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ABSTRACT

This is an expanded version of the lectures that I delivered to the Department
of Pure Mathematics at the University of Calcutta in the period 27 January-6
February 1998. T am most grateful to that University for inviting me to be its Rani
and Asutosh Ganguli Visiting Professor for 1998; to Professor Mihir Chakroborty,
Head of its Dep: of Pure Math ics, for ing so much interest in
my visit and for his many kindnesses to me during my memorable stay in his
city; and to the graduate students in his Department, for making me so welcome
and for showing such enthusiasm for my subject matter

1 A fixed-point theorem

The main theme of these lectures is a revolution in mathematics, one that was started
by L.E.J. Brouwer (1881-1966) in 1907 and looked doomed to failure until a dramatic
intervention by Errett Bishop sixty years later. I first set the scene by describing
Brouwer's most famous result, ironically one in classical topology and definitely not,
at least as it stands, a part of Brouwer's revolution.

Consider' a closed disc B (that is, one that contains its bounding circle) in the

UIn the first part of these Jectures | shall try to be as informal and mathematically undemanding
as possible, since not all members of the audience are trained mathematicians. The mathematical

content and pace of the lectures will increase when we start to discuss varieties of constructive
mathematics in more technical detail.
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plane. To each point z of B let there be assigned a unique corresponding point y of
B. We may picture this assignment by the line segment zjj drawn from z to y, and
think of r as being moved to the position y. Notice that, although a given z has a
unique corresponding y, the same y may correspond to different choices of z. Also,
there is nothing to forbid the situation where y = z; when that occurs, we call z 4
fixed point of the assignment.

We make one additional requirement: namely, that points which start close to-
gether end up close together. Mathematicians describe this requirement by uyln;
that the assignment—or, to give it its proper matk ical name, the ing —is
continuous. According to Brouwer’s fixed—point theorem, such a mapping as
we have described always has at least one fixed point in B [28].

It may surprise you to learn that this theorem has many applications within math-
ematics. For example, it is used, in one form or another, by mathematical economists
to prove that, under reasonable conditions, an economy has an equilibrium—a state
in which supply and demand are balanced and hence producers and consumers are
satisfied. Indeed, Brouwer’s fixed-point theorem is equivalent, mathematically, to the
existence of such an equilibrium. Thus it would seem beneficial—maybe, in the light
of world-wide economic difficulties, advisable—to seek some method of computing
the position of a fixed-point of our mapping on B.

Although there are elementary proofs of this theorem, none of them is easy to
understand without a substantial mathematical background, and the shortest proofs
require some quite heavy mathematical artillery. One feature of all these proofs is that
they do not provide the means of computing the fixed points.? What they actually
do (although this limitation is heavily disguised) is to prove that it is impossible that
there not be a fixed point; in other words, they prove the statement

not not(there exists a fixed point).

Here, at last, we reach the distinction in meaning that formed the basis of Brouwer's
revolution: the distinction between

* idealistic existence, where we prove the impossibility of the non of
the object in question (in the foregoing case, a fixed point) and conclude that
the object does exist after all, and

* constructive existence, where in order to prove that our object exists, we
must provide a method for finding it.

With the publication of his doctoral thesis [27) in Amsterdam, in 1907, Brouwe:
began a mathematical career largely devoted to his philosophy of intuitionism, in
which mathematics is regarded as a free creation of the human mind, and the ob-
Jects - mental constructs—of mathematics come into existence precisely when they

“The work of Searf [61) and others would scem to contradict this statement; but what Scaf

b» done is 1o show how to compute an nppmxllllul(‘ fixed point, a point z that is close to the
P % ¥ There is no guas that an fixed point, however small the differesce

b wenn 3 and y, is chose enough Lo an exact fixed point to allow us to use the approximation with

impunity
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are constructed. Actually, on the advice of his doctoral supervisor Korteweg, Brouwer
took a few years' leave from the exposition of intuitionism, to establish a formidable
reputation in traditional—or as we now call it, classical-—mathematics, thereby en-
suring that his intuitionistic views would gain some respect, even if, as history shows,
they were not widely accepted. It was during that leave that Brouwer proved, among
other important results, his fixed-point theorem.”

2 Intuitionistic Logic

For Brouwer, mathematics took precedence over logic. In order to describe the logic
used by the intuitionist mathematician—a logic different from the classical logic
normally used in I ics—it was 'y first to analyse the mathematical
processes of the mind, from which analysis the logic could be extracted. In 1930,
Brouwer's most famous pupil, Arend Heyting (1898-1980), published a set of formal
axioms which so clearly characterise the logic used by the intuitionist that they have
become universally known as the axioms for intuitionistic logic [39]. These axioms
capture the intuitionistic, or constructive, interpretations of the various connectives

V(or),A(and), = (implies ), (not )

and quantifiers
3( there exists ), V( for all/each )

which we now outline:

PV @ : either we have a proof of P or else we have a proof of Q.

P AQ : we have both a proof of P and a proof of Q.

e P = @ :by means of an algorithm—that is, a finite, computational proce-
dure—we can convert any proof of P into a proof of Q.*

e ~P : assuming P, we can derive a contradiction (such as 0 = 1); equivalently,
we can prove (P = (0 =1)).

Jax P(x) : we have an algorithm which computes an object = and demonstrates
that P(x) holds.

Va € A P(x) : we have an algorithm which, applied to an object = and a proof
that @ € A, demonstrates that P(z) holds.

IFor fascinating accounts of Brouwer's life and work see (33, 65).

AThis interpretation of implication, while more natural than the classical one of material im-
plication in which (P = Q) s equivalent to (<P V Q) , has not completely satisfied all rescarchers
using constructive logic. Shortly before he died, Bishop communicated to me his dissatisfaction with
the standard constructive interpretation of implication. Unfortunately, he left nothing more than
vory rudimentary sketches of his ideas for its improvement.

L N Ve oo
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In intuitionistic logic, even for a decidable property P(n) of natural numbers n
the property
Vn P(n) V =Vn P(n)
need not hold; so, in turn, the law of excluded middle (LEM)
IP\ISB

fails. As a result, many classical results cannot be pmved wnxtrucuvely, since they
would imply LEM or some other ifestly uctive
To illustrate this point, consider the followmg simple statement, the limited prin-

ciple of omniscience (LPO):

vae {0,1}N(a=0va#0),

where a = (as,a3,az,...), N ={0,1,2,...} is the set of natural numbers, (0.1)"!5
the set of all binary sequences, and

a=0 & Vn(a,=0),
a#0 & (e, =1).

In words, LPO states that for each binary sequence (an), either a, = 0 for all n or else
there exists n such that a, = 1. Of course, this is a triviality from the viewpoint of
classical logic; but its intuitionistic interpretation is not so simple. That interpretation
says that there is an algorithm which, applied to any binary sequence a, either verifiss
that all the terms of the are 0 or else T the index of a term equal
to 1. Anyone familiar with computers ought to be highly sceptical about such an
algorithm, since in the case a = 0 it would normally need to test all the infinitely
many terms a,, in order to come up with the correct decision.

In classical recursion theory—the classical version of computability theory, in
which all computations are performed by Turing machines—we can prove that the
recursive interpretation of LPO is false, since it would entail the decidability of the
halting problem; see [19), pages 52-53. (There is a point worth noting here: the clas
sical invalidity of the recursive interpretation of LPO is not a matter of logic, since it
can be demonstrated even with classical logic.)

For these reasons alone, we may feel justified in not accepting LPO, or any classical
prop that intuitioni lly implies LPO, as a valid principle of intuitionistic
mathematics. But we have another reason for not doing so: it can be shown that there
are models of Heyting arithmetic—Peano arithmetic with intuitionistic logic—ia
which LPO is false; so LPO cannot be derived in Heyting arithmetic; see (19, 34).
Since LPO is a special case of the law of excluded middle, we are forced, in turn, 1o
reject the latter from intuitionistic mathematics. A similar informal analysis leads us
%o reject both the classical rule

SrdsE

that forms the basis of proof-by-contradiction, and the lesser limited principle of
omniscience (LLPO),
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For each binary sequence a with at most one term equal to 1, either ay, =
0 for all n or else azn4y = 0 for all n,
which is easily seen to be a consequence of LPO.

The exclusion orsuch princlplcs from intuitionistic mathematics has serious conse-
le, we cannot hope to prove intuition-

quences for h For
istically the simple mwmem.

VzeER (z=0Vz#0),
where R denotes the set of real numbers, and @ # 0 means that we can compute a
rational number strictly between 0 and x (which is not the same, constructively, as
proving that = (z = 0)). To see this, consider any binary sequence a, and use it to
define the binary expansion of a real number

0
T = Z a2l
n=0
If # = 0, then a = 0. If z # 0, we can compute a positive integer N such that
z > 2-N: by testing the terms ay,...,ay, we can decide whether or not there exists
n such that a, = 1. Thus the above statement about real numbers implies LPO and
is therefore essentially nonconstructive.® A similar argument, using the real number
o
Z (=1)" an2~",
n=0
shows that the statement
Vz€R (x> 0Va<0)

implies LLPO and is therefore essentially nonconstructive.
The following el y classical ts also turn out to be nonconstructive.

» Bach real number z is either rational or irrational (in the sense that z # r for
cach rational number r). To see this, consider
o0

2= (1-ay)/n!

n=0
where a is any increasing binary sequence.

e Bach real number r has a binary expansion. Note that the standard inter-
val-halving argument for ‘constructing’ binary expansions does not work, since
we cannot necessarily decide, for a given number x between 0 and l whether
z > §orz < L In fact, the exi of binary ions is equivalent to
LLPO.

o Vo,y € R (zy = 0= (z = 0Vy=0)). This clearly has implications for the the-
ory of integral domains!

SThin it not w0 surpeising whes you considor the problem of underflow, which can cause a computer

1o register o small, nonzero sumber as 0

&= /AT
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3 Fundamental principles of intuitionism

I would now like briefly to describe, in turn, the three main modern varicties of
constructive mathematics—that is, mathematics in which only constructive existence.
and not idealistic existence, is used.

I have already introduced the first of these, intuitionistic mathematics (INT),
which, you will recall, is based on Brouwer’s intuitionistic philosophy of mathi
as & free creation of the human mind. Introspection led Brouwer not only to his
informal explanation of the logical processes used in intuitionistic mathematics, but
also to adopt certain nonclassical principles. The first of these, the principle of

continuous choice, has two parts:

* Every function from NN (the set® of sequences of natural numbers) to N is
continuous relative to the metric p defined on NY by

p(a,b) = inf{27" : Vk < n(ax = bx)} .
Thus if / is a function from NN to N, then

YaeN¥3neNVbe N (Vk<n (ax =) = (f(a) = f(b))).

o If P C NYxN, and for each a € NN there exists n € N such that (a,n) € P, then
there exists a continuous choice function f : N¥ — N such that (a, f(a)) € P
for all a € N¥.

It follows from this principle that every function from a nonempty” complete
separable metric space into a metric space is continuous, and hence that any linear
mapping of a separable Banach space into a normed space is bounded ([19], pages
109-110). We can also prove that LLPO, and therefore LPO, is false. To this end,
;“PPO&‘ that LLPO holds, and define P C NN as follows. Given a € N¥, define b € N*

y setting

by =
0 otherwise.
LLPO ensures that cither by, = 0 for all n or bans, = 0 for all n. Let (a,0) € P i
the former case, and (a, 1) € P in the latter. For each i € N define a* € N¥ by

1 ifi=n
a, =
0 ifi#n
By the principle of continuous choice, there exists a continuous function J ¢ NY N
such thaz ( )€ P for all a € NN, Since (a®,0) ¢ P and (a®*1,1) ¢ F, wo e

makes for easier explanation If | couch Brouwer's work in terms of set thoory, rather thas ¥
"4

pread

aset S is nonempty, | mean that we can construct a poist of S; the intuitiosiite
a¢ inhabited. Heing inhabited is a stronger property thas ~(S =0).

{ 1 if ay # 0 and Yk < n (ax = 0)
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o 1
) 1o converges to 0 in the

that f(n®) = 1 and f(a***) = 0. But the sequence (a
metric on NV, so f is not continuous at 0. This contradiction shows that LLPO is
false. Bpraa

We need some more definitions in order to formulate Brouwer's second important
principle. For any set X let X* denote the set of all finite (possibly empty) sequences

in X. We say that a subset S of N* is
o detachable if for each z € N* either € S or x ¢ S;

e a fan if it is closed under restriction—that is, (zo,...,z¢) € S whenever
(x0y+++,@a) € S and ~1 < k < n. (The case k = —1 corresponds to the

empty restriction of z.)

The set 2° is a fan, called the complete binary fan, which can be represented in
the obyious way as a tree, from which the name ‘fan’ was derived. A path in a fan o
is a sequence s, finite or infinite, such that each restriction of s is in o. We say that
a path s is blocked by a subset B of ¢ if some restriction of s belongs to B; if no
restriction of 8 is in B we say that s misses B. A subset B of a fan o is called a bar
for o if each infinite path of ¢ is blocked by B; a bar B is a uniform bar if there
exists n such that each path of length n is blocked by B.

The following principle, Brouwer’s fan theorem,” is of major importance in INT:

Buery detachable bar of a fan is a uniform bar.

Under the hypotheses of the principle of continuous choice, the fan theorem is equiv-
alent to the intuitionistic uniform inuity theorem,

Buery real-valued function on a compact interval in R is uniformly con-
tinuous,
a result so patently at odds with classical analysis as to suggest to some mathemati-

cians that intuitionism is false. The apparent absurdity of the intuitionistic uniform
continuity theorem is, however, illusory, as is suggested by the following more carcful

re-statement of it:

Bvery int ally defined function from an intuiti compact in-
terval to the istic real line is, intuitionistically, uniformly contin-
uous.

In fact, there is a strong case for saying that, except at certain levels of formalism,
INT and classical mathematics (CLASS) are incomparable, and that it is not possible
to capture fully the spirit and meaning of intuitionistic statements, such as our re-
formulated intuitionistic uniform continuity theorem, within a classical framework,

SThe classical contrapositive of the fan theorom is Kénig's Lemma: If, for each n, there oxisty
a path of longth n in & that misses B, thon there exists an infinite path that misses 5. Iy is an
oxercise Lo show that the fan theorem entails LPO.
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It is fair to say that the attempts to justify Brouwer's fan theorem from an jnty.
Itionistic standpoint have not been altogether successful. Brouwer himself made such
an attempt, based on another principle—‘bar induction’—whose justification seems
equally elusive.

For more details about INT, see (19, 32, 34, 67). An extremely readable, if some-
what outdated, introduction to intuitionism is given by Heyting in [40].

4 Recursive constructive mathematics

The second of the main varieties of modern constructivism is the recursive con-
structive mathematics (RUSS) initiated by Markov in the late 1940's and syl
sequently developed by him and his followers, primarily in the former Soviet Union,
and in particular in Leningrad (now St Petersburg) and Moscow® [46). In this vari-
ety the objects are defined by means of Gédel-numberings, and the procedures are
all recursive; the main distinction between RUSS and the classical recursive analysis
developed after, in 1936, the work of Turing, Church, and others clarified the nature
of computable processes, is that the logic used in RUSS is intuitionistic. Thus RUSS
may be described as recursive 1 ics with intuitionistic logic.

One obstacle faced by the mathematician attempting to come to grips with RUSS
is that, exp i in the 1 of r theory, it is not easily readable; indeed,
on opening a page of Kushner's excellent lectures [45], one might be forgiven for
wondering whether this is analysis or logic. Fortunately, we can get to the heart of
RUSS by an axiomatic approach, due to Fred Richman [52], which I now outline.

Recall that a partial function f: X = Y is a function from a subset of X called
the domain of f, and written dom(f), into Y; that f(z) is defined if z € dom(f),
and undefined if = ¢ dom(f); and that f is total if dom(f) = X. Experience with
recursion theory leads us to the following axiom about computable partial functions:

CPF:  There is an enumeration of the set of all partial functions from “
N to N that have countable domains.

Note that, for us, a set S is countable if there exists a function from a detachable

subset of N onto S. The empty set is ble; and a set is ble if
and oaly if it is the range of a function with domain N.
In the remainder of this section, and wherever we discuss RUSS in these Jectures,

we shall assume that

P01, P2,
18 a fixed enumeration of the set of computable partial functions from N to N, and
that

Do, Dy, Dy, ...

“Whes, (5 the mud- 1980's, Fred Richman and I first used the term “RUSS” to sigaify the mathe
malxs of 1he Maske Bool, i1 was suggeated that “SOV™, might be a more appropriate
We believe thas subsequent political developments have validated the wisdom of our choice.
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is a fixed ion of the correspondi ins. It can easily be shown that for

cach m Llluro exlns a sequence (D.,,(n))"_n of finite subsets of N such that D,,(0) C
Du(1) €

oo
dom(ipm) = U Dyy(n).
n=0
Indeed, if we think of @, as the partial function computed by the mth Turing machine
in some effective enumeration of the set of Turing machines (see, for example, [13]),
then we can take D,,(n) to be the set of those k € N such that the Turing machine
computes @, (k) in n + 1 steps. For convenience we take D,,(n) =@ if n < 0.
The following is perhaps the fundamental result in RUSS.

Proposition 1 For each total function g : N = {0, 1} there exists m € N such that
g(m) = 0 if and only if @, (m) is undefined.

An immediate consequence of this is that there is no total function g : N— {0,1}

such that for each m, g(m) = 1 if and only if ¢,,(m) is defined; this is the expression

within RUSS of the undecidability of the halting problem (cf. [13], Chapter 4).
Proposition 1 is very easy to prove using CPF. Given g, we see that

97'(0) = U(q" )N {0,1,...,n})

n=0

is countable, Now choose m such that @y, is a partial function with domain g~'(0);
then @y (m) is defined if and only if g(m) = 0.

We can now prove that hol.h LPO and LLPO are false within RUSS. For example,
assuming LPO, let A : {0, ) L {0,1} be such that A(a) = 1 if a, = 1 for some n,
and A(a) = 0 if a, = 0 for all n. Define a total function p : N— {0, l)"‘ such that
p#(m)x = 1 if and only if m € D,,(k), and let g = po \. Then g(m) = 1 if and only if
wm(m) is defined. This dicts the fund | result, Proposition 1. The proof
that LLPO is false in RUSS can be found on pages 53-54 of [19].

Another consequence of CPF is that Brouwer's principle of continuous choice is
false. For, by CPF, for cach a € NN there exists n such that a = ¢,,. Let

P={(an)eN"xN:a=pn}.

If there is a continuous function f : NN = N such that (a, f(a)) € P for each
a € NN, then each nonzero a sufficiently close to 0 satisfies f(a) = £(0) and therefore
a = py(0) = 0. This is clearly false.

What can we say about continuity in RUSS? Before answering this question, I
must say something about Markov’s Principle (MP):

vae {0,1)" (~(a=0)=>a#0).

In words: for each binary seq (an), ifit is impossible that a,, = 0 for all n, then
there exists n such that a,, = 1. This principle embodies the notion of an unbounded

Y
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search—given that a # 0, to find n such that an = 1, we simply test the terms
g, 6y, ... in turn, being guaranteed by Markov's Principle that we will ceventually,
although we do not know in advance when, find a term equal to 1. For this reason
it is viewed with caution by most practitioners of RUSS and is rejected outright by
most other constructive mathematicians.'®

With the (essential) help of MP, we can prove Ceitin’s theorem ({19], Chapter
3):

Every function from R to R is continuous.

As with the istic uniform i h we have to be careful about
our interpretation of this statement; oLherwxse' it will appear to contradict classical
mathematics. The full interpretation says that every recursively defined function
from the recursive real line to the recursive real line is recursively continuous; from
a classical viewpoint this theorem is acceptable, as it does not say anything about
functions defined also on the nonrecursive real numbers.

The classical uniform continuity theorem, however, does not hold in RUSS, in
which there exists a continuous function f : [0,1] = R that is not uniformly con-
tinuous. The construction of such a function, which I shall not describe, depends
on a famous result, Specker’s theorem (64], showing that the monotone sequence
principle of classical analysis does not hold in RUSS:

Theorem 2 There exists an increasing sequence (ry) of rational numbers in the Can-

tor set

00

c= {Zcu(i'" Vi (en € (0.2))}

n=1

such that
YzeR3I>0INENYRS N(|z—ry| 24).

In other words, although the sequence (ry) is increasing and bounded above, it &
eventually bounded away from any given (recursive) real number; whence its classicsl
limit & a nomrecursive real number.

I shall return to prove Specker’s theorem in Section 9, once I have discussed our next
variety of constructive mathematics.

5 Bishop’s constructive mathematics

The final variety that 1 want to talk about, and the one that will occupy most of the
rest of these lectures, is Bishop's constructive mntbemltlu (BISH), which first
appeared in Errett Bishop's ground-break i of Constrac-
fiee Analyss (4] In that book, which was bnm nﬂt'r n mmuhhly short period of

PSS s
mcossistest with Brouwer's theory of the creating subject, itself a controversial extonsion

Of Birowwer s basic: intsitionism; sco (3]

 m—
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gestation, Bishop disclosed, by thoroughgoing constructive means but without resort-
ing to either Brouwer's principles or the formalism of recursive function theory, a vast
panorama of mathematics, covering elementary real and complex analysis, metric and
normed spaces, abstract measure and integration, the spectral theory of selfadjoint
operators on a Hilbert space, Haar measure and duality on locally compact groups,
and Banach algebras. At a stroke, Bishop's work gave the lie to Hilbert's dismissal
of constructive mathematics in the words

‘Taking the principle of excluded middle from the mathematician would be the
same, say, as bing the tel to the or to the boxer the
use of his fists. [41].

Bishop's approach to mathematics has one great advantage over INT and RUSS:
his results and proofs are valid, mutatis mutandis, in classical mathematics, INT,
RUSS, and all reasonable models of computable mathematics—such as, for example,
Weihrauch's TTE [71]. Every proof of a theorem 7" in BISH is also (or, in the recursive
sotting, can routinely be translated into) a proof of T in each of INT, RUSS, and
CLASS. Thus BISH can be regarded as the common constructive core of these other
varieties of mathematics, and each of INT, RUSS, and CLASS as a model of BISH.

This has important consequences in practice. For example, since

Bvery function from [0,1] to R is uniformly continuous
holds in the model INT, we cannot disprove it in BISH. On the other hand,

There exists a continuous mapping of (0,1] into R that is not uniformly
continuous

holds in the model RUSS, so we cannot prove the uniform continuity theorem in
BISH. (Since uniform, rather than pointwise, continuity seems to be what is needed
for most computations with functions on a compact interval, Bishop freely uses uni-
form continuity hypotheses that hold automatically in INT and CLASS.) For another
example, the statements

Buery compact subset of R is Lebesque measurable
and

There exists a compact subset of R that does not have Lebesgue outer
measure

hold in CLASS and RUSS, respectively (for the latter see page 64 of [19]); so neither
of them can be proved or disproved within BISH.

The foundations of BISH are close to those of INT.'! Indeed, Bishop says from
the outset that

1 Bighop's position may bave boon closor Lo that of an intuitionist than would appear from most
of hin writings: see pages 357-360 of 4
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The primary concern of mathematics is number, and this means the positive
integers. We feel about number the way Kant felt about space. The positive
integers and their arithmetic are presupposed by the very nature of our intel-
ligence and, we are tempted to believe, by the very nature of intelligence in
general The development of the positive integers from the primitive concopt
of the unit, the concept of adjoining a unit, and the process of mathematical
induction carries complete conviction. In the words of Kronecker, the positive
integers were created by God. ([4], page 2)

Building on the set of positive integers, using m(umomstn: log\c and a primluw.
unspecified concept of ‘algorithm’, Bishop sy: ically i ces I

higher and higher levels of abstraction. To do so, he also needs notions of ‘set’ lnd
‘function’. For him, a set S is given by two pieces of data:

& property that enables members of S to be constructed using objects that haye
alread\ been constructed (note this last phrase, which rules out the possibility
of impredicative definitions and therefore of Russell-type paradoxes), and

& an equivalence relation =g of equality'? between members of S.

The use of equivalence relations rather than mlensmnal equahly——ldenuty of descrip-
tion—is common, but often goes iced, in cl ics. For example,
we call the rational numbers 1/2 and 3/6 equal, even though, strictly speaking, they
are equivalent and not intensionally identical.

In more advanced work—even, as we shall see, on the real line—we frequently
need a set S to be equipped with an inequality relation # describing what it means
for two elements of S to be unequal, or distinct. Such a relation must satisfy the
following two properties:

z#y = -(x=y),
TEy = y#T

One such inequality relation is defined by setting z # y if and only if ~(z = y);
but, as Markov's Principle suggests, this inequality is normally too weak for practical
purposes

Note that as we shall see later, the equality and inequality relations on the real
line R are not decidable; but when restricted to the set Q of rational numbers, they
are decidable.

Naturally, Bishop requires functions to be given by algorithms and to respect
equality. Thus a function f from a set A to a set B is an algorithm that, applied to
any element @ of A, produces an element f(a) of B, such that f is extensional: if
a=a'in A then f(a) = f(a') in B. If A and B have inequality relations, then we
may require £ to be strongly extensional, in the sense that if f(a) # f(a') in B,
thena #a'in A

AT R e "Nk
When the meaning is cloar from the context, I shall write =, rather than =g, to denote the

ity 06 a set S
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With these definitions at hand, we can now prove the result of Goodman and
Myhill'® [37]:

Theorem 3 The asmom of choice implies the law of excluded middle.

Proof. Let P be any constructively meaningful statement, and define the set A to
consist of the two elements 0 and 1, together with the equality relation such that

0 =, 1if and only if P holds.

(We could have defined A in more classical terms as a set of equivalence classes under
the equivalence relation

0 ~ 1 if and only if P holds,

but it 1s more in keeping with Bishop's approach to proceed as we have done.) Let B
be the set {0, 1} with the standard equality, and let

S = {(0,0),(1,1)} € 4 x B,
where the equality on S is derived in the usual way from those on A and B :
(z.¥) =s («',y) if and only if z =, 2’ and y =g ¥

Suppose that there exists a function f : A = B such that (z, f(z)) € Sforall z € A,
If f(0) = 1 or f(1) =0, then 0=, 1, and hence P holds; if f(0) = 0 and f(1) =1,
then =(0 =4 1), and hence P is false. Thus we have derived P v =P [ ]

On page 9 of [4], Bishop remarks that

the axiom of choice...is not a real source of nonconstructivity in classi-
cal mathematics. A choice function exists in constructive mathematics,
because a choice s implied by the very meaning of existence.

How do we square this with the foregoing Goodman-Myhill theorem? It is true that
if to each element = of a set A there corresponds an element y of a set B such that the
property P(z, ) bolds, then it is implied by the meaning of existence in constructive
mathematics that there is a finite routine for computing an appropriate y € B from a
given z € A; however, this computation may depend not only on the value a but also
on the information that shows that a belongs to the set A. The computation of the
value at a of a function /- A < B would depend only on a, and not on the proof that
a belongs to A (functions are extensional). So Bishop's remark is correct if he admits
functions whose value depends on both a and a proof that a € A, but is not correct
if, as most constructive practitioners do, he only admits extensional functions.

18ince the solution 1o Problem 2 on pago 58 of [4] uses an argument very similar to that of the
Goodman-Myhill prood, i & seasonablo to suggest that Bishop may have been aware of their result
when he published his book
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The axiom of choice will hold constructively if the set A is one for which no com.
putation is necessary to demonstrate that an element belongs to it; Bishop calls such
sots basic sets. Most constructivists would regard the set N* of positive lnlquu.

& basic set, a belief that is reflected in the p of the p iple of
choice:

If to each positive integer n there corresponds an element y of a set A such
that P(n,y), then there is a function f : N* — A such that P(n, f(n))
for each n € N*,

In fact, many constructive proofs use the stronger principle of dependent choice:

If a € A and to cach 2 € A there corresponds y € A such that P(z,y),
then there exists a function f : N* — A such that f(1) = a and
P(f(n), f(n + 1)) for each n € N'*.

There is growing evidence that many applications of even these weaker choice princ-
ples can be avoided in BISH (sce, for example, [24, 25, 26, 56}).

6 A modern view of BISH

In the last few years Fred Richman has advocated the view,'* based on his experience
25 a practitioner of constructive mathematics for more than a quarter of a century,
that Bishop's mathematics is simply matk ics with intuitionistic logic (53, 58]
On the one hand, the original constructivists’ desire for algorithmic interpretability
forces us to use intuitionistic logic; on the other, the exclusive use ofintuitionistic logic
seems to result, inevitably, in arguments that are entirely algorithmic in character. Is
this Bishop's ‘secret still on the point of being blabbed” ([4], epigraph):

algorithmic math ics is ivalent to math tics that uses only intu-
wiomstic logic?

If this is the case—and all the evidence of our constructive mathematical practice
suggests that it is—then we can carry out our mathematics using intuitionistic logic
on any reasonably defined mathematical objects, not just some class of ‘constructive’
objects. Constructive mathematics becomes a matter of epistemology, rather thas
ontology. However, this does not preclude the ontological possibility that, as Brouses
mamtained, mathematical objects are mental constructs.

I adopt Richman's viewpoint for the remainder of this paper, which i

written entirely within the framework of BISH except where it is clearly
stated otheruise

refigured in (9]
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From that viewpoint, CLASS, RUSS, and INT can cach be regarded as BISH plus
some additional principles. In CLASS, the principle is the law of excluded middle,
added to the intuitionistic logic of BISH. In RUSS, it is the axiom CPF characterising
computable partial functions from N to N. To obtain INT, we add to BISH the
principle of continuous cholce and the fan theorem.

We obtain alternative information about the BISH-INT and BISH-CLASS bor-
derlines from the following result of Julian and Richman ([42]; see also pages 127-128
of [19]).1%

Theorem 4 Let C be the fan wting of all finite m{-11}. IfBisa
detachable bar of C, then there exists a uniformly ¢ Junction f
on [0, 1] such that

o f(x) >0 for all x if and only if B is a bar for C;
o inf f >0 +f and only of B is a uniform bar for C.

twe uniformly conti g on [0,1], then there

A

Conversely, if f is a
cxists a detachable subset B of C satisfying these two

An immediate corollary of this theorem is a clarification of the status of the fan
theorem,

Corollary 5 The following stat ts are equivalent within BISH.

~~ Euery detachable bar of C is a uniform bar.

~ Buery uniformly continuous map of (0,1] into the positive real line has positive
infimum.'*

On the other hand, as it can be shown that, under CPF, there exists a detachable
bar for €' that is not uniform (page 112 of (19]), we have

Corollary 6 [f CPF holds, then there exists o uniformly contimuous mapping f of
[0, 1] into the positive real line such that inf f = 0.

We conclude from these two corollaries that, within BISH, we can prove neither the
proposition

Every uniformly continuous, positive-valued function on [0, 1] has positive
infimum

1581uch roaults can be rogarded s contributions to the reverse mathematics of Simpson and othors
)

1 Y'I‘Iu\ aup and iaf of a eniformly continuous real-valued function on a compact metnic space always
exint, although they may not be attained, in BISH

Ve, i
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nor its negation. If we add that (classically true) proposition to Bll as an ulom,
then we are half-way to INT, it only being v to add the principle of
choice to go the whole way.

This completes my introduction to the found of i }
Since 1 am more concerned, in these lectures and professionally, with the practice,
rather than the formalism, of constructive mathematics, I shall say nothing about
formal systems for BISH other than to point you towards Myhill's intuitionistic ZF
[49] and constructive set theory [50]; Martin-Lof’s theory of types [47], which has
had such an influence on the ‘proofs as programs’ activity of several computer science
research groups ([31], [38]); and other systems of Friedman [36], Feferman [35], and
Bridges [12]. The standard reference for a formal development of INT is [44]. Excellent
general references for the formal foundations of BISH, RUSS, and INT are (2] and
[67].

7 The real line

Up to this stage, I have referred to the real numbers and their constructive properties
without actually giving a precise definition of what it means, constructively, to be &
real number. The time has come to set matters right.

Bishop introduced the real numbers as Cauchy sequences of rationals with highly
specific convergence rates. Others have used Dedekind’s approach to constructing
reals [54], and there is even an axiomatic development [14]. I prefer here to introduce
an interval-arithmetic devel of the real t based on one found in &
recent book by Aberth [1).

By & real number we mean a nonempty subset x of Q x Q such that for all
elements (g,¢) and (r,r') of x,

> g<q,
& the closed intervals [g,¢') and [r,r'] (intervals in Q) intersect, and
& for each positive rational ¢ there exists (g,¢') in x such that ¢' =g < €.

The underlying intuition here is that the elements of x are the rational endpoints
of closed intervals, with one point, namely x, common to all those intervals. Any
fational sumber g gives rise to a canonical real number

a={(¢e.9}

with which the original rational ¢ is identified.
Two real numbers x and y are

» equal, written x = y, if for all (,q') € x and all (r,r’) € y, the intervals [g.¢')

and [r, ] intersect;

» unequal (or distinct), written x # y, if there exist (g,¢") € x and (r,r') €Y
such that the intervals [9,¢') and [r, '] do not intersect.

| ——
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It in almost immediate that # satisfies the defining properties of an incquality
relation. Let's check that equality is an equivalence relation. It is trivial that it is
roflexive and symmetric, so only transitivity has to be handled. Let x = y and y = 2,
and suppose that for some (¢,¢') € x and (r,r') € z we have [g,¢] N [r, '] = 0. We
may assume without loss of generality that ¢' < r. Let € be the positive rational
number r - ¢', and choose (s,4') € y such that &' — s < e. Then the interval [s, 8]
cannot intersect doth [g,¢'] and [r,r'). This is absurd since y = x and y = z. Thus

~(lgvg') N (8,8 = 0).

Since we are working with intervals in Q, we can turn this round to construct a point
of [g,¢') 0 s, 4] , as follows.

Lemmn 7 Let [,J be closed bounded intervals in Q such that ~(INnJ =0). Then
there exists r € Q such thatr € INJ.

Proof. Let I = [a,b] and J = [¢,d]. If b < ¢, then I N J = @, a contradiction,
Hence ¢ € b. Likewise, a € d. If ¢ < a, then [ € J. If a € ¢, then either b < d and
therefore b € 10 J, or else d € b and therefore d € 1N J. [ ]

Taken with the equality and inequality we have defined above, the collection of
real numbers forms a set—the real line R

Lot x,y be real numbers. We say that x is greater than y, and that y is less
than x, if there exist (¢.¢") € x and (r,7') € y such that ¢ > r’; we then write x > y
or, equivalently, ¥ < x. On the other hand, we say that x is greater than or equal
to y, and that y is less than or equal to x, if for all (¢,¢') € x and all (r,r') € y
we have ¢' 2 r; we then write x 2 y or, equivalently, y € x. Clearly, x 2 x and x # x
(that is, = (x > x)).

The following properties of the i li 1 on R are relatively casy to
establish:
X=y & X2yAy2x
x#y & x>yVx<y,
x>y = y¥}x
xXFy = y2x
x>y =B x3V

In connection with the second last of these, note that the statement
VX,YER ((x2y)=y>x)

implies Markov's Principle. To see this, let (a,) be an increasing binary sequence
(ay) such that =¥n (a, = 0), and define a real number by

(G R () S R

Then = (0 3 x) : for if 0 > ¢ for all (¢,¢') € x, then a, = 0 for all n, a contradiction.
However, if x > 0, then there exists (¢, ¢') € x such that ¢ > 0; whence (¢.¢") = (%.&)
for an (unique) n such that a, = 1 - ay,.;.
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Here is the transitivity of inequality, stated without proof:
x>y2z=>x>2)A(x>2y>z=>x>12). 2
The classical law of tricho';omy,
VxeR (x20=>x>0Vx=0),

implies LPO. For, given an increasing binary sequence (a,), and defining the real
number x as at (1), we routinely check that x > 0; that if x = 0, then a, = 0 for all
n; and that if x > 0, then there exists n such that a,, = 1. Even the weaker form of
trichotomy,

VxeR (x>0Vvx<0),
is nonconstructive, as it implies LLPO. To prove this, given a binary sequence (a,)
at most one term equal to 1, define a real number by

{(-42) wenen-oof(crdird) et}

If x > 0, then it is impossible that a, = 1 for an odd n, so a, = 0 for all odd n.
Likewise, if x < 0, then a, = 0 for all even n.

Before you despair entirely, let me give you a surprisingly powerful constructive
substitute for these two inadmissible versions of trichotomy. This result shows that,
while exact splits of the real line cannot be carried out constructively, overlapping
splits can.

Proposition 8 If a > b, then for all x either a > x or x > b.

Proof. There exist (¢,¢') € a and (r,7') € b such that r’ < g. Given a real number

x, we can find (s,s') € x such that s' —s < ¢—1r'. If s’ < g, then x < a; if ' > g,

then 7' < s and so b < x. "
For convenience, let’s dispose here of a couple of simple results.

'

Lemma 9 If (¢,q') € x, then ¢ < x < ¢'.

Proof. Rational arithmetic shows that for each (r,r') € x, since [r, '] meets [¢,q],
we haver’ > gand ¢’ > 1. L}

Lemma 10 For each real number x there exist rational numbers q,q' such that g <
x<q.

Proof.  Let (r,7') be any element of x. By Lemma 9, r < x < r'. Choosing ¢,¢' in
Q with ¢ <r <1’ < ¢', we see from (2) that ¢ < x < ¢'. ]

Let S be a set of real numbers. We say that a real number b is an upper bound
of/for S if s < b for all s € S; and that b is the (perforce unique) least upper

Vo — g
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bound of S if it is an upper bound for S and for each x < b there exists s € S such
that x < s. In the latter event we also call b the supremum of S and we denote it
by sup S.

To see that the classical least-upper-bound principle implies the law of excluded
middle, let P be any constructively meaningful proposition and define

S={xeR:x=0V(x=1AP)}.

This set is pty (it ins 0) and bounded above by 1. Suppose it has a least
upper bound b. By Proposition 8, either b > 0 or b < 1. In the first case, by the
definition of ‘supremum’, there exists s € S with s > 0; whence s must equal 1, so
1 € S and therefore P holds. On the other hand, if b < 1, then 1 ¢ S and so -P
holds.

We define a set S of real numbers to be order located if for all rational numbers
a,b with a < b, either x < b for all x in S or else there exists x € S with a < x. This
definition enables us to state the constructive least—upper-bound principle,
which is also known as the Dedekind (order) completeness of R.

Theorem 11 Let S be a nonempty set of real numbers that is both bounded above
and order located. Then the least upper bound of S exists.

Proof. Let B be the set of upper bounds for S, and define
£={(2,0)€QxQ:3€53beB (g<s<b< )}

Taken with Lemma 9 and (2), the hypotheses ensure that ¢ is nonempty. If (¢,q')
and (r,r') belong to &, then there exist sy,s, € S and by, b, € B such that ¢ < s; <
by € ¢ and r € s < b, < 7. Then s; < by, so ¢ < by < r'; similarly, r < ¢'.
Rational arithmetic shows that there exists a rational number in [g,¢'] N [r,7']. To
complete the proof that € is a real number, we show that for each rational ¢ > 0
there exists (g,q") € € with ¢' — ¢ < e. To this end, fix (a,a’) in & If @ = a’, then
there is nothing to prove; so we may assume that a < a’. Construct rational numbers
ay=a<a <a<-<ay,=a such that a; — ;- <€/2for 1 <i < n. Since S is
order located, either a; € B or else a; < s for some element s of S. In the first case,
(ag,az) € € and az — ag < €. In the second, either ag € B and therefore (a;,a3) € €
and a3 —a;y < €; or else a; < s for some element s of X. Carrying on in this way, since
a, € B we can be sure of finding k < n— 1 such that (ax, ax+2) € € and ag42 —ai < €.
Thus € is indeed a real number.

To show that € is an upper bound for S, consider any (g,q') in € and any s in
S. There exists b € B such that ¢ < b < ¢'. For any (r,7') in s we have r < s, by
Lemma 9, and therefore r < b; whence r < ¢'. It follows that s < €.

Finally, if x < &, then we can find (¢,¢') € € and (r,7') € x such that ¢ > 7. It
follows from Lemma 9 that x € 7' < ¢. By definition of ¢, there exists s € S with
q < s; whence x < s, by (2). This completes the proof that £ is the least upper bound
for S. [ ]
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Let S be a set of real numbers. We say that a real number b is a lower bound
of/for S if b < s for all s € S; and that b is the (perforce unique) greatest lower
bound of S if it is a lower bound for S and for each x > b there exists s € S such
that x > s. In the latter event we also call b the infimum of S and we denote it by

inf S.
In order to establish a greatest lower bound principle analogous to Theorem 11,

we define the negative of a real number x to be

“x={(2,4) €Q@xQ: ("¢, g) Ex},
where, for a rational number ¢, the expression ~¢ denotes the negative defined in the
usual way.

Corollary 12 Let S be a nonempty set of real numbers that is bounded below and
satisfies the property: for all rational numbers a,b with a < b, either a is a lower
bound for S or else there exists s € S with s < b. Then the greatest lower bound of S

exists.
Proof.  Apply Theorem 11 to the set
T'={=6"s €S},

(which is nonempty and bounded above) to construct its supremum b. Then ~b is
the infimum of S. ]

The absolute value of the real number x is the set of rational pairs of the form
(min {|q|, |g'|} ,max {lq], |¢'[}) @)

with (g,¢') in X, where in (3) the absolute values are taken in Q.
Lemma 13 For each real number x there ezists a positive integer n such that |x| < n.

Proof.  Pick (g,¢') in x, choose a positive integer n such that max {|g|, ¢’} <n,

and apply Lemma 9 and (2). []

Lemma 14 For each real number x there exist a positive integer N such that max {|g|, ||}
< N for all (g,q') € x withq' —g < 1.

Proof. Pick n as in Lemma 13, and set N = n+ 1. If (g,¢') € xand ¢' =g < 1,

then
min {|ql, |¢'} < [x| < max|q|, |q'|

by Lemma 9, and
0 < max {g], |¢'[} — min {lq], |¢']} < 1.

Hence
max {lgl, ¢’} < |x| +1 < N,

i
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as required. ]

We now introduce the arithmetic operations on real numbers. Given real num-
bers x and y, we need to find the appropriate ways of combining the rational pairs
(representing intervals) that constitute the real number x with those that constitute
¥, in order to create the rational pairs that represent x oy, where o stands for any
of the operations +, —, X, +. We begin with the easy definitions of + and —, for the
moment leaving aside the more complicated ones for x and +.

We define the sum x + y and difference x — y of the real numbers x,y to be,
respectively,

x+y = {(58):3(g¢)exI(nr')ey (s=q+rAs' =¢ +1')},
x-y = {(s,¢):3(q,¢)exI(n,r') €y (s=g-rAs'=¢' —1')}.

Let’s verify, for example, that x+y is a real number. Let (q1,4}) € x, and (r1,7}) € y.
Certainly, g;+r; < g{+r{. Moreover, given a positive rational number &, we can arrange
that ¢} —q1 <e/2and r} — 11 < €/2,50 (1 +71) — (@1 + 1) < £. It remains, then,
to show that if also (g2,q3) € x and (r2,75) € y, then the intervals [g; + 7, ¢} +7!]
(1 = 1,2) in Q intersect. This is easy: there exist rational numbers &, 7 such that
g <€<giandr; << (i=1,2); whence

Git+ri SE+N<Gtri(i=1,2).

Thus x + y is a real number.

Since, as is routinely verified, x —y = x+ ("y), we adopt the normal convention
of writing —x instead of ~x.

We next define the product x x y, usually denoted by xy, to be the set of all
rational pairs (s, s') such that there exist (¢,¢') € x and (r,7') € y with

s = min {gr,qr’',¢'r,¢'r'}, ' = max {gr,qr',q'r,¢'r'}.

Certainly, s < s'. Compute a positive integer N such that if (g,¢') € x and ¢’ —
q < 1, then max {|q|,|q'|} < N, and such that if (r,7') € y and ' — 7 < 1, then
max {|r|,|r'|} < N. Given a rational € with 0 < & < 1, we can arrange that ¢' — ¢ <
€/2N and r' — r < /2N then

s'=s < (¢ = q)max{|r|, |’} + (' — r) max {lq| , ||} <e.
For i = 1,2 let (gi,q}) € X, (ri,r{) € y, and
s = min {qiri, qirt, giri, giri} s st = max {qirs, qirt, giri, giri} -
Pick € in [q1,4}] N [g2,5] and 7 in [r1,7}]) O [r2,75]; it is easy to verify that &n €
fo1,54] 7 [s2,53]-
When dealing with division, we consider two real numbers x,y with y # 0. Let’s

illustrate the definition with the case y > 0. To construct a rational pair (s,s') in the
quotient x/y, we first pick (¢,q') € x and (r,7') € y such that r > 0. If ¢ > 0, we
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set s =q/r', s' =q'[r;if ¢ <0< ¢, weset s =gq/r, s'=q'[r; and if ¢’ <0, we set
s=q'/r, s' = q/r'. Pairs (s,s') constructed according to these rules, and only such
pairs, belong to x/y. We omit the detailed argument showing that x/y is indeed a

real number.
As classically, we say that a sequence (xn)ne, of real numbers converges to a

real number X, called the limit of the sequence, if
Ve >03N Vn > N (X = Xn| <€).
We then write
Xn = Xoo S L — 0O

or
Xoo = lim x,,.
n—c0

The uniqueness of the limit, and the basic algebraic properties of sequences of real
numbers, will be assumed without proof, since the proofs are virtually the same as

their classical counterparts.
By a Cauchy sequence of real numbers we mean a sequence (x,) such that

Ve > 03N Vm,n > N (|Xm — Xn| <€).

Every convergent sequence of real numbers is a Cauchy sequence; the converse
statement is the so-called (Cauchy) completeness of R.

Theorem 15 Every Cauchy sequence of real numbers converges to a real number.

Proof. Let (xa)he, be a Cauchy sequence of real numbers, and, using the principle
of countable choice, compute a function k ~ 7 from N* to N* such that

Yk ¥m,n > ni (|xm — x| < 275) -

Again using countable choice, construct a sequence ((gx,q;)
Vk ((a,6k) € Xy A gk —qx <27°) -

Set
me=q =27 1k =g+ ok

Then for all n > ny,
RS Xy —2‘k<x,‘<x"‘+2"‘<"2» (4)
It follows that for all j > k,

Xn; € [r,-,r;] 0k Nrg] -

Ve
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Since 7}, = rx < 27¥1 5 0 as k — oo, we conclude that
Xoo = {(rk,7k)  k > 1}
is a real number. From (4) we have x,, € [rg,7}] for all n > nj. It follows that
VkVn 2> ne (%n — Xoo| < 7 — 7% < 2"‘“)A
Hence x,, = Xo as n = 00. [ ]

For the remainder of these lectures we shall drop the use of boldface type to denote
real numbers; it has served its purpose to signal a distinction between a rational
number and a real number—a set of special pairs of rational numbers. We shall also
assume, without further comment, basic properties of real numbers—for example,
x* > 0 for all real = —that can easily be deduced from the foregoing results. Note,
however, that although

Vz€R (22 =0=>2=0)
and
Vo,y€R ((z#0Axy=0)=>y=0),
the statement
Vz,y€R (zy=0=>z=0Vy=0)
implies LLPO.

The complex plane C consists of all complex numbers—ordered pairs (z,y)

of real numbers—with addition and multiplication defined by

(@) + (@) = (@+a'y+y),
(@) x (@) = (a2’ —yy'\ 2y’ +2'y),
and equality and inequality defined by

(@)= () & o= py=y,
(z,y) # (=',y) & z#z' Vy#y.

We embed R as a subset of C in the usual way, by identifying the real number x with
the complex number (z,0). The pair i = (0,1) then has the special property that
i* = —1; and every complex number z = (z,y) can be written in the form z + iy, with
real part Rez = z and imaginary part Im z = y. We shall assume basic properties
of C as they are needed. The same goes for the Euclidean spaces R™ and C", which
are now defined in the standard ways.

Constructive proofs of typical lications of the cc of R usually pose no
problems. For example, if (a,) and (b,) are sequences of real numbers such that 0 <
ay < by for each n, and if Z;T;, b, converges, then Y07 | a, converges (comparison
test). For, given € > 0, since the partial sums of a convergent series form a Cauchy
sequence, we can find N such that

K
0<Ebn<5
n=j
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whenever k > j > N. For all such j, k we then have 0 < Z::j a; < €. So the partial
sums of 3.°°  a, form a Cauchy sequence, which converges by the completeness of
R. A particular case of this occurs when b, = r™ for some fixed r with [r| < 1:in
that case, 377, by, is a geometric series, and 3777 | an converges to a sum at most

r/(1-r).
We shall see in the next section how completeness is used in constructive mathe-
matics to prove propositions that are i liate classical of iscience

principles.

8 Applications of the completeness of R

For a first application of the completeness of R consider the classical intermediate
value theorem:
If f:[0,1] = R is continuous and f(0)f(1) < 0, then there ezists &
strictly between 0 and 1 such that f(€) = 0.

To see that this theorem is nonconstructive as it stands, let (a,.);“;o be a binary
sequence with at most one term equal to 1, let

%0
a= Y (-1)"2 "an,
n=0
and define a continuous (actually, uniformly continuous) f : [0,1] = R such that

fO=-1, f)=1,f(5) =a=1(3),
and f is linear on each of the intervals [0, 3], [}, 3], [3,1] . Suppose that f(£) =0.
Then either £ > § or £ < 2. In the first case we have - (a > 0) and therefore a < 0;
in the second, - (a < 0) and so a > 0. Thus the classical intermediate value theorem

implies LLPO.
There are two standard elementary ways of proceeding from the hypotheses to the

conclusion of the classical intermediate value theorem. In the first of these we define
¢=supfze[0,1]: f(z) <0}

and use the continuity of f at £ to show that f(£) < 0 and f(€) > 0; this argument
fails constructively at the definition of £ as a supremum. The second way is an
interval-halving argument which at first sight looks constructive—indeed, it is the
basis for a numerical method of root-finding; but this, too, is nonconstructive, since
it depends on the law of trichotomy

VzeR (z>0Vz=0vVz<0),

which is equivalent to LPO. Fortunately, there is a constructive intermediate value
theorem; in fact, there are several which are classically equivalent to the classical
intermediate value theorem but are constructively distinct. Here are two of them

Yome
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Theorem 16 Let f : [0,1] = R be continuous and such that £(0)f(1) < 0. Then for
cach € > 0 there exists z € (0,1) such that |f(z)| < e.

Theorem 17 Let f : [0,1] = R be continuous and locally nonzero, in the sense
that
Vr € (0,1) Ve >0 3z’ (Jz —a'| <eA f(z') #0).

If also f(0)f(1) < 1, then there exists € € (0,1) such that f(€) = 0.

The proofs of these theorems use an approximate interval-halving argument, which
T illustrate by proving Theorem 17. Setting a; = 0 and b; = 1, and assuming without
loss of generality that f(0) < 0 and f(1) > 0, we choose @' € (,3) such that
') # 0. If f(2') <0, we put az = @' and by = 1; if f(a') > 0, we put az = a; and
by Carrying on in this way, we construct a sequence ([an,ba])ne; of compact
subintervals of [0, 1] such that

. [fln-uybrwl] C [ambn],
o bugt = onpr < Y(ba Zan),
® f(an) <0 and f(bs) > 0.

Then (a,) is a Cauchy sequence, whose limit ¢ exists by Theorem 15. It is easy to
show that f(€) = 0. [ ]

The intermediate value theorem illustrates a common phenomenon in constructive
mathematics, in which one classical theorem may split into several constructive ones,
each of which is classically equivalent to the original.

Another application of the completeness of R is rather more amusing, and demon-
strates that a classically trivial result may require some ingenuity to establish within
BISH. Consider, for any real number a, the linear subset

Ra = {az : x € R}

of R. If a = 0, then Ra = {0}; whereas if a # 0, then Ra = R. In either case, Ra is
both finite-dimensional and closed in R. What happens if we do not know whether
a=0ora#0?

Proposition 18 The following are equival tat ts.

o Ra is finite-dimensional.
ea=0o0ra#0.

o Ra is closed in R.

Ve i
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Proof. We have already observed that the second statement implies both the first
and the third. If Ra is finite-dimensional, then either its dimension is 0, in which case
a = 0, or else its dimension is 1; in the latter case there exists £ such that a€ = 1, and
therefore @ # 0. Hence the first statement implies the second. It remains to prove
that the third implies the second. To this end, assume that Ra is closed in R, and,
using dependent choice, construct a decreasing binary sequence (A,)sZ, such that

At == | Rl s

A=0 = |a|>1/(n+1)>2

This construction is possible since either 1/n* > [a] or |a| > 1/(n + 1)*. The com-
pleteness of R ensures that the series E:’;l Ana converges by comparison with the
known convergent series Y oo | 1/n?. Since Ra is a closed subset of R, the sum of the
series Y | A,a has the form €a for some £ € R. Choose N > €], and consider Ay.
If Ay = 0, then a # 0 and we are finished; so we may assume that Ay = 1. Suppose
there exists m > N such that Apy1 = 1= A,,. Then Ay = XAy = -+ = A, = 1, and
Ax =0 for all k > m; so

oo m
fa= Z/\,ﬂl: Zz\,ﬁ:mn
n=1 n=1

and therefore £ = m. (Note that as Am+1 = 0, |a| > 1/(m + 2)* and we can divide by
a.) This is absurd, asm > N > |€|. We conclude that if Ay = 1 for our special choice
of N, then A, = 1 for all m > N and hence for all m; it follows that [a| < 1/m? for
all m, and therefore that a = 0. Thus, by the careful construction of a series whose
convergence depends on the completeness of R, and an equally careful estimation
using its sum, we have been able to show that if Ra is closed, then either a = 0 or

a#0. "

Since spaces of the type Ra do not occur very often in advanced analysis, Propo-
sition 18 may seem rather insignificant. But our result about Ra suggested, and is a
special case of, the more general theorem,

A Banach space with a pact generating set is finite-di ional,

whose original constructive proof required several applications of completeness similar
to, and in one case generalising, the one we have just used (see [58], or pages 41-44 of
[19]; for a newer, alternative proof see [22]). In turn, this theorem enables us to prove
that if the range of a compact linear mapping between normed spaces is complete,
then that range is finite-dimensional, a result whose standard classical proof depends
on a nonconstructive version of the Open Mapping Theorem from functional analysis
(see Theorem 4.18 of [60], and Chapter 2 of [19]).

There are many situations where an application of completeness, and the con-
struction of some auxiliary binary sequence (A, ), similar to the one used in the proof
of Proposition 18 has enabled the constructive mathematician to circumvent omni-
The completeness usually has to be added to the hypotheses of

(TR

science principles.
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what would otherwise be a trivial classical theorem. In our discussion of Ra, although
the completeness of R is used to establish the convergence of the series Z:‘;, Ana, we
really need Ra to be complete in order to ensure that the series converges to a sum
that belongs to Ra; the required completeness is implicitly contained in the hypothesis
that Ra is a closed subset of R.

Among the interesting constructive theorems whose proofs use such applications
of completeness are the following:

o If fisa tive Lebesgue integrable fi that is positive throughout a
set of positive measure, then [ f >0 ( (8] Chapter 6, (4.13); see also Section 10
below).

A linear mapping T of a normed space X onto a Banach space is well-behaved,
in the sense that if © € X and x # y for each element of the kernel of T, then
T # 0 [18].

Let F be a finite-dimensional subspace of a real normed space X, and let a € X
have at most one best approximation in F, in the following sense: if @,
are distinct elements of F, then

max {[la =, lla = a/|l} > p(a, F) = inf {lla = yl| : y € F}.
Then there erists a unique element b € F such that |la - bl| = p(a, F) [11].

As a footnote to Proposition 18, let me add Fred Richman’s alternative, choice—free
proof of the final implication. Assume that Ra is closed in R. For each € > 0 we have
cither \/[a| < € or else |a| > 0; in the latter case,

Vla| = +— ¢ Ra.
Vlal
Since € > 0 is arbitrary, we now see that /Ja| € Ra = Ra and hence that there exists

» such that \/|a| = ra. Choosing a positive integer N > r, we have either |a| > 0 or
|a| < 1/N?. In the latter case, if a # 0, then

rel = /Bl = 2 > Nl

Il lal
50 |r| > N, a contradiction; whence a = 0.

9 Specker’s Theorem

In this part of the lectures I shall present Richman’s proof of Specker’s theorem (page
218). This requires some definitions and a very useful lemma, whose proof, originating
with Bishop ([4]. page 177, Lemma 7), seems to be the first instance of the use of an
auxiliary binary sequence () such as that in the proof of Proposition 18 above.

Ve o\
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A set S is called finitely enumerable if there exist n € N and a mapping f of
{1,2,...,n} onto S; if the mapping f is one-one, then S is said to be finite. The
empty set is finite, since it corresponds to the case n = 0 of the definition. If every
finitely enumerable set is finite, then LPO holds.

Now let (X, p) be a metric space, and S a subset of X. We say that S is

e located (in X) if the distance
p(z,S) = inf {p(z,s) : s € S}
exists for each z € X;

o totally bounded if for each € > 0 there exists a finite subset F of S, called a
finitely able e—approxi ion to S, such that

Vse€S dx € F (p(s,z) <€);

» compact if it is both totally bounded and complete.
The statement
Every nonempty (inhabited) subset of R is located

entails LPO. For if a € R and Ra is located, then either p(1, Ra) > 0 or else p(1, Ra) <
1. In the first case we have - (a # 0) and so a = 0; in the second, choosing £ such
that |1 — a€| < 1, we see that af # 0 and hence that a # 0.

We have already observed that not every nonempty bounded subset of R has a
supremum. However, things improve dramatically if we replace ‘bounded’ by ‘totally
bounded’.

Proposition 19 Every nonempty totally bounded subset of R has a supremum and
an infimum.

Proof. Let S be a nonempty totally bounded subset of R. We first consider the case
where S = {z;,...,2,} is finitely enumerable. Given real numbers a, 8 with a < §,
we apply Proposition 8 n times to prove that either z; < 8 for each k or else there
exists j such that z; > a. It follows from Theorem 11 that sup S exists.

Now consider the general case. Again let a, be real numbers with a < f, but
this time write € = %(ﬂ —a) and construct a finitely enumerable e-approximation
{z,....7a) to S. By the first part of the proof

"= BUDH{T1h s o0 THE

exists. By Proposition 8, either 0 > a or ¢ < a+¢. In the first case there exists j such
that z; > a. In the second, consider any z € S. Choosing j such that |z —z;| <€,
we have

2t +|z-zj|<o+e<a+2=48.

S 3N
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So in this'case, B is an upper bound for S. It follows from Theorem 11 that sup.S
exists. Similar arguments show that inf S exists. ]

It is relatively straightforward to prove that a uniformly continuous function be-
tween metric space maps totally bounded sets onto totally bounded sets. Thus if
f ¢ X = IR is uniformly continuous and X is totally bounded, then, by Proposition
19,

i = e
infifi = inf (=)

and
sup f = sup f()
z€X

both exist.
Proposition 20 A totally bounded subset of a metric space is located.

Proof. Let S be a totally bounded subset of a metric space X, and let a € X. Then
the mapping @ ~ p(a, z) is uniformly continuous on S, so, by Proposition 19, p (a, S)
exists. [ ]

Why do we define compactness as we do, rather than in the traditional classical
ways? It is easy to see that the sequential compactness of the closed interval [0, 1]
implies LPO. On the other hand, whereas the Heine-Borel-Lebesgue theorem holds
in INT ([67], page 305, 3.5), it is false in RUSS ([19], page 60), so it cannot be proved
in BISH.

We are now able to deal with Bishop’s lemma, referred to above.

Lemma 21 Let S be a nonempty complete located subset of a metric space X. For
cach a € X there ezists b € S such that if p(a,b) > 0, then p(a,S) > 0.

Proof. Construct an increasing binary sequence (An)%, such that

An =100 = pla,S)< 1/,
Ap=10 =p(@,9)1> LA 1)

If Ay = 1, choose s € S and set s, = s for all n. If A, = 0, choose s, € S such that
pla,sn) < 1/n I Ay = 1= An—y, put 8g = s,y for all k > n. Then (s,) is a Cauchy
sequence in S; in fact,

p(smysn) S & (m2n).
Since S is complete, (s,) converges to a limit b in S; letting m — oo in the last
display, we see that

plbisn) <% (>1).

Now suppose that p(a,b) > 0, and choose a positive integer N such that p(a,b) > 3/N.
If Ay = 0, then p(a,sy) < 1/N and so

pla,b) < pla,sn) + p(sn,b) < § + & = ¥,
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a contradiction. Hence Ay = 1 and therefore p(a, S) > 0. [

Note that this lemma is a classical triviality: for, classically, we may take b = a if

a € S, and b as any element of S if a ¢ S.
Before proving Specker’s Theorem, let us remind ourselves of some basic facts

about the Cantor set

= {icm’}_" :Vn (e, € (0.2))}»
n=1

Lemma 22 If a and b are two numbers in C' that differ in their mth ternary digits,
then la —b| > 3°™.

Proof. Write

oo o
= D¥lan/5%, BI=Sb/eE

n=1 n=1
where a,, b, € {0,2} for each n, and a,; # bm. Let k be the smallest value of j such
that a; # b;; then k <m, a; =b; (1 <j < k—1), and |ax — bi| = 2. Hence

o
la=b = [(ak=b:)37*+ 3 (an—bn)3"
n=k+1
®
> ok =bu37% = 37 lan— 84377
n=k+1
Sl z o
n=k+1
o
= 2.3-*‘-2.3-‘“123-"
= ggTklgigEhe ’11 iy e S g~Re grksis Rt S
_3

Using this lemma, we can easily show that C'is closed in R and therefore complete.
On the other hand, for each positive integer N the set

N
{Z,-,.r" ten €{0,2) for 1< n g 1\'}

n=1

is a finite 3~ Y-approximation to C; so C is totally bounded and hence compact.

We now give the
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Proof of Specker’s Theorem. Assuming CPF, and using the notation of Section
4, define rational numbers ry, € (0, 1) as follows:

n
Tn = 6i(m)aT™,
i=1

where
2 if m € Dpu(n) and pm(m) =0

sn(m) =
0 otherwise.

First consider any real number z in the Cantor set. There exists m such that ¢n, is
a total partial mapping of N into {0,2} and

= Zgam(n)S'".
n=1

Since @, (m) is defined, there exists N > m such that if m € D,,(N), then
Pm(m) =2 - sa(m) (n > N).

Thus, for all n > N, the elements & and 7, of C differ in the mth ternary place. It
follows from Lemma 22 that

[e—ral 28 (n3>N).

Now consider any real number z. By Bishop’s lemma, there exists b € C such that
if @ # b, then p(z,C) > 0. By the first part of this proof, there exist ' > 0 and N
such that

[o=ra| 28" (n>N).
Either |z — b < 6'/2 or z # b. In the first case, for all n > N we have
o=l > |b=ral = o= 5] > §.
In the second case,
o = ral > p(2,€) > 0
for all n. So in either case, the sequence (ry) is eventually bounded away fromz.
It is a simple matter to extend Specker’s Theorem to make (r,) a strictly increasing
sequence of rational numbers in (0, 1). With such a sequence we can produce recursive
counterezamples to certain classical propositions. Here are some.
For each positive integer n, let I,, be a closed subinterval of (0,1) centred at 7,

such that |I,| < 1/n, and such that I, and I, are disjoint when m # n. Define a
continuous function £, : [0,1] = R%* such that f,(z) = 0 for z outside I, fu(rn) = 1,
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and f,, is linear on each half of I,. Then f = °°7 | f, is a continuous mapping on
[0, 1] that is not uniformly continuous.

For a second example, define a continuous function g, : [0,1] = R such that
gnlz) = 1if z is outside I, gn(rn) = 1 —n~!, and g, is linear on each half of I,.
Then g = Y72, gn is a continuous, posmve—valued function on [0, 1] whose infimum
is 0. (As we noted in Section 4, under CPF there exists a uniformly continuous,
positive-valued mapping whose infimum on [0, 1] is 0.)

10 Some recent developments

I would now like to sketch for you some aspects of constructive mathematics that
have been developed since the publication of Bishop’s book [4].

10.0.1 Ring theory

It is high time that I addressed constructive problems in algebra. Whereas, in classical
algebra, the splitting field associated with a given polynomial is unique up to isomor-
phism, in the constructive approach the uniqueness of splitting fields for polynomials
over countable discrete fields is equivalent to LLPO. Nevertheless, such a splitting
field does exist ([48], page 152).

Classically, a ring is (left) Noetherian if each of its left ideals is finitely gener-
ated; constructively, even the field Z, fails to satisfy this definition! Indeed, given a
syntactically correct statement P, consider the ideal I of Z, generated by the set

{n:n=0vV(n=1AP)}.

Note that for this set to be constructively finite we must be able to tell how many
distinct elements it has. Suppose I is generated by a finite set F. If F' has a single
element, then I = (0) and —~P; whereas if F' contains two elements, then 1 € F' and
12

It might be suspected that, since we cannot prove constructively that Z, is Noethe-
rian in the usual sense, there will be no constructive version of the Hilbert Basis The-
orem. This suspicion is doubtless reinforced by recollection of the furore that arose
after Hilbert's original, highly nonconstructive proof of that theorem, about which
the invariant-theorist Gordan commented,

Das ist nicht Mathematik; das ist Theologie.

But the real constructive problem lies with the definition of Noetherian. Mines et al.

[48] define a ring R to be Noetherian if for each ascending chain

J1CJH EJ3E -

of finitely generated left ideals in R there exists n such that J;, = Jn+1. This definition
of Noetherian is classically equivalent to the standard classical one, is satisfied by
the ring Z,, and leads to the following constructive version of the Hilbert Basis
Theorem:

; ‘& — =
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If R is a coherent Noetherian ring, then so is R[z] ([19], pages 91-97),

where, as usual, R[z] is the ring of polynomials over R. (Regarding coherence, suffice
it to say that it is a property that holds automatically for a Noetherian ring in classical
mathema i

The Hilbert Basis Theorem illustrates the point that many—if not most—classical
resul an be re-cast, sometimes with additional hypothesis that are trivially satisfied
in ¢ sal mathematics, into forms that are constructively provable; moreover, those
forms are often, and ideally, equivalent to the original classical theorem with classical
logic.

For additional results on ring theory, see [15, 48].

10.0.2 The existence of adjoints

In constructive mathematics, as the following Brouwerian example shows, we have
no guarantee that a (bounded linear) operator on a Hilbert space H will have an
adjoint. Let (en)52, be the standard orthonormal basis of the separable complex
Hilbert space (*. Given a binary sequence (a,)5%; with at most one term equal to 1,
define a mapping A : I* = [? by setting

Az = (i s (:v,e,.)) er. (5)
n=1

To sce that this is a good definition, let &€ > 0 and choose N such that |(z,e,)| < €
for all n > N; then, since a, = 1 for at most one n, we have

M
Y lan(oen)l<e (M>N).
n=N+1

Hence the partial sums of the series 302, |a, (z, en)| form a Cauchy sequence in R,
80 the series Zf:l ay, (z,e,) converges absolutely in C, and A is well defined. It is
casy to show that A is a bounded linear mapping of I* into itself. Suppose that its
adjoint A* exists. Either |[A*e;|| > 0 or else ||A*e;|| < 1. In the first case, choosing
N such that (e;, Aex) = (4%ey,en) # 0, we have ay = 1; in the second case we have
a, = 0 for all n. Thus if every operator on * has an adjoint, then LPO holds.

At this point you are probably asking, “What is the problem, constructively, with
the classical method of obtaining A*y for any A € B(H) and y € H: namely, apply the
Riesz Representation Theorem to the bounded linear functional z ~ (Az,y) 7. In
order to apply the Riesz Representation Theorem constructively to a linear functional
[ on H, we need to know that f is not just bounded but has a norm, in the sense
that

sup {|/(2)] : @ € H, ||zl < 1}

exists ((8], page 419, (2.3)); since the classical least upper bound principle does not
hold constructively, we may not be able to find the supremum in question. However,

1€
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the classical proof of the existence of Ay will work for us if we know that
sup {|(Az,y)| sy € H, [lyll < 1}
exists for each y € H. This observation leads to the following result.

Proposition 23 A bounded linear operator A on a Hilbert space has an adjoint if
and only if PA has an adjoint for each 1-dimensional projection P on H.

Proof. Since ‘only if” is trivial, we consider only ‘if’. Suppose that PA has an adjoint
for each 1-dimensional projection P. Let ¢ > 0 be a bound for A, let y be any element
of H, and let a, b be real numbers with 0 < a < b. Either ||y|| < b/c, in which case we

have

[(Az, )] < [l4z]| [ly]l < &
whenever ||z|| < 1, or else y # 0. In the latter case, with P the projection of H on
the 1-dimensional subspace Cy, we see that

sup |(Az,y)| = sup [(z,(PA)"y)| = [|(PA)"y]|
=<1 Jlzll <t

. It follows from the constructive least-upper-bound principle that sup,.<; |(4z,y)/
exists, and therefore that the linear functional z ~ (Az,y) has a norm, for all y € H.
Thus the Riesz Representation Theorem can be used to produce A"y as in the stan-

dard classical proof. ]

There are more interesting conditions that ensure the existence of A*. We state
two of them without proof.

Proposition 24 A bounded operator A on a Hilbert space H has an adjoint if and
only if the image, under A, of the unit ball in H is located [57).

In order to state the second, we introduce the weak—operator topology on
the set B(H) of bounded linear operators on the Hilbert space H : namely, the
weakest topology with respect to which the mappings T' ~ (Tz,y) are continuous
at 0 for all z,y € H. Classically, the unit ball By (H), consisting of those elements of
B(H) that have bound 1, is weak-operator compact ([43], page 306); moreover, for
each A € B(H) the mapping T ~ AT of (B(H),7w) to (B(H),7w) is weak-operator
continuous, and therefore weak-operator uniformly continuous'” on By (H) (to prove
the weak-operator continuity of this mapping, simply use the identity

(ATz,y) = (Tz, A"y)

whose validity depends on the existence of A®). Constructively, B, (H) is totally
bounded [16], but may not be complete [10]. Also—this is left as an exercise—defining
A as at (5), we can show that the 7,,~continuity of the mapping T ~ AT at 0 implies
LPO. In view of all this, the following criterion, established in [17], for the existence
of an adjoint should produce little surprise.

' The weak-operator topology, being locally convex, has a natural associated uniform structure.

m—
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Proposition 25 Let H be a Hilbert space, let A € B(H), and let f4 be the linear
mapping T ~ AT of (By(H), ) into (B(H), ). Then the following are equivalent
conditions.

® fa is continuous at 0.
® f4 is uniformly continuous on (By(H), Tw) -

e fa maps totally bounded subsets of (Bi(H),7w) to totally bounded subsets of
(B(H),7w) -

e A has an adjoint.

10.0.3 Integration theory

The original development of constructive integration theory in [4] was somewhat
clumsy, and was superseded by a very elegant one, due to Bishop and his student
Henry Cheng, published in [7] and, in a more refined form, in Chapter 6 of [8]. I
would like to sketch the final form of that theory here, referring you to [8] for the
justification of results stated here without proof.

We begin with a nonempty set X carrying an inequality relation # that satisfies
two extra properties:

> cotransitivity: z#y=>Vz€ X (z#2Vz#y);
o tightness: ~(z#y)=>z=y.
We also require
e aset L of strongly extensional functions—the integrable functions—from X
into R that contains the mappmg 2 ~ 1 (identified with the constant 1) and is

closed under the poi P of addition and multiplication-by-scalars
(so L is a vector space under these operations);

e alinear mapping I : L — R, called the integral, satisfying the following axioms.

11 If (fa)32 is a sequence of nonnegative elements of L such that Y o> | I(fa)
converges to a sum less than I(fo), then there exists z € X such that
oot fu(z) converges and is less than fo(z).

12 There exists ¢ € L such that I(yp) = 1.
I8 I (min {f,n}) = I(f) and I (min {|f|,n"'}) = 0 as n = co.
The triple (X, L, I) —or, loosely, X itself—is then called an integration space.

The most important example of an integration space occurs when X is a locally
compact metric space (that is, one in which every bounded set is contained in a
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compact set);'® L is the set C(X) of all uniformly continuous mappings of X into R
that vanish on the metric complement

—K ={z € X : p(z,K) >0}

of some compact set K; and I is a positive measure on X—that is, a mapping of
X into R such that if f € C(X) and f > 0, then I(f) > 0. The proof that these data
do define an integration space is not an easy one (see [8], pages 220-221).

The first problem of integration theory is to extend the integral to the largest
possible class of functions on X. To this end, we say that a partial function f: X & R

is integrable if there exists a sequence (fn)52, in L, called a representation of f,
such that

o 307 I(|fal) converges in R, and
o f(z) = Yoo, fn(z) whenever Y300 | | fu(z)| converges.

It can then be shown that the integral of f, defined by

1(f) = Y I(fw),
n=1

. 1

is indep of the repr ion (fn) of f in L; and that, denoting the set of all
integrable functions on X by L;(X) or simply L;, we obtain an integration space
(X, Ly, I). This process of extending the integral cannot be continued to enlarge the
class Ly : if (f2)32, is a sequence in Ly such that Yoo, I(|fa]) converges, then
Yoey fais alsoin L;.

By a full set we mean a subset of X that contains the domain of some function
in L;. It turns out that a subset F' is full if and only if it contains the intersection
of the domains of countably many integrable functions, and that the intersection of
a sequence of full sets is therefore full.

The equality relation on L, is defined by setting f = g if and only if I'(|f — g[) = 0.
It then turns out that f = g in L, if and only if f(z) = g(z) on a full set.

The Lebesgue integral occurs as the special case where X = R and the original
integral, from which the extended one is constructed, is the Riemann integral on
C(R).

Classically, the important sets in integration theory are the complements of sets of
measure 0. To accommodate successfully the rather negative notion of complement,
Bishop introduced the idea of a complemented set, which is a pair A = (4!, A%)
of subsets of X such that z # y for all z € A' and y € A°. The characteristic

function of this (compl 1) set is the ing xA : A' U A° - R defined by
1 ifzedr
XA(z) =
0 ifze A

'S Note that this definition of locally compact is more restrictive than the classical one.

Ve
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Operations on complemented sets are defined using the corresponding operations on
the characteristic functions:

xave = max{xa,xs},
XAaB = min{xa,xs},
xa-B = Xa(l-xs),

with corresponding definitions for \/;o) A, and Ao”, A, when (A,) is a sequence
of ¢ | i sets. A 1 d set A is said to be integrable if xa is an
integrable function; in which case A' U 4° is a full set, and the measure of A is
defined to be

A(A) =1I(xa).
Among the useful properties of integrable sets are the following.

Proposition 26 Let A be an integrable set. If p(A) > 0, then A' is nonempty. If
1 (A) =0, then A® is a full set.

Proof. Suppose first that p(A) > 0. Using axiom 12, choose ¢ such that I(p) = 1,
and for each positive integer n let f, = Op. Then

Do I(fa) = - 00(p) = 0 < I(xa)-
n=1 n=1

By axiom I1, there exists z such that xa(z) > 0. Then xa(z) =1 and z € A'.
Now suppose that  (A) = 0. Then

S I(nxa)= ) nu(A)=0,
n=1 n=1

50 .0 nxA is in Ly. The domain D of this function is therefore a full subset of
A'U A°. But D cannot contain any point of A, since the series 372 n diverges;

hence D ¢ A° and therefore A° is a full set. [ ]
Proposition 27 Let (A,);., be a sequence of integrable sets such that A} C A} C
A} C o, where A, = (A}, A%). Then \/po\ A, is integrable if and only if | =
limy-yoo 1t (An) exists, in which case pu (e, An) = ([8], page 234, (3.9)).

The construction of a rich supply of integrable functions is a very difficult one and
is solved by a special theory of profiles, introduced in [7]; the technical details of this
construction are found in [8) (Chapter 6, Section 4). The main result is the following
fundamental theorem.

Theorem 28 Let (X,L;,I) be an integration space, and f an integrable function.
Then for all but countably many r > 0, the complemented sets

If>rl=a: f(z) >r},{z: f(z) <})

Ve



g‘

[/ 2r]={o: fl) 27} {z: flz) <r})
are integrable and have the same measure. Call such values of r admissible. Then
for each admissible r and each € > 0, there exists § > 0 such that |

lw(lf > ) —u(lf > r'Di<e |
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and

whenever r' > 0 is admissible and |[r — 1’| < 4.

As a final illustration of the completeness technique that we used in earlier sections,
let me now prove the following result.

Proposition 29 If f is a nonnegative integrable function on X that is positive through-
out an integrable set of positive measure, then I(f) > 0.

Proof. Let A be an integrable set of positive measure on which f is everywhere
positive. Replacing f by fxa, we may assume that A = {z € R: f(z) > 0}. Using
Theorem 28, choose a sequence (r,)3, of admissible values for f that decreases
strictly to 0, and for each n set

An=[f > 1]

Since I(f) > ropu(A,), it will suffice to find n such that u(A,) > 0. To this end,
construct an increasing binary sequence (\,) such that

An=0 = u(An)<nt,
=1 = p(A)> @+

We may assume that A, = 0. If A,, = 0, set B, = Ay; if An = 1—Anoy, set By = Apoy
for all k > n. Then
BleBicBic:- (6)
and
0<p(By) = p(Bn) <3 (m>n).
S0 (1(B,))=, is a Cauchy, and therefore convergent, sequence of real numbers. It
follows from (6) and Proposition 27 that

s anintegrable set with measure equal to limy, -, £ (By) . Either p(B) > Oor u(B) <
#(A) . In the first case we can find n > 1 such that u(By) > n=. If Ay = 0, then
#(By) = u(A,) < n~!, a contradiction; so A, = 1. In the case u(B) < p(A) we
have i (A - B) > 0, so there exists a point € € (A — B)' ; then f(£) > 0.and £ € B”.
Choose a positive integer N such that f(€) > 1/N; then € € AL. If Ay = 0, then
Ay =B\ C B! so £ € B', a contradiction; it follows that Ay = 1.
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Note that the last proposition is a trivial consequence of Markov's Principle. For
if I(f) = 0, then, since f > 0, we have f(z) = 0 on a full set, which contradicts the
hypotheses of Proposition 29; hence = (I(f) = 0) and therefore, by Markov’s Principle,
I(f) > 0.

I think we have seen enough of integration theory to give a taste of its constructive
development. Suffice it, then, to say that there are constructive analogues of standard
theorems of classical integration theory, such as the dominated convergence theorem,
Egorov's theorem, and Fubini’s theorem. The full development is found in Chapter
6 of [8]; the Radon-Nikodym theorem and the theory of the L, spaces is found in
Chapter 8 of that book.

10.0.4 The Riemann mapping theorem

My next example of constructive analysis is the improved, definitive version of the
Riemann mapping theorem due to Bishop and Cheng.'?
Recall the classical Riemann mapping theorem:

If U is a proper, open, and simply connected subset of the complex plane
©C, then there exists an analytic equivalence of U with the open unit disc
D:that is, a one-one analytic mapping f of D onto U with analytic in-
verse ([59], Theorem 14.8).

In order to provide motivation for the hypotheses of the constructive Riemann
mapping theorem, I shall give the details of a Brouwerian counterexample to the
classical theorem. Given a binary sequence (ay), define U = [J;Z, S, where

® Sy =Difa, =0, and
® S, is the open disc with centre 0 and radius 2 if a, = 1.

Then U is open and simply connected, and is clearly a proper subset of C. Suppose
that f is an analytic equivalence of U with D; we may assume that f(0) = 0. Either
[£'(0)] > L or |£(0)] < 2. In the first case, choosing r € (0,1) such that 1/r < |f'(0)|
and then using standard estimates, we obtain

sup{|f(2)] : |z =} > L.

Hence there exists = such that |z| = r and |f(z)| > 1. In turn, there exists n such
that f(z) € Sn, s0 a, = 1.

In the case |f'(0)| < 2, consider any positive integer k. If ax = 1, then U is the
open dise with centre 0 and radius 2. It then follows from the maximal derivative
property of the Riemann mapping ([59], pages 273-275)—which holds constructively
provided that the mapping f exists—that |f'(0)| = 2. This contradiction implies that
a, = 0. Hence, in this case, a, = 0 for all n.

'"The paper [30] in which this work on the Riemann mapping theorem first appeared contains
many errors; a corrected treatment of the theorem is found in the final section of Chapter 5 of (8].

e o\
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Thus the classical form of the Riemann mapping theorem entails LPO. How, if at
all, can we recover from this situation?
To answer this, consider the following pathological features of our Brouwerian
counterexample:
o We cannot pin down the boundary of the domain U.
o For each point z € U we cannot tell the minimum distance we need to travel
from z in order to reach the outside of U; equivalently, we cannot compute the
radius of the largest ball centred on z and lying inside U.

Perhaps if we were to add hypotheses that ensure that neither of these pathologies
can occur, we would be able to recover a constructively valid form of the Riemann
mapping theorem. To this end, Bishop and Cheng introduced the following notion of

approximate border for a proper bounded*® open subset U of C.
Let z be any point—which we refer to as a distinguished point—of U, and let
£ > 0. An e-border of U relative to z; is a finitely enumerable subset B of the

complement of U,
~U={ze€C:YueU(z#u)},

such that if v is a path in C with left endpoint z, and 7 keeps at least £ away from
B, then 7 lies in U. For example, if the positive integer N is sufficiently large, then

s (1 * %) exp (%) (k=1,2,...,2N)

form an e-border of the disc D relative to 0, since the union of the open discs with
centres 73 and radius € contains the annulus {z:1- £ < [z| <1}.
We say that U is mappable if

the points

© it is simply connected and
© there exists zo € U such that for each € > 0 there is an -border of U relative
to zo.
(It can be shown that any point of U will then serve as the distinguished point.) Thus
a mappable set is one whose border is approximated arbitrarily closely by finitely

enumerable subsets of the complement.
Turning to the second pathological feature of our Brouwerian counterexample, we

say that [7 has the maximal extent property if there is a function p from U into
the positive real line such that for each z € U,

» the disc with centre z and radius p(z) lies in U and
» any disc with centre z and radius greater than p(z) intersects ~U.

We are now able to state the constructive Riemann mapping theorem.

¥ The general case, in which U may or may not be bounded, is handled in Chapter 5 of [8].

(i
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Theorem 30 The following are equival ditions on a proper, open, and simply
connected subset U of C:

o U is mappable.
o U has the mazimal eztent property.
e U/ is analytically equivalent to D.

For the long, difficult proof and other material on complex analysis I refer you
to Chapter 5 of [8]. Note also the fascinating elementary constructive proof of the
Jordan curve theorem in [3].

10.0.5 Apartness spaces

Let me give, as a final example of modern constructive mathematics, an introduction
to a very recent development: the theory of apartness spaces.
At the start of Chapter 3 of [4], Errett Bishop stated that

Very little is left of general topology after that vehicle of classical mathematics
has been taken apart and reassembled constructively. With some regret, plus
a large measure of relief, we see this flamboyant engine collapse to constructive
size.

To be fair, I should point out that Bishop later amended his views on constructive
general topology: in a letter to me (dated 14 April 1975) he wrote

The problem of finding a suitable constructive framework for general
topology is important and elusive.

He even produced an unpublished ipt ining an unusual, but ultimately
not satisfactory, development of topology based on a hierarchy of increasingly com-
plicated types of space [6] (see also (5], pages 28-29). However, it is reasonable to
suggest that his original views on topology led people to believe that constructive
topology, other than intuitionistic topology (66, 70}, was a non-starter.

At the beginning of 2000, my then doctoral student, Luminita Vit4, and I resur-
rected an idea that I had first explored, unsuccessfully, some twenty-five years earlier:
an axiomatic treatment of spaces with a relation of apartness between subsets, which
correspond, under classical logic, to the proximity spaces discussed in [29, 51]. This
time, two heads definitely proved better than one, for we managed to find a set of
axioms from which the theory flowed very naturally. For simplicity of exposition, I
shall describe a restricted version of the theory, dealing with apartness between points
and subsets of a space.

Let X be a set with a binary relation # of inequality that is nontrivial in the sense
that there exist z,y in X with z # y. A subset S of X has two natural complementary
subsets:

1. i
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o the logical complement
~S={zeX:VyeS ~(z=p)};

© the complement

~S={zeX:VyeS (z#y)}.

We are interested in a set X that carries a nontrivial inequality # and a relation
apart(z, S) between points z and subsets S of X. If apart(z,S), then we say that
the point r is apart from the set S. For convenience we introduce the apartness
complement

-8 = {z € X : apart(z,S)}
of S; and, when A is also a subset of X, we write
A-S=An-S.
We assume that the following axioms are satisfied.

Al z #y = apart(z, {y})

A2 apart(z,4) =z ¢ A

A3 apart (z, AU B) & apart(z, A) A apart(z, B)
A4 r € -AC ~B = apart(z,B)

A5 apart (7, 4) = Vy € X (z # y V apart(y, A))

We then call X an apartness space, and the data defining the relations # and
apart the apartness structure on X. It readily follows from the axioms that for
each A C X,
~Ac~AC-A. @)
We say that the point # € X is near the set A C X, and we write near(z, A), if
VS (z€-S=>3yecA-S).

If X is an apartness space, and Y is a subset of X upon which the induced
inequality is nontrivial, then there is a natural apartness structure induced on Y by
that on X. Taken with that structure, Y is called an apartness subspace of X.

In the corresponding classical development [29], nearness is taken as the primitive
notion and apartness is defined as the negation of nearness. It is easy to see, using the
classical axioms for nearness, that our definition of nearness is classically equivalent
to the negation of apartness; but, as we prove in a moment, this equivalence does not
hold constructively.

Our canonical example of an apartness space is a metric space (X, p), in which
the inequality and apartness are defined by

z#y e plz,y) >0

e —
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and
apart(z, A) & 3r > 0Vy € A (p(z,y) > 7).
It is routine to verify axioms A1-Ab in this case. We call this apartness structure the

metric apartness structure corresponding to the metric p, and we refer to X as a
metric apartness space. The apartness complement

~S={z€X:3r>0Y€S (pz,y) >7)}

is then also called the metric complement of S in X,
Among the elementary deductions we can make from the axioms are the following.

= (near(z, A) A apart(z, A))

apart(z,0)

near(z,4) =3y € A

z € A = near(z, A)

-AC~A

(apart(x, A) A B C A) = apart(z, B)
(near(z, A) A A C B) = near(z, B)

(near(z, A) A apart(z, B)) = near(z, A - B).

Another example of an apartness structure occurs when (X, 7) is a 7} topological
space! If z € X and A C X, we define

apart(z,A) @ W eT (z €U C ~A)

and then introduce near (z, A) as above. The relation apart satisfies A1, since we
are assuming that X is a 7\ space, and it clearly satisfies axioms A2-A4; but to make
X into an apartness space we also need to postulate axiom A5. We then call this
apartness structure on X the topological apartness structure corresponding to 7.

A subset S of an apartness space X is said to be nearly open if there exists a
family (A;),., such that S = (J;c; —A:. The nearly open sets form a topology—the
apartness topology-on X for which the apartness complements form a basis. Ev-
ery nearly open set in a topological apartness space is open.

We say that a topological apartness space X is topologically consistent if ev-
ery open subset X is nearly open. An example communicated to us privately by
Jeremy Clark shows that we cannot prove that every topological apartness space is
topologically consistent. However, there is a natural condition, one that always holds

I'That is, for all 2,y € X' with z # y there exist U,V € rsuch that z € Uand y ¢ U, and y € V
and z ¢ V.
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classically, that ensures topological consistency: an apartness space X is said to be
locally decomposable if

VzEXVSCX (z€-S=1IT (ve -TAVyeX (ye-SvyeT)). (8

It is easy to show that metric spaces are locally d p and hence

consistent.
We say that a subset S of an apartness space X is nearly closed if

Vz € X (near(z,5)=>z € S).

Both X and @ are nearly closed. The intersection of any family of nearly closed sets
is nearly closed, but even in R we cannot expect a constructive proof that the union
of two nearly closed sets is nearly closed ([69], Section 6). If S is a nearly open subset
of an apartness space X, then its logical 1 equals its ¢ 1 and is

nearly closed.
There are at least three natural types of continuity for functions between apartness

spaces. We say that a mapping f : X — Y between apartness spaces is

» nearly continuous if

¥z € X VACX (near(s,A) = near(f(z), f(4)));

» (apartness) continuous if

Yz € X VAC X (apart(f(z), f(4)) = apart(z,4));

» topologically continuous if f~!(S) is nearly open in X for each nearly open
ScY.

The following conditions are equivalent on a mapping f : X — ¥ between apart-
ness spaces.

(i) f is nearly continuous.
(ii) For each nearly closed subset T' of Y, f~(T) is nearly closed.
(iii) For each subset S of X, f(S) C f(S), where the closures are relative to the
apartness topologies on X, Y respectively.

For mappings between metric spaces, apartness continuity is equivalent to the usual

notion of e-4 continuity.

Apartness continuity is a natural extension of the notion of strong extensionality.
In fact, strong extensionality holds even for nearly continuous functions. To see this,
let f: X — Y be nearly continuous and let z,y € X be such that f(z) # f(y). Define

A={zeX:z=aV(z=yAz#y)}
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Note that = € A. To show that near(y, A), consider any U C X such that y € —-U;
by axiom A5, either z # y and therefore (by the definition of A) y € A — U; or else
x € ~U and so z € A—U. Using the near continuity of f, we obtain near(f(y), f(4)).
Since f(z) # f(y) and therefore (by axiom A1) f(y) € — {f(z)}, it follows that there
exists z € A such that f(z) € — {f(z)}; whence f(z) # f(z), by (7). Then = (z = z),
50 we must have z = y and z # y, as required.

A topologically continuous mapping between apartness spaces is both continuous
and nearly continuous; so every topologically continuous mapping between apartness
spaces is strongly extensional. Every continuous mapping from an apartness space
into a locally decomposable apartness space is topologically continuous and hence
nearly continuous. However, nearness continuity, although classically equivalent to
apartness continuity, is a constructively weaker notion.

At this point I shall stop, leaving the interested reader to pursue the notion of
apartness, including the more interesting set-set version, through the succession of
papers (69, 62, 21, 20, 68].
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