(v)é(y, E)dy. (8.2.4)
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For any fixed r the function ¢ is an entire function of E of order 4, that is, |¢] <
cexplc|E|'?), where ¢ denotes various positive constants. At E = E;, where E,
are the eigenvalues of (8.1.3), one has ¢(r, E;) := ¢; € L*(0,00). In fact, if g(r) ~
er®, a >0, then |¢;| < cexp(~=7r) for some v > 0.

Let us relate a; and s;. From (8.2.3) with E = E; and from (8.1.3), it follows
that

4 =L (825)
8

Therefore 4
ay = ||0; ":l'.’(OA:/I = S (8.2.6)

f]
Thus data (8.1.4) define uniquely the spectral function of the operator L by the

formula:
p(A) = Z s} (8.2.7)
E;j<A

Given p(A), one can use the Gel'fand-Levitan (GL) method for recovery of g(r).
According to this method, define

a(}) := p(A) = po(A), (8:2.8)

where pg(A) is the spectral function of the unperturbed problem, which in our case is
the problem with g(r) = r, then set

L(x,y) = /ci do(z, M) doly, A)da()), (8.29)

where ¢y(x, A) are the cigenfunctions of the problem (8.2.3) with g(r) = r, and solve
the second kind Fredholm integral equation for the kernel K (z,y):

K(z,y) +/ K(x,t)L(t,y)dt = =L(z,y). 0<y<z. (8.2.10)
0

The kernel L(z,y) in equation (8.2.10) is given by formula (8.2.9). If K(z,y) solves
§.2.10), then

(ll\(r r)

p(r) = 2——— r>0. (8.2.11)

8.3 Reconstruction method

Let us describe the algorithm we propose for recovery of the function g(z) from few
experimental data {E), 45} <j<s. Denote by (E" ) ).<,<; the data corresponding
10 gu = r. These data are known and the rurmspondmg eigenfunctions (8 1.3) can
be expressed in terms of Airy function Ai(r), which solves the equation w” ~ rw = 0
and decays at 400, see [Leb]. The spectral function of the operator Lo corresponding
Wwe=gy:=ris

() = Y ()? (8.3.1)

]
B} <A
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Define
2(A) = po(A) +a(N), (8.3.2)
o)=Y 8- 3 (% (8.3.3)
Ej<)\ Ej<A

and J J
L(z,y) = Y s3é(x, B, E;) - 3 (5)°6;(2)¢; (w), (8.3.4)

=1 J=1

where ¢(z, E) can be obtained by solving the Volterra equation (8.2.5) with ¢(r) =
qo(r) := r and represented in the form:

1/2 x g 1/2
oz, p) = T2 +A K2 Py, (8.3.5)

where K(z,y) is the transformation kernel corresponding to the potential ¢(r) =
go(r) := r, and ¢, are the eigenfunctions of the unperturbed problem:

~¢f +r¢; = Eyp; r>0, ;(0)=0, ¢;(0)=1 (8.3.6)

Note that for E # E‘,’ the functions (8.3.5) do not belong to L2(0, %), but ¢(0, £) = 0

We denoted in this section the eigenfunctions of the unperturbed problem by ¢; rather
than gy, for licity of i since the eigenfunctions of the perturbed problem
are not used in this section. One has: #5(r) = ¢;Ai(r— EY), where ¢; = [Ai'(-E)))™,

Iz‘ > 0 is the j=th positive root if the equation Ai(—E) = 0 and, by formula (8.2,5),
one has o) = [ [ AP(r — Ef)dr]~'/%. These formulas make the calculation of
¢;(x), 57 and :',’ easy since the tables of Airy functions are available [Leb).

The equation analogous to (8.2.10) is:

K(z.y)+ Zr,v,(y)/ K (a, )W, (t)dt = Zc,w (2)¥;(v), (8.3.7)
y=1 J=1
where @, (€) := o(t, E;),c; = 87,1 < j < J,and W,(t) = ¢;-s(t),¢;—s = (8§)*,J+1 <
J € 2J. Equation (8.3.7) has degencrate kernel and therefore can be mdur(-({ to alinear
algebraic system.
If K (z,y) is found from (8.3.7), then

P = 2K (), alr) =+ plr). (8.3.8)

Equation (8.2.10) and, in particular (8.3.7), is uniquely solvable by the Fredholm
altornative: the homogeneous version of (8.2.10) has only the trivial solution. Indeed,
i+ [ LGt w)R(0)dt = 0,0 < y < 2, then [[A]12+ [, [A[dp(A) - po(N)] = 0, s0 that,
by Parseval equality, f_‘_’; |7||'d/l(¢\) = 0. Here h := Jo h(t)é(t, \)dt, where ¢(t, A) are
defined by (53.5). This implies that A(E;) = 0 for all j = 1,2, ... Since h()) is an
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entire function of exponential type < x, and since the density of the sequence Ejn
infinite, e, limy—oo ﬁ'—kﬂ = 00, because Ej = O(j/%), as was shown in the beginning
of Section 8.2, it follows that Tl = 0 and consequently A(t) = 0, as claimed.

In conclusion consider the case when E; = Ef.n, = u‘} for all j > 1, and {Eq, %)
is the new eigenvalue, By < EY, with the corresponding data so. In this case L(t,y) =
s3¢u(t, Eg)éoly, Fo), so that equation (8.2.10) takes the form

K(z,y) + #3o(y) /“ " K(z,0)dot, Eo)dt = —s3é(x, Eo)on(y, Eo).

Thus, one gets:

L d s3d2(z, Eo)
A oo At Eo)dt’

9. Krein’s method in inverse scattering

9.1 Introduction and description of the method

Consider inverse scattering problem studied in Chapter 5 and for simplicity assume
that there are no bound states. This assumption is removed in Section 9.4

This chapter is a commentary to Krein's paper [K1]. It contains not only a de-
tatled proof of the results announced in [K1) but also a proof of the new results not
mentioned in [K1]. In particular, it contains an analysis of the invertibility of the steps
in the inversion procedure based on Krein's results, and a proof of the consistency
of this procedure, that is, a proof of the fact that the reconstructed potential gen-
erates the scattering data from which it was reconstructed. A numerical scheme for
solving inverse scattering problem, based on Krein's inversion method, is proposed,
and its advantages compared with the Marchenko and Gel'fand-Levitan methods are
discussod. Some of the results are stated in Theorem 9.1.2 - Theorem 9.1.5 below.

Consider the equation for a function T, (¢, 8):

14 H,)T, = r.u,,)»,/ H(t - ws(u,0)du = H(t—35), 0<t,s <2 (@QL1)
0

Equation (9.1.1) shows that ', = (J + H,)"'H =1 - (I + H,)"}!, s0
(1 + B~V TETS 9.12)

in operator form, and
Hy=(I-=T,)" -1 9.1.3)

Lot ws assume that /(1) is a real-valued even function

H(=t) = H(t), H(t) € L"(R)n L*(R),
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L+ (k) >0, H(k):= / = H(te™dt =2 /: cos(k)H(de.  (9.1.4)
Then (9.1.1) is uniquely solvable ft:nny x > 0, and there exists a limit
I(t,8) = 'an(L Is(t,8) i=T(t,s), t,s20, (9.1.5)
where (¢, 5) solves the equation
It.s) + /DNH(I —u)l(u,8)du = H(t-35), 0<ts<oo. (9.1.6)

Given H(t), one solves (9.1.1), finds Iz, (s,0), then defines

- B(z, k) - E(z, -k)

U(x, k) o 9.1.7)
where

2z
E(x, k) := e'** [1 - / T2 (s,0)e~***ds (9.1.8)
0
Formula (9.1.8) gives a one-to-one correspondence between Elx. k) and I'y.(s,0).

Remark 9.1.1. In [K1] 'y,(0,8) is used in place of Ts.(5.0) mn the definition of
E(z, k). By formula (9.2.22) (sce Section 9.2 below) one has U;(0,z) = Ty(2,0), but
[',(0,8) # [,(#.0) in general. The theory presented below cannot be constructed with
I'32(0,8) i place of Ty, (,0) in formula (9.1.8).

Note that
E(z,k) = e™ f(=k) +0(1), z - +, (9.1.9)
where o
flk) =1 —/ I(s)e'**ds, (9.1.10)
o
and
I'(s) := :HTN Tz(8,0) := F(s,0). (9.1.11)
Furthermore,

vl k) = +0o(l), - +oo. (9.1.12)

oM f(—k) — e~ f(k)
2i

Note that oz k) = |f(k)|sin(ka+6(k))+0(1), x = +00, where f(k) = |f(k)|e~ "),
O(k) = ~§(-k), keR.

The function 8(k) is called the phase shift. One has S(k) = ¢2*#(%),

We have changed the notations from [K1] in order to show the physical meaning of
the :\xulinn (9.1.9): f(k) is the Jost function of the scattering theory. The function
%‘ is the solution to the ing problem: it solves ion (1.2.3), and satisfies
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the correct boundary conditions: l}?ﬁl =0, and %ﬁl = e* ™ sin(kz + 8(k)) + o{1)
as r —+ 00.
Krein [K1] calls S(k) = £f758) the S-function, and S(k) is the S-matrix used in
physics.

Assuming no bound states, one can solve

The inverse scattering problem (ISP):

Guwen S(k) Yk > 0, find q(x).

A solution of the ISP, based on the results of [K1), consists of four steps:

1) Given S(k), find f(k) by solving the Riemann problem (9.2.38).

2) Given f(k), calculate H(t) using the formula

1+H=1 +/ H(t)e'™dt = (9.1.13)

1
1)
3) Given H(t), solve (9.1.6) for I'z(¢,s) and then find Iy, (2r,0), 0 < r < .
4) Define

a(x) = 2I'3,(2x,0), (9.1.14)
where
a(0) = 2H(0), (9.1.15)
and calculate the potential
q(z) = a*(z) +d'(z), al0) = 2H(0). (9.1.16)

One can also calculate g(z) by the formula:
d
q(x) = QZ‘-[F;,(b.O) = I2:(0.0)]. (9.107)

Indeed, 203, (22,0) = a(z), see (9.1.14), £I3,(0,0) = ~202,(2z,0)l24(0,22), seo
9.2.23). and I'3(22,0) = '3, (0, 2z), see (9.2.22).

There is an alternative way, based on the Wiener-Levy theorem, to do step 1).
Namely, given S(k), find §(k), the phase shift, then calculate the function g(t) =
<% [ 8Uk) sin(kt)dk, and finally calculate f(k) = exp (Jo~ glt)e™dk).

The potential g € Ly ) gencrates the S-matrix S(k) with which we started provided
that the following conditions (9.1.18) - (9.1.21) hold:

S(k) =S(-k) =S~'(k), keR, (9.1.18)
the overbar stands for complex conjugation, and
indgS(k) =0, (9.1.19)

UF() = oy + 1 F ()l 2 may + I F (@)l pegmay < 00, (9.1.20)
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where 1 [~
F(e) = - / (1 = (ke dk. ©.1.21)

By the index (9.1.19) one means the increment of the argument of S(k) ( when & runs
from —oo to +oc along the real axis) divided by 2x. The function (9.1.7) satisfies
equation (1.2.5). Recall that we have assumed that there are no bound states.

In Section 9.2 the above method is justified and the following theorems are proved:

Theorem 9.1.2. If (9.1.18) - (9.1.20) hold, then q(x) defined by (9.1.16) is the
unique solution to ISP and this q(x) has S(k) as the scattering matriz.,

Theorem 9.1.8. The function f(k), defined by (9.1.10), is the Jost function corre-
sponding to potential (9.1.16).

Theorem 9.1.4. Condition (9.1.4) implies that equation (9.1.1) is solvable for all
x> 0 and its solution is unique.

Theorem 9.1.5. If condition (9.1.4) holds, then relation (9.1.11) holds and I'(s) :=
' (5,0) s the unigue solution to the equation

I'(s) + /m H(s = u)l(u)du = H(s), s>0 (9.1.22)
0

The disgram explaining the inversion method for solving ISP, based on Krein's
rosiilts from (K1), can be shown now:

”“)m 1§ ”l" , ")(mvml) St 0)(9. 14)

230 (Ll I)l

S(k) J(k) a(z) qlx).

(9:1.23)
In this diagram ., denotes step number m. Steps sy, sy, 85 and sq are trivial. Step
# ix almost trivial: it requires solving a Riemann problem with index zero and can be
done analytically, in closed form. Step sy is the basic (non-trivial) step which requires
solving a family of Fredholm-type linear integral equations (9.1.1). These equations
are uniquely solvable if assumption (9.1.4) holds, or if assumptions (9.1.18) - (9.1.20)
hold.
In Section 9.2 wo analyze the invertibility of the steps in diagram (9.1.23). Note
also that, if one assumes (9.1.18) - (9.1.20), diagram (9.1.23) can be used for solving
the inverse problems of finding () from the following data:

(©.1,10)
n

a) from f(k), ¥k >0,
b) from | f(k)P, ¥k > 0, or
€) from the spectral function dp()).
Inded, i (9.1.18) - (9.1.20) hold, then a) and b) are contained in diagram (9.1.23),

Y3 __d)
and ¢) follows from the known formula dp(\) = { = /(v .\n:)' : P Tiati = 42
)y <0

Then (still assuming (9.1.19)) one has: dp = l%'mdk. k>0
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Note that the general case of the inverse scattering problem on the half-axis, when
indgS(k) := v # 0, can be reduced to the case v = 0 by the procedure, described
in Section 9.4, provided that S(Ic) is the S—matrix corresponding to a potential
q € Ly11(Ry). N y and suffi conditions for this are conditions (9.1.18) —
(9.1.20).

Section 9.3 contains a discussion of the numerical aspects of the inversion pro-
cedure based on Krein’s method. There are advantages in using this procedure (as
compared with the Gel'fand-Levitan procedure): integral equation (9.1.1), solving
of which constitutes the basic step in the Krein inversion method, is a Fredholm
convolution-type equation. Solving such an equation numerically leads to inversion
of Toeplitz matrices, which can be done efficiently and with much less computer
time than solving the Gel'fand-Levitan equation (1.5.4). Combining Krein's and
Marchenko’s inversion methods yields an efficient way to solve inverse scattering prob-
lems.

Indeed, for small z equation (9.1.1) can be solved by iterations since the norm of
the integral operator in (9.1.1) is less than 1 for sufficiently small z, say 0 < z < zo.
Thus g(z) can be calculated for 0 < z < % by diagram (9.1.23).

For z > xo > 0 one can solve by iterations Marchenko’s equation (1.5.13) for the
kernel A(z,y), where, if (9.1.19) holds, the function F(z) is defined by the (1.5.11)
with Fy = 0.

Indeed, for > 0 the norm of the operator in (1.5.11) is less than 1 and it tends
to 0 as r — +o0.

Finally let us discuss the following question: in the justification of both the
Gel'fand-Levitan and Marchenko methods, the eigenfunction expansion theorem and
the Parseval relation play the fundamental role. In contrast, the Krein method ap-
parently does not use the eigenfunction expansion theorem and the Parseval relation.
However, implicitly, this method is also based on such relations. Namely, assumption
(9.1.4) implies that the S-matrix corresponding to the potential (9.1.16), has index
0. If, in addition, this potential is in L, ;(R4), then conditions (9.1.18) and (9.1.20)
are satisfied as well, and the eigenfunction expansion theorem and Parseval’s equal-
ity hold. Necessary and sufficient conditions, imposed directly on the function H(t),
which guarantee that conditions (9.1.18) — (9.1.20) hold, are not known. However, it
follows that conditions (9.1.18) - (9.1.20) hold if and only if H(t) is such that the dia-
gram (9.1.23) leads to a g(x) € L, ,1(R4). Alternatively, conditions (9.1.18) - (9.1.20)
hold (and consequently, g(z) € Ly, (R4)) if and only if condition (9.1.4) holds and
the function f(k), which is uniquely defined as the solution to the Riemann problem

Dy (k)=[1+HK) ' (k), keR, (9.1.24)

by the formula f(k) = ®,(k), generates the S-matrix S(k) by formula (9.1.15),
and this S(k) satisfies conditions (9.1.18) — (9.1.20). Although the above conditions
are verifiable, they are not quite satisfactory because they are implicit, they are not
formulated in terms of structural properties of the function H (t) (such as smoothness,
rate of decay, etc.).

In Section 9.2 Theorem 9.1.2 - Theorem 9.1.5 are proved. In Section 9.3 numerical
aspects of the inversion method based on Krein’s results are discussed. In Section 9.4

a3 N
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the ISP with bound states is discussed. In Section 9.5 a relation between Krein's and
Gel'fand-Levitan’s methods is explained.

9.2 Proofs
Proof of Theorem 9.1.4. If v € L*(0, z), then
15N o
(v+ Hzv,v) = ﬁ[("yﬁ)um + (H9,9) 1)) 9:2.1)
where the Parseval equality was used, ¥ := [ v(s)e™**ds,
z
) = [ s = @ 0)isce 022)
0

Thus I + H, is a positive definite selfadjoint operator in the Hilbert space L2(0,)
if (9.1.4) holds. Note that, since H(t) € L'(R), one has H(k) — 0 as |k| = oo, sO
(9.1.4) implies

1+ H(k) > c> 0. (9.2.3)

A positive definite selfadjoint operator in a Hilbert space is boundedly invertible.
Theorem 9.1.4 is proved. (]

Note that our argument shows that

sup [|(7 + Hz) ™ [[zaz) < e (9.2.4)
230

Before we prove Theorem 9.1.5, let us prove a simple lemma. For results of this type,
see [K2].

Lemma 9.2.1. If (9.1.4) holds, then the operator
00
Hyp:= / H(t — u)p(u)du (9.2:5)
0

is a bounded operator in LP(R;.), p = 1,2, 00.
For U;(u,s) € L'(Ry) one has

" =
I dut (e = T 9200y < [ dulrw, o). ©9.26)
[ !
Proof. Let [[¢lly := [I¢llzs(gs)- One has

¥ o 4

el < sup [~ dtace =i [ lotwidu < [~ iHs)asliolh = 211 el
ueRs Jo 0 -0

9.2.7)
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where we have used the assumption H(t) = H(—t). Similarly,
2 ¢lleo < 2/1H]]1 || o] - (9.2.8)

Finally, using Parseval’s equality, one gets:

2|l Holl3 = 1Hé+ |32y < sup ORI (9.2.9)
where
_ [ o), z>0o,
wi(z) = { O . (9-2.10)

Since |I'~I(k)| < 2||H]||: one gets from (9.2.9) the estimate:

1Hell2 < V2/m||H]|x lel]2- (9.2.11)

To prove (9.2.6), one notes that
eiteer s ¥
[t [ autre-wraw o < sw [*dtme-wre-vi [ et sy
o z uw>z Jo 5
el dullatu o))

Estimate (9.2.6) is obtained. Lemma 9.2.1 is proved. (8]
Proof of Theorem 9.1.5. Define I'z(t,s) = 0 for t or s greater than z. Let w :=
Tz(t,s) — I'(t,s). Then (9.1.1) and (9.1.6) imply
oo
(I + Hy)w = / H(t — w)D(u, s)du = hy(t, s). (9.212)

If condition (9.1.4) holds, then equations (9.1.6) and (9.1.22) have solutions in L' (R..),
and, since sup,eg [H(t)| < oo, it is clear that this solution belongs to L>(Ry) and
consequently to L*(Ry), because ||@|l2 < |l¢lloll¢lls. The proof of Theorem 9.1.4
shows that such a solution is unique and does exist. From (9.2.4) one gets

sup||( + Hz) ™' llzz0) S €7 (9:2.13)
>0
For any fixed s > 0 one sees that sup,>, ||[hz(t,5)|| = 0 as y = oo, where the norm

here stands for any of the three norms LP(0,z),p = 1,2,00. Therefore (9.2.12) and
(9.2.11) imply

lll2(0,6) S € *llhellfao,z)

/°° H(t — u)T(u,s)du

'/INI:I([ - n)r(u,s)du“

<l

L'(0.5) L>=(0,z)

< const [|T(u, 8)|[71z 00 = 0 85 7 = 20, (9.2.14)
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since I'(u, 8) € L'(Ry.) for any fixed s > 0 and H(t) € L'(R).

Also
“W(t,s)”im(o,z) S 2(”’12”1‘”(0,1) e |IHZWI|2L°°(0,Z)) (9.2.15)
< cllll‘(uys)llin(z,w; +e2 ilell; ||H(t - “)”iﬂ(u.z)”“’”i:(o,z)v (9.2.16)
where ¢; > 0 are some constants. Finally, by (9.2.6), one has;
o0
[lw(t, $)lIF20,2) < Cs(/ |D(u, 8)|du)? — 0 as ¢ — +oo. (9.2.17)
F
From (9.2.15) and (9.2.17) relation (9.1.11) follows. Theorem 9.1.5 is proved. (=]
Let us now prove Theorem 9.1.3. We need several lemmas.
Lemma 9.2.2. The function (9.1.8) satisfies the equations
E'=ikE - a(x)E-, E(0,k)=1, E_:= E(z,—k), (9.2.18)
E. = —ikE- - o(z)E, E_(0,k)=1, (9:2.19)
where E' = £, and a(x) is defined in (9.1.14).
Proof. Differentiate (9.1.8) and get
21
E' = ikE - e'*= (21‘2:(21,0)'&"“2* + 2/ OL'22(5,0) 0)9-""ds) \ (9.2.20)
o 0(2x)
We will check below that
9 Ta(ts)
oz = ~Te(t,2):(,3), (9.2.21)
and
Ta(t,8) =T, (z - t,z — s). (9.2.22)
Thus, by (9.2.21),
9l'34(s,0)
“9(2z) = —Ta. (s, 22)Ta2 (22, 0). (9.2.23)
Therefore (9.2.20) can be written as
; —ikz e
E' = ikE - e a(x) + a(g)gike / Ds. (s, 2z)e~***ds. (9.2.24)
0
By (9.2.22) one gets
T22(8,22) = 1, (22 — 5,0). (9.2.25)

N
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Thus
e : 22 "
e""/ Fz,(s.2z)e”"'ds=/ Ty, (22 — 5,0)e'* (== ds
o o
. 2 P
=g ik / Tz (y,0)e™*¥dy. (9.2.26)
o

From (9.2.24) and (9.2.26) one gets (9.2.18).

Equation (9.2.19) can be obtained from (9.2.18) by changing k to —k. Lemma 9.2.2
is proved if formulas (9.2.21) - (9.2.22) are checked.

To check (9.2.22), use H(—t) = H(t) and compare the equation for I'z(z — ¢,z —
L= 12,

z
I‘,(:—l.r—s)+/ H(z—t—u)lz(u,z—s)du = H(z—t—z+s) = H(t—s), (9.2.27)
o
with equation (9.1.1). Let u = 2 — y. Then (9.2.27) can be written as
z
¢+/ H(t—y)pdy = H(t - s), (9.2.28)
0

which is equation (9.1.1) for ¢. Since (9.1.1) has at most one solution, as we have
proved above (Theorem 9.1.4), formula (9.2.22) is proved.
To prove (9.2.21), differentiate (9.1.1) with respect to z and get:

T.(t,s) + / H(t — W, (u,s)du = —H(t — 2)0; (z,5), T, := %. (9.2.29)
0

Set s = z in (9.1.1), multiply (9.1.1) by —I'z(z,s), compare with (9.2.29) and use
again the uniqueness of the solution to (9.1.1). This yields (9.2.21).
Lemma 9.2.2 is proved. o

Lemma 9.2.3. Equation (1.2.5) holds for ¢ defined in (9.1.7).
Proof. From (9.1.7) and (9.2.18) - (9.2.19) one gets

o= E" z—iEﬂ _ GkE —a(@)E_)' ;i(—ikE, = a(z)E)" (9.2.30)

Using (9.2.18) - (9.2.19) again one gets
Y = -k +q(@)y, q(2) = a*(z) +d'(2). (9.2.31)
Lemma 9.2.3 is proved. 8]

Proof of Theorem 9.1.3. The function ¥ defined in (9.1.7) solves equation (1.2.5) and
satisfies the conditions

¥(0,k) =0, ¥'(0,k)=k. (9.2.32)

e &\
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The first condition is obvious (in [K1] there is a misprint: it is written that (0, k) =
1), and the second condition follows from (9.1.7) and (9.2.15):

E'(0,k) = EL(0,k) _ikE —aBE_ — GkE_ —aB)| _ 2ik
% 3 2% R d?i

U'(0.k) =

Let f(z, k) be the Jost solution. Since f(z,k) and f(z, —k) are linearly independent,
one has v = ¢; f(x,k) + ¢a f(z, —k), where ¢y, ¢, are some constants independent of
z but depending on k.

From (9.2.32) one gets ¢; = LL;‘—Q () = Jé‘ﬂ, f(k) := f(0,k). Indeed, the
choice of ¢; and ¢, guarantees that the first condition (9.2.32) is obviously satisfied,
while the second follows from the Wronskian formula: f'(0,k)f(—k)— f(k)f'(0, —k) =
2ik.

Comparing this with (9.1.12) yields the conclusion of Theorem 9.1.3. (u]

Invertibility of the steps of the inversion procedure
and proof of Theorem 1.1

Let us start with a discussion of the inversion steps 1) - 4) described in the introduc-
tion.

Then we discuss the uniqueness of the solution to ISP and the consistency of the
inversion method, that is, the fact that g(z), reconstructed from S(k) by steps 1)
4), generates the original S(k).

Let us go through steps 1) - 4) of the reconstruction method and prove their
invertibility. The consistency of the inversion method follows from the invertibility of
the steps of the inversion method.

Step 1. S(k) = f(k).

Assume S(k) satisfying (9.1.18) — (9.1.20) is given. Then solve the Riemann
problem

f(k) = S(=k)f(=k), keR. (9.2.33)

Since indgS(k) = 0, one has indgS(—k) = 0. Therefore the problem (9.2.33) of
finding an analytic function fi(k) in C4 := {k: Imk > 0}, f(k) := fy(k) in Cy,
(and analytic function f_(k) := f(=k) in C_ := {k : Imk < 0},) from equation
(9.2.33) can be solved in closed form. Namely, define

f(k) = exp{# /w l"i(%)dy} . Imk>0. (9.2.34)
Then f(k) solves (9.2.33), f4(k) = f(k), f-(k) = f(=k). Indeed,
In fi(k) =In f_(k) =In S(=k), ke€ER (9.2.35)

by the known jump formula for the Cauchy integral. Integral (9.2.34) converges
absolutely at infinity, In S(-y) is differentiable with respect to y for y # 0, and is
bounded on the real axis, so the Cauchy integral in (9.2.34) is well defined.

P i
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To justify the above claims, one uses the known properties of the Jost function
00" . o0 .
fk)=1+ / A0, y)e*vdy =1 +/ Ay)e™vdy, (9.2.36)
( o

where estimates (1.2.26) and (1.2.27) hold and A(y) is a real-valued function. Thus

fk)y=1- lk / A'(t)ettdt, (9.2.37)
f(k) 1- 40 _ L7i(k) (1)
k)= =—ik ik~ —7140(=). 2%
S(=k) FEr I O +0( ¢ (9.2:38)
Therefore
nS(=k) =0 (%) as [k| oo, kER. (9.2.39)
Also Gy of
f) =i /0 Alyetudy, fo=of. (9.2.40)
Estimate (1.2.26) implies
i " JA@)ldy < 2 / ~ ldalde < 00, A(y) € I(Ry), (0.2.41)

so that f(k) is bounded for all k € R, f(k) — 1 € L2(R), S(—k) is differentiable for
k # 0, and In S(—y) is bounded on the real axis, as claimed. Note that

f(=k)=F(F), keR (9.2.42)
The converse step f(k) = S(k) is trivial: S(k) = = 0 then f(k) is

analytic in C., f(k) # 0in Cy, f(k) =1+ O (}) as [k| = oo, k € Cy., and (9.2.42)
holds.

Step 2.  f(k) = H(t).
This step is done by formula (9.1.13):

H(t) = % /_: et (If—(liT 1) dk. (9.2.43)

One has H € L*(R). Indeed, it follows from (9.2.44) that
fR)P2=-1= ——/ A'(t) sin(kt)dt + O (Ikl ) [kl = o0, keR. (9.2.44)

The function

w(k) : / A'(t) sin(kt)dt (9.2.45)
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is continuous because A'(t) € L}(R+) by (1.2.27), and w € L*(R) since w = o (I%l)
as k| = oo, k € R. Thus, H € L*(R).

Also, H € L'(R). Indeed, mtegratmg by parts, one gets from (9.2.43) the rela-
tion: 2nH(t) = * [°2 e~ *[f(k)f(=k) — f(— k)]lT(k_)F 19(t), and g € L*(R),
therefore H € L'(R). To check that. g€ LZ(IR), one uses (9 2. 36) (2126 N (152:27)
and (9.2.40) - (9.2.41), to conclude that. [f(k)f(=k) — f(k] € L*(R), and,
since f(k) # 0 on R and f(o0) = 1, it follows that g e L?(R). The inclusion
[f(K)f(=K) = f(=K)f(k)] € L*(R) follows from (9.2.36), (1.2.26) — (1.2.27), and
(9.2.40) - (9.2.41).

By (9.2.43), the function H'(t) is the Fourier transform of —ik(1—|f(k)[?)|f(k)|~*
and, by (9:2.44), k(|f(K)[2 = 1) = —2 [° A'(t) sin(kt)dt + O (m) ,as |k| s, hE
R. Thus, H'(t) behaves, essentially, as A'(t) plus a function, whose Fourier trans-
form is O (,:—I) Estimate (1.2.27) shows how A’(t) behaves. Equation (9.1.1) shows
that Iz (£,0) is as smooth as H(t), so that formula (9.1.17) for g(z) shows that g is
essentially is as smooth as A'(t).

The converse step

H(t) = f(k) (9.2.46)

is also done by formula (9.1.13): Fourier inversion gives |f(k)[> = f(k)f(—k), and
factorization yields the unique f(k), since f(k) does not vanish in C; and tends to 1
at infinity.

Step 3. H = T';(s,0) = [, (22,0).

This step is done by solving equation (9.1.1). By Theorem 9.1.4 equation (9.1.1)
is uniquely solvable since condition (9.1.4) is assumed. Formula (9.1.13) holds and
the known properties of the Jost function are used: f(k) — 1 as k — +oo, f(k) #0
for k #0, k € R, f(0) # 0 since indgS(k) =

The converse step 'z (s,0) = H(t) is done by formula (9.1.3). The converse step

Ia2(22,0) = Tz (s,0) (9.2.47)

constitutes the essence of the inversion method.
This step is done as follows:

9114 9.2.18) =~ (9.2.19 SIS)
( ) ( ):( ) (

I, (22,0) a(z) E(x, k) T, (s,0). (9.2.48)

Given a(z), system (9.2.18) ~ (9.2.19) is uniquely solvable for E(z, k).

Note that the step g(#) = f(k) can be done by solving the uniquely solvable
integral equation (1.2.6): with ¢ € L; 1(Ry4), and then calculating f(k) = f(0.k).

Step 4.  a(z) := 2T (22,0) = q(z).
This step is done by formula (9.1.16). The converse step

q(z) = a(z)
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can be done by solving the Riccati problem (9.1.16) for a(z) given g(z) and the initial
condition 2H(0). Given ¢(z), one can find 2H(0) as follows: one finds f(z,k) by
solving equation (1.2.6), which is uniquely solvable if ¢ € L, ;(R;), then one gets
f(k) := f(0,k), and then calculates 2H (0) using formula (9.2.43) with ¢t = 0:

=1 (- )

Proof of Theorem 9.1.2. If (9.1.18) ~ (9.1.20) hold, then, as has been proved in Sec-
tion 5.5, there is a unique q(z) € Ly,1(R4+) which generates the given S-matrix S(k).
It is not proved in [K1] that q(z) defined in (1.19) (and obtained as a final result of
steps 1) - 4)) generates the scattering matriz S(k) with which we started the inversion.

Let us now prove this. We have already discussed the following diagram:

S(k) “E £(k) C8Y H(t) “EV T (5,0) = Toa (22,00 “EY a(2) “E g(a).

(9.2.49)
To close this diagram and therefore establish the basic one-to-one correspondence
S(k) « qg(z), one needs to prove I';z(2z,0) = I';(s,0). This is done by the scheme
(9.2.48).

Note that the step g(x) = a(x) requires solving Riccati equation (9.1.16) with
the boundary condition a(0) = 2H(0). Existence of the solution to this problem
on all of Ry is guaranteed by the assumptions (9.1.18) — (9.1.20). The fact that
these assumptions imply q(x) € Ly,1(Ry.) is proved in Section 5.5. Theorem 9.1.2 is
proved. o

Uniqueness theorems for the inverse scattering problem are not given in [K1].
They can be found in Section 5.5

Remark 9.2.4. From our analysis one gets the following result:

Proposition 9.2.5. Ifq(z) € Ly, (R+) and has no bounds states and no resonance at
zero, then Riccati equation (9.1.16) with the initial condition (9.1.15) has the solution
a(x) defined for all x € Ry.

9.3 Numerical aspects of the Krein inversion pro-
cedure.

The main step in this procedure from the numerical viewpoint is to solve equation
(9.1.1) for all z > 0 and all 0 < s < x, which are the parameters in equation (9.1.1).

Since equation (9.1.1) is an equation with the convolution kernel, its numerical
solution involves inversion of a Toeplitz matrix, which is a well developed area of
numerical analy Moreover, such an inversion requires much less computer memory
and time than the inversion based on the Gel'fand-Levitan or Marchenko methods.
This is the main advantage of Krein's inversion method.
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‘This method may become even more attractive if it is combined with the Marchenko
method. In the Marchenko method the equation to be solved is (1.5.13) where F(z)
is defined in (1.5.11) and is known if S(k) is known. The kernel A(z,y) is to be found
from (1.5.11) and if A(z,y) is found then the potential is recovered by the formula:
Equation (1.5.11) can be written in operator form: I + F;)A = —F. The operator F,
is a contraction mapping in the Banach space L'(z,0) for > 0. The operator H,
in (9.1.1) is a contraction mapping in L*(0,z) for 0 < x < zo, where g is chosen to
that jn'" |H(t = u)|du < 1. Therefore it seems reasonable from the numerical point of
view to use the following approach:

1. Given S(k). calculate f(k) and H(t) as explained in Steps 1 and 2, and also F(z)
by formula (1.5.11).

2. Solve by iterations equation (9.1.1) for 0 < z < zg, where z¢ is chosen so that
the iteration method for solving (9.1.6) converges rapidly. Then find g(z) as
explained in Step 4.

3. Solve equation (1.5.13) for © > xo by iterations. Find g(z) for z > z¢ by formula
(1.5.12).

9.4 Discussion of the ISP when the bound states
are present.

If the given data are (9.1.15), then one defines w(k) = Hf:x %::f if indgS(z) =
-2J and W (k) = I:—‘w(k) if indrS(k) = —2J — 1, where v > 0 is arbitrary, and
is chosen so that ~y # ”c], (RS =/

Then one defines Sy (k) := S(k)w?(k) if indrS = —2J or Sy(k) := S(k)W?(k)
if indgS = —2J — 1. Since indgw?(k) = 2J and indgW?(k) = 2J + 1, one has
indgS; (k) = 0. The theory of Section 9.2 applies to Sy(k) and yields ¢y (z). From
qi(z) one gets g(z) by adding bound states —k:f and norming constants s; using the
known procedure (e.g. see [M]).

9.5 Relation between Krein’s and GL’s methods.

The GL (Gel'fand-Levitan) method in the case of absence of bound states of the
following steps (see Chapter 4, for example):

Step 1. Given f(k), the Jost function, find

2/°° 2 ( 1 )sink:sinky
- dkk? ( ——— -1
T Jo |f (k)2 k Kk

717 /°° dk (|£(K)|~* = 1) (cos[k(z — y)] — cos[k(z + y)])
0
=Mz -y) - M(z +y),

L(z,y) :

e ——
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where M(z) := £ [ dk (|f(K)|~2 - 1) cos(kz).
Step 2. Solve the integral equation (1.5.4) for K (z,y):

Step 3. Find g(z) = 2“—’2‘?1. Krein’s function, H(t), see (9.1.13), can be written
as follows:

oo oo

H(t) = i/ (If (k)72 = 1) et dk = l/ (IF(K)|72 = 1) cos(kt)dk. (9.5.1)
21 Joos wJo

Thus, the relation between the two methods is given by the formula:

M(z) = H(z). (9.5.2)

In fact, the GL method deals with the inversion of the spectral foundation dp of
the operator '4"’,.7 + q(z) defined in L?(R,) by the Dirichlet boundary condition at
r = 0. However, if indgS(k) = 0 (in this case there are no bound states and no

Jdl A>0, A=K
resonance at k = 0), then (see (1.2.21)): dp(\) = { =IO ’ {480
0, A<0,
dp(A) in this case is uniquely defined by f(k), k > 0.

10. Inverse problems for the heat and wave
equations.

10.1 Inverse problem for the heat equation

Consider problem (1.5.25) - (1.5.28). Assume

T
a(t)=0fort > T, / a(t)dt < oo, a(t) 0. (10.1.1)
0

One can also take a(t) = §(t) where §(t) is the delta-function. We prove that the
inverse problem of finding q(x) € L'(0,1], ¢ = §, from the conditions (1.5.25) -
(1.5.28) has at most one solution. If (1.5.28) is replaced by the condition

uz(0,1) = bo(t), (10.1.2)

then g(z), in general, is not uniquely defined by the conditions (1.5.25), (1.5.26),
(1.5.27) and (10.1.2), but q is uniquely defined by these data if, for example, q(} ~) =
q(} + ). or if g(x) is known on [}, 1].

Let us take the Laplace transform of (1.5.25)  (1.5.28) and put v(z,)) :=
Jo% ulz,t)e=dt, A(X) := v(1,X), B(X) := vz(1,A), Bo(A) := v,(0,A). Then (1.5.25)



One-dimensional inverse scattering and spectral problems 417

- (1.5.28) can be written as
fotdv = —"+g@vtlv =0, 0<a <1, v(0,\)=0, wv(1,)\) =A()) (10.1.3)

v'(1,A) = B()) (10.1.4)
and (10.1.2) takes the form

v'(0,A) = Bo(A). (10.1.5)
Theorem 10.1.1. The data {A()), B(\)}, known on a set of A € (0,00), which has
a finite positive limit point, determine q uniquely.
Proof. Since A(A) and B() are analytic in [T, := {A : R\ > 0}, one can assume
that A(A) and B()) are known for all A > 0. If k = iA% and ¢ is defined in (1.2.3)
then v(z, A) = e(k)p(z, k), c(k) # 0, A(\) = c(k)p(1,k), B(A) = c(k)¢'(1,k), so

B _ ¢'(L,k)

0] = B (10.1.6)

Thus the function %‘% is meromorphic in C, its zeros on the axis k > 0 are the
eigenvalues of £ = —di:q + q(x), corresponding to the boundary conditions u(0) =
u'(1) = 0 and its poles on the axis k > 0 are the eigenvalues of ¢ corresponding to
u(0) = u(1) = 0. The knowledge of two spectra determines g uniquely (Section 7.1).0

An alternative proof of Theorem 10.1.1, based on property C,, is: assume that ¢,
and ¢, generate the same data, p := 1 — g2, w := v; — vy, where v}, j = 1,2, solves
(10.1.3) - (10.1.4) with ¢ = ¢, and get (x) &yw = pva, w(0,A) = w(1,A) = w'(1,A) = 0.
Multiply (#) by @1, i1 + Apr = 0, ¢1(0,A) = 0, ¢'(1(0,A) = 1, and integrate over
[0,1) to get

1
/ praprdz =0 VA > 0. (10.1.7)

(1
By property C,, it follows from (10.1.7) that p = 0. Theorem 10.1.1 is proved. o

Theorem 10.1.2. Data (10.1.3), (10.1.5) does not determine q uniquely in general.
It does if q(x) is known on [},1], or if q(z + §) = q(} — x).

Proof. Arguing as in the first proof of Theorem 10.1.1, one concluded that the data
(10.1.3), (10.1.5) yields only one (Dirichlet) spectrum of £, since ¢'(0,k) = 1. One
spectrum determines ¢ only on “a half of the interval”, b = %, see Section 7.1. Theo-
rem 10.1.2 is proved. (]

10.2 What are the “correct” measurements?

From Theorem 10.1.1 and Theorem 10.1.2 it follows that the measurements {ug (1, ) }vi>0
are much more informative than {u.(0,¢)}v>o for the problem (1.5.25) - (1.5.27). In
this section we state a similar result for the problem

w = (a(x)u)', 0<z<1, t>0; u(z,0)=0, u(0,t)=0, (10.2.1)

Por——— N
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u(l,t) = f(t). (10.2.2)
The extra data, that is, measurements, are
a(1)u'(1,t) = g(t), (10.2.3)
which is the flux. Assume:
f#0, feL'0,1), a(z)eW*'(0,1), a(z)>c>0, (10.2.4)

WP is the Sobolev space. Physically, a(z) is the conductivity, u is the temperature.
We also consider in place of (10.2.3) the following data:

a(0)u'(0,t) = h(t). (10.2.5)
Our results are similar to those in Section 10.1: the data {f(t), g(t)}wi>0 determine
q(x) uniquely, while data { f(t), h(t) }vi>0 do not, in general, determine a(x) uniquely.

Therefore, the measurements {g(t)}vi>o0 are much more informative than the mea-
surements {h(t)}vi>o. We refer the reader to [R9].

10.3 Inverse problem for the wave equation
Consider inverse problem (1.5.20) - (1.5.24). Our result is
Theorem 10.3.1. The above inverse problem has at most one solution.

Proof. Take the Fourier transform of (1.5.20) - (1.5.24) and get:

%
w-kv=0 z>0, v(zk) =/ e*tu(z, t)dt, (10.3.1)
o

v(0,k) =1, v(l,k)=A(k) = /m a(t)e'*tdt. (10.3.2)
{J

From (10.3.1) one gets v(z, k) = c(k)f(z, k), where f(z,k) is the Jost solution, and

from (10.3.2) one gets v(z,k) = 2k and A(k) = L1k = e , because ¢ = 0 for
& Q] (%) = Ty = fmy» be L

z > 1. Thus f(k) = sty is known. By Theorem 7.2.1 g is uniquely determined.

Theorem 10.3.1 is proved. [u}]

Remark 10.3.2. The above method allows one to consider other boundary conditions
at r =0, such as u'(0,t) = 0 or w'(0,t) = hu(0,t), h = const > 0, and different data
at r = 1, for ezample, u'(1,t) = b(t).
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11. Inverse problem for an inhomogeneous
Schrédinger equation

In this chapter an inverse problem is studied for an inhomogeneous Schrédinger equa-
tion. Most, if not all, of the earlier studies dealt with inverse problems for homoge-
neous equations. Let

2 " 2 1 du ;

fu—k*u:=—u" + q(z)u — k*u=d(z), ze€R, —am-lkuao, |z| = o0.

(11.1.1)

Assume that g(z) is a real-valued function, g(z) = 0 for |z| > 1, ¢ € L*®[-1,1].
Suppose that the data {u(—1,k),u(1,k)}, Vk > 0 are given.

The inverse problem is: (IP) Given the data, find q(x).

This problem is of practical interest: think about finding the properties of an
inhomogeneous slab (the governing equation is plasma equation) from the boundary
measurements of the field, generated by a point source inside the slab. Assume that
the self-adjoint operator £ = —41:7 + g(z) in L*(R) has no negative eigenvalues (this
is the case when g(x) > 0, for example). The operator £ is the closure in L(IR) of the
symmetric operator £y defined on C§°(R') by the formula fyu = —u" + ¢(z)u. Our
result is:

Theorem 11.1.3. Under the above assumptions IP has at most one solution.

Proof of Theorem 11.1: The solution to (11.1.1) is

k
,k), >0,
= ff(’ vz (11.1.2)
5 g(z, k), z<0.
Here f(x, k) and g(z, k) solve homogeneous version of equation (11.1.1) and have the
following asymptotics:

fz,k) ~e** T oo, g(z,k)~e"“’, T — —00, (11.1.3)
f(k) := f(0,k), g(k) = g(0,k), (11.1.4)
[f,9] = fg' = f'g = —2ika(k), (11.1.5)

where the prime denotes differentiation with respect to z-variable, and a(k) is defined
by the equation

f(x,k) = b(k)g(z, k) + a(k)g(z, —k). (11.1.6)

It is known that
9(@, k) = —b(—k)f(z,k) + a(k) f(z, k), (11.1.7)
a(=k) = a(k), b(=k) =b(k), la(k)* =1+ |b(k)]>, kER, (11.1.8)

e —
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a(k) =1 +0(%), koo, k€Cy; blk)= 0(%), |k| » 00, ke€R, (11.1.9)
[f(z,k), g(z, —k)] = 2ikb(k), [f(z,k),g(z,k)] = —2ika(k), (11.1.10)

a(k) in analytic in C.., b(k) in general does not admit analytic continuation from
R, but if g(z) is compactly supported, then a(k) and b(k) are analytic functions of
keC\O0.

The functions

Ay (k) = (Z)z{c(llcl;)' A;(k)::ﬂ%_(lk’)k) (11.1.11)

are the data, they are known for all £ > 0. Therefore one can assume the functions

9(k) f(k)

ha (k) := a®)’ ha(k) := a® (11.1.12)
to be known for all k > 0 because
fA k) =€, g(=1k) =e*, (11.1.13)

as follows from the assumption ¢ = 0 if [z| > 1, and from (11.1.3).
From (11.1.12), (11.1.7) and (11.1.6) it follows that

a(k)hy (k) = —b(=k) f(k) + a(k) f(—=k) = =b(=k)ha(k)a(k) + ha(=k)a(=k)a(k),

(11.1.14)
a(k)ha(k) = b(k)a(k)hy (k) + a(k)hy (—k)a(—k). (11.1.15)
From (11.1.14) and (11.1.15) it follows:
—b(—k)ha(k) + hao(—k)a(—k) = hy (k), (11.1.16)
b(k)hy (k) + a(=k)hy (=k) = ha(k). (11.1.17)

Eliminating b(—k) from (11.1.16) and (11.1.17), one gets:
a(kYh (K)ha(k) + a(~K)hy (~k)ha(=k) = hy (k)hy (=K) + ha(~k)ha(k),  (11.1.18)
or
a(k) = m(k)a(=k) +n(k), k€R (11.1.19)
where

b (=k)ha(=K)
hy(k)ha (k)

hi(=K) | ha(=F)

m(k) = — TR R

n(k) == (11.1.20)

Problem (11.1.19) is a Riemann problem for the pair {a(k),a(—k)}, the function
a(k) is analytic in Cy := {k : k € C,Imk > 0} and a(—k) is analytic in C_. The
functions a(k) and a(—k) tend to one as k tends to infinity in Cy and, respectively,
in C_, see equation (11.1.9).
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The function a(k) has finitely many simple zeros at the points ik;,1 < j < J,
k; > 0, where ~kj are the negative eigenvalues of the operator ¢ defined by the
differential expression fu = —u" + g(z)u in L*(R).

The zeros ik, are the only zeros of a(k) in the upper half-plane k.

Define

=
inda(k) 1= ﬁ/ dln a(k). (11.1.21)

One has
inda = J, (11.1.22)

where J is the number of negative eigenvalues of the operator £, and, using (11.1.12),
(11.1,22) and (11.1.20), one gets

indm(k) = —2lind hy (k) + ind hy (k)] = —2[ind g(k) + ind f(k) — 2J).  (11.1.23)

Since £ has no negative eigenvalues, it follows that J = 0.

In this case ind f(k) = indg(k) = 0 (see Lemma 1 below), so indm(k) = 0, and
a(k) is uniquely recovered from the data as the solution of (11.1.19) which tends to one
at infinity, see equation (11.1.9). If a(k) is found, then b(k) is uniquely determined by
equation (11.1.17) and so the reflection coefficient (k) := % is found. The reflection
coefficient determines a compactly supported g(z) uniquely [R9], but we give a new
proof. If g(z) is compactly supported, then the reflection coefficient r(k) := % is
meromorphic. Therefore, its values for all k > 0 determine uniquely (k) in the whole
complex k-plane as a meromorphic function. The poles of this function in the upper
half-plane are the numbers ik;,j = 1,2,...,J. They determine uniquely the numbers
k;, 1 < j < J, which are a part of the standard scattering data {r(k),k;,s;,1 < j <
J}, where s, are the norming constants. Note that if a(ik;) = 0 then b(ik;) # 0:
otherwise equation (11.1.6) would imply f(z,ik;) = 0 in contradiction to the first
relation (11.1.3). If r(k) is meromorphic, then the norming constants can be calculated
by the formula s; = —i%};—:ﬁ = —iResk=ik,r(k), where the dot denotes differentiation
with respect to k, and Res denotes the residue. So, for compactly supported potential
the values of r(k) for all £ > 0 determine uniquely the standard scattering data,
that is, the reflection coefficient, the bound states —k’j and the norming constants
4, 1 € 5 < J. These data determine the potential uniquely. Theorem 11.1.3 is
proved (u]

Lemma 11.1.4. If J = 0 then ind f = indg = 0.

Proof. We prove ind f = 0. The proof of the equation indg = 0 is similar. Since
ind f(k) equals to the number of zeros of f(k) in C,., we have to prove that f(k) does
not vanish in €. If f(z) =0, z € Cy, then z = ik, k > 0, and —k? is an eigenvalue
of the operator £ in L?(0,00) with the boundary condition u(0) = 0.

From the variational principle one can find the negative eigenvalues of the operator
£in L*(R,) with the Dirichlet condition at z = 0 as consequitive minima of the
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quadratic functional. The minimal eigenvalue is:
00 o
-k = inf/ [u? + q(z)u?] dz := ko, uw€H'(Ry), |lullpagy) =1, (11.1.24)
o

where ;1 1(Ry) is the Sobolev space of H'(R)-functions satisfying the condition
u(0) = 0.
On the other hand, if J = 0, then

0
0<inf / [ + g(z)u?]dz := K1, uw€ H'(R), |Jullz2g)=1. (11.1.25)
—o0

Since any element u of 1:' !(R4) can be considered as an element of H'(R) if one
extends u to the whole axis by setting u = 0 for = < 0, it follows from the variational
definitions (11.1.24) and (11.1.25) that k; < &o. Therefore, if J = 0, then k; > 0
and therefore Ko > 0. This means that the operator £ on L*(R.) with the Dirichlet
condition at z = 0 has no negative eigenvalues. This means that f(k) does not have
zeros in Cy, if J = 0. Thus J = 0 implies ind f(k) = 0.

Lemma 11.1.4 is proved. o

Remark 11.1.5. The above argument shows that in general
indf<J and indg<J, (11.1.26)

so that (11.1.23) implies
indm(k) > 0. (11.1.27)

Therefore the Riemann problem (11.1.19) is always solvable.
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