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l. Interactions between partía! different ial equations (=PDE) and Complex Analysis 
(=CA) have a long history. Original\y they were connected with holomorphic func­
Lions because real and imaginary parts of such fu nctions satisfy the Cauchy- Riemann 
system and the Laplace equation a.s well . Present interactions concern more gen­
eral differential equations including non-linear ones. In addit ion, higher-dimensional 
versions of complex methods can also be developed. 

2. Two cla.ssical connexions between CA and PDE concern 

• the Di richlet boundary value problem and 

• initial value problems of Cauchy-Kovalevskaya type. 

As it is wcl l-known, the Dirichlet boundary value problem for the Laplace equation in a 
simply connected bounded domain in the plane with a suffi.ciently smooth boundary 
can be solved as follows: In view of lliemann 's Mapping T heorem there exists a 
conformal mapping which transforms the given domain into the unit disk. Since 
conforma! mappings transform solut ions of the Laplace equation again into solut ions 
of the Laplace equation, it remains to salve the Laplace equation fo r the unit disk. 
This, however, can be done by the Poisson Integral Formula which can easily be 
obtained from the Cauchy Integral Formula for holomorphic functions. In view of 
the Cauchy- Riemann system, the imaginary part of a holomorphic funct ion with a 
given real part is uniquely determined up to an arbitrary (real) constant. Thus a 
holomorphic function is uniquely determined by the boundary values of its real part 
and the imaginary part at one point ( = Dirichlet problem for holomorphic fun ctions). 
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lnitial value problems of Cauchy-Kovalevskaya type have the form 

~ = F (t,x,u, ::, , .. , :Xun) 
u(O,x ) = <p(x) 

(1) 

(2) 

where the desired (real-, complex- or vector-valued) u= u(t,x) depends on the time 
t and a spacelike variable x = (x1 , ••• , xn)· Then the classical Cauchy-Kovalcvskaya 
T heorem states that t he solution exists and is a power series in its variables provided 
both the right-ha:nd side F of the different ial equation and the initial function ip 

have t his property as well. Moreover, in view of the classical Holmgren Theorem the 
solution is unique not only among ali power series in x but also among ali continuously 
difforentiable functions. 

The connexion of the (classical) Cauchy-Kovalevskaya Theorem with CA is bascd 
on t he fact that a power series in real variables can be extended to a power series 
in complex variables which automatically define holomorphic functions. In order to 
genera1ize the classical Cauchy-Kovalevskaya Theorem , one has, however, more thor· 
oughly to analyse the relations between that theorem and Complex Analysis. This is 
done by modern functional-analytic proofs of the Cauchy-Kovalevskaya Theorem such 
as \V. Walter's [15] one. Such proofs reveal that the Cauchy-Kovalevskaya Theorem 
is based on the following property of t he derivative of a holomorphic function: 

lf f is holomorphic and bounded in a domain n, then its complex derivative /' at z 
can be e.stimated by 

l/'(z)i < supo 1/1 
- d;st(z,8!1) 

(3) 

where dist(z, an) means the distance o/ z from the boundary an o/ íl. 

This estimate can easily be seen by applying Cauchy's Integral Formula for f' to a 
disk with radius ó < dist(z,80) centred at z. 

The present article will show that t he described interactions between CA and PDE 
remain va.lid when Laplace equation and Cauchy-Riemann system are replaced by 
more general differential equations. 

3. Classical Complex Function T heory shows that a (continuously differentiable) 
solulion u , v of the Cauchy-Riemann system is a holomorphic function, i.e., it is 
complex differentiable everywhere. lf one wants to salve more general PDE by complex 
methods, one has to replace the ordinary complex differentiation d/ dz by two partial 
complex differentiations. In order to come to a natural definition of such partial 
complex differentiations, we consider a complex-valued function f defined in a domain 
n of the z = :z: + yi-plane which is continuously differentiable with respect to the real 
variables :z: and y. Then the linearization J off ata point Zo = :z:o + iyo is given by 

i(zo) =/(,o)+ e, (x - xo) + c2(y - Yo) (4) 
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where c1 ·and c2 are the partrial derivatives of f with respect to the real variables x 
and y resp. a.t zo = xo + iyo, Le., 

a¡ a¡ 
c1 = a;(zo), c2 = ay(zo). 

Olearly, since z - z0 = (x - xo) + i(y - Yo) and 'Z'='Zo = (x - xo) - i(y - Yo), the 
increments x - x0 and y - y0 can be expressed by z - z0 and z=zQ. Doing this, 
formula (4) can be rewritten in the form 

j(zo) = /(zo) + d, (z - zo) + d,(z - zo). 

Since d1 and d2 are tibe coefficients 0f the c0mplex increments z - 20 and 'Z'='Zo, these 
coefficients are called trhe partial complex derivatives off with respect to z and Z at z0 . 

Expressing d 1 and d2 by c1 and c2 , one sees thatr the partial complex differentiations 
a¡az and 8/0z are connected with the real differentiations a¡ax and 8/8y by the 
relations 

~=~(~-i~) and ~=~(~+i~). 
8z 2 ax 8y az 2 ax 8y 

(5) 

These operators 8/8z and 8/8Z can be ap¡;:ilied to any function f which has (c0n­
tinuous) derivatives with respect t0 the real variables x and y , whereas the ordinary 
complex differentiation d/dz is defiaed only far holomorphic functions, i.e., for f.unc­
ti0ns f =u+ iv whose real part u aRcl imaginary part v satisfy tibe Cauchy-Riemann 
system. Using the Cauchy-Riemann system, an easy calculation shows that for h0lo­
m0rphic functions f the following relati0ns h0ld: 

~=@ az (6) 

~='}!_=!' 
az dz 

Equati0n (6) is nothing but a c0mplex version of the Cauchy-Riemann system. 

Taking into account the definition (5) of the partial complex differentiati0ns, and 
combining the Green-Gauss F0rmulae 

¡¡ ~dxdy = ¡ fdy, ¡¡ ~dxdy = -1 fdx. 
n &n n &n 

one gets the following complex versio11s of the Green-Gauss Formulae: 

fj ~fdxdy = ~ J fdz (7) 

n •n 

JJ 8¡;1dxdy = -~ J faz 
n •n 
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Formula (7) contains, far instance, also the Cauchy Integral Tbeorem. Indeed, if f is 
holomorphic in n' t hen the integrand of the domain integral vanishes identically and 
thus the boundary integral equals zero. 

Also a generalizat ion of Cauchy's Integral Formula can easily be obtained from formula 
{7). For this purpose considera fixed point ( in n. If f is continuously dµferentiable 
in IT, then 

g(zl= M 
z-í 

has a.n isolated singularity in n. Applying t he complex Green-Gauss Formula (7) to 

y in Ot = { z E íl : lz - (1 ~ ~'}. it follows 

{( 1 . i!!_dzdy = ~ J Mdz - ~ J Mdz. (8) JJ ~ az 2i z - ( 21 z - ( 
n, 80 1: -<l=c 

Note that 

J Md, 
z- í 

1:-<l=r 

J /(z) - / (í) dz + /(í) J -1-dz 
z-( z - ( 

1: - ( l=t 1:-(!=l' 

J /(z) - / (() dz + /(() · 2~i. 
z -( 

1:-<l=t 

(9) 

T he absolute value of the integral on Lhe right hand side of (9) can be estimated by 

sup l/(z) - /(()1 · ~ · hz. 
1:-(l=c E 

Note that f is continuous at (,in particular. Thus the integral on t he right hand side 
of (9) tends to zero as E -t O. Carrying out t he limiting process E -+ O in (8), we get 
t hus the following Cauchy-Pompeiu Integral Formula 

1 ¡ 1<zi 1 hr 1 a1 /(() = --, - dz - - - · -dzdy 
2m z- ( tr z-( Oz 

(10) 

on n 

which is true for each (complex-valued) funct ion f which has continuous first order 
derivatives with respect to the (real) variables x and y. If, especially, f is holomorphic 
in O, then this formula (10) passes into the well-known Cauchy Integral Formula for 
holomorphic functions. 

4. A decisive breakthrough in the interactions of PDE and CA can be reached by thc 
combination of complex methods with dist.ributional methods for PDE. In arder to 
explain the basic idea of distributional solutions of a PDE, consider limear differential 
operators C of dh'ergence type. A differential operator C of arder k in n real variables 
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X ¡ , •.• , X 11 is said to be OÍ diveryence type jf there existS an associated Operator {,• OÍ 

the same arder k and n differential operators Pj of arder k - 1 such that 

Then the Gauss Integral Formula yields the following Green Integral Formula far 
differential operators of divergence type 

j (vcu +(- l)k+ 1u.Cv)dx = j~PjNjdµ 
n oo 1 

(11) 

where N = (N1, ... , Nn) is the outer unit normal and dµ is the measure element of the 
boundary 80 of O. For instance, if C is the (self-adjoint) Laplace operator 6. , then 

Bu Bu . 
Pi = v Bxj - u Bxj, and the Green Integral Formula passes mto 

j (vó.u-utlv)dx= J (v:~ -u:~)dµ. 
O &O 

ln t.he case of the Laplace operator we see that the Pj are equal t.o zero on the boundary 
if v is a function which vanishes identically in a neighbourhood of t.he boundary. An 
analogous property is supposed for general differential operators of divergence type. 

Now Jet u be a solut.ion of Cu= O where C is again an arbitrary differential operator 
of divcrgence type. For v we choose a k t imes differentiable function which vanishes 
identicatly in a neighbourhood of the boundary. Then t.he integrand of the boundary 
integral in (11 ) vanishes identically, and (11) leads to 

J uC'<pdx = O. 

o 
(12) 

Thus for a solution u of .Cu= O the relation (12) is necessarily satisfied if r.p is any (k 
t imes continuously differentiablc) function vanishing identically in a neighbourhood 
of the boundary. 

Conversely, assume that (12) is satisfied for each fun ction r.p which van ishes identically 
in a neighbourhood of the boundary. Then formula (11 ) shows that 

J r.p .Cudx =O 

o 

for each r.p. This, however, is only possible if .Cu= O, otherwiseone gets acontradiction 
in view of the F\mdament.al Lemma of Variationa1 Calculus because 'P is arbitrary. 
Thcrefore , a k times conlinuously differcntiable fun ction u turns out to be a solution 
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or the equation Cu= O if only (12) is satisfied for each r.p. Since (12) is a derivation­
free characterization of solutions of the Laplace equation, the functions r.p are called 
test functions. 

Rclation (12) is not only a characterization of solutions of a PDE, but also it can 
be used in arder to generalize the concept of a solution. An integrable function u is 
called a distributional solu.tion of the differential equation Cu = O in case (7) holds 
for each choice of q; . 

. Vekua's theory of generalized analytic functions [14] is based on the use of partial 
complex derivatives in the distributional sense. Here one starts from the complex 
Green-Gauss formula (7). Suppose w is a solution of t he inhomogeneous Cauchy· 
R.iemann equation 

(13) 

where the right hand side is a given complex-valued function. Suppose, further1 t.hat 
ip is a complex-valued test function. Applying {7) to f = w<p, it follows 

(14) 

for each choice of the test function <p. 

Again, relation (14) is not only a derivation-free characterization of classical solu­
tions of t he inhomogeneous Cauchy-Riemann equation (7) , but also it can be used in 
arder to define distributional solutions of (13): An integrable function w is called a 
distributional solution of (13) if (14) is satisfied for each test function <p. 

Using this concept of distributional solutions, one can show that the weakly singular 
integral 

(Tnh)[(] = _.!. {{ !:S!l_dxdy 
1f 11 z - ( 

n 

defines a special distributional solution of {13). The general solution of {13) is given 
by Toh + 4' where 4' is a distributional solution of the homogeneous Cauchy-Riemann 
equation &w/Oz = O, i.e., 

ff t~dxdy = 0 (15) 

n 

far ea.ch choice of cp. Relation (15) implies, however, that such a ~ is necessarily 
an ordinary holomorphic function in the classical sense ( camplex version of the Wcyl 
Lemma). Consequently, the general (distributional) solution of the inhomogeneous 
equation (13) has the form 

w =Toh + cli (16) 

where el> is an arbitrary holomorphic function. This relation (16) makes it possible to 
reduce problems for generalized analytic functions (such as boundary value problems) 
to analogous problems for holomorphic functions. 
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Notice, further, that the partial complex differentiation EJ/8z in the distributional 
scnse can be defincd by a relation which is analogous to {14). Uslng this definition, 
one can show that the distributional derivative of Toh with respect to z is equal to 
the strongly singu lar integral 

8Toh 1 rr h(z) 
a;-l<J = (flo h)[(j = -;;: JJ (z-()'dxdy 

o 

which is to be understood in the sense of Cauchy's principal value. 

5 . Next we shall outline how the above techniques can be used to investigate real 
systems of PDE using methods of CA. To begin with, consider a linear first arder 
system 

fJu fJu fJv 8v 
a11 ax+ a 12ay + b\l ax+ b12ay + a,u + b1 v = /1 

au au av 8v 
021a;;+022ay + b21 ax+ b22ay + a2U +~V= /2 

for two desired real-valued functions u(x,y) and v(x,y) in the plane whose coefficients 
may depcuds on x and y. Provided the system is elliptic ( i.e., the coefficients of the 
first order derivatives satisfy a certain relation, cf. l. N. Vekua [14]) , such a system 
can be reduccd to a system of the form 

~ - ~ = C¡ u + C2t1+d1 
8x 8y 
8v au ay+ ax= C3U+ C4t1+d2 

(17) 

(18) 

(this can be done by a transformation of coordinates and by introducing new desired 
functions). Setting u+ iv = w and x + iy = z, one has 

~=~(~-~)+~(~+~) 
lrz 28x 8y 28x 8y 

and hence the system (17), (18) can be written as one complex equation 

8w -¡¡¡ = A(z)w + B(z)w+ D(z). 

(19) 

(20) 

In the homogenoous case (D = O) this equation (20) is known as Vek ua's equation, 
its solutions are called generalized analytic ftm ctions. Such functions can also be 
interpreted as p.Jeudo-analytic functions in L. Bers 1 sense [2J. 

In order to iJlustrate the power of the above introduced Tn-operator, we shall prove 
the following statement: 

The zeros o/ a generali.zed analytic /unctiori w(z} are isolated unless the function 
vanislies idenlically. 
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lndeed, define g by 
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{ A+B!!! ifw:f.O 
9. = O other~ise. 

T hen 4' = w exp(-Tog) is holomorphic because 

aw 8i · exp(-Tog) + w exp(-Tog) (-g) 

exp(-Tng)(Au1 +BW+w( -A - B;)) =0. 

Thus the generalized analytic function w can be factorized by a holomorphic function 
4> and a factor different from zero: 

w = <!> · exp(Tog). 

Since t he zeros of a (not identically vanishing) holomorphic functions are isolatcd, thc 
same is true far generalized analytic functions. The first proof of this statement is 
dueto T. Carleman [5], whereas the above short proof was given by l . N. Vekua [13]. 

6. Complex methods are also applicable to non-linear systems of PDE. Consider the 
real implicit system of two (real) equations 

( 8u au av ª") H¡ x,y,u,v,8x'8y ' "fh'JY = 0, j = l , 2, (21) 

far two desired real-valued functions u(x, y) and v(x,y) . Introduce complex variables 
z = z + yi and w = u +vi. Then one has 

aw 
and 

aw (22) az =p¡ +112i - = Q1 +q2i 
Oz 

where 

p¡ = ~(~+~). 
2 8x 8y ,,,= H~ -~) . (23) 

q, = ~ (~ - 0:). 
2 8x ay 

q, = ~(0:+~) 
2 8x 8y 

(24) 

(see formula (19) and a.n analogous equation for 8w/8z). In view of (23), (24) one 
can e.xpress t.he first. a rder derivatives oí u and v by p1 ,J>2 , Qi.'h · Substitute these 
expressions into (21). Now assume that the system (21) can be solved far q1 and ql. 
ln view of {22) , q1 + q2 i equals 8w/Oz and so t he system (21) can be rewritten in the 
form 

aw ( aw) az = :F z,w,a;. (25) 

This different.ial equation (25) can be considered as complex normal form of the real 
system (21). 
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N0te that (25) can be interpreted as an inh0mogene0us Cauchy-Riemann equation 
of tibe fonn (13) whose right hand side depends 0n tlhe deslred function w = w(z) 
and its derivative 8w/8z. By virtue of (16), to each s0lution w of (25) t here exists a 
hol0mo11phic funct.ion el> such that w sabisfies the integro-differential equati0n 

w = i/¡ + ToF(-,w,8w/8z). 

T his relation , however, Jeads to the foll0wing fixed-p0int metlhod far solving boundary 
value problems 

Bw=g 0n an (26) 

for solutions of (25) : 

Define the image W of a given w by 

IV = i//l•I + ToF(·, w, 8w/8z) (27) 

where ili(w) is a holomorphic f.unction ~depending 0n the choice of w) such t:ihat W 
satrisfies t1he given boundary conditi0n (26), Le., BW = g on an. Then 

8W/8z = i//(.1+IloF(·, w, 8w/8z) 
and 8W/8Z = F(-,w,8w/8z). 

Consequently, a fixed point of t he operat0r (27) turns out to be a soluti0n of t!he 
boundary value problem (26) for the non-!iRear partial complex differenflial equati0n 
(25) . 

A special boundary value problem for (25) is again the Dirichlet boundary value 
problem (cf. Section 2): one prescribes the real part of w on the whole b0undary 
and the imaginary part of w at one point. In [10) the corresponding fixed p0int is 
ccmshructed using the contracti0n-mapping principie. 

7. The cont raction-mapping principie can also be applied to init ial value pr.0blems 
of type (1) , (2). The classical approach to this initial value problem is to 100k far 
a p0wer-series representat ion of tihe desired solution (provided both t he right hand 
side 0f (1) and the ini tial function (2) are given power series in t heir variables). 
The initial coefficients of the desired p0wer series foUow from the initial conditi0n, 
whereas tibe different.ial equation (1) leads to a recursion formula far the c0efficients. 
The convergence of t he formally const ructed power series, finally, can be proved by a 
comparison method. 

A functional-analytic approach to the initial value problem (1) , (2) was initiated by 
M. Nagumo [8] who rewrote tthis pr0blem asan integro-differential equat ion 

' 
u(t , x) = 'l'(x) + / F(r,x,u,8u/8x;)dr. (28) 

o 
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This is analogous to the rewriting of the initial value problems for ordinary differ­
ent ial equations as integral equati0n. Here, however, the integrand depends on the 
derivatives of the desired solution. It can be shown that the correspond.ing operator 
(defined by the right hand side 0f (28)) pessesses a fixed point in a suit.ably chosen 
function space whose elements permitan estima.te of type (3) where if necessary the 
supremum norm is to be replaced by another norm. This leads to the concept of 
associated spaces for initial value problems of type (1), (2): 

Suppose a differential CQtLation 9u = O {with respect to the spacelike variables X¡ , •• • , x11) 

defines a f1mction space whose clements satisfy an estimate of type (3). Suppose, flir· 
tlier, that for eo.ch fi:r;eti t the right ho.nd side :F o/ (J) transforrns this function space 
into itsef/ (i.e., the opemtors :F ami (i form a so-calfed associo.ted po.ir}. Provided the 
initiaf function ip sat.isfies the side condition 9v; = O, the initial value problem (1), (2) 
has a uniquely deterrnined solution u= u(t , x) satisfying the side condition Qu =O 
far eo.ch t. 

In the case of t.he classical Cauchy-Kovalevskaya problem the side condition Qu = 
O is given by the Cauchy-Riemann equa.tion 8w/Oz = O, and the right hand sidc 
transforms holomorphic functi0ns into themselves. 

Gencralized analytic functions, too, can serve as init ial functions (see (1 lJ). Thcn onc 
has to consider right hand sides :F transforming generalized analytic functions into 
themseJ,•es (the construction of associated pairs can be reduced to the inhomogeneous 
Cauchy-Riemann equation, see [11}). The necessary estima.te of type (3) can easily 
be obtained from mapping pr0perties of the Tn- and Tin-operators: 

Suppose w is a solution of equation (20) with D = O. Define 

~ = w -Tn(Aw + Bw). (29) 

Then 
a~ 8w iFz = iFz - (Aw + BW) =O, 

i.e., 4' is a holomorphic function. Since To is a bounded operator, (29) implies 

11~11 ~ const · llwll . 

Oifferentiat i.ng (29) with respect to z , one gets 

~ = ~· + lln(Aw + Bw). 

Tuking into account the boundedness of Iln, an estima.te of type (3) far 4>1 implies 
t.hat an analogous estimate holds for &w/8z (a suitable space for w is the spacc of 
HO\der-continuously dilferentiable functions). Details may be found in jll]. 

8. In conclusion we hint to sorne related methods, further generalizations, and open 
problems. 
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lntegral· operators far the inversion of partia\ differential operators can be generated 
by fundamental solutions (cf. H. Begehr and R. P. Gilbert (l]). Generally speaking, 
each (ellipt ic) differential cquation has its own fundamental solution. An advantage of 
the Cauchy kernel l /(z-() (which is a fundamental solution of lhe Cauchy-Riemann 
cquation) is the fact that it can be uscd to salve boundary value problems far general 
systcms of the farm (21 ). Guo-Chun Wen ancl H. Begehr [16] apply complex methods 
also far solvlng boundary value problems far elliptic equations and syslems of second 
ordcr. Related complcx mcthods such as Bcrgman 's Integral Operalors can be found 
in R. P. Ci lbcrt 's book [7]. 

In itial value problems with generalized analyt ic vectors as initial dala are investigated 
by A. Crodel in his Thesis [6]. A general theory of generalized analylic vectors was 
founded by B. Bojarski [3]. Generalized analytic vectors satisfy syslems of the fo rm 

fJw aw -¡¡¡ - Q(zlaz- = A(z)w + B(z)w 

wherc w = (w 1 , ... , wn) is a desired vector with complex-valued components Wj and 
A(z), B(z) and Q(z) are matrices. Such systems are complex normal forms of uni­
formly elliptlc linear system far 2n desired real- valued functions. 

At present initial value problems with still more general initial functions a.re under 
consideration (see 112]). In this connexion interior estimates of type (3) are to be 
proved for general elliptic differentia.1 equa.tions. Further, associat.ed pairs are to be 
constructed . 

In higher dimensions complex methods can be used not only wit.h respect t.o severa! 
complex vari ables but also in connexion with the Cauchy-Riema.nn operator in Clifford 
Analysis (see F. Bracla , R. Delanghe a.nd F. Sommen [4] 1 see also E. Obolashvili [9]). 
Auothcr promising field in higher dimensions is to investigate functions depending on 
severa! variables where ea.ch of thesc variables runs in a Clifford Algebra. 
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