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Introduction 

Although mat.hc.matics is o ítcn presented as consisting of a disjoin1 rolle<'lion of s11h­
iwts, such ns annlysis , gcomctry, algcbra, combinatorics, t.QpolOg)' •.. , mn11y iut.cr­
csting rm111 lts can nly be nchicvcd via a combination of tcclm iques a.nd results frou1 
dilfcrcnt fi clds . 

In tlti!l survcy papcr , we prcscnt a rescarch topic in which onc tries to bu ild a 
bridge bctwecn r\ group t hcorctica l topic ou t hc onc hand and a mor goomf!t.rirnl or 
topologicaJ componcnt on 1.hc othcr ha.ne!. In foct, the ma.in idea is not. rc;\lly new, 
si ucC' group thoory e.ame into bci ng as a.u abstraction of the notion of ""symmctry". 

T hc main goal of thc resca.rch can be dci:lcribed rat hcr vaguely as follows: 

Find a geometncol context to dtiscribe tlie cfo.J.f o/ polycycl1c-by-fimt.e gro11ps. 

Thc clili!S of polycydic-by-finitc group!l wi ll be dcsc.ribed m re dctailcd bclow, but for 
thc momcut one can Lhink about t~ll groups which a.re built up using only thc i11 fiuite 
cycl ic g roup of integers Z (wilh t.ho add ition as operntion) and finitc group.-t. 

To be able lo follo.,.,, Lhc ideas dtJvclopcd in this paper, Lhe rcader shoukl br familiar 
with the bnsic concept.s of g roup thcory, such as "nonnnl subgroup""' rutel "quoticnt 
s11hgro11p" . l t is an advantagc (hu t not really nocccsarry) to be acquai nt(•d with t.hr 
concept o f a topologicaJ spacc n.ncl rotllpnct subsets o í a topolog1caJ .spac . 

1 Group actions 

Oy ti y1'0111dncol amtcxt RS mC'nt.ioucd i11 t hc "rnain goal"' n.bove, "--C will in fa.et menn 
/\ ti intf'rCílti ng l)'IM.' of grou¡> nct.iona. 

81 
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D ef:loition 1.1 úl G be 11 group. We say that the group G acls (on the le/t) on 11 

MlX11amap 
µ:GxX-+X 

"' gwen, which ;salisfies the following two conditions: 

/ . Vg, h E G , Vx E X : ¡J (g ,µ(h,x)) = µ(gh,x) 

2. Vze X : ¡,( l ,:t)=z 

whcro 1 stands Cor 1hc ncutim! element of the group G. The map µ is oíl.en omit.tcd 
from Lhc notnt.ions and o nc writes g · x or ªx in sbead of µ(g, x). We will use tite lntcr 
uotnt.ion. nnd so the condit.ions of a group ac;tion are written as follows: 

GI\• u a group acLion of a group G on a set X , any element g E G detcrmin~ a nmp 

).9 : X--+ X: x >-+ 11x. 

Any such map ).• determines n permutation (i.e. one-t.o-one and onLO map) of X. 
lu foct, if \\'C denote the group of ali permuta tions ofX by S(X), any group aalion 
determines a morphism 

!. : G-> S(X) : g "°' >.,. 

Com·crscly. M)' morphism >. : G --+ S(X), determines a group act.ion of G on X by 
1 ";"g •x = !.(g)(x). 

Onc is often intercsLCd in acliions far which A(G) líes in a n int.eresting subgroup or 
S (X ). For examplc, ií X is u t.opological spacc, onc can consider Lhc grou1> tl(X) o( 

homcomorphism.s of X , ií X is a smooth manifold , one can consider Lhe group Ci»(X) 
oí smooLh dilTemorphisms of X , if X is a mct.ric space, one looks for actions iuto the 
groop lsom(X ) of isomct.rics of X. 

In Lhis paper X will nlways be llhe set Dl" for sorne n . T his is a wcll known set 
whid1 is a topologlcal s1>acc, a smooth manifold and can be equipped with scvC!ra.1 
111 tries lo turn it inlO a mctric spacc. Thc mosl common of thesc mctrics is of course 
thc ~mu Euclidcan mctric. 

Examples 

1 1.l:t C be any group ancl let. H be a subgroup of G (e.g. one can t.ake H =:: G). 
Thcn thcrc are two wcll known adions of H 0 11 G: 

(a) Thc lclt multiplicaLinu or lcft l rnnslat.ion action wherc 

Vh E H ,VyEG : "g =:: li ·y 

(wbcre /1 • g is ju~t. mult.iplication in G) 
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(b) !he ..::onjugation aet.io n , dcílncd by 

2. LoL us spcclnlise Lhe nbovc nctio11 t.o llhe s it.uatio n whorc e is lhc group llt" (t.hc 
group o pcra tio n is o f course add it.ion) 1md H is t.hc subgroup 2"'. h is obv lo us 
thaL t.hc conjugat.ion act.io11 is trivial (as iA a lways lhc case if G is nbelinu , or 
mor 1.1 gll neral if H is cent.mi) , wh ilc for tho left. trnnslation action we havo Lliut, 
whoncvcr t E Z" and z 1: (0, 0 , .. , O) und for a ny r E IR" that •r =: + r 1: r . 

3. Let. 0 00 he the iufi nit.c dihcdrnl g roup. T h i:; group is gcncrntcd b:y lwo C' li•111 cnt.s 
a nnd b, whcrc a is an elcmcnt. of infinite a rder and bisan cfom ru of a rd er 2, 
so b2 = l. Morcovcr, t.hc relat.io11 bu = a- 1b ho lds. H follo..,,-s 1hat :rny clornent. 
of 0 00 can be writ.Lcn uniquely a.<i a product o f t he form a•bc. where Á· E Z nocl 
t: E {O , 1 J. Thc group D 00 11CLS 011 t.be real linc IR as follows: 

Vk eZ: 'Vt:E {O, l },V.,. ElR : u~b·r=(-l )'r+k . 

ti. Let. ip: /1 -+ Aut{G) be a morphism of groups. This is n special typc of 1H:tiom1 
(AuL( G) is n spccial subset. o f S(G)). Hnving such an nct.ion . wc an dcfi nl' 1111(·w 

gro up, denolcd by C)IJ-/ (or ª")4"'11), whose elemcnt.s ar t.uplcs (g, h) E e X /·/ 
;l11d where t.hc product is given by (g 1 , h 1)(92 , h 2 ) = (g1ip(h 1){91).h 1 h1 ). 1'l1is 
11 ew product is cal lcd a semidircct producL of G a nd H . For example, giv1:11 auy 
g roup G, wc can alwnys form Lhe semidirect prod uct. G x Aut(G). 

TbtJ lefL t.rau:;lntion nct.ion o í Z " on IR" a ud bhc act.ion of D on !R a re 1y pica l ex1u11plHs 
nf whaL we mean by int.ercst.ing Lypcs of act.ious. To be nble to rcaJly degcri lw wha1. 
i~ i11terestü19, wc need a few more not.ions. 

Defln ition 1.2 Lel e be (l grcmv ncting OTI (¡ set X. Th e stab1ltsor oj ª" efom e11/. 
:z: E X is given cu 

G.= {g EG l 'x =x). 

Onc c1_m daick thnt thc s tnbilisor of uny point is u subgroup oí C . In t he cx u.mplo oí 
tihc adion of D on R we have thu.1. thc SLubilisor of t.hc ¡>oint r =~is 1hc HHhgrou p 
{ l ,ab}, whi lc lhe stabilisor o f thc point 1· = 11" i¡¡: t.hc trivial subgroup ~ l} . l f t.lu· 
nct.io n of a group G on X is t riv i1\l (9 x = x, 't/g E G, Vx E X ) then a li s 1.nhili sors 
aro cq ul\I lo the whole group G. Of coursc, t.h i8 is rcnlly nol the int.crcsti ng t.:a.'·H!. 
0 11 thc contr rary. it is obvious Lhat Wtl wi ll be in~crcst.ed in group ru:Lions wii.h s111 iil1 
st,abilison1 a nd ideaJly with on ly l.riviul s tnbil isors. Thcse kind oí actions are rnl lcd 
frOtl. 

De8oitiou 1.3 An acl 1on oj a group G 0 11 a set. X 1.s sa 1d to bt fra: rf 

't/g E C : V:i; E X : i:i: = i; => g = 1. 
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In fact, it will not be enough that under the action of a group G the points are moved 
away from there original position by all but finitely many elements of G, but they 
ha.ve to be moved away far enough. This idea is catched in the following notion: 

Definition 1.4 Let X be a locally compact topological space and >. : G ~ 1l{X) 
denote an action o/ G on X. Then, G is said to act properly discontinuously •f for 
any compact subset C i;- X, we have that 

(g E G 1 'C n C i 0) is finite. 

When specialising to the situation where X = IR", we can say that an actiou is 
properly discont.inuous if and only if for any r E IR:, we ha.ve that the set {g E 
G 1 9 D .. n Dr i 0}, where D,. = {x E IR" 1 llxll ~ r} is the disk of radius r , is finitc. 

The action of Z2 on !R2 by mea.ns of left tran slation.s is properly discontinuous. 
lndeed, fix an r E llt It is obvious that an element (z1 , z2 E Z2 moves any point over 
a distance ~- This implies that whenever z1 + z2 > 2r the imagc l•1·•2!Dr 
will havc nothing in common with t he originaJ disk Dr. As there are only finitely many 
clcment s in Z2 satisíying ~ :S 2r, the set {(z1 ,z2) E Z2 I <•1· •2IDr n Dr -:f. 0} 
is finitc. 

Jz?+ z~ $ 2r J z? +z~ > 2r 

T hc action oí Z 2 on llt2 is properly discont inuous 

Thc last conccpt to be introduced in this section on group actions is that oí orbits 
and orbit spaces. 

Deflnition 1.5 Let G act on a set X as usual. The orbit o/ a point x is the sel 
G · x = (' x 11 g E G}. 

w(' illustratc t his agaiu by rnca ns oí thc leít t rauslation action oí Z2 0 11 !R2 . 
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Orbit of a point under the action of Z2 on IR.2 

A crucial object in this discussion is that of the orbit space of a group action. 

Deflnition 1.6 Let G be a group acting on a set X. The set o/ ali possible orbits is 
called the orbit space and is denoted by G \X 

Thus G \X = { G · x 1 x E X}. Let us retrun to the example of Z2 acting on the plane. 
We claim that the orbit spacc can be identified with a torus. First of ali note that for 
any point (r1 , r2 } E IR.2, thereexists a (z1 , z2} E Z2 such that \z,.z1l( r 1, r2} belongs to 
the unit square 1 x 1, where l = [O , l] . 

.( . .,.,) 

Any orbit can be represented by a point in the unit square l x l. However, some 
orbits are represented by 2 (or even 4} points. Indeed for any r E / , we have that 
(r , O} and (r, l } lie in the same orbit, and the same holds for (O, r) and (1, r). So if we 
want to represent any orbit by exactly 1 point we have to indentify the two horizontal 
edgcs of the squa.re and also the two vertical edges. This is suggested in the picturc 
below. We leave it to the reader's imagination to see that one eventually obtains a 
torus . i, 
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After gluing a-edges After gluing b-edges 

Without. going into detail , we want t.o stress t he fact that the identification of 
z 2 \R.2 with a two-dimensional torus is not merely an identification of sets, but is really 
an identification of topological spaces. lndeed, the representatives of two different 
orbits are clase to each other on the torus if and only if t he orbits themselves are 
close (in t he sense that there are two points, one from each orbit, which are closc 
to each other). To make the above observations rigourous, we should talk about the 
<¡uotient topology and this would lead us to far. 

Thc fact that we obta.in a campa.et orbit space will a.Isa be considered as relevant. 
In our context of properly discontinuous actions on sorne space IR"> the orbit spacc 
wil\ be compact if and only if there exists a real number r E IR, such that every orhit 
has at least one point inside the closed disc Dr. 

Now, we have introduced ali t he necessary concepts to describe what we mean by 
an interesting geomctrica\ context. This will in fact be the context of crystallographic 
groups and act ions. 

Definition 1.7 An action A: G -t 1l(IR") of a group G on some space IR" is said 
to be crystallograpliic if and only if the action is pmperly discontinuous and the orbit 
space c \ X is compact. 
The image A(G) will be refe1Ted to as a crystallographic group. 

The typical example of a crystallographic action is that of the left translation action 
of Z" on IR" for some integer n ;::: l , as we explained above for the casen = 2. 

Also t he act ion of D00 on the real line is a crystallographic action. 

2 Euclidean crystallographic groups 

The origin of t hc concept of a crystallographic group goes back to the study of gcnuiuc 
r.rystals. A crystal consists of a collection of atoms (or molecules) which are arrangrd 
in a very symmetric way. In fact , a crystal can be seen as a small pattern of ato111s 
which is repeate<l over ancl over in three clirections. To study these crystals mathc· 
matically, we will imaging that a crystal is infinite in size, so that this repetition of 
tlw pattern continues infinitely in all t hree directions. As crystals (how small thcy 
mu seem) always consist of cnormously many atoms, this idcalisation is justitied. To 
st.udy a crystal, it is of grnat importance to study its grouµ of symmetries. A symmc­
t ry of a crystal consists of a rigid rnotion of Euclidean 3-spaci~ maµping the c:rystal 
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exactly onto itself. As a crystal is assumed to consist of a pattern of atoms which is 
repeated l.nfinitely many t imes in 3 independent directions , such a symmetry group 
always has a subgroup consisting of pure translations, which is isomorphic to Z3 . To 
illustrate this, let us consider the crystal pattern of ordinary househo\d salt (NaCI). 
In the picture below, the generators of the group Z.3 are indicated by a, b and c. 

-
\. 

'w 

~ , ...,, 

o 

Of course, this crystal also allows many more symmetries, like rotations and retlec­
tions. The total group of isometries is called a Euclidean crystallographic group. 
Often, the word Euclidean is not added to the terminology, but as we will treat 
different kinds of crystallographic groups, we prefcr to add this to our terminology. 

Analogously, we can introduce the concept of a 2-dimensional Euclidean crystal­
lographic group, which is the total group of symmetries of a flat pattern which is 
repeated infinitely many times in two independent directions of a plane. As an ex­
ample, we can think of a wallpaper patern. In fact two-dimensional crystallographic 
groups are often referred to as wallpaper groups. lt is obvious that such a wa\\paper 
group has a subgroup of translations which is isomorphic to ?} . 

Mathematically, there is no rea.son to consider only dimensions 2 and 3, and there­
fore we can cousider crystallographic groups in any dimension. We will first givc thc 
general definition of a Euclidean crystallographic group. Only after a little while, we 
wi ll be able to explain that this definition is really a generalization of the notion of a 
group of isometries of a crystal. 

The Euclidean crystallographic groups will be subgroups of the group of rigid 
motions of IR.". Tl"tis group will be denoted by Isom(lR.") and is in fact a semidirect 
product IR" >:iO(n) , wherc O(n) stands for the group of orthogonal n x n- matrices. 
Note that Isom(IR") is a subgroup of the group Aff(IR") =IR" >:iG L{n, IR) of invertible 
affine mappings. Any element of Aff(IR") can be writt.en as a pair (a, A) consist.ing of 
the translational parta and the linear part A. Note that there is an action of Aff(IR") 
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and thus of any subgroup of Aff(IR") (and a fortiori of any subgroup of Isom(IR")) 
which is given by 

l/(a, A) E Alf(IR"), \fx E IR" , (•.Alx =a+ Ax. 

Deflnition 2.1 A subgroup E~ Isom(IRn) is said to be a Euclidean crystallographic 
group, if and only i/ E is a discrete subgroup of lsom(IR") and under the induced 
action o/ E on IR" , the quotient space E \ lR" is compact. 

The fact that E is a discrete subgroup of Isom(IR.n) is actually equivalent to the fact 
that E acts properly discontinuouly on IR". So a group E ~ (IR" ) is a crysta11ographic 
group if and only if the induced action is crystallographic (in the sense of the definition 
given in the previous section). 

Note that the fact that E\IR." is compact is equivalent to the existing of a bounded 
subset C of nr , such that the orbit of any element of llt" meets that subset C. In 
fact, the subset C can be chosen in such a way that if an orbit meets the subset C 
in more than one point, these points must líe on thc boundary of C. We refer to the 
cxample on page 85. 

T he structurc of thc Euclidean crystallographic groups is very well understood by 
three famous theorems which are dueto Bieberba.ch ([7],[8],[9], see also [12] and [30]). 

Theorem 2.2 {First Bieberbach Theorem) Let E ~ Isom(IR") be a Euclidean 
crystallographic group and Jet r = En IR" be its subgroup o/ pure translations. 
Then r ~ zn and r spans the whole vectorspace IR" . Moreover E / r is finite. 

Let us interpret this theorem in terms of the orbits of the action of E on !R". As 
E / r is finite , we can find a finite number ofelements e1 ,e2 , ... ,e,. E E such that 
any other element e E E can be written as a product of the form e = -ye.:, for sorne 
iE {l, 2, . . k}andsome1Er. 

Let C still denote the set introduced above. Then any element of IRn can be 
written as 

X= ce = -ye;c = ,.(e;c). 

Therefore, we can considcr D = eicu e 2 Cu-··U ei.c, which is still a bounded s11hs~t 
of IRn. With t his notation, we obtain that any element x of IR" can be writtcu as 
x = "l'd , for sorne d E D . Otherwise stated , this says that IR" can be built up from a 
bounded piece which is being translated infinitely many t imes in n linear independcnt 
directions. 

This already shows that the mathematica1 concept of a cystallographic group can 
be scens as a generalization of the 3-dimensional crystallographic groups we started 
from. 

T he second Bieberbach theorem shows that algebraic equivaJencc oí Euclidean 
crystallographic groups is the samc as geomet rical equivalence. 



Groups in action: from Euclidean to polynomial crystallographic groups 89 

Theore n:i 2.3 (Second Bieberbach Theorem) Let E , E 1 ~ Isom(IR") be two Eu­
clidean crystallographic groups and suppose that cp : E -+ E1 is an isomorphism. 
Then there exists an elemento E Aff(IR") such tl1at 

'Ve E E: cp(e) =oeo-1 . 

Thc last theorcm shows that therc is only a limited number oí Euclidean crystallo­
graphic groups in each dimcnsion. 

Theorem 2.4 (Third Bieberbach Theorem) In a given dimension n, there are, 
up to isomorphism (or up to affine conjugation}, only finitely many Euclidean crys­
tallogrnphic groups. 

Thc exact numbers a.re only known jn dimensions ~ 6. For examplc , therc are 17 
2-dimensional Euclidean crystallographic groups and 219 3-dimensional Euclidcan 
crystallographic groups . It is remarkable, that for each of these 219 Euclidcan crys­
tallographic groups, there exists a crystal havi ng this specific group as its symmetry 
group. 

Thc first Dieberbach thcorcm shows that all Euclidean crystallographic groups E 
contain a free abelia.n subgroup r oí finite index. Moreover , it is not hard t.o check 
that this r is max.imal abelian in E. The converse is also t rue 

Theorem 2.5 /31} Lct E be a gmup containing a finit ely generated free abelian sub­
group r of finit e indcx whicl1 is maximal abelian in E. Then there exists an injective 
homomorphism cp : E -t lsom(IR") such that r.p(E) is a Euclidean crystallogmphic 
group . 

This shows that class of Euclidean crystallographic groups has a nice algebraic de­
scription. Groups satisfying this algebraic description a.re sometimes called abstract 
Euclidean crystallographic groups. 

We now turn to the slightly more general setting of Euclidean crystallographic 
actions. 

Definition 2.6 A Euclidcan crystallographic action o/ a group E on IR" consists of 
? m01-pl1ism ¡p: E -t lsom(IR") lctting E act crystallographically on IR". 

The fact that E acts crystallographica\ly on IR" is equivalent to the fact that tite 
kernel Ker{l{J) of 'Pis finite and that cp(E) is a Euclidean crystaHographic grbup. 

As wc wi ll often work with groups containing a normal finite indcx subgroup 
satisfying a ceratin group theoretic property, lct us introduce the notion of groups 
which are virtually P: 

D eftnition 2. 7 Let 'P denote n property of groups {e.g. 'P mearu abelian}, then we 
say that a group G is virlm1lly 'P if G contains a normal subgroup o/ finite index which 
is'P. 
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Now, given any finitely generated virtually abelian group E, there exists a unique 
maximal finite normal subgroup H of E. One can show that E/ H then contains 
a free abelian subgroup of finite index which is maximal abelian, thus E/H is an 
abstract Euclidean crystallographic group and we can find a monomorphism t/J : 
E / H --¡. Isom(!Rn), with t/l(E/ H) Euclidean crystallographic. If we then consider 

t he composition 'P: E 2-t E/ H ~ Isom(IR:n) we obtain that E admits a Euclidean 
crystallographic action. The converse also holds, any group E admitting a Euclidean 
crystallographic action has an abelian subgroup of finite index. We can conclude with 
t he following: 

Conclusion: The class of groups admitting a Euclidean crystallographic 
action is exactly the class of finitely generated virtually abelian groups. 
Moreover, given a group E , then there is, up to affine conjugatiou, ouly 
one possible Euclidean crystallographic action of E 

The uniqueness statemeut follows from the second Bieberbach theorem aud from 
the fact that one can show that for any Euclidean crystallographic action cp : E -t 
Isom(IR") the kernel of cp is exactly the unique maximal finite normal subgroup H of 
E. 

The conclusion above shows that there is a nice geometric context describing thc 
class of virt ually abelian groups. In the rest of the paper we will try to extend the 
concept of Euclideau crystallographic groups to obtain geometric characterizations of 
other classes of groups. 

3 Ahnost crystallographic groups 

To define Euclidean crystallographic groups, we needed the group Isom(IR:") 
IR" >10(n) of isometries of IR". The group O(n) is a compact group of automorphisms 
of the abelian group IR". As a first generalization, we will consider other groups, 
together with a compact group of automorphisms. As we do not want to go to far 
away from the original point of view, we will considera class of groups which is very 
close lo being abelian and which are called nilpotent groups. 

To be able to define nilpotenl groups, we need the concept of commutators and 
commutator subgroups. 

Definition 3.1 Let G be a group. 
!/ g, h E G, t/1en the commv.tator o/ g and h equals [g, h] = g- 1h - 1gh. 
!/ H, K i;- G, then [H, K ) is tl1e group generated by all commutators [h, kJ, where 
h E H andk E K. 

Note that a group G is abelian if and only if [G, G] is the trivial group. 
This inspires us to define thc lowcr central series oí a group: 

De8nition 3.2 Let G be a gm v.p, then the /ower· central series o/ G ü deji?wd rec11r­
sillely by 1'i (G) = G , and /01· all non-negatille integers i: 1'•+ 1 (G) = [G, 1',(G')j. 
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The lower_ central series is a decreasing series 

G = '' (G) 2 ,,(G) 2 ,,(G) 2 ,,(G) 2 

Deflnition 3.3 A group Gis said to be nilpotent if there exists an integer e /01· which 
'Yc+ i(G) = l. The smallest e /or which this happens is called the nilpotency class of 
the group. 

The abelian grou ps are precisely the nilpotent groups of class l . 
The nilpotent groups we need are the simply connected , conncctcd nilpotent Lie 

groups. These are groups N which are homeomorphic to a space IR" (and n is also the 
dimensiou of the Lie group N) and which can be realizcd as a group of uuitriang:ular 
matrices (upper triangular matrices with l 'son the diagonal) . The casicst non-abelian 
example of such a group is the Heisenberg group 

of ali unitriangular 3 x 3- matrices. The group of continuous automorphisms of N , 
which we denote by Aut(N) (although it is not the full group oí autmorpbi sms of N 
as an abstract group) has a natural topology (the compact-open topology). In case 
Nis thc abelian grou p IR" . Aut.(IR") = GL(n , IR). Just like t he group Aff( IR" ) acts ou 
IR" , we also have that. the group N>:iAut(N), which we will denote by Aff(N ), acts 
on N in the following way: 

'r:/m , n E N : 'Va E Aut(N) : (m .a) n = m · a (n) . 

Let C be any compact subgroup of Aut(N) . Thus C plays t he role of O(n). In fac.t , 
given C , there exists a metric 011 N for which N >4 C ~ lsom(N ). So auy subgroup 
of N>4C acts as a group of isometries on N. We can now define the notion of an 
almost-crystallographic group in a completely analogous way to thc original notion of 
a Euclidean crystallograph ic group. 

Deflnitio n 3.4 A subgroup E ~ N>:iC is said to be an almost crystallographic group, 
if and only i/ the action of E is a discrete subgroup of N >:i C and under the induced 
actiou of E on N , the quotient space E\N is compact. 

Equivalentl y, we can say that an ahnost crystallographic group is a subgroup E ~ 
N>:iC acting crystallographically on N. If N is of dimension n , we say that atl 
corresponding almost crystallographic groups are n-dimensional . 

Ea.ch of t hc th ree Bieberbach Theorems have been generalized to the almost crys­
tallograph ic case (see [ 13] for more details) 

Theorem 3.5 {3} Let E ~ N >:iC be a11 alrnost crystallogmphic group and let r = 
E n N be its subgroup of "pure tnmslations". 
Tlum r is a u11i/orm lattice o/ N aud E/r is finite. 
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r being a uniform Jattice of N means that r is a discrete subgroup of N , such that 
r \ N is compact. In other words, r is acting crystallographically on N , thus r itself 
is airead.y an almost crystallographic group. lt follows that r is finitely generatcd and 
torsion free (125], [28]). 

Moreover, from the proof of this first Bieberbach-like theorem, it follows that r 
is a maximal nilpotent subgroup of E. The group r can be described completcly in 
algebraic terms, it is the unique normal and nilpotent subgroup which is also maxi­
mal nilpotent in E. (In most cases E has other maximal nilpotent groups, but these 
are not normal in E). lt follows that if E and E' are isomorphic almost crystallo­
graphic groups (possibly built using different nilpotent Lie groups), t hen also their 
translat ion subgroups r and r 1 are isomorphic. lt is a result due to Malccv ([25)), 
that when there exists an isomorphism between uniform lat tices of t.wo connected 
and simply connected nilpotent Lie groups, then there also exists an isomorphism 
between the nilpotent Lie groups t.hcmselves. Therefore, in the investiga t.ion of iso­
morphisms between almost crystallographic groups, we can restrict our attention to 
almost crystallographic groups built using thc same nilpotent Lie group. 

Theorem 3.6 (/24}) Let N be a connected and simply connected nilpotent Líe group, 
a11d let C and C' be two compact subgroups of Aut(N). Assume that E o; N'J'IC 
and E' o; N ::io C1 are two almost crystallographic groups and that <.p : E -t E' is a11 

isomorphism, then there exists an element O: E Aff(N), such that 

'Ve E E: <.p(e) = aea - 1 . 

The generalization of t he third Bieberbach theorem is not that straightforward. ln­
deed, it is no longer t rue that there are only finitely many almost crystallographic 
groups in each dimension. 

Example: For any integer k > O let 

Then each r ,, is a uniform lattice in t he three dimensional Heisenberg group H , and 
thus each r.1: is a t hree-dimensional almost crystallographic group. T he reader can 
check that 

r,;¡r., r,¡ = z Ell z Ell z,. 
which are pairwise non-isomorphic. It follows that ali groups r .1: a re pairwise non­
isomorphic, a.nd hcnce there cxist infinitcly man y almost crystallographic groups (built 
on the same nilpotent Lie group) in dimension 3. 

Hence, if we want to generalise t he third Bieberbach theorem, we have to be 
careful. We can look at the thir<l Biebcrbach theorem in a different way. In t hc 
Euclidcan space, fixing thc dimcnsion, say n , is t he same as fixing the translatioual 
subgroup (up to isomorphim) zn. We can thercfore formulate t he third Bieberbach 
theorem as follows: givcn a group zn, thcre are only finitely many crystallographic 



Groups in action: from Euclidean to polynomial crystallographic groups 93 

groups, having this group as its subgroup of pure translations. lt is this form of the 
third Bieb'erbach theorem, which has bccn generalized to the a1most crystallographic 
case. 

Theorem 3.7 {21} Let r be a torsion free, finit ely generated nilpotent group, then 
tliere are only finitely many almost crystallographic groups, having this group N as 
its subgroup o/ pure translations. 

The algebraic characterization a.Isa has a straightforward generalization 

Tbeore m 3.8 (/24}) Let E be a group containing a finitely generated torsion free 
nilpotent subgrot1 p r o/ finit e index which is maximal nilpotent in E . Then there 
exists a simply connected, connected nilpotent Lie group N , a compact subgroup C ~ 
Aut(N) andan injective homomorphism <p : E -t N )l¡C such that <p(E) is an almost 
cr'ystallograpl1ic group. 

Just as in the ca.se of Euclidean crystallographic groups, wc can now turn to the 
situation of almost crystallographic actions. 

Deftnition 3.9 An almost cq¡stallogmphic action o/ a group E consisl.s o/ a m or'· 

phism <p : E -t N'AC, where N is a connected and simply connected nilpotent Lie 
grouv and C is a compact subgmup o/ Aut(N), letting E act crystallogmphically on 
N . 

Following the samc reasoning as in t he case of Euclidean crystallographic actions. 
we come to the following 

C onclusion: The class of groups admitting an almost crystallographic 
action is exactly the class of finitely generated virtually nilpotent groups. 
Moreover , given such a group E , then therc is, up to conjugation in Aff(N) , 
only one possiblc almost crystallographic action of E 

Thc uniqucness statement follows from thc second Bieberbach Thcorem and form 
the fa.et t hat one can show that any for Euclidean crystallographic action <p : E -t 
lsom(IR.u) the kernel of <p is cxactly the unique max.imal fi nite normal subgroup H of 
E. 

lt follows t.hat we ha.ve found a notion of crystallographic actions t hat catch exactly 
thc class of fi ni tely generated virtua.lly nilpotent groups. 

4 Polycyclic-by-finite groups 

Now that we ha ve found a gcomctric context dctermining ali fini tely generated nilpotent­
by-fi nite groups, we move on to the next class of groups , which we try to describe 
geo1netrically. 

F'rom ai1 algebraic point of vicw, the uext class to be investigated is t he class of 
polycyclic·by-finitc groups. {General references for t his section are [27] and [29J). 
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Deftnition 4 .1 Let r be a group, then r is polycyclic i/ and only i/ r admits a 
descending series 

(1) 

such that f;+1 <'.] ri and any quotient r.;ri+l is cyclic. 

A group is said to be polycyclic-by-finite if it is virtually polycyclic {has a polycyclic 
normal subgroup of finite index). The Hirsch length of a polycyclic group is defined as 
t he number of infinite cyclic quotients f; / f ¡+1 in the series (l ) above. We will denote 
the Hirsch length of r by h(f) . lt can be shown that h(f) is independent of the series 
(1) in t he definition above. Moreovcr, we can extend the definition of Hirsch length 
to polycyclic-by-fin itc groups, by defining the Hirsch length of a polycyclic-by-finite 
group, to be equal to the Hirsch length of a finite index polycyclic subgroup. Again, 
this is independent of the chosen subgroup. 

Example: Any finitely generated abelian group is polycyclic. 
So, the class of polycyclic-by-finite groups contains the class of finitely generated 

virtually abelian groups. 

Proposition 4.2 Any finitely generated nilpotent group G is polycyclic. 

Sketch of t he proof: As G is nilpotent, we know that /c+i (G) = 1 for e sufficiently 
large. Consider the lower central series: 

For any i E {1 ,2, ... ,c}, we have t hat ['Y;G,¡;(G)] <; /;+1(G), and t herefore 
¡ ,(G)h,·+i(G) is an abelian group. One can show that ali the groups / ;(G), and 
so also their quotients ¡;(G)/¡i+1 (G), are finitely generated. By refining the lower 
central series, wc find a series of subgroups of G, satisfying the fact t hat the quotient 
of two successive terms in this series is a cyclic group. O 

This proposit ion shows that t he class of polycyclic-by-finite groups contains ali 
virtually nilpotent groups (i.e. a li groups admitting an almost crystallographic action). 
We are t hcrefore considering a gcneralization of thc previous classes oí groups. Ou 
t hc other band, the definition shows that polycyclic-by-finite groups are built up from 
cyclic groups and fin itc groups (both belonging to thc class of virtually abclian group:;) 
and therefore the class of polycyclic-by-finitc groups is still rather close to the classes 
we considered t.husfar. 

The class of polycyclic-by-finite groups behaves better under a lgebraic construc­
tions t.han t.hc two previous classes. This is the content of the following t hcorcm. 

Theore m 4 .3 Lct r be a gr01111 witl1 a normal subgroup N . Then r is pofycyclie-by· 
jimte 1/ ar1d only 1/ N and r / N are ¡wlycyclic-by-finite. 
Mur-eoricr. 1J r is polycyclil:-by-ji11ite, then h(r) = h (N) + h(f / N) . 
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The anall?guous t.hoorem for virtually nilpotent or virtually abelian groups does not 
hold. 

Another group theoretical result on polycyclic-by-finjte grou ps is the following 
theorem 

Tbeorem 4.4 Let r be an infinite polycyclic-by-finite group, then there exists an 
integer k > O, such that r has a normal subgroup N which is isomorphic to Z". 

This thcorem will allow us to study polycyclic-by-finite grou ps by induction on the 
Hirsch lenbrt.h. Indeed , if r is of Hirsch Jength h(r), then the group N ~ z1; in the 
theorcm above is of Hirsch length k, and thercforc, the quotient is of Hirsch length 
h(r) - k (use theorem 4.3). In this way, we can, up to a certain leve! , reduce the 
study of r to thc study of the free abelian group Z" (which we know very well ) and 
a polycyclic-by-finite group of smallcr Hirsch length . 

Finally there is a t heorem wh ich says that if we ha.ve given a polycyclic-by-finite 
group r then there is at most one dimension n such that r acts crystallographically 
on IR". 

Theorem 4.5 Let cp : r --> 1l{IR") be a crysta/lographic action o/ a polycyclic-by­
finite group, thefl n = h(r ). 
Moreover, the kemel o/ cp equals the unique maximal finite normal subgroup o/ r 

5 Affine crystallographic groups 

In going from the Euclidean crystallographic groups to the almost crystallographic 
groups we changed the spacc (to be honest, we only changed the mctric since a 
connected and simply connected nilpotcnt Lie group is homeomorphic to !R") and 
considered isometries of this ncw space. Wc can also stick to thc spacc IR" and allow 
more motions. 

Deflnition 5.1 A subgroup E ~ Aff(IR" ) is said to be an affine crystallographic 
group, i/ and only i/ E acts crystallographically on R". 
More genernlly, a group E is said to act affine crystallographically i/ there exists a 
morphism cp: E --> Aff(IR") letting E act crystallogmphically on R". 

We remark that it is no longer true that a discrete subgroup of Aff(IR.") automaticall y 
acts properly discontinuously on IR". 

As Isom(R") <; Aff(IR") , ali Euclidcan crystallographic groups are also affine crys­
ta\ lographic groups. 

For t he moment, there exist no nice generalizations of ali of the three Bieberbach 
thcorems to the case of affine crystallographic groups. 

A generalization of thc first Bieberbach theorem should tell us something about the 
algcbraic structure of the affine crystallographic groups. In fact thern are historically 
two important qucstions which are each others converse. 
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Milnor's question {1977): ([26J) Is it true that any torsion free polycyclic-by-finite 
group can be rea1ized asan affine crystallographic group? 

Auslander's question {1964): ([4J) Is it true that any affine crysta11ographic group 
is polycyclic-by-finite? 

The fact that Milnor's question was formulated only far torsion free groups.is of minar 
importance (Milnor was only interested in groups acting freely on !Rn, and this implies 
that the group has no torsion). 

Auslander did not really formulate the above as a question, but rather as a theo­
rcm. Unfortunately, there is an irreparable gap in the alledged proof of this theorem. 

If we would be able to give postive answers to both Milnor's and Auslander's 
question ( or slight generalizat ions of the.se questions), we would obtain that the class 
of affine crystallographic groups is exactly the class of polycylic-by-finite groups and 
we would have reached our goal. And this would be a very nice first Bieberbach 
theorem in t he case of affine crystallographic groups. 

Unfortunately, we cannot not longer hope for a positive answer to Milnor's ques­
tion, because of the following 

Theorem 5.2 {{5}) There exists a finitely generated torsion free nilpotent {and hence 
polycyclic) group, whích cannot be realised as an affine crystallographic group. 

This theorem shows that thc class of groups acting affine crystallographically <loes nol 
conlain ali polycyclic-by-finite groups, not even ali virtually nilpotent groups. From 
this point of view, the group Aff(lil") is st ill not large enough. In facl , not too much is 
known aboul groups admitling an affine crystallographic action ([11], [lOJ, [18], [17), 
[14), ¡22¡, ... ). 

On the other hand there is more hope that Auslander 's question might have a 
posilive answer. A postive answer is known up to dimension 6. 

Theor em 5.3 {[2}, {Ij} Let n be a integer, with n :S 6 and let E~ Aff(IR") beª" 
affine crystallographic group, then E ís a polycyclic-by-finite group. 

T his result gives us hope that thc group Aff(IR" ) is not alrcady too large, so that lt 
aJlows cryslallographic actions from non polycyclic-by-finite groups. However, Aus­
landcr's question secms to be very hard ami it is doubtful that it will be solvr<I 
completely in the near futurc. 

On thc conLrary to Lhe first Bieberbach thcorem, thcre docs cxist a gcneralization 
of Lhe second Bieberbach theorem. To be able to formulate this second Bieberbach 
thoorem, we have to introduce a ncw group of motions of IR", called the group of 
polynomial automorphisms of lll". 

Deftnition 5 .4 A map ¡t: IR" -+ IR" is called a polynomial automorphism o/ IR:" if ¡1 
ts bijt'Ctive crnd both ¡1 and ¡1- 1 are expressed by polyr10mial expressions in tl1e usual 
coordinates o/ !R". 
Thc group o/ oll 1wly110111wl <wtomorphisms o/ R." is denoted by P(IR") . 
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As any invertible affine map is polynomia.I of degree 1, Aff(Rn) ~ P(R,..). For n = 1, 
we have tliat Aff(R) = P(lR). For example although the map µ : x 1-t x3 is polynomia.l 
and bijective, its iverse is not polynomial and therefore µ rt. P(R). 

For n ~ 2 the group P(IR .. ) is much bigger than Aff(IR"). To illustrate this, look 
at the ma.p 

µ' 1112 -+ 1112 '(x,y) >-+ (x + p(y),y) 

whcrc p(y) is any polynomial in the va.ria.ble y. Then µis bijective, polynomial and its 
inverse maps (x, y) to (x - p(y) , y) and therefore µ - 1 is a1so polynomial. As this holds 
for any polynomial p(y), this shows that P(IR2 ) is infinite dimensional (to describe the 
elements you need an infinite number of parameters), while Aff (IR2 ) is clearly finite 
dimensional. 

We are now ready to formula.te the genera1ization of the second Bieberbach theo­
rem to the situation of affine crystallographic groups. 

Theorem 5.5 Let E, E' ~ Aff(IR.") be two polycyclic-by-finit e and affine crystallo­
graphic groups and suppose that r.p : E --> E' is an isomorphism. Then there exists íUI 

element a E P(IR .. ) such that 

Ve E E: r.p(e) = aea- 1 . 

Finally, !et us note that. it is not clear anymore how a third Bieberbach theorem in the 
setting of affinc crysta.l lographic groups should look like. (Although there are sorne 
rcsults in [231). 

6 Polynomial crystallographic groups 

In the previous section, we lcarned a.bout a new group of transfonnations of IR", 
namely the group P(IR .. ) of polynomial automorphisms of IR ... On thc othcr hand , we 
a.\so saw that the class of groups acting affine cystallographically does not contain all 
polycyclic-by-finite groups. 

lt is thcreforc natural to look at the class of groups acting via maps inside P(IR"). 

Deftnition 6.1 A subgroup E ~ P(IR") is said to be a polynomial crystallogmphic 
gJ"OUp, i/ and only i/ E acts cq¡stnllogmphically on liln. 
More genernlly, a group E is 11aid to act ¡wlynomial cn;stallographically if there exists 
a morphism -.p: E-+ P(IR") letting E act crystallographicall y on IR ... 

lt is obvious that any group acting affine crystallographically is a fortiori also 
acting polynomially crystallographically. The first real result which was obtained 
with respcct to polynomial crystal\ographic groups, was the fa.et this new class of 
groups also contains the groups acting almost crystallographically. 

Tbeorem 6.2 /20/ Let E be a group which is a finit ely generoted group and is 
vfrtually nilpotent o/ class c. Then E admits a polynomial crystallographic ar.tion 
r.p: E-+ P(~n) suc11 tl1at Ve E E , the degree o/ the map -.p(e) is bounded above by c. 
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This theorem implies tha.t this notion of crystallographic actions can been seen as 
a generalization of t he three other crystallographic actions seen thusfar. 

T he first goal is to achieve the fact that ali polycyclic-by-finite groups act po\y­
nomially crystallographic. l t ls natural to t ry induction on the Hirsch length of the 
polycyclic-by-finite group. 

First of ali note that a polycyclic-by-finite group is of Hirsch length O" if and only 
if this group is finite. Moreover , the trivial action of a finite group on a point (which 
is by convent ion the space IRº) is a polynomial crystallographic action. This means 
that the basis of our induct ive approach is settled . 

Now, assume that r is an infinite polycyclic-by-finite group. lt follows from The­
orem 4.4 t hat there exists a normal subgroup N ~ Z" (k > O) of r . By the induction 
hypot hesis we may assume that r / N admit s a polynomial crystallographic action 

p' r ¡N--> P(lllK) 

where K = h(r / N ) (t hus h(r ) = k + K ). On the other hand, we also know that 
there is an action of N on IR" , by pure translations, which is crystaJlographic. It is 
natural to wonder if these both actions cannot be combined into one action of r . By 
T heorem 4.5 we need to consider the space IRk+K . We will consider this space as 
being the direct sum JRk+K = IR" EF IRK, and t herefore any element of 1Rk+ K can be 
writtcn as a pair {x, y ), where x E IR" and y E JRK. 

D eflnition 6.3 PK,k(IRk+K ) is the subset of P(IR"+K ) consisting of those polynomial 
maps 

p ' 111•+K __, 111'+K ' (x , y) ..... (Ax + ,\(y) , h(y)), 

wliere x E IR" , y E IRK , A E GL{k, IR) , h E P(RK) and ). : JRK -+ IR"' is a polynomial 
map. 

We leave it to the rcader to verify that PK,i.(JRk+K ) is a subgroup of P( JRk+K). 

Using this group P(JR"+K) we were able to prove that any polycyclic-by-finite 
group admits a polynomial crystallographic action. 

T h eor em 6.4 {19} Let r be an infini te polycyclic-by-finite group with a normal sub­
group N ~ Z" am d sucli tl1at there is a polynomial crystallographic action o/ bounded 
degree 

p ' r /N--> P(lllK ). 

Then there exists also a polynomial crystallographic action o/ bounded degn~e of th r. 
/orm 

P: r-+ PK,i. (JR"+K ) 

such that the action o/ a given 'Y E r is given by 

p(>)(x , y) = (A,x + ,\7 (y), p(';)(y)). 

where i denotes the natural project ion of 'Y E r in f / N and where A,. E G L(k, IR) 
and Á-, : RK -+ 111:1t ü a polynom ial map. Moreovcr, thi$ action can be taken so thal. 
lht> gro111> N acts a.9 11111'€ tmm fotions ou the first k f actors o/ 11t'=+K . 
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This theorem can now be applied in an inductive ma.nner a.nd we rea.ch the fol­
lowing m~in existence rcsult . 

Theorem 6.5 ({19}, see also {15}) Any polycyclic-by-finite group r acts polynomial 
crystallogmphically on JRh(r). Moreover, one can suppose that this action is o/ bounded 
degree. 

This theorcm really shows that the groups P{IR") are certainly big cnough to 
catch all polycyclic- by-finite groups via the corresponding notion of crystallographic 
actions. We really want t hese groups to be the only ones appearing. This is, wc rcally 
want an analogue of the conjecture of Auslandcr to hold in the polynomia\ case. 

Conjecture 6.6 Generalized Auslander conjecture 
If p: r --t P (IR") is a crystallographic action, then r is polycyclic-by-finite. 

Wc ha.ve not reall y a due on how to attack this problem {it is even hardcr than the 
affine case, which is far from being solved). 

Maybe we ha.ve to restrict our attention to actions of bounded degree , although 
wc bclievc that this really makes no difference . 

Conjectur e 6.7 Let p: r --t P(IR"+K) be a polynomial crystallographic action. the11 
p{r) is o/ bounded degree. 

Sorne positive ev idence far both conjectures can be found in [16}. 
Note that a positive answer to t he gencralized Auslander conjecture would imply 

that we ha.ve discovered a geometrical contcxt to describe thc class of polycyclic-by­
finite groups. Moroover, it turns out that there is also a nicc gencralization of the 
second Bieberbach theorem 

Theorem 6.8 [6} Let E , E' \; P(IRn) be two polynomial crystallographic groups o/ 
bounded degree and suppose that JP : E --t E' is an isomorphism. 
TJ1en there exists an elemcnt a E P(IR") such that 

Note that this is t he first time that the conjugation occurs inside t he givcn group of 
homeomorphisms, which makcs it even more nice. We can conclude with : 

For a:ny polycycl ic-by-finite group r there exists, up to conjugation exactly 
one, represcntation p : r --t P{Rn) le tting r act crystallographically and 
which is of bounded degree. 

Togcther with a (hoped for) positive answer to the gencra1ized Auslandcr's conjccture 
t.his is actually a sharp geometrical dcscription of the notion of polycyclic-by-finite 
group. 
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