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ABSTRACT
The aim of this paper is to provide a mathematical approach necessary for
understanding and thorough analysis of some precise prices equilibrium models
in economics

1 Introduction

It is now well-known that the theory of complementarity systems has wide-ranging
applications including problems of optimization and equilibrium for various economic
models.

One of the model that appears generally in the applications consists in finding

z € RY (1.1)
such that
Mz+q€ RY (1.2)
and
2T (Mz +q) =0, (1.3)
! Key words: C ity systems, variati i i cocoercive matrices, prices equi-
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where ¢ € RN (N € N) is a given vector and M € R*" denotes a real matrix of
order N.

It has been proved that Problem (1.1)-(1.3) constitutes a suitable setting in which
several standard economic models can be framed. For example, if M denotes an
excess supply matrix and & a vector price, then a solution to problem (1.1)-(1.3)
corresponds to a free-disposal competitive equilibrium and the relation (1.3) means
that the Walras law holds. Equilibrium problems in noncooperative N-persons games
and Lindahl equilibrium models, invariant capital stock models have also been studied
through the complementarity system (1.1)-(1.3) [4], [16]. These applications have
originated the studies of complementarity systems for various classes of matrices,
In particular, the problem consisting to find general conditions on the matrix M
ensuring the solvability for each ¢ € RN of the system (1.1)-(1.3) has seen a strong
development.

One says that M is a Q-matrix if problem (1.1)-(1.3) has at least one solution for
each g € R™. Note that it is easy to check that any Q-matrix satisfies the property

ker MT N RY = {0}. (14)

Indeed, let z € ker MT N Hif. If for each ¢ there exists u(g) satisfying (1.2) then we
may write

0< (Mu(q)+9)"=
since z > 0. On the other hand z € ker M7 and thus (Mu(g))"z = u(g)M"z = 0,
so that

0<q”z.

This last relation can be obtained for any g € R" and thus necessarily z = 0. Several
classes of matrices have been in this sense considered in the mathematical literature.
For example, it is well-known that strictly copositive matrices and P-matrices are Q
matrices. Most of the fundamental results known in the theory of finite-dimensional
linear complementarity problems are related to the theory of Q-matrices.

However, as we will see in this paper, the formulation of some concrete equilibrium
models in economics lead to the study of complementarity problems involving singular
matrices M that do not satisfy the property (1.4). On the other hand, the vector ¢
involved in the models considered satisfies some properties that should be exploited
together with those of the matrix M in order to obtain suitable results.

In this paper, we discuss such equilibrium models and we show that the panoply
of mathematical tools recently developed in [6] by Goeleven, Stavroulakis, Salmon
and Panagiotopoulos can be used in order to provide appropriate theoretical and
numerical results

The results in [6] have been developed so as to study a general class of inequal-
ity problems involving cocoercive matrices. A possibly singular matrix M is called
cocoercive provided that there exists ¢ > 0 such that

"Mz > oz" MTMz,Vzr € RY

Note that recent years have seen an arise of interest in cocoercive matrices [2], 3],
(6], [13), (15}
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In this expository paper, we will show that inequality problems involving cocoer-
cive matrices are of particular interest in economics. More precisely, our aim is to
provide a mathematical approach necessary for understanding and thorough analysis
of some precise prices equilibrium models. We shall concentrate our mathematical
discussion on the application so that variational inequalities theory can be seen as a
whole.

We note that we have restricted this paper on some aspects of Variational In-
equalities Theory. The theory has now been the subject of many works and can be
extensively applied in a variety of Ex ics, Mechanics and Engi: ing fields. Var-
ious aspects of Variational Inequalities, Theory and Applications are discussed in the
recent books (1], [5], (7] and [8].

2 Preliminaries

The complementarity model (1.1)-(1.3) is closely linked to some other formulations
that are usually used as suitable intermediate step for the mathematical treatment of
the former formulation.
In RY (N € IV\{0}), one denotes by "<” the ordering defined by the closed convex
cone IR, that is
T<YySy—-z€ Rf
or equivalently
gy <y,Vie{l,.., N}

The infinum vector A{z,y} and the supremum vector V{z, y} are defined through the
formulae

Aa,y}i = min{z;,u:} (i€ {1,...,N})
and

V{z,y} = max{zi, u:} (i€ {1,...N}).

Using these notations, the problem (1.1)-(1.3) is equivalent to the li

ANz, Mz +q} = 0. (2.1)
Indeed, letting z,y be two vectors in RY, it is easy to check that
AMz,y} =0 (2.2)

if and only if
z>0,y>0,z7y=0. (2.3)

If (2.2) is satisfied then
x> A{z,y} =0,

v 2 Maz,u} =0
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and moreover, if z; > 0 (resp. y; > 0) then necessarily y; = 0 (resp. z; = 0) since
Mz, y}: = min{z:,:} and @;,5; > 0. It results that 27y = 0. Reciprocally, (2.3)
yields the relations "

2, >0=y;=0 (i€ ({1,..,N}),

yi>0=>3,=0 (i€ {1,..,N}),
from which we deduce that

Ma,y} =0.

Another important equivalent formulation of Problem (1.1)-(1.3) consists in finding
x € RY such that

(Mg +q)"(v — ) > 0,Vv € RY. (2.4)

Indeed, let = be a solution of Problem (1.1)-(1.3). Then for v € Rg. (1.2) yields
(M= + ¢)Tv>0.
Using now (1.3) we see that
(Mz +q)"(v - 1z) > 0.

This together with (1.1) entails that x solves Problem (2.4). Reciprocally, let = be
a solution of Problem (2.4) and let h € lRf:‘ be given. Setting v = z + h in (2.4),
we obtain (Mz + q)Th > 0. This last relation holds for any h € RY. It results
that Mz + ¢ > 0 and (M + q)"2 > 0. Letting now v = 0 in (2.4), we see that
(Mz +¢)"z <0 and thus (Ma -+ q)"& = 0. Both conditions (1.1)-(1.3) hold ant the
conclusion follows.

Problem (2.4) is called a "variational inequality problem” and it defines by it
self a field of research in which various theoretical and numerical results have been
developed.

The following result is a particular case of a general theorem stated in [6]. It will
be the key of our further mathematical analysis.

Theorem 2.1. Let M be a nonzero cocoercive matrix with modulus ¢ > 0, i.e.

" Ma > ox” MTMz,¥x € RY. (2.5)

¢"w > 0,Yw € ker M N RY\{0}, (2.6)

then problem (2.4) has at least one solution. Moreover, if 0 < a < 2¢ then the
sequence {27} v defined by the algorithm

e RY,

! = v{0,z* — a(Mz* +q)}

converges to a solution of Problem (2.4).
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The inequality (2.5) can also be written as follows
z"Mz > 0 || Mz ||*,Vz € RY,
where || . || denotes the euclidean norm in RY. 1t results that the matrix M is positive
semidefinite and
ker M = {z € RV : 2" Mz = 0}).
The class of cocoercive matrices has been the subject of several recent works (3], (6).

For example, any nonzero symmetric and positive semidefinite matrix is cocoercive
with modulus o =|| M ||, where

I 1= VA,

max
Aesp(MT M)

with sp(M7 M) denoting the spectrum of the matrix M7 M.

If M and M? are nonzero positive semidefinite then M is cocoercive with modulus
a=14| M+ M" ||"'. General conditions ensuring that a normal positive semidefinite
matrix is cocoercive are also given in (2] and [6].

If the matrix M is symmetric then Problem (2.4) is also equivalent to the optimal
program

i L T
min -z’ Mz +q'z. (2.7)
celRY 2
Remark 2.1. 1) If Problem (2.4) has a solution then
q¢"w>0,Ywe ker MT N RY.
Indeed, there exists € IRY such that
(Mz+q)T(v-2)>0,Yve RY.

Let w € ker .\ITHR’: be fixed. Setting v = z+w, we get (Mz+¢)"w > 0. Moreover
(Mz)Tw = 2" MTw = 0 and thus ¢Tw > 0.

i) It results from remark i) that if M is a positive semidefinite matrix then for
Problem (2.4) to have a solution, it is necessary that

q"w > 0,Yw € ker M N Rf.

Indeed, if M is positive semidefinite then ker M = ker M7

3 A Mathematical Analysis of Prices Equilibrium
Problems in Economics: A Symmetric Case.

Equilibrium prices of an economic model involving a good X and two countries can
be described by the equilibrium relations

wn.s) =wnolm), (3.1)
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¥2,5(P2) = va,0(p2), (3.2)

where y; p,y: s and p; denote respectively the
and price of good X in country i (i = 1,2).
The following discussion could be straightforwardly generalized to an economic
model involving N countries (N € IN\{0}). Here we prefer to choose N = 2 in order
to avoid an overloading of notations.
We suppose that the relationships that describe the variables y; p and yis (i =

1,2) are linear. More precisely, we write

(3.3)
(3.4)
where
ai > iy bi > 0,d; > 05 i=1,2. (3.5)
The equilibrium prices can be here simply computed by the formulae
= a—c
=— 3.6
A= e @8
ga a; —c;
= 2 — C2
= 3.7
A= (&)

Note that in many circumstances, the behavior of nonlinear models can be approxi-
mated by the behavior of a linear model like the one given in (3.1) and (3.2). Taylor's
series are usually used to linearize economic models. We have indeed

vi,o(Pi) % yi,0(Bi) + i p(Pi)(Pi — Bi); 1= 1,2, (3.8)

and

vi,s(pi) = wi,s(Pi) + vi s(0i) (pi — Bi); 1= 1,2, (3.9)
provided that y; p and y; s are sufficiently smooth and the variables p, and p, are
close to p, and py respectively. However, the model in (3.1)-(3.2) cannot be used
to describe the equilibrium prices of an economy allowing import-export of good X
between the two mentioned countries. In this case, we write

n,s(m) +z21 = y1,p(p1) + 712 (3.10)

and

y2,5(p2) + 212 = 1a,0(P2) + 211 (3.11)
where z,; (i,7 = 1,2;i # j) denotes the quantity of good X conveyed from country
i to country j. Let us also denote by c;; (1,7 = 1,2;i # j) the cost of transporting
from country 1 to country j. We can now complete the model (3.10)-(3.11) by writing
some relationships between the import-export variables xy2, x5, , the prices p;, p; and
the costs ;2 > 0,05 > 0.
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The import-export variables are nonnegative and we may write
z12 20, (8.12)

zg1 2 0. (3.13)

We express that the price of good X in country j must be lesser or equal than its
price in country i majored by the cost of transporting from country i to country j,
that are

pLtcia2pr (3.14)

paten 2 pr. (3.15)

Let us now express that import in country j from country i does not exist as soon as
total expenses (price in country i - transport charges) exceed the home’s price (in
country j), that are

prtciz >py =212 =0, (3.16)

patcea >pL =z =0. (3.17)

Reciprocally, we express that the existence of import in country j from country i
balance the expenses in both countries in the sense that

@12 > 0= p1 +c12 = pa, (3.18)
Ta1 > 0= p2+ a1 = pr. (3.19)
From (3.10) and (3.11), we deduce that

01-51 Tia T
S T L TR e

i
=7+ m(:n —z21) (3.20)
and
Gn—Cz T _In
M= h  hth dGth
p’+d +b)(32|—zn)~ (3.21)
Thus
(p,+c.,-p, TR, 1 )(+1 -1)(;.,)
p2ton—p dy+b  dat+b’ \ -1 +1 Z2
+(ﬁ1+cn—fh)'
P2 +en =P
Let us set

1 1 +1 -1
M= s (5 5) L
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and
_ ([ PuFicia—P2
_q—(iz+cn—ﬁl)' Giz3)
Using the notations of Section 2, we may write the system (3.12)-(3.19) as
p1tci2 —p2 Ti2 2 4
A{(P2+021—}71 )'(221 ))_0' (Es)

This last model consists of a system of two nonlinear equations. Moreover the func-
tions defining the relationships between the import-export variables, the prices and
the costs are nonsmooth. It results that mathematical tools like Taylor’s series can-
not be used to linearize the model. The use of import-export variables introduce in
consequence a substantial nonlinearity in the model. This nonlinearity must now be
discussed by using appropriate mathematical tools.

Problem (3.24) consists to find € [R* such that

MMz +q,z} =0 (3.25)
with M and g as defined in (3.22) and (3.23) respectively. From Section 2, we know

that problem (3.25) consists to find an import-export vector = € IR satisfying the
conditions

>0, (3.26)
Mz +q>0, (3.27)
o7 (Ma + q) = 0. (3.28)

We know also that this last problem is equivalent to find z € R: such that
(Ma+q)"(v—12) >0,Yv € R2. (3.29)

Here the matrix M in (3.24) is symmetric and positive semidefinite. Thus M is
cocoercive with modulus o =|| M ||=!. We have also

kch:((Z);aElﬂ)

and thus
2 0
kerzunazf,\(( 4 )) - (( g );u>0).
Here
PRl o)
! = Ay S ds sy
and thus

i (dy + by)(da + b3)
T 2dy + by +dy + b))
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So, if w € ker M N IR \{0} then there exists a > 0 such that
£
w=
(¢3

q"w = (py — P2 + cr2)a + (2 — Pr +cm)a
= a(e1z +ca1) > 0.

and

The condition (2.6) in Theorem 2.1 is satisfied and the existence of at least one
solution of Problem (3.29) follows.

Let us now check the uniqueness of the solution of problem (3.29). If we suppose
by contradiction that there exists two distinct solutions zy and z, then

(Mo +q)" (v = 21) > 0,Yo € RS

and
(May +¢)"(v—z2) > 0,Yv € RL.

In particular, we have
(May + ) (21~ z2) <0,

(=May = q)" (21 — ) <0,

50 that
(M (a1 — 22))" (21 — 22) < 0.
It results that
(@1 — @2)"M(z1 — 22) =0
and thus

) — 2 € ker M.

Moreover, the symmetry of the matrix M entails that problem (3.29) is equivalent
to problem (2.7) with N = 2 and the data M and g as defined in (3.22) and (3.23)
respectively. Thus

-z,M=1+q ) < vTMu+q v,Yve RL

and

Ez,Mzz+q z;<—vTMu+q quGR’

It results that
—zl T Mz, +q o= E::, TMzy + q" za.

On the other hand i
3% TMz, = -(zl +w)"M(z, +w)

—
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for some w € ker M\{0}. It results that
il 1
3 EIZM::, = é-szz,

and thus
¢"w=q"(za—2:) =0. (3.30)

On the other hand, there exists a # 0 such that w = ( g ) and thus

q"w = a(cra +cn) #0,

which is a contradiction to (3.30).

The existence and uniqueness of the import-export vector determined by the non-
linear model (3.24) entails the existence and uniqueness of the equilibrium prices
through the formulae (3.20)-(3.21).

Remark 3.1. In the case of an economy involving N > 2 countries, the solvability
of the model can be proved by following the same arguments than above. If N > 2
then the uniqueness of the import-export vector is not guaranteed. It is however
possible to prove as above that the difference between two solutions belongs to the
kernel of the matrix M involved in the model. This is in fact sufficient to yield the

iqueness of the corr ling equilibrium prices. For example, in the case of an
economy invoking three countries (N = 3), the mathematical model (1.1)-(1.3) is
involved with the following data

Z12
Z21
2= 13 A
31
Z23
T32
1 1 1
e T e R TR T T &
1 1 1 1 1=
M=| +zm ez e ®( BEe T )
S ety | e
d3ibs Aty Gl T &Hn

where @ denotes the Krénecker product, and

Ciz+p1— P2

e +p2—pr

—| ast+h-ps
o ca+pa=p
cx+pr—p3

c2+pa—pa
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where the variables and parameters are defined in a similar way that it has been done
in the case N = 2. Here

kerM:{zeIlN:zl—zg=n—z; = x5 — g}
So, if z' and 2% denote two import-export vectors solution of problem (1.1)-(1.3) then
(2}a = 732) = (&3 — 23,) = (23 — 2§) = (215 — 713) = (s — 735) — (ks — 23).
The equilibrium prices are given by the formulae

_ T+t —-Tn—In

+
dy + by 2
1+ Tag — Ty —Taz |

R Rk Bl L
i dy + by £
T3y +Tgg — Tig —Tay |
= 4 by
] dy + g P3

We see that the equilibrium prices are uniquely determined. For example, setting
P = pi(z') and py g = py(a?), we see that
1 1 1 1
eyl Ll et G
Pry dy + b P

_ (afy —23)) + (afy — 73)) 8
7 d + by o
=Pua.
So, the possible multiplicity of the import-export vector is not an obstacle to the
uniqueness of the equilibrium prices.
We may now give a more precise characterization of the solution of our model.
Case 1. One supposes that

P22 pi

Then

P—=pr<0<acn.
If

ci2 2 P2~ P (8:31)
then ( 5)

o1a =i

it R

and in this case

~(3)

is the unique solution of the problem. Indeed, # > 0 and (Mz + ¢)” (v — &) = ¢"v >
0,Y¥u € RL. It results that the inequality defined in problem (3.29) is satisfied. In
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this case, import and export are not involved and the equilibrium prices are given by
the formulae (3.6) and (3.7) (or also formulae (3.20) and (3.21) with 2,5 = 24, = 0).

If

1z < p2 = P (P2 > p1)

then we show that the unique solution of the problem is given by

(),

We have indeed
>0,
+Hdm + w22 A —h o
Mi+q =
—(n,—in*‘-q,—:fg)llz‘*ﬁi—ﬁl'*cn
Pr—Pr—catp —p2+cn2 )
—pPa-+pr+cia+p2—pr+eon
0
- >0
( c12 + en ) -
and

2T (MZ+q) =212 x 040X (c12 +cn) = 0.

)

(3.33)

If p» > py then there exists indeed a tendency to import in country 2 from country
1. Import occurs provided that the cost of transporting cy, satisfies the inequality
€12 < P2 — pr- The equilibrium prices are given through formulae (3.20) and (3.21)

by

and

S Z12
P _p‘+d—|+ll|

= dy + by
dy 4 by +dy + by

& dy + by ;
&b +dy+0

da + by -

=it d+b +da+ 022

)P+

Mot e
llmd:+h
L R Gk
T T £ T TR

4 0 S TdININE .
d+0 +dy+ 6

={1

(3.34)

(3.35)
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By using the fact that ¢j3 < py — py in (3.34) and (3.35), we see that py > p) and
pa > pa. Thus

P2 > PPy > Prypa < pa. (3.36)
Denoting A'p := p; — i, we see that if p, > p; then Al'p > 0 and A%p < 0.
Case 2. One supposes that

P 2 pa.
Then
c12 > 02 py —pr-
If
en 2P - P2
then

0
=(5)
is the unique solution of the problem since in this case

q20.

If
e <p1=pa (B > pa) (3.37)
then the unique solution of the problem is given by

(e )
i= e S )
II+I’
£>0,
47’#57'"3#'5):2' +p =P+ o2 )
s + w)mn +h — b ton
(l’?‘l’|+6n+ﬁ|—ﬂz+cn)

Indeed,

Mz+q =

I

Pi-Pa—cnt+tp—Pten

Cia +
()20

2T (MZ+q) =0x (c1a+cn)+x2 x0=0.

and

The corresponding equilibrium prices are

dy + by
dy 4 by +dy + by

P =(1— b+

2 + -
htb+d b ?
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dy + by
+d1+b|+dz+b)o" (338)
o PO Loty o
LG Sl N S e W G Y T X
_ di+b
RS T S

We have pi; > p; and p; > p; and thus A'p < 0 and A%p > 0.

(3.39)

4 A Mathematical Analysis of Prices Equilibrium
Problems in Economics: A Nonsymmetric Case.

Let us now discuss the case of an economic model involving two goods X and Y whose
offers and demands are relied in countries 1 and 2 by the relationships

vip =af - b¥p + 856l i=1,2 (4.1)
s = +afpf - 6fplii=1,2 (4.2)
wip=af -6 pl +8Ypfii=12 (4.3)
Ws=cf +dfpf —6p¥, i=12 (4.4)

where
a¥ > b¥ >0,df >0,8F >0,6¥20;i=1,2,
af > ,bf >0,df >0,8f >0,6 20i=1,2.
The data and variables used in this section have the same meaning than in Section 3.
The indexes X and Y are used to distinguish the data and variables relative to the
good X from the ones relative to the good Y.
For an economy without import and export, the equilibrium relations

ws@X,0}) = v el e, (4.9)
wsep!) = vlo¥,pl) (4.6)
lead to the system
df + b 0 - +8Y) 0 I
0 ¥+ 0 -6 +80 || o
-@Y +8Y) 0 dY +b) 0 .
0 - +pY) 0 dy + 8y P
ﬂx —Cx
B
= “"1, £p
y_ ¥
G -9
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It results that the equilibrium prices are given by
g = b+ 0@l — o) + (B + BN ) — o)
Y@ D@+ b))~ G + 86 +BY)
x _ (@) +b7)(ad — ) + (6 + B8 )(a} — )
(@ 6N+ bY) - (63 + X)) +BY)
(JY + AY )(af = ) + (df +b\‘)(azl —-d)
' T @X F )@+ bY) - (6F +BN)GY + A7)

s (63 + BY)(a3" = &) + (d +b3)(a} _f»}')‘
(d2¥ +b)(d3 -+by) — (63 +B)@E +B2)

It is now necessary to assume that
A= @+l +b) = @ +BX)6F +8) >0

to have
20 20(0=1,2).

If import-export of the goods is tolerated then the previous model must be completed
by the relationships

z¥ > 0,0f >0,z]; >0,z >0 (4.7)
P+l -pF 20 (4.8)
P+ -t 20 (4.9)
P Helh-p) 20 (4.10)
Py tehi—pl 20 (4.11)

2 >0 pf +cff-pF =0, (4.12)

7% > 0= pf +cf —p¥ =0, (4.13)

aly > 0= pf +cly—p} =0, (4.14)
oy > 0= p} +ch —p} =0, (4.15)
pf 4o —pf > 0= 25 =0, (4.16)
p{+cfl—pf>0:z§‘;=0, (4.17)
pY +elh —p¥ >0z}, =0, (4.18)
o+l —=pli>0=> 2% =0, (4.19)
together with the equilibrium equations
vils + 2 = vilp + 7l (4.20)
vis+zls =vip + (4.21)
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vstoh =uip+ai (4.22)
¥)s+ ol =vip + 2 (4.23)
From (4.20)-(4.23), we deduce that
YooY e
g HET +6Y B A ol
plY 1 A 1 5X +5x ﬂ]x C}{ z}(z I%{l
b2 e Oy A sk Ox X v ay —C + I3 —ITjp
2 L= S} SEE af —cf +af, —a}
G 1 b M WO G
P 548y d3 +b ay — ¢y +T3 — Ty
0 L 0 gt
(4.24)

and as above, we formulate our problem as the variational inequality problem: Find
z € RY such that

(Mz +q)"(v —z) >0,Yv € RY, (4.25)
where
+a ' —a "+b "=b
B | T R
Wi el R S D
- +¢ —-d +d
= mah +1—1
_(c d)®(—1+1) (2
with e
HR ] p +bp
= ——_— == 4.27
a A e s (4.27)
8 8 | 8+ )
= 2= 4.28
b ~ i ~ (4.28)
BT o+
ch= a E A2 4 (4.29)
df +b¥ | df + b
di= =——n+ =—= 4.30
AT AT (30
2ad X _5X 4 oX
P-B( =Py +cip
q= Py — Py +cp (4.31)

Py —P1 +ey
The matrix M is not necessarily positive semidefinite. However, if the matrix
a b
M=
(t4)

is positive semidefinite then the matrix

+1 -1
M_A®(_l +1>
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is also positive semidefinite. We have
2T Az = az? + (b + c)z122 + dz3

2alaz [P =(b+e) ||| @2 | +d |22 |
It results that if
b+c<2Vad
then
o"Ae > (Va| o | -V |z )

Thus the matrices A and M are positive semidefinite.
Let us now characterize the kernel of the matrix M. The system Mz = 0 reads
here

a(zy — @) = b(za — 23)
c(x1 — @2) = d(z4 — x3).

It results that if

be # ad
then
a
ker M = { ; 1,8 € R}. (4.32)
B
Note now that if the condition
b+c < 2Vad, (4.33)

ensuring that M is positive semidefinite holds, then dad > (b + c)? > 4bc and thus
ad > be. Let us now give a condition ensuring the cocoercivity of the matrix M. We
know that if M and M? are positive semidefinite then M is cocoercive with modulus
o =|| M+ MT ||~ [6]. We have

M? = 2a% +2bc  2ab+ 2bd ® arih =l
~ \ 2ac+2dc 2bc + 2d* S/

It results that if (a+d)(b+c) < 2y/(a? + be)(d? + be) then M? is positive semidefinite.
It is easy to check that both this last condition and (4.33) are satisfied provided that

b+e< Zmin{\/tﬁ,

ad + be
T} (4.34)

a+

So, we suppose that condition (4.34) is satisfied. Then any w € ker M N R} \{0} can
be written as

™R R
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for some a, 8 > 0, a + f # 0. A simple computation gives
" = a(cly + ) + fely + 31) > 0.

The condition (2.6) in Theorem 2.1 is satisfied and the existence of at least one
solution follows. If Z and Z are two import-export vectors, solution of the model,
then (Z — )T M(Z — %) = 0 and thus

Z— 3 €ker M

since M is cocoercive. Thus

X _2X _ =X _ =

Byor =Tt =Ty == Toy|
and

Y =Y _z¥

Zaoi= Tioh= Ta1i==To1
or also

X 2X =X =X

Tiip = BN Taof=Ton; (4.35)
and

Bhi— T5 = Tl — 55 (4.36)
The relationships (4.35) and (4.36) entail the uniqueness of the equilibrium prices
which are determined through formula (4.24). So, multiplicity of the possible import-
export variables does not affect the uniqueness of the equilibrium prices.
As in Section 3, we can use the model so as to deduce a precise information on
the import-export variables and equilibrium prices.
If for example,
7 > 000 > Py,
X =X U= LY oYaw o
5 <Py ~Bl . ch <BY — P}
then
i +85 — A >0 +5) —5f >0
and a solution of the problem is given by

X zY
%51 =0,21, =0

and
e AR S
( —c +d ) e b s (G40
Z2 Pit =D (G

Note that here

(1—2 ;Z):nd~bc>0.
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( {‘2) il (d(ﬁx_ﬁ)"'b( —pz)—dcl.,—bc{)
) 9N\ o - pY) + el - BY) - cols — ack;

The corresponding equilibrium prices can be determined through formula (4.24). For
example, we obtain

We get

81

(dY +5Y)d = (6 + BY)e

Z (dY +bY)d — (& + B)e
pif = o= Ay (ad — bo) 122 Ay (ad - be) !
(A= (58 X LAY 4 5X X
i HZ,)(ad(_leﬂl ). 1= +Z§3§I_(b‘c>+ﬁ‘ )
_Cx[(dly +00)d— (6 +ﬂxx)c]_ y[(df’ +0)b— (6 +l3x)a

12 Ay (ad = be) A Ay (ad —be)

We see that a simple improvement of the model considered in Section 3 increases
seriously the difficulty of the analytical treatment.

5 Numerical Applications

Analytical treatment of complementarity models being too heavy for problems involv-
ing a great number of data, the algorithm stated in Theorem 2.1 is of great interest.

Example 5.1. Let us consider the model given in Section 3 with the data:

=10 | ag=15 [ c1o =4
bi=1 [b2=05 |co=4
e = =1
di =06 | dp=08

We have
P1 A 6.25, 5y ~ 1077

e FL3Z 1320 —052
—132 +1.32 +8.52

o ~0.36.

Using the formulae given in Section 3, we find

and

212 ~ 0.39,32; = 0.

Starting with 2% = ( g ) , the algorithm in Theorem 2.1 gives the iterates
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| I
0| O 0
1]|026| 0
21035 0
3(038| 0
41039| 0

The corresponding equilibrium prices are

P~ 6.49, py &~ 10.47.

Example 5.2. Let us consider the model given in Section 4 with the data:

Ul e R R — it ([ =20 o =

= =l =)

¢l =5 k=3 iy =
d¥ =06 | d¥ =08 |d =06 |d =03 ;=2

A =01 |\BX=101( B =013 |87 =0.1

G =t || @ || = | =

We have
X =14, p¥ ~ 1358,
Pl =6, p} ~183,
+1.47 -147 4041 -0.41 +0.72
T -1.47 +1.47 -041 +0.41 o 02
gt L SR 1 S |9
=023 +023 -1.21 +1.21 +15.3
and
o~ 0.07.
Some initial numerical tests suggest us to start the algorithm of Theorem 2.1 with
0
o2
0
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The following iterates are obtained (a := 0.1).

iz = 2y | o || A{Mz+q,08]
1[0 [2.0870 | 9.1870 [ 0 3.4384
2 [ 0| 21689 | 9.3534 [ 0O 2.7819
3 | 0| 22455 | 9.5015 | O 2.2523
4 | 0 | 23170 | 9.6335 | O 1.8245
S | 0 | 23834 | 9.7511 | 0 1.4786
6 [ 0 | 24448 | 9.8560 | O 1.1986
710 [ 25095 | 9.9497 | 0 0.9719
8 [ 0 | 2.5537 | 10.0833 | 0O 0.7882
9 | 0 | 26097 | 10.1080 | 0 0.6392
10 | 0 | 2.6457 | 10.1748 | 0 0.5184
11| 0 | 2.6859 | 10.2345 | 0 0.4205
12 | 0 | 2.7227 | 10.2879 | 0 0.3410
13| 0 [ 2.7563 | 10.3357 | 0 0.2766
14 | 0 | 2.7869 | 10.3785 | 0O 0.2243
15 [ 0 [ 2.8147 | 10.4168 | 0 0.1818
16 | 0 [ 2.8400 | 10.4511 | 0 0.1474
17 | 0 | 2.8630 | 10.4818 | 0 0.1195
18 | 0 | 2.8839 | 10.5094 | 0 0.0969
19 [ 0 [ 2.9029 | 10.5341 [ O 0.0785
20 | O | 2.9201 | 10.5562 | O 0.0636
21| 0 | 2.9356 | 10.5761 | 0O 0.0516
22 | 0 | 2.9497 | 10.5939 | 0 0.0418
23| 0 | 2.9624 | 10.6099 | 0O 0.0339
24| 0 | 2.9740 | 10.6242 | 0 0.0274
25 | 0 |2.9844 | 10.6371 | 0 0.0222
26 | 0 |2.9938 ( 10.6486 | 0O 0.0180
27 | 0 | 3.0023 | 10.6590 | O 0.0146
28 | 0 | 3.0100 | 10.6683 | 0 0.0118
29 | 0 | 3.0169 | 10.6767 | 0 0.0096

Thus
zih = 0,23 ~ 3.0169,z}; ~ 10.6767, 2%, = 0

and the corresponding equilibrium prices are

P ~ 13.104, p¥ ~ 14.754,

Py ~20.67, p} ~6.33.



180 D. Goeleven

6 The Existence Problem Revisited

In Section 4, we have used Theorem 2.1 in order to deduce the existence of a solution
of the model. The condition
ad + be

b+ec< me{\/_ ) (6.1)

has been assumed. Indeed, we have shown that condition (6.1) ensures that the matrix
M is cocoercive. Moreover (6.1) implies that

ad > be (6.2)

so that ker M has the form described in (4.32).
In this Section, we show that condition (6.2) is sufficient to guarantee the solv-

ability of the model.
o o
Xy = SXigei= E
o} oh

We set
The model in Section 4 can be split into two subproblems given by

L=l (63)

(2 2)me (3 B)me (51010 )20
(i o ;g)x2+(px i:;)] s
- X220, (6.6)

=Y =Y e

o - Pi —P2 tcip
(fz +E)x.+(’_'g +g)x,+( )zo, (6.7)

P} —pf +ch

5Y _5Y 4 oY
s p1 — P2 +epp
\'T[< b )x1+(*j +:)Xz+( )1:0. ©8)
P —p +ch
Let us first fix the vector X; € IR* and consider the problem which consists to find
X, (X;) satisfying the relations (6.3)-(6.5). The complementarity problem (6. 3)-(6.5)
is equivalent to the variational inequality problem which consists to find X; (X2) € R}

such that 5 %
(M Xy +q)"(v—X1) >0,Yv € RY,

ST, L
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with
L Ea S =a
M= ( —-a +a )
( b(X, = Xo,) + 5 — 53 + ey )

b(Xzy = Xo,) + 55 —B7 + 3}

The matrix M, is positive semidefinite, symmetric and

and

kerM1={( g);aeﬂi).

Thus if w € ker My N R3.\{0} then there exists @ > 0 such that w = ( g ) We
have

w = alel +¢X) >0
and we may apply Theorem 2.1 to conclude to the existence for any X, € IR? of at
least one X; (X2) > 0 satisfying the complementarity problem (6.3)-(6.5). We prove
the uniqueness of X (X3) by following the same arguments that the ones which have
been used in Section 3. Let us now give a precise characterization of X; as a function

of Xj.
L X X X =X X
Py — Ciy sz,**Xz,SPZ -+
b b
then

Xy(Xa) = ( g)

Indeed, we have

b(Xa, = Xoa) 457 — 53+
Q >0.
b(Xa, = Xa,) + 55 =B + i
L =X _ X _ X
— P — ¢
Lo e B2 S/P) 12
then ey d
3 b(Xay — Xp,) + B1BLzci2
Xy (Xz) = ;
0
Indeed,

Xi(X2) >0,
0

MiXi+q = >0,
141 + qu (ci\;+cfl)“

Ve @ e
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and 5,
XT(M Xy +q1) =Xy, x0+0x (cﬁ-{»d‘l):&

If 5X — 5X
Kot i
then
(%) ;
= e el
TS b(Xz, — Xp,) + BBazca
We have, L
X1(X2) 20,
X
MXi+q = ( ok -EC” ) >0,
and b =
XT(M X + 1) = 0% (&3 + ) + X1, x0=0.
Let us set

chcs=0
=Co 56

F(X,) = ( ) Xi(X2).

We know that if

o 5X _ 5X
P2 P’i Clzsle_xhsl’n P; +c

then 0
P =Rt = ( )
If axlox T L%
Xt & P _Pi — A3
then
b ybe , Y — Py —clh
P =Foay= | * ()8
phe ke 2 e\ pX—pf+ck
and if L X
Arsclexs o P2 — Pt
then

-k ke . pY — B+l
F(Xa) = Fy (X)) 1= (3 )
R AR LAV
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b b
e ke
= 5
e ok
; ( oo - )
= =
@\ X s
P — by +cih
o [ P =B e
= :
=Py =y
The matrix A is negative semidefinite and thus

XTF(Xo) > XT AXz 4 A0, AX T, XT72}}-
+d —d
s ( —d +d )

Pl =Py +cly
[qor= 2 )
P~ +on

we consider now the inequality problem: Find X, € ﬂii such that

We set

Setting

and

(F(X2) + My Xz + g2)" (v = X3) > 0,Yv € .

183

(6.9)

The variational inequality (6.9) is nonlinear and Theorem 2.1 cannot be applied. The
following result ensures that if da > be then problem (6.9) (and thus problem (4.25))

admits at least one solution.

Theorem 6.1. If da > be then problem (6.9) has at least one solution.

Proof: Let D, = {z € IR} :|| z ||< n). For each n € IN\{0}, the set D, is nonempty,
compact and convex. Let us now remark that the mapping F : R* — IR? is continu-

ous. Indeed, the mapping Fy is continuous on

XA S 5
D(Fy)={ze R BEPL 2 ooy ) < B

b
the mapping F_ : R* - IR? is continuous on
SX oo SX X
- Py = ¢
D(F.)={z€ R*: o —23 < pipl:—l-z-).
and the mapping Fy : IR* — IR? is continuous on

S5 g
D(Fy)={z€ R*: 2y — 3, > p—’%)

X0 L Xk X
8= P Co
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X x
Moreover, if z; — 2o = Z\L;_ﬂi then F_(z) = Fy(z) = ( g ) and if o) —zy =
Ei\.;"?ﬁﬂ then Fy(z) = Fo(z) = g . We may apply the Hartman-Stampacchia
theorem [9] to conclude to the existence of &, € Dy such that
(F(2n) + Ma®n + ¢2)7 (v — 25) > 0,0 € Dy. (6.10)

We claim that the sequence {%n},¢ gy is bounded. Suppose by contradiction that
|| Zn [|= +co, then along a subsequence ( again denoted by {z}), we may suppose
that || zn [|# 0 || #5 || -+oo and

” [ —w € R;\{0}.
Setting v = 0 in (6.10), we obtain
2T F(2n) + 2T Mazn + g3 7n < 0 (6.11)
and thus
2T (A + M2)zn + MO, A{zT 1, 2792} )} + g7 T < 0. (6.12)

Dividing (6.12) by || 2n |[?, we obtain
wi (A + Ma)wn + A0, A{wr i, w2} )} Il 2n 17 +(a3 wn) Il 2a 17 < 02
Taking the limit as n — +-o00, we obtain
wT (A + Ma)w < 0.

The matrix A + M is positive semidefinite, symmetric and
kerM:(( 5 ) ;a € R}.
Thus w = ( Z ) for some @ > 0. From (6.12), we deduce also that

MO, Mz, 2572} )} + 63 7n < 0.
Thus

MO, Awim, wire}) + g wn < 0.
Taking the limit as n — +00, we obtain

A0, MwTy1, wT )} + ¢Fw < 0.

However 5
wim =0,u"y, =0,¢fw = a(c), + c51)

Y Y
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and we get the contradiction
Y uenY:
afefy +e5) < 0.

Thus the sequence {z,} is bounded and along a subsequence, we may assume that
&n — x. Let v € ﬂﬁ be given. There exists ng € IV such that

(B(@n) + Mazn + g2)" (v = 25) > 0,Yn > no.
Taking the limit as n = oo, we get
(F(z) + Mam + g2) (v — @) > 0.

The argument above being true for any v € Hii, we may conclude. (m]
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