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Introduction

Although mathematics is often presented as consisting of a disjoint collection of sub-
sets, such as analysis, geometry, algebra, combinatorics, topology, . many inter-
esting results can only be achieved via a combination of techniques and results from
different fields.

In this survey paper, we present a research topic in which one tries to build a
bridge between a group theoretical topic on the one hand and a more geometrical or
topological component on the other hand. In fact, the main idea is not really new,
since group theory came into being as an abstraction of the notion of “symmetry”.

The main goal of the research can be described rather vaguely as follows:

Find a geometrical context to describe the class of polycyclic-by-finite groups.

The class of polycyelic-by-finite groups will be described more detailed below, but for
the moment one can think about all groups which are built up using only the infinite
cyclic group of integers Z (with the addition as operation) and finite groups.

To be able to follow the ideas developed in this paper, the reader should be familiar
with the basic concepts of group theory, such as “normal subgroup” and “quotient
subgroup”. It is an advantage (but not really neccesarry) to be acquainted with the
concept of a topological space and compact subsets of a topological space.

1 Group actions

By a geometrical contert as mentioned in the “main goal” above, we will in fact mean
an interesting type of group actions.
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Definition 1.1 Let G be a group. We say that the group G acts (on the left) on a
set X if a map
p:GxX > X

is given, which satisfies the follﬂ;ﬂiﬂg two conditions:
1. Yg,h € G, ¥z € X : (g, u(h, z)) = p(gh, z)
2.VreX:pu(l,z)=1x
where 1 stands for the neutral element of the group G. The map u is often omitted
from the notations and one writes g+ @ or 9z in stead of u(g,z). We will'use the later
notation, and so the conditions of a group action are written as follows:
I(Mg) = 9z and 'z = z.
Given a group action of a group G on a set X, any element g € G determines a map
Agi X = X & g Oz,
Any such map A, determines a permutation (i.e. one-to-one and onto map) of X.

In fact, if we denote the group of all permutations ofX by S(X), any group action
determines a morphism

NG = S(X) 5 g Ay

Conversely, any morphism A : G = S(X), determines a group action of G on X by
letting *x = A(g)(z).

One is often interested in actions for which A(G) lies in an interesting subgroup of
S(X). For example, if X is a topological space, one can consider the group H(X) of
homeomorphisms of X, if X is a smooth manifold, one can consider the group C*(X)
of smooth diffemorphisms of X, if X is a metric space, one looks for actions into the
group Isom(X) of isometries of X.

In this paper X will always be the set R” for some n. This is a well known set
which is a topological space, a smooth manifold and can be equipped with several
metrics to turn it into a metric space. The most common of these metrics is of course
the usual Euclidean metric.

Examples

1. Let G be any group and let H be a subgroup of G (e.g. one can take H = G).
Then there are two well known actions of H on G:

(a) The left multiplication or left translation action where
VYhe H YgeG: "g=h-g

(where /- g is just multiplication in G)
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(b) The conjugation action, defined by

Vhe H VgeG: "g=h-g-h'.

IS

. Let us specialise the above action to the situation where G is the group R" (the
group operation is of course addition) and H is the subgroup Z". It is obvious
that the conjugation action is trivial (as is always the case if G is abelian, or
more general if H is central), while for the left translation action we have that
whenever z € Z" and z # (0,0,...,0) and for any r € R" that *r = 2 + 7 # 1.

(3

. Let D, be the infinite dihedral group. This group is generated by two elements
a and b, where a is an element of infinite order and b is an element of order 2,
50 b* = 1. Moreover, the relation ba = a~'b holds. It follows that any element
of Du can be written uniquely as a product of the form a*b, where k € Z and
¢ € {0,1}. The group D, acts on the real line R as follows:

Yk E€Z: Vee {0,1), V€ R: *r = (=1)r + k.

4. Let ¢ : H — Aut(G) be a morphism of groups. This is a special type of actions
(Aut(@) is a special subset of §(G)). Having such an action, we can define a new
group, denoted by GxH (or G'x,H), whose elements are tuples (9.h) € G'x H
and where the product is given by (g1, h1)(g2, ha) = (g1o(hy)(g2). hyha). This
new product is called a semidirect product of G and H. For example, given any
group G, we can always form the semidirect product GxAut(G).

The left translation action of Z" on R™ and the action of D.. on R are typical examples
of what we mean by interesting types of actions. To be able to really describe what
is interesting, we need a few more notions.

Definition 1.2 Let G be a group acting on a set X. The stabilisor of an element
z € X 18 given as
G:={9g€G | = z}.

One can check that the stabilisor of any point is a subgroup of G In the example of
the action of D on R we have that the stabilisor of the point r = % is the subgroup
{1,ab}, while the stabilisor of the point » = 7 is the trivial subgroup {1}. If the
action of a group G on X is trivial (Y2 = z, Yg € G, Vz € X) then all stabilisors
are equal to the whole group G. Of course, this is really not the interesting case.
On the contrary, it is obvious that we will be interested in group actions with small
stabilisors and ideally with only trivial stabilisors. These kind of actions are called
free.

Definition 1.3 An action of a group G on a set X is said to be free if

VgeEG: VzeX: 'z=z=39=1.
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In fact, it will not be enough that under the action of a group G the points are moved
away from there original position by all but finitely many elements of G, but they
have to be moved away far enough. This idea is catched in the following notion:

Definition 1.4 Let X be a’lomlly compact topological space and A : G - H(X)
denote an action of G on X. Then, G is said to act properly discontinuously if for
any compact subset C C X, we have that

{g€ G| °CNC # 0} is finite.

When specialising to the situation where X = R”, we can say that an action is
properly discontinuous if and only if for any » € R, we have that the set {g €
G| 9D, N D, # 0}, where D, = {z € R | ||z|| < r} is the disk of radius r, is finite.

The action of Z* on R? by means of left translations is properly discontinuous.
Indeed, fix an r € R. It is obvious that an element (23, 2,) € Z* moves any point over
a distance /27 + z3. This implies that whenever /27 + 2 > 2r the image (332D,
will have nothing in common with the original disk D,.. As there are only finitely many
elements in Z? satisfying \/2 + 23 < 2r, the set {(z1,22) € Z2 | %13)D, N D, # 0}
is finite.

G,
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The action of Z? on R? is properly discontinuous
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The last concept to be introduced in this section on group actions is that of orbits
and orbit spaces.

Definition 1.5 Let G act on a set X as usual. The orbit of a point z is the set
G-z={%| g€G}.

We illustrate this again by means of the left translation action of Z* on R2.

‘Y
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Orbit of a point under the action of Z? on R?

A crucial object in this discussion is that of the orbit space of a group action.

Definition 1.6 Let G be a group acting on a set X. The set of all possible orbits is
called the orbit space and is denoted by G\ X

Thus ¢\X = {G-z | z € X}. Let us retrun to the example of Z* acting on the plane.
We claim that the orbit space can be identified with a torus. First of all note that for
any point (r1,72) € R?, there exists a (21,22) € Z2 such that (*122) (7, 75) belongs to
the unit square I x I, where I = [0,1].

(@, 52)
+

- (ruma)

(=10 (ry,75) € I x I and 2=V (sy,8,) € I x I.

Any orbit can be represented by a point in the unit square I x I. However, some
orbits are represented by 2 (or even 4) points. Indeed for any r € I, we have that
(r,0) and (r, 1) lie in the same orbit, and the same holds for (0,7) and (1,7). So if we
want to represent any orbit by exactly 1 point we have to indentify the two horizontal
edges of the square and also the two vertical edges. This is suggested in the picture

below. We leave it to the reader’s imagination to see that one eventually obtains a
torus. “
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4@ After gluing a-edges After gluing b-edges

Without going into detail, we want to stress the fact that the identification of
Z2\R2 with a two-dimensional torus is not merely an identification of sets, but is really
an identification of topological spaces. Indeed, the representatives of two different
orbits are close to each other on the torus if and only if the orbits themselves are
close (in the sense that there are two points, one from each orbit, which are close
to each other). To make the above observations rigourous, we should talk about the
quotient topology and this would lead us to far.

The fact that we obtain a compact orbit space will also be considered as relevant.
In our context of properly discontinuous actions on some space R™, the orbit space
will be compact if and only if there exists a real number r € R, such that every orbit
has at least one point inside the closed disc D,..

Now, we have introduced all the necessary concepts to describe what we mean by
an interesting geometrical context. This will in fact be the context of crystallographic
groups and actions.

Definition 1.7 An action X : G — H(R") of a group G on some space R" is said
to be crystallographic if and only if the action is properly discontinuous and the orbit
space g\ X is compact.

The image A(G) will be referred to as a crystallographic group.

The typical example of a crystallographic action is that of the left translation action
of Z™ on R™ for some integer n > 1, as we explained above for the case n = 2.
Also the action of Do, on the real line is a crystallographic action.

2 Euclidean crystallographic groups

The origin of the concept of a crystallographic group goes back to the study of genuine
crystals. A crystal consists of a collection of atoms (or molecules) which are arranged
in a very symmetric way. In fact, a crystal can be seen as a small pattern of atoms
which is repeated over and over in three directions. To study these crystals mathe-
matically, we will imaging that a crystal is infinite in size, so that this repetition of
the pattern continues infinitely in all three directions. As crystals (how small they
can seem) always consist of enormously many atoms, this idealisation is justified. To
study a crystal, it is of great importance to study its group of symmetries. A symme-
try of a crystal consists of a rigid motion of Euclidean 3-space mapping the crystal

Y —
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exactly onto itself. As a crystal is assumed to consist of a pattern of atoms which is
repeated infinitely many times in 3 independent directions, such a symmetry group
always has a subgroup consisting of pure translations, which is isomorphic to Z3. To
illustrate this, let us consider the crystal pattern of ordinary household salt (NaCl).
In the picture below, the generators of the group Z* are indicated by a, b and c.

>

- ® -

a Na

Of course, this crystal also allows many more symmetries, like rotations and reflec-
tions. The total group of isometries is called a Euclidean crystallographic group.
Often, the word Euclidean is not added to the terminology, but as we will treat
different kinds of crystallographic groups, we prefer to add this to our terminology.

Analogously, we can introduce the concept of a 2-dimensional Euclidean crystal-
lographic group, which is the total group of symmetries of a flat pattern which is
repeated infinitely many times in two independent directions of a plane. As an ex-
ample, we can think of a wallpaper patern. In fact two-dimensional crystallographic
groups are often referred to as wallpaper groups. It is obvious that such a wallpaper
group has a subgroup of translations which is isomorphic to Z2.

Mathematically, there is no reason to consider only dimensions 2 and 3, and there-
fore we can consider crystallographic groups in any dimension. We will first give the
general definition of a Euclid crystallographic group. Only after a little while, we
will be able to explain that this definition is really a generalization of the notion of a
group of isometries of a crystal.

The Euclidean crystallographic groups will be subgroups of the group of rigid
motions of R™. This group will be denoted by Isom(R") and is in fact a semidirect
product R"x0(n), where O(n) stands for the group of orthogonal n x n-matri
Note that Isom(R™) is a subgroup of the group Aff(R™) = R" xGL(n,R) of invertible
affine mappings. Any element of Aff(R™) can be written as a pair (a, A) consisting of
the translational part a and the linear part A. Note that there is an action of Aff(R")

Ve oo\
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and thus of any subgroup of Aff(R™) (and a fortiori of any subgroup of Isom(R"))
which is given by

¥(a, A) € Aff(R"), Vo € R": Az =q+ Az.

Definition 2.1 A subgroup E C Isom(R™) is said to be a Euclidean crystallographic
group, if and only if E is a discrete subgroup of Isom(R") and under the induced
action of E on R™, the quotient space g\R" is compact.

The fact that E is a discrete subgroup of Isom(R") is actually equivalent to the fact
that E acts properly discontinuouly on R™. So a group E C (R™) is a crystallographic
group if and only if the induced action is crystallographic (in the sense of the definition
given in the previous section).

Note that the fact that p\R™ is compact is equivalent to the existing of a bounded
subset C' of R™, such that the orbit of any element of R™ meets that subset C. In
fact, the subset C' can be chosen in such a way that if an orbit meets the subset C'
in more than one point, these points must lie on the boundary of C. We refer to the
example on page 85.

The structure of the Euclidean crystallographic groups is very well understood by
three famous theorems which are due to Bieberbach ([7],(8],[9], see also [12] and [30)).

Theorem 2.2 (First Bieberbach Theorem) Let E C Isom(R") be a Euclidean
crystallographic group and let T = ENR™ be its subgroup of pure translations.
Then T = Z" and T spans the whole vectorspace R™. Moreover E/T is finite.

Let us interpret this theorem in terms of the orbits of the action of E on R". As
E/T is finite, we can find a finite number of elements ey, ez,...,ex € E such that
any other element e € E can be written as a product of the form e = ~e;, for some
i€ {1,2,...k} and some v € T'.

Let C still denote the set introduced above. Then any element of R can be
written as

o= fes e V()

Therefore, we can consider D = €'CU °2CU---U °*C, which is still a bounded subset
of R". With this notation, we obtain that any element z of R™ can be written as
z = 7d, for some d € D. Otherwise stated, this says that R” can be built up from a
bounded piece which is being translated infinitely many times in n linear independent
directions.

This already shows that the mathematical concept of a cystallographic group can
be seens as a generalization of the 3-dimensional crystallographic groups we started
from.

The second Bieberbach theorem shows that algebraic equivalence of Euclidean
crystallographic groups is the same as geometrical equivalence.
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Theorem 2.3 (Second Bieberbach Theorem) Let E, E' C Isom(R") be two Eu-
clidean crystallographic groups and suppose that ¢ : E — E' is an isomorphism.
Then there exists an element € Aff(R™) such that

Ve€ E: p(e) =aea™".

The last theorem shows that there is only a limited number of Euclidean crystallo-
graphic groups in each dimension.

Theorem 2.4 (Third Bieberbach Theorem) In a given dimension n, there are,
up to isomorphism (or up to affine conjugation), only finitely many Euclidean crys-
tallographic groups.

The exact numbers are only known in dimensions < 6. For example, there are 17
2-dimensional Euclidean crystallographic groups and 219 3-dimensional Euclidean
crystallographic groups. It is remarkable, that for each of these 219 Euclidean crys-
tallographic groups, there exists a crystal having this specific group as its symmetry
group.

The first Bieberbach theorem shows that all Euclidean crystallographic groups E
contain a free abelian subgroup I' of finite index. Moreover, it is not hard to check
that this I' is maximal abelian in E. The converse is also true

Theorem 2.5 [31] Let E be a group containing a finitely generated free abelian sub-
group T’ of finite index which is mazimal abelian in E. Then there erists an injective

homomorphism ¢ : E — TIsom(R") such that p(E) is a Euclidean crystallographic
group.

This shows that class of Euclidean crystallographic groups has a nice algebraic de-
scription. Groups satisfying this algebraic description are sometimes called abstract
Euclidean crystallographic groups.

We now turn to the slightly more general setting of Euclidean crystallographic
actions.

Definition 2.6 A Euclidean crystallographic action of a group E on R™ consists of
a morphism ¢ : E — Isom(R") letting E act crystallographically on R™.

The fact that E acts crystallographically on R" is equivalent to the fact that the
kernel Ker(p) of ¢ is finite and that ¢(E) is a Euclidean crystallographic group.

As we will often work with groups containing a normal finite index subgroup
satisfying a ceratin group theoretic property, let us introduce the notion of groups
which are virtually P:

Definition 2.7 Let P denote a property of groups (e.g. P means abelian), then we
say that a group G is virtually P if G contains a normal subgroup of finite index which
is P.
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Now, given any finitely generated virtually abelian group E, there exists a unique
maximal finite normal subgroup H of E. One can show that E/H then contains
a free abelian subgroup of finite index which is maximal abelian, thus E/H is an
abstract Euclidean crystallographic group and we can find a monomorphism % :
E/H — Isom(R™), with (E/H) Euclidean crystallographic. If we then consider
the composition ¢ : E 2 E/H Bl Isom(R") we obtain that E admits a Euclidean
crystallographic action. The converse also holds, any group E admitting a Euclidean
crystallographic action has an abelian subgroup of finite index. We can conclude with
the following:

Euclid, 1 bi

Conclusion: The class of groups ad
action is exactly the class of finitely generaZed virtually abellan groups.
Moreover, given a group E, then there is, up to affine conjugation, only
one possible Euclidean crystallographic action of £

The uniqueness statement follows from the second Bieberbach theorem and from
the fact that one can show that for any Euclidean crystallographic action ¢ : E -
Isom(R™) the kernel of ¢ is exactly the unique maximal finite normal subgroup H of

The conclusion above shows that there is a nice geometric context describing the
class of virtually abelian groups. In the rest of the paper we will try to extend the
concept of Euclidean crystallographic groups to obtain geometric characterizations of
other classes of groups.

3 Almost crystallographic groups
To define Euclidean crystallographic groups, we needed the group Isom(R") =

R”xO(n) of isometries of R™. The group O(n) is a group of phisms
of the abelian group R™. As a first generalization, we will consider other groups,
together with a group of phisms. As we do not want to go to far

away from the original point of view, we will consider a class of groups which is very
close to being abelian and which are called nilpotent groups.

To be able to define nilpotent groups, we need the concept of commutators and
commutator subgroups.

Definition 3.1 Let G be a group.

If g,h € G, then the commutator of g and h equals [g,h] = g~*h~'gh.

If HK C G, then [H,K] is the group generated by all commutators [h, k], where
heH andk € K.

Note that a group G is abelian if and only if [G,G] is the trivial group.
This inspires us to define the lower central series of a group:

Definition 3.2 Let G be a group, then the lower central series of G is defined recur-
sively by 11(G) = G, and for all non-negative integers i: %+1(G) = [G,7:(G)).
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The lower central series is a decreasing series
G =m(G) 272(G) 2 713(G) 2 14(G) 2 -

Definition 3.3 A group G is said to be nilpotent if there exists an integer c for which
Ye+1(G) = 1. The smallest ¢ for which this happens is called the nilpotency class of
the group.

The abelian groups are precisely the nilpotent groups of class 1.

The nilpotent groups we need are the simply connected, connected nilpotent Lie
groups. These are groups N which are homeomorphic to a space R (and n is also the
dimension of the Lie group N) and which can be realized as a group of unitriangular
matrices (upper triangular matrices with 1’s on the diagonal). The easiest non-abelian
example of such a group is the Heisenberg group

1
o= 01 y | |lzyzeRrR
0 0 1

of all unitriangular 3 x 3-matrices. The group of continuous automorphisms of N,
which we denote by Aut(N) (although it is not the full group of autmorphisms of N
as an abstract group) has a natural topology (the compact-open topology). In
N is the abelian group R", Aut(R") = GL(n, R). Just like the group Aff(R") acts on
RR", we also have that the group NxAut(N), which we will denote by Aff(N), acts
on N in the following way:

Vm,n € N : Ya € Aut(N): ™%n =m-a(n).

Let C be any compact subgroup of Aut(N). Thus C plays the role of O(n). In fact,
given C, there exists a metric on N for which NxC C Isom(N). So any subgroup
of NxC acts as a group of isometries on N. We can now define the notion of an
almost-crystallographic group in.a completely analogous way to the original notion of
a Euclidean crystallographic group.

Definition 3.4 A subgroup E C NxC is said to be an almost crystallographic group,
if and only if the action of E is a discrete subgroup of NxC and under the induced
action of E on N, the quotient space p\N is compact.

Equivalently, we can say that an almost crystallographic group is a subgroup E C
NxC acting crystallographically on N. If N is of dimension n, we say that all
corresponding almost crystallographic groups are n-dimensional.

Each of the three Bieberbach Theorems have been generalized to the almost crys-
tallographic case (see [13] for more details)

Theorem 3.5 [3] Let E C NxC be an almost crystallographic group and let T =
EN N be its subgroup of “pure translations”.
Then T is a uniform lattice of N and E/T is finite.
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T being a uniform lattice of N means that T is a discrete subgroup of N, such that
r\ is compact. In other words, I' is acting crystallographically on N, thus I itself
is already an almost crystallographic group. It follows that I is finitely generated and
torsion free ([25], [28]).

Moreover, from the proof of this first Bieberbach-like theorem, it follows that I'
is a maximal nilpotent subgroup of E. The group I can be described completely in
algebraic terms, it is the unique normal and nilpotent subgroup which is also maxi-
mal nilpotent in E. (In most cases E has other maximal nilpotent groups, but these
are not normal in E). It follows that if E and E' are isomorphic almost crystallo-
graphic groups (possibly built using different nilpotent Lie groups), then also their
translation subgroups I' and I"" are isomorphic. It is a result due to Malcev ([25]),
that when there exists an isomorphism between uniform lattices of two connected
and simply connected nilpotent Lie groups, then there also exists an isomorphism
between the nilpotent Lie groups themselves. Therefore, in the investigation of iso-
morphisms between almost crystallographic groups, we can restrict our attention to
almost crystallographic groups built using the same nilpotent Lie group.

Theorem 3.6 ([24]) Let N be a ted and simply ted nil, Lie group,
and let C and C' be two compact subgroups of Aut(N). Assume that E C NxC
and E' C NxC' are two almost crystallographic groups and that ¢ : E — E' is an
isomorphism, then there exists an element a € Aff(N), such that

Ve€ E: yp(e) = aea™.

The generalization of the third Bieberbach theorem is not that straightforward. In-
deed, it is no longer true that there are only finitely many almost crystallographic
groups in each dimension.

Example: For any integer k > 0 let

i A
Ty = (D ik |z,y,2z€ Z
(ORSORSI!

Then each Ik is a uniform lattice in the three dimensional Heisenberg group H, and
thus each Iy is a three-di ional almost crystall hic group. The reader can
check that

T/[C, T = Z O Z & Zi.

which are pairwise non-isomorphic. It follows that all groups [y are pairwise non-
isomorphic, and hence there exist infinitely many almost crystallographic groups (built
on the same nilpotent Lie group) in dimension 3.

Hence, if we want to generalise the third Bieberbach theorem, we have to be
careful. We can look at the third Bieberbach theorem in a different way. In the
Euclidean space, fixing the dimension, say n, is the same as fixing the translational
subgroup (up to isomorphim) Z". We can therefore formulate the third Bieberbach
theorem as follows: given a group Z", there are only finitely many crystallographic
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groups, having this group as its subgroup of pure translations. It is this form of the

third Bieberbach theorem, which has been generalized to the almost crystallographic
case.

Theorem 3.7 [21] Let T be a torsion free, finitely generated nilpotent group, then
there are only finitely many almost crystallographic groups, having this group N as
its subgroup of pure translations.

The algebraic characterization also has a straightforward generalization

Theorem 3.8 ([24]) Let E be a group containing a finitely generated torsion free
nilpotent subgroup T' of finite index which is mazimal nilpotent in E. Then there
exists a simply connected, connected nilpotent Lie group N, a compact subgroup C C
Aut(N) and an injective homomorphism ¢ : E - NxC such that ¢(E) is an almost
crystallographic group.

Just as in the case of Euclidean crystallographic groups, we can now turn to the
of almost crystall hic actions.

Definition 3.9 An almost crystallographic action of a group E consists of a mor-
phism ¢ : E = NxC, where N is a connected and simply connected nilpotent Lie

group and C 1s a compact subgroup of Aut(N), letting E act crystallographically on
N.

Following the same reasoning as in the case of Euclidean crystallographic actions,
we come to the following

Conclusion: The class of groups admitting an almost crystallographic
action is exactly the class of finitely generated virtually nilpotent groups.
Moreover, given such a group E, then there is, up to conjugation in Aff(N),
only one possible almost crystallographic action of E

The uniqueness statement follows from the second Bieberbach Theorem and form
the fact that one can show that any for Euclidean crystallographic action ¢ : E —

Isom(R") the kernel of ¢ is exactly the unique maximal finite normal subgroup H of
E.

It follows that we have found a notion of crystallographic actions that catch exactly
the class of finitely generated virtually nilpotent groups.
4 Polycyclic-by-finite groups
Now that we have found a geometric context determining all finitely generated nilpotent-
by-finite groups, we move on to the next class of groups, which we try to describe

geometrically.

From an algebraic point of view, the next class to be investigated is the class of
polycyclic-by-finite groups. (General references for this section are [27] and [29]).
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Definition 4.1 Let T' be a group, then T is polycyclic if and only if T' admits a
descending series

[ =F2Ir,2l32-- 20 Clyy =1 (1)
such that T'iy1 < T and any quotient I';/Tiy1 is cyclic.

A group is said to be polycyclic-by-finite if it is virtually polycyclic (has a polycyclic
normal subgroup of finite index). The Hirsch length of a polycyclic group is defined as
the number of infinite cyclic quotients I';/T'i11 in the series (1) above. We will denote
the Hirsch length of I" by h(T'). It can be shown that h(T') is independent of the series
(1) in the definition above. Moreover, we can extend the definition of Hirsch length
to polycyclic-by-finite groups, by defining the Hirsch length of a polycyclic-by-finite
group, to be equal to the Hirsch length of a finite index polycyclic subgroup. Again,
this is independent of the chosen subgroup.

Example: Any finitely generated abelian group is polycyclic.
So, the class of polycyclic-by-finite groups contains the class of finitely generated
virtually abelian groups.

Proposition 4.2 Any finitely generated nilpotent group G is polycyclic.

Sketch of the proof: As G is nilpotent, we know that 7.41(G) = 1 for ¢ sufficiently
large. Consider the lower central series:

G =m(G) 2712(G) 2713(G) 2+ 27(G) 2 1e11(G) = 1.

For any i € {1,2,...,c}, we have that [y:G,7(G)] € 7%+1(G), and therefore
7(G)/7i+1(G) is an abelian group. One can show that all the groups 7:(G), and
50 also their quotients v;(G)/7i+1(G), are finitely generated. By refining the lower
central series, we find a series of subgroups of G, satisfying the fact that the quotient
of two successive terms in this series is a cyclic group. (u]

This proposition shows that the class of polycyclic-by-finite groups contains all
virtually nilpotent groups (i.e. all groups admitting an almost crystallographic action).
We are therefore considering a generalization of the previous classes of groups. On
the other hand, the definition shows that polycyclic-by-finite groups are built up from
cyclic groups and finite groups (both belonging to the class of virtually abelian groups)
and therefore the class of polycyclic-by-finite groups is still rather close to the classes
we considered thusfar.

The class of polycyclic-by-finite groups behaves better under algebraic construc-
tions than the two previous classes. This is the content of the following theorem.

Theorem 4.3 Let I’ be a group with a normal subgroup N. Then T is polyeyclic-by-
finite if and only if N and T'/N are polycyclic-by-finite.
Moreover, if T is polycyclic-by-finite, then h(T') = h(N) + h(T/N).
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The analoguous theorem for virtually nilpotent or virtually abelian groups does not
hold.

Another group theoretical result on polycyclic-by-finite groups is the following
theorem

Theorem 4.4 Let T' be an infinite polycyclic-by-finite group, then there exists an
integer k > 0, such that T has a normal subgroup N which is isomorphic to Z*.

This theorem will allow us to study polycyclic-by-finite groups by induction on the
Hirsch length. Indeed, if T' is of Hirsch length h(T), then the group N = Z* in the
theorem above is of Hirsch length k, and therefore, the quotient is of Hirsch length
h(I') = k (use theorem 4.3). In this way, we can, up to a certain level, reduce the
study of I' to the study of the free abelian group Z* (which we know very well) and
a polycyclic-by-finite group of smaller Hirsch length.

Finally there is a theorem which says that if we have given a polycyclic-by-finite
group I' then there is at most one dimension n such that T acts crystallographically
on R”.

Theorem 4.5 Let ¢ : I' = H(R"™) be a crystallographic action of a polycyclic-by-
finite group, then n = h(T).
Moreover, the kernel of ¢ equals the unique mazimal finite normal subgroup of T'.

5 Affine crystallographic groups

In going from the Euclidean crystallographic groups to the almost crystallographic
groups we changed the space (to be honest, we only changed the metric since a
connected and simply connected nilpotent Lie group is homeomorphic to R") and
considered isometries of this new space. We can also stick to the space R" and allow
more motions.

Definition 5.1 A subgroup E C Aff(R") is said to be an affine crystallographic
group, if and only if E acts crystallographically on R™.

More generally, a group E is said to act affine crystallographically if there exists a
morphism ¢ : E — Aff(R™) letting E act crystallographically on R™.

We remark that it is no longer true that a discrete subgroup of Aff(R™) automatically
acts properly discontinuously on R”.

As Isom(R™) C Aff(R"), all Euclidean crystallographic groups are also affine crys-
tallographic groups.

For the moment, there exist no nice generalizations of all of the three Bieberbach
theorems to the case of affine crystallographic groups.

A generalization of the first Bieberbach theorem should tell us something about the
algebraic structure of the affine crystallographic groups. In fact there are historically
two important questions which are each others converse.

S
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Milnor’s question (1977): ([26]) Is it true that any torsion free polycyclic-by-finite
group can be realized as an affine crystallographic group?

Auslander’s question (1964): ([4]) Is it true that any affine crystallographic group
is polycyclic-by-finite?

The fact that Milnor’s question was formulated only for torsion free groups is of minor
importance (Milnor was only interested in groups acting freely on R”, and this implies
that the group has no torsion).

Auslander did not really formulate the above as a question, but rather as a theo-
rem. Unfortunately, there is an irreparable gap in the alledged proof of this theorem.

If we would be able to give postive answers to both Milnor’s and Auslander’s
question (or slight generalizations of these questions), we would obtain that the class
of affine crystallographic groups is exactly the class of polycylic-by-finite groups and
we would have reached our goal. And this would be a very nice first Bieberbach
theorem in the case of affine crystallographic groups.

Unfortunately, we cannot not longer hope for a positive answer to Milnor’s ques-
tion, because of the following

Theorem 5.2 ([5]) There ezists a finitely generated torsion free nilpotent (and hence
polycyclic) group, which cannot be realised as an affine crystallographic group.

This theorem shows that the class of groups acting affine crystallographically does not
contain all polycyclic-by-finite groups, not even all virtually nilpotent groups. From
this point of view, the group Aff(R") is still not large enough. In fact, not too much is
known about groups admitting an affine crystallographic action ([11], [10], [18], [17],
[14], [22], ...).

On the other hand there is more hope that Auslander’s question might have a
positive answer. A postive answer is known up to dimension 6.

Theorem 5.3 ([2], [1]) Let n be a integer, with n < 6 and let E C Aff(R™) be an
affine crystallographic group, then E is a polycyclic-by-finite group.

This result gives us hope that the group Aff(R™) is not already too large, so that it
allows crystallographic actions from non polycyclic-by-finite groups. However, Aus-
lander’s question seems to be very hard and it is doubtful that it will be solved
completely in the near future.

On the contrary to the first Bieberbach theorem, there does exist a generalization
of the second Bieberbach theorem. To be able to formulate this second Bieberbach
theorem, we have to introduce a new group of motions of R™, called the group of
polynomial automorphisms of R™.

Definition 5.4 A map pu: R® = R™ is called a polynomial automorphism of R™ if u
is bijective and both p and p~' are expressed by polynomial expressions in the usual
coordinates of R".

The group of all polynomial automorphisms of R™ is denoted by P(R™).
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As any invertible affine map is polynomial of degree 1, Aff(R") C P(R"). Forn = 1,
we have that Aff(R) = P(R). For example although the map y : z — 2 is polynomial
and bijective, its iverse is not polynomial and therefore u ¢ P(R).

For n > 2 the group P(R™) is much bigger than Aff(R™). To illustrate this, look
at the map

uRE R (2,9) & (@ +p(Y),v)

where p(y) is any polynomial in the variable y. Then u is bijective, polynomial and its
inverse maps (z,y) to (z—p(y),y) and therefore ;2! is also polynomial. As this holds
for any polynomial p(y), this shows that P(R?) is infinite dimensional (to describe the

elements you need an infinite number of parameters), while Aff(R?) is clearly finite
dimensional.

We are now ready to formulate the generalization of the second Bieberbach theo-
rem to the situation of affine crystallographic groups.

Theorem 5.5 Let E,E' C Aff(R") be two polycyclic-by-finite and affine crystallo-
graphic groups and suppose that ¢ : E — E' is an isomorphism. Then there ezists an
element o« € P(R™) such that

Ve€ E: p(e) =aea’.

Finally, let us note that it is not clear anymore how a third Bieberbach theorem in the

setting of affine crystallographic groups should look like. (Although there are some
results in [23]).

6 Polynomial crystallographic groups

In the previous section, we learned about a new group of transformations of R",
namely the group P(R") of polynomial automorphisms of R”. On the other hand, we

also saw that the class of groups acting affine cystallographically does not contain all
polycyclic-by-finite groups.

1t is therefore natural to look at the class of groups acting via maps inside P(R™).
Definition 6.1 A subgroup E C P(R™) is said to be a polynomial crystallographic
group, if and only if E acts crystallographically on R™.

More generally, a group E is said to act polynomial crystallographically if there exists
a morphism ¢ : E = P(R"™) letting E act crystallographically on R™.

It is obvious that any group acting affine crystallographically is a fortiori also
acting polynomially crystallographically. The first real result which was obtained
with respect to polynomial crystallographic groups, was the fact this new class of
groups also contains the groups acting almost crystallographically.

Theorem 6.2 [20] Let E be a group which is a finitely generated group and is
virtually nilpotent of class c. Then E admits a polynomial crystallographic action
@ : E = P(R") such that Ve € E, the degree of the map @(e) is bounded above by c.
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This theorem implies that this notion of crystallographic actions can been seen as
a generalization of the three other crystallographic actions seen thusfar.

The first goal is to achieve the fact that all polycyclic-by-finite groups act poly-
nomially crystallographic. It is natural to try induction on the Hirsch length of the
polycyclic-by-finite group.

First of all note that a polycyclic-by-finite group is of Hirsch length 0 if and only
if this group is finite. Moreover, the trivial action of a finite group on a point (which
is by convention the space RC) is a polynomial crystallographic action. This means
that the basis of our inductive approach is settled.

Now, assume that T is an infinite polycyclic-by-finite group. It follows from The-
orem 4.4 that there exists a normal subgroup N = Z* (k > 0) of I'. By the induction
hypothesis we may assume that I'/N admits a polynomial crystallographic action

5:T/N - P(RK)
where K = h(T/N) (thus h(T') = k+ K). On the other hand, we also know that
there is an action of N on R¥, by pure translations, which is crystallographic. It is
natural to wonder if these both actions cannot be combined into one action of I'. By
Theorem 4.5 we need to consider the space R¥+K. We will consider this space as
being the direct sum R*tX = R¥ @ RX, and therefore any element of R¥+K can be
written as a pair (z,y), where z € R* and y € RX.
Definition 6.3 P x(RFK) is the subset of P(R*+K) consisting of those polynomial
maps

P RMK o RMEC (2,9) o (Az + A1), h(Y),

where z € R*, y € RX, A € GL(k,R), h € P(RX) and X : RX - R* is a polynomial
map.
We leave it to the reader to verify that Pk x(R**X) is a subgroup of P(R**X).

Using this group P(R**X) we were able to prove that any polycyclic-by-finite
group admits a polynomial crystallographic action.

Theorem 6.4 [19] Let T be an infinite polycyclic-by-finite group with a normal sub-
group N = Z* amd such that there is a polynomial crystallographic action of bounded
degree

p:T/N - P(R¥).
Then there ezists also a polynomial crystallographic action of bounded degree of the
form

p:T = Py i (R¥K)
such that the action of a given y € T is given by

P(N(,9) = (Ayz + My (), A7) (9))-

where 5 denotes the natural projection of v € I' in I'/N and where A, € GL(k,R)
and A, : RK — R* is a polynomial map. Moreover, this action can be taken so that
the group N acts as pure translations on the first k factors of R¥+X
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This theorem can now be applied in an inductive manner and we reach the fol-
lowing main existence result.

Theorem 6.5 ([19], see also [15]) Any polycyclic-by-finite group T acts polynomial
crystallographically on RMY). Moreover, one can suppose that this action is of bounded
degree.

This theorem really shows that the groups P(R") are certainly big enough to
catch all polycyclic-by-finite groups via the corresponding notion of crystallographic
actions. We really want these groups to be the only ones appearing. This is, we really
want an analogue of the conjecture of Auslander to hold in the polynomial case.

Conjecture 6.6 Generalized Auslander conjecture
If p: T = P(R™) is a crystallographic action, then I' is polycyclic-by-finite.

We have not really a clue on how to attack this problem (it is even harder than the
affine case, which is far from being solved).

Maybe we have to restrict our attention to actions of bounded degree, although
we believe that this really makes no difference.

Conjecture 6.7 Let p: I — P(R*K) be a polynomial crystallographic action, then
p(T') is of bounded degree.

Some positive evidence for both conjectures can be found in [16].

Note that a positive answer to the generalized Auslander conjecture would imply
that we have discovered a geometrical context to describe the class of polycyclic-by-
finite groups. Moreover, it turns out that there is also a nice generalization of the
second Bieberbach theorem

Theorem 6.8 [6] Let E,E' C P(R™) be two polynomial crystallographic groups of
bounded degree and suppose that ¢ : E — E' is an isomorphism.
Then there exists an element @ € P(R") such that

Ve€ E: o(e) = aea™.

Note that this is the first time that the conjugation occurs inside the given group of
homeomorphisms, which makes it even more nice. We can conclude with :

For any polycyclic-by-finite group I' there exists, up to conjugation exactly
one, representation p : I' - P(R") letting T act crystallographically and
which is of bounded degree.

Together with a (hoped for) positive answer to the generalized Auslander’s conjecture

this is actually a sharp geometrical description of the notion of polycyclic-by-finite
group.

Ve N
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