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1. Interactions between partial differential equations (=PDE) and Complex Analysis
(=CA) have a long history. Originally they were connected with holomorphic func-
tions because real and imaginary parts of such functions satisfy the Cauchy-Riemann
system and the Laplace equation as well. Present interactions concern more gen-
cral differential equations including non-linear ones. In addition, higher-dimensional
versions of complex methods can also be developed.

2. Two classical connexions between CA and PDE concern

e the Dirichlet boundary value problem and

e initial value problems of Cauchy-Kovalevskaya type.

As it is well-known, the Dirichlet boundary value problem for the Laplace equation in a
simply connected bounded domain in the plane with a sufficiently smooth boundary
can be solved as follows: In view of Riemann’s Mapping Theorem there exists a
conformal mapping which transforms the given domain into the unit disk. Since
conformal mappings transform solutions of the Laplace equation again into solutions
of the Laplace equation, it remains to solve the Laplace equation for the unit disk.
This, however, can be done by the Poisson Integral Formula which can easily be
obtained from the Cauchy Integral Formula for holomorphic functions. In view of
the Cauchy-Riemann system, the imaginary part of a holomorphic function with a
given real part is uniquely determined up to an arbitrary (real) constant. Thus a
holomorphic function is uniquely determined by the boundary values of its real part
and the imaginary part at one point (= Dirichlet problem for holomorphic functions).
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Initial value probl of Cauchy-Kovalevskaya type have the form
Ou du du
ﬁ—f-(t,r,u,g,m,ﬁ) (1)
u(0,7) = p(z) 2

where the desired (real-, complex- or vector-valued) u = u(t,z) depends on the time
t and a spacelike variable z = (21, ...,z,). Then the classical Cauchy-Kovalevskaya
Theorem states that the solution exists and is a power series in its variables provided
both the right-hand side F of the differential equation and the initial function ¢
have this property as well. Moreover, in view of the classical Holmgren Theorem the
solution is unique not only among all power series in z but also among all continuously
differentiable functions.

The connexion of the (classical) Cauchy-Kovalevskaya Theorem with CA is based
on the fact that a power series in real variables can be extended to a power series
in complex variables which automatically define holomorphic functions. In order to
generalize the classical Cauchy-Kovalevskaya Theorem, one has, however, more thor-
oughly to analyse the relations between that theorem and Complex Analysis. This is
done by modern functional-analytic proofs of the Cauchy-Kovalevskaya Theorem such
as W. Walter’s [15] one. Such proofs reveal that the Cauchy-Kovalevskaya Theorem
is based on the following property of the derivative of a holomorphic function:

If f is holomorphic and bounded in a domain ), then its complez derivative f' at z
can be estimated by
_supg |f]
BAQIES dist(z, 09) @

where dist(z, Q) means the distance of z from the boundary 89 of Q.

This estimate can easily be seen by applying Cauchy’s Integral Formula for f' to a
disk with radius 6 < dist(z,09) centred at z.

The present article will show that the described interactions between CA and PDE
remain valid when Laplace equation and Cauchy-Riemann system are replaced by
more general differential equations.

3. Classical Complex Function Theory shows that a (continuously differentiable)
solution u,v of the Cauchy-Riemann system is a holomorphic function, i.e., it is
complex differentiable everywhere. If one wants to solve more general PDE by complex
methods, one has to replace the ordinary complex differentiation d/dz by two partial
complex differentiations. In order to come to a natural definition of such partial
complex differentiations, we consider a complex-valued function f defined in a domain
Q of the z = z + yi-plane which is i ly diffe iable with respect to the real
variables z and y. Then the linearization f of f at a point zo = Zo + iy is given by

f(20) = f(20) + e1(z = 7o) + c2(y = wo) (4)
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where ¢;-and ¢, are the partial derivatives of f with respect to the real variables ©
and y resp. at 2o = To + Wo, i.e.,

e = %(zn), ey = %(lo).

Clearly, since z — zg = (z — @o) + i(y — yo) and z— 20 = (= — zo) — i(y — yo), the
increments @ — xp and y — yo can be expressed by z — zp and z — zp. Doing this,
formula (4) can be rewritten in the form

F(z0) = £(20) + di(z = 20) + ds(z = 20)-

Since dj and ds are the coefficients of the complex increments z — zo and z — zo, these
coefficients are called the partial complew derivatives of f with respect to z and Z at zo.
Expressing di and dp by ¢ and cp, one sees that the partial complex differentiations
8/0z and §/0z are connected with the real differentiations d/0z and 9/dy by the

relations SEdn 9 o 5

—=c(=—ix d —==-(=—+iz). 5

2 ol 1ay) e 2(31“33,) ®)
These operators 8/dz and §/8z can be applied to any function f which has (con-
tinuous) derivatives with respect to the real variables z and y, whereas the ordinary
complex differentiation d/dz is defined only for holomorphic functions, i.e., for func-
tions f = u + 1v whose real part v and imaginary part v satisfy the Cauchy-Riemann
system. Using the Cauchy-Riemann system, an easy calculation shows that for holo-
morphic functions f the following relations hold:

af _

55 =0 (6)
8 .G

a_dz_fA

Equation (6) is nothing but a complex version of the Cauchy-Riemann system.

Taking into account the definition (5) of the partial complex differentiations, and
combining the Green-Gauss Formulae

i s

el Q

one gets the following complex versions of the Green-Gauss Formulae:

5} il
/ 6—£fdxdy= E/fdz )
Q 89

Wil
/ b—;fdzdy_-z—i/fﬁ.
Q o
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Formula (7) contains, for instance, also the Cauchy Integral Theorem. Indeed, if f is
holomorphic in 2, then the integrand of the domain integral vanishes identically and
thus the boundary integral equals zero.
Also a generalization of Cauchy’s Integral Formula can easily be obtained from formula
(7). For this purpose consider a fixed point ¢ in Q. If f is continuously differentiable
in 2, then

f(2)

z2=¢
has an isolated singularity in . Applying the complex Green-Gauss Formula (7) to
ginQ, = {z €N:|z—¢ ze}, it follows

9(2) =

8fd dy 21/ 1@, 1_ / —%d; ®)
Jz=Cl=e
Note that
1010 g0 [ L
s=l=e Jz=Cl=e
! (’) Odz+ £(¢) - 2ri. )
l==¢|=e¢

The absolute value of the integral on the right hand side of (9) can be estimated by

sup |f(z) = £(Q)]- - - 2me.
z—C|=¢

Note that f is continuous at ¢, in particular. Thus the integral on the right hand side
of (9) tends to zero as e — 0. Carrying out the limiting process ¢ — 0 in (8), we get
thus the following Cauchy-Pompeiu Integral Formula

it o
10=55 [ 72¢0= 7 // L (10
o

which is true for each (complex-valued) function f which has continuous first order
derivatives with respect to the (real) variables z and y. If, especially, f is holomorphic
in Q, then this formula (10) passes into the well-known Cauchy Integral Formula for
holomorphic functions.

4. A decisive breakthrough in the interactions of PDE and CA can be reached by the
combination of complex methods with distributional methods for PDE. In order to
explain the basic idea of distributional solutions of a PDE, consider limear differential
operators £ of divergence type. A differential operator £ of order k in n real variables
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1, ..., Tp is said to be of divergence type if there exists an associated operator £* of
the same order k and n differential operators P; of order k — 1 such that

vlu+ (-1)FHuLv =3 g%
F] !

Then the Gauss Integral Formula yields the following Green Integral Formula for
differential operators of divergence type

/(uCu+(—1)"“u£'u)da}= /zp,-zv,d,. (11)
Q o 4

where N = (N, ..., Ny) is the outer unit normal and dp is the measure element of the
boundary 89 of Q. For instance, if £ is the (self-adjoint) Laplace operator A, then

P = ul - uﬂ, and the Green Integral Formula passes into
Jz; dz;
Ou v
/(vAu — ulv)de = / (vﬁ - um)dp.
Q 8

In the case of the Laplace operator we see that the P; are equal to zero on the boundary
if v is a function which vanishes identically in a neighbourhood of the boundary. An
1 property is d for general differential operators of divergence type.

Now let u be a solution of Lu = 0 where £ is again an arbitrary differential operator
of divergence type. For v we choose a k times differentiable function which vanishes
identically in a neighbourhood of the boundary. Then the integrand of the boundary
integral in (11) vanishes identically, and (11) leads to

/uC‘<pdz =0. (12)
2

Thus for a solution u of Lu = 0 the relation (12) is necessarily satisfied if ¢ is any (k
times continuously differentiable) function vanishing identically in a neighbourhood
of the boundary.

Conversely, assume that (12) is satisfied for each function ¢ which vanishes identically
in a neighbourhood of the boundary. Then formula (11) shows that

/&pﬁudr =0
Q

for each . This, however, is only possible if Lu = 0, otherwise one gets a contradiction
in view of the Fundamental Lemma of Variational Calculus because ¢ is arbitrary.
Therefore, a k times continuously differentiable function u turns out to be a solution

N
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of the equation Lu = 0 if only (12) is satisfied for each ¢. Since (12) is a derivation-
free characterization of solutions of the Laplace equation, the functions ¢ are called
test functions.

Relation (12) is not only a characterization of solutions of a PDE, but also it can
be used in order to generalize the concept of a solution. An integrable function u is
called a distributional solution of the differential equation Lu = 0 in case (7) holds
for each choice of .

1. N. Vekua’s theory of generalized analytic functions [14] is based on the use of partial
complex derivatives in the distributional sense. Here one starts from the complex
Green-Gauss formula (7). Suppose w is a solution of the inhomogeneous Cauchy-
Riemann equation A
w

== h (13)
where the right hand side is a given complex-valued function. Suppose, further, that
¢ is a complex-valued test function. Applying (7) to f = w, it follows

// (w%’ o hnp)dzdy =0 (14)
Q

for each choice of the test function .

Again, relation (14) is not only a derivation-free characterization of classical solu-
tions of the inhomogeneous Cauchy-Riemann equation (7), but also it can be used in
order to define distributional solutions of (13): An integrable function w is called a
distributional solution of (13) if (14) is satisfied for each test function ¢.

Using this concept of distributional solutions, one can show that the weakly singular
integral

@i = -3 [[ sy
Q

defines a special distributional solution of (13). The general solution of (13) is given
by Taoh+ ® where @ is a distributional solution of the homogeneous Cauchy-Riemann

equation dw/9z =0, i.e.,
dp 15
// Qdedy =0 (15)
Q

for each choice of . Relation (15) implies, however, that such a @ is necessarily
an ordinary holomorphic function in the classical sense (complez version of the Weyl
Lemma). C ly, the general (distributional) solution of the inhomogeneous
equation (13) has the form

w=Toh+® (16)

where @ is an arbitrary holomorphic function. This relation (16) makes it possible to
reduce problems for generalized analytic functions (such as boundary value problems)
to analogous problems for holomorphic functions.

o  —9
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Notice, further, that the partial complex differentiation 8/8z in the distributional
sense can be defined by a relation which is analogous to (14). Using this definition,
one can show that the distributional derivative of Toh with respect to z is equal to
the strongly singular integral

dTah

o __L ([ _he)
o] = (Man)g) = -~ /ﬂ G

B dzdy

which is to be understood in the sense of Cauchy’s principal value.

5. Next we shall outline how the above techniques can be used to investigate real
systems of PDE using methods of CA. To begin with, consider a linear first order
system

du du d O
Lot +f1120— +bu(7’2 +b|za—v +aiu+bv=fi

du Ou 2]
ang- +azzw +b21 +Ima +au+bv = fo
for two desired real-valued functions u(z,y) and v(z, y) in the plane whose coefficients
may depends on z and y. Provided the system is elliptic ( i.e., the coefficients of the
first order derivatives satisfy a certain relation, cf. I. N. Vekua [14]), such a system
can be reduced to a system of the form

Ou v
ﬁ—o—y—clu+qv+d. (17)
v Ou
E+%—63u+cw+dz (18)

(this can be done by a transformation of coordinates and by introducing new desired
functions). Setting u + iv = w and & + iy = 2, one has

dw Ou  Ov i/0v  Ou
o) t3 (x5 (19
and hence the system (17), (18) can be written as one complex equation
w e
T A(2)w + B(2)w + D(z). (20)

In the homogeneous case (D = 0) this equation (20) is known as Vekua’s equation,
its solutions are called generalized analytic functions. Such functions can also be
interpreted as pseudo-analytic functions in L. Bers’ sense [2].

In order to illustrate the power of the above introduced Tq-operator, we shall prove
the following statement:

The zeros of a generalized analytic function w(z) are isolated unless the function
vanishes identically.

U N
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Indeed, define g by
_ [ A+BZifw#0
9= 0 otherwise.
Then @ = w - exp(~Tqg) is holomorphic because
% Ow
3= = o7 op(-Tag) +w exp(-Tag)-(=9)

exp(~Thg) (Aw +Bwtw( -4~ Bg)) —q)

I

Thus the generalized analytic function w can be factorized by a holomorphic function
® and a factor different from zero:

w =& exp(Tag)-

Since the zeros of a (not identically vanishing) holomorphic functions are isolated, the
same is true for generalized analytic functions. The first proof of this statement is
due to T. Carleman [5], whereas the above short proof was given by I. N. Vekua [13].

6. Complex methods are also applicable to non-linear systems of PDE. Consider the
real implicit system of two (real) equations

Ou du v Ov "
fil| 2o U =i e O = 21
H;(z,yuvax dy’ Oz 3y) J @)
for two desired real-valued functions u(z,y) and v(z,y). Introduce complex variables
z =z +yi and w = u + vi. Then one has

ow ; ow :
=Pt ad oo =qta (22)
where
1/6u v 100 Bu
ri=s (5 =g i s (G ! )
1/0u v 1/0v Ou
= (Z2-= = 24
o 2((9:1: a,,)' @ 2(51+3g) 24

(see formula (19) and an analogous equation for dw/dz). In view of (23), (24) one
can express the first order derivatives of u and v by py,p2,q1,g2. Substitute these
expressions into (21). Now assume that the system (21) can be solved for gy and .
In view of (22), g1 + g2 equals dw/8Z and so the system (21) can be rewritten in the

form 5 5
w w
—=F — . 25

oz (“‘” 32) )
This differential equation (25) can be considered as complex normal form of the real
system (21).

e W
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Note that (25) can be interpreted as an inhomogeneous Cauchy-Riemann equation
of the form (13) whose right hand side depends on the desired function w = w(z)
and its derivative dw/dz. By virtue of (16), to each solution w of (25) there exists a
holomorphic function ® such that w satisfies the integro-differential equation

w = ® + ToF(:,w,0w/0z).

This relation, however, leads to the following fixed-point method for solving boundary
value problems
Bw=g on 00 (26)

for solutions of (25):

Define the image W of a given w by
W = B(u) + TaF (-, w, 0/02) (@)

where @, is a holomorphic function (depending on the choice of w) such that W
satisfies the given boundary condition (26), i.e., BW = g on Q. Then

OW/dz = &[w) + Mo F(:,w, dw/dz)
and OW/0z = F(:,w, 0w/dz).

Consequently, a fixed point of the operator (27) turns out to be a solution of the
boundary value problem (26) for the non-linear partial complex differential equation
(25).

A special boundary value problem for (25) is again the Dirichlet boundary value
problem (cf. Section 2): one prescribes the real part of w on the whole boundary
and the imaginary part of w at one point. In [10] the corresponding fixed point is
constructed using the contraction-mapping principle.

7. The contraction-mapping principle can also be applied to initial value problems
of type (1), (2). The classical approach to this initial value problem is to look for
a power-series representation of the desired solution (provided both the right hand
side of (1) and the initial function (2) are given power series in their variables).
The initial coefficients of the desired power series follow from the initial condition,
whereas the differential equation (1) leads to a recursion formula for the coefficients.
The convergence of the formally constructed power series, finally, can be proved by a
comparison method.

A functional-analytic approach to the initial value problem (1), (2) was initiated by

M. Nagumo (8] who rewrote this problem as an integro-differential equation

it
u(t, ) = p(a)+ / By, 04 055) 28)
0
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This is analogous to the rewriting of the initial value problems for ordinary differ-
ential equations as integral equation. Here, however, the integrand depends on the
derivatives of the desired solution. It can be shown that the corresponding operator
(defined by the right hand side of (28)) possesses a fixed point in a suitably chosen
function space whose elements permit an estimate of type (3) where if necessary the
supremum norm is to be replaced by another norm. This leads to the concept of
associated spaces for initial value problems of type (1), (2):

Suppose a differential equation Gu = 0 (with respect to the spacelike variables zy, ..., z,)
defines a function space whose elements satisfy an estimate of type (8). Suppose, fur-
ther, that for each fized t the right hand side F of (1) transforms this function space
into itself (i.e., the operators F and G form a so-called associated pair). Provided the
initial function ¢ satisfies the side condition G = 0, the initial value problem (1), (2)
has a uniquely determined solution u = u(t, ) satisfying the side condition Gu = 0
for each t.

In the case of the classical Cauchy-Kovalevskaya problem the side condition Gu =
0 is given by the Cauchy-Riemann equation dw/8z = 0, and the right hand side
transforms holomorphic functions into themselves.

Generalized analytic functions, too, can serve as initial functions (see [11]). Then one
has to consider right hand sides F transforming generalized analytic functions into
themselves (the construction of associated pairs can be reduced to the inhomogeneous
Cauchy-Riemann equation, see [11]). The necessary estimate of type (3) can easily
be obtained from mapping properties of the Tq- and Ilg-operators:

Suppose w is a solution of equation (20) with D = 0. Define

@ = w — To(Aw + Bw). (29)
Then % 8
w
E~E—(AW+BW)—O,

i.e., ® is a holomorphic function. Since Tq is a bounded operator, (29) implies
(1@l < const - [fwl] .

Differentiating (29) with respect to z, one gets

w h
— = 11, ).
% ¥’ + g (Aw + Bw)
Taking into account the bounded of Ilg, an esti of type (3) for &' implies

that an analogous estimate holds for dw/dz (a suitable space for w is the space of
Holder-continuously differentiable functions). Details may be found in [11].

8. In conclusion we hint to some related methods, further generalizations, and open
problems.
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Integral operators for the inversion of partial differential operators can be generated
by fundamental solutions (cf. H. Begehr and R. P. Gilbert [1]). Generally speaking,
each (elliptic) differential equation has its own fundamental solution. An advantage of
the Cauchy kernel 1/(z — ¢) (which is a fundamental solution of the Cauchy-Riemann
equation) is the fact that it can be used to solve boundary value problems for general
systems of the form (21). Guo-Chun Wen and H. Begehr [16] apply complex methods
also for solving boundary value problems for elliptic equations and systems of second
order. Related complex methods such as Bergman’s Integral Operators can be found
in R. P. Gilbert’s book [7].

Initial value problems with generalized analytic vectors as initial data are investigated
by A. Crodel in his Thesis [6]. A general theory of generalized analytic vectors was
founded by B. Bojarski (3]. Generalized analytic vectors satisfy systems of the form

% Q@3 = Az + Bw

where w = (wy,...,wy) is a desired vector with complex-valued components w; and
A(z), B(z) and Q(z) are matrices. Such systems are complex normal forms of uni-
formly elliptic linear system for 2n desired real-valued functions.

At present initial value problems with still more general initial functions are under
consideration (see [12]). In this connexion interior estimates of type (3) are to be
proved for general elliptic differential equations. Further, associated pairs are to be
constructed.

In higher dimensions complex methods can be used not only with respect to several
complex variables but also in connexion with the Cauchy-Riemann operator in Clifford
Analysis (see F. Brackx, R. Delanghe and F. Sommen [4], see also E. Obolashvili [9]).
Another p g field in higher di ions is to i igate functions depending on
several va.nabla where each of these variables runs in a Clifford Algebra.
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