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ABSTRACT 
Th i-c rx¡}(l(l.itory t\Tt.idr contni1111 n iutroduttion to !_;(lmf' Malrtic m<'I hod-. of 

lm ngt• rN.·011-.trunio11 fr om d11t 11 of its proje<:'t1ons like int~a.15 O\'f'r lmt"!!, pln111·~ 
1•tr. 

1 lntrod uction 

On(' liumlrf'(I yea.rs ago ll ermanu Minkowsk i [l ] has srnru'<I lh<' problt•111: w n·w11 
!'! lrut't. 1111 t'Vl'U ÍUOCtiOn j 0 11 lhc Mphcrc S2 ÍíOlll know\edgr UÍ llllC"gtal~ 

Al/ (C) = ~ (/d.• 
2 le 

( 1) 

ovt•r big t.'lrclCHC ll rr<' d.-. is 1 hC' lh11•ar pl1•uwnL m thl' Eudidt'a.n .. phrrr S 2. Minkowski 
h1L"l provNI the umqurncs,c.; tlwon•m: vanishing of a.JI mlrgral~ oí an C'V('n 1·ont i1111011 !'! 
Íllll(' f iou f 1mpli~ f ;;;. O. (lt. i!i uot, of COUnM'. trul' r r odd ÍUnC'ti()llS, !'l irWt' a ll th1· 

mtt•gr:ll~ \·atu~h .) Aft('r Mmkowski's d<'nt h. Paul F\mk. l2J. ltll6 h;\.<1 fou nd 1111 l'Xplidt 
rt•cnnstn1C'1on forniuln íur J frt1 r11 cinta of inlcgral s ( 1). F\Jnk took 1111• 1tv••rnr.i.1· <1f 
iuk~rnJ .'I ( 1} \lrlllh re:.pt'Cl lO IUI 11.C'lious of tití' rotnt1on group ~ l Oll 8 1 ('omiitlt•rinK 
Al f a .. 'J a funnnm on thf' split•rt• , 1111 ahowt'tl tlmt t l1" awr<\gt> uf .\f J is n·lat11cl tu 1111' 
11wraw' uf j by thc Ahd trausfortn A rt'<'Onstruct1on uf/ ••"-" donl' by nwt'r!linu 
of thr Al}('I "a..r1 .. form Tl 11 t1 r.i.iws, i11 moilt'rn lC'rms. n.n tn\1.•f"'iOn for tlit• opnntor 
Al (Mmkov. t· l-\mk 1ra11sform) . .lohnnn Radon 11tud1M lhl" "lllnlar prohll'rn ínr En 
rl id1••u1 pl.u11· C knrouraK<'d, 1tppnr1•11 lly, by W OJn.. .. rhk('}: to n't·onstrur t 1t fu1ir111111 
f frnm knO"'·lrdl«' of mtt•grnls 

11/ (L) - l /d.• (2) 
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for a11 lines L e E. In 1917 Radon (see (51) found a. &0\ution by app\ying F\mk't 
method. These papera did not get a development since many years and were alm05:1 
forgotten 1 (in spite of the term "Integralgeometrie11 survived since then). The focua 
of interest (and mode) in analysis moved then to the side o{ more abstra.cl thcories 

The situation did not changed until the last three decades when the interesl to 

reconstruction problems like Minkowski's and Radon's ones grew t.remendously stim­
ulate.d by the spectrum of new high-tech methods of image reconstruction. The.t 
are first at ali various kinds of tomography: X-ray, gamma, NMR, electron, positron, 
ultrasound, thermoacoustic, seismic tomography, synthetic radar imaging Md othen 

The objective of this paper is to give an introduction to the current theory of inle­
gral transforma like (1), (2). We focus mostly on analytic methods of reconst.ruclion 
The problema arising in adaptation of analytic methods to proccssing of real numeric 
da t a are serious enough for special discussions. 

On the other hand, the beauty and richness of the theory make it. very allracth·t' 
for pure mathematicians. 

This article is not a regular survey of the topic; the reference list conl.ains thl' 
items that can help the reader to enter the subject. 

2 Radon transform and inversion 

2 .1 Basic formulae 

Let E be an Euclidean space with the interior product (z, y) Hz · y. We write thfo 
Fourier integra l for a density <P = fdV E L 1(E) in the form 

(3) 

where dV is the Euclidean volume element. The Fourier image T == F(fdV) iJ a 
function on t he dual Euclidean space E• (which is identified sometimes with E.) 

Let n = dim E; denote by Án- l (E) the set of ali affine hyperplanes in E. Tukt a 
hyperplane H , choose a unit orthogonal vector w to H and denote by p thc distant'I' 
from the origin to H in the direction w, i.e. w · x = p is t he equation of 11 = 
H (w, p). At t he same time -w · x =-p is another equation of t he same hypcrplane 
H (-w, - p) = H (w,p) . Thus wc have two-fold covering 5n- I x R--t An- i(E) whrrt 
5n- i is the unit sphere in E. Thc t.opological space A,,_1(E) is homeomorphic lO 

the projective space of dimension n without onc point. This point corrcsponds tu tlwi 
improper hyperplanc in the projective closure of E . Let dS be Lhe surface clemcnl on 
submanifolds in E . T hc Radon t.ransform of an integrable function fin E is dcñned 
as follows 

Rf(w, p) = { fdS 
jH(w.p) 

1Tlw reconstrucLion íor muloo o f F\mk 11.Ud Rlldon have a ltracted no inl t:reál and alnH)lil íorgotlea 
hi•fure thi• 1o mography era carne. In t he llln pagel! obiluary writH..'1'l by PF\mk in 19~ to Radon ~ 

d ..-1uh then:! i.s no coni111entary on tho: pa¡xir o í 1917. 
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Thi11 integ!al is defincd for any w and fo r 1llmosL ali p E R. 

Propositioo 1 For an arbitrar¡¡ f E L1 (E) the equation holtli 

F,_,, (!) (ow) = F,_,0 Rf(w,p) 

T hiH facL is called "slicc Lhcorem". Thc invcrsion oí t.he Radon Lransform cnn 
be lm plcmenuxl by invcrting of Lhc Fouricr Lransform: I = r.-.;_$ (F,, " llf(w , JJ))' 
whcre Lhc i1wcrse Fouricr trnnsform looks si milar LO (3): 

F'(~)(x) = /, exp(2nox · ~)~(OdV ' .. 
wherc dV " is t hc volumc dcnsity in Eº Simplifying thc composition of two Fou rier 
trnm1forms yields tho fo llow in g rnconstruction fo rmula.e: 

Theorem 2 For 0 11 arb it.mry fun ctio11 J in E Juc/1 thal D' J E L1 (E} for li l S: n 
tliat !jlJL'i3fiu the aboue conditions a11d 9 :::::: RJ we hove 

<-1)'"-"1' r 
f(x) = 2(2•)"- ' i s·· - • Ha; - ' g(w.w x)dS (5) 

/01· cuen n ond 

(6) 

for odd n. 

Hcrc H slands fa r t.he Hilbcrt. transform with respcct to p-variablc. For nn 1lrhi­
Lrary Lipschiti. function a E D2(1R) t.hc Hilbon. operaLor is d fincd by metms of t ho 
principie value inlcgration 

. l . 1 a(p - q)dq Ha(p) ::: - hm ---
11' i-+O l•I>( q 

It can be exwndcd LO rut opcrnlor in L'l such Lhat \IH \I = l. ln fa.et. , t.hc cqul\Lion11 (5) 
and l6) ho\d íor a ls.rgcr ch~1:1 of ori ginals f : iL is sufficicnl tbat. 1.hc right. sido i1:1 wcl\ 
dcfined . ln lhc en.se n ::: 3 t.he cqunt.ion (6} Lurns Lo 

f(x) =-~ f. g"(w ,w · z ) dS 
8·1f S'1 

Note thai t.he formulae (6) n.rc local. i.c. for reconslruclion o f Lhc vtlluc of f in u 
poinl z ..,"C only necd lO know Lhc valucs of 8~- 1 Rf for hypc.rplanes H (w , r>) t.hrough 

thi! point z . Th formu lae (5) are nonlocol sincc wc need to know ntn-11¡ fo r ali 
hyp •rplanes. 
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2.2 Radon's formulae 

For n even we do the substitution p = w · x + q in {:>) and t.ake in accounl that 
g<n- l)(w,p) = a;-1g(w,p) is an odd function in p 

(2n•)" f(x) = lim r ! gl• -ll(w,w·x+q)dqdw 
r.....,ofsn-1 fqf?:r q 

= !im/ r gln- ll (w,W. X +q) - gln- l)(w, - W X+ q) dq 

}q>c q 

The limit exists if g(n-l l(w,p) is a Lipschitz function with respc<:t to p. Now v.·e 
cha nge the order of integration and write the right side as follows 

¡ oo '!J. [ r gln- ll(w,W · X + q)dw -! gl•- ll(w, - W · X+ q)dwl lo q Js .. - 1 

Make the substitution w i--t -w in the second integral and see that it givcs the same 
quantity as the first one. Therefore we obtain 

(1) 

where 

F (q) = rs ·l- 1[ f g(w . X+ q,w)dw 

is t he normalized back projection and JSn- 1¡ = 27r"/ 2 /r(n/ 2) is the area of lhc unit 
sphere. 

3 Factorable mappings 

Consider a more general sit uation. Let X be a Riemannian manifold of dimension 
n with t he met ric tensor g and Y = { Y} be a family of closcd submanifolds of X 
of dimension k , O < k $ n . Take a continuous funct ion j : X -+ C that dccrcases 
sufficiently fast at infinity. Define the family of integrals 

MJ (Y) = /,, j dV(Y) , Y E Y (8) 

where dV {Y) is t he volumc clcment on Y induccd by the mct ric g . \Ve call thc funct1on 
/1/ JI Y gencraliU'd Minkowski-Funk- B.ad on or mtegral m ear1 t ransform oí J. For an 
Eucliclean spacc X a.nd t hc fami ly oí affi nc subspnccs, it coincides with (2). For lhr 
¡>rojecli\•e plru1c X = P2 iu1d the íamily oí projcct.ivc liues Lhis transform coincid 
with (!). lnd<'Cd. an evcn funrtio11 f 011 thc sphere defines a íunction on the quotienl 
5 2/Z, - P2 . wh<'re thc group Z2 idcntifies t h(' o¡>positc poinL1 in the sp/wrr. Tlw 
n1110111caJ mctnc in the proj (•«t.i vt• plunr is inhcritrcl frorn thc Eurhdcan m('tr1c 011 tlw 
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llphurP $ 2 C f:3 IUld LhC int.cgrnl O\fcr O projccLivc linc cquuhi Oll~ haff of l.lw int,ogrnJ 
over Lhc t:orr~pondíng big circlc. 

Por t.hcsc t.wo s¡>ecio..1 Cft8C.'1 wc know t.hc c.xplicit invcrsion íormuhw for tlie intcgrnl 
1.rnm1fnr111 M . Thcsc for11111llu:: c1m In: t.riunrlntcd t.o ru1od1cr g mNncal si11111tiillu by 
111mu11'1 of Ll1c follo""•ing simple ar¡¡;mncntll: 

DoRnition. Lcl <J1 : X 1 -~ X 2 ben diffoom rphlsm of RicmtuunM in1mifold11 (i t 
ncud uot to b • nn i:!Om ·t.ry) , )' = {l' } ben iHnooLh family of submaniíolds uf X 1. Wt• 
say tlmt •I> i!f (infinitcsimnlly) foctornblc wit.h rcs pccl to llus íamiJy if for llll arbitrnry 
Y Y aud nrbitrnry point -r E l ' t,hc cqunLion hold11 for tite J n.cobiN1 of <I• : 

dV"'(•l• (r.),•l•(l' )) . , 
d11¡ q(x, Y) = J(r) ./(l ) (9) 

whorc d\'i,¡ (.r , Z ) 1s thc llic1111u1ninu volumc clcmcuL of n submnnifold Z e X, , i = 1, 2 
nL a poi111 .r. Thc.· funct.ions j : X - > IR and ./ : Y ...¡. R dc¡>c.nd on 4, only ; wc rnll 
thill fmu·t.iorn; 1ocobum farf.(Jr.~ nf t.hc mapping cl1. A11 applicnu ou of 1his propurLy is 
obvio u:;: t.he p roblcm o f i11wn1ion of thc intcgrnl opcralor ¡\/ for thc family 1!1 ( Y) = 
{ cl1 (y} ' l'" e Y"} i:- ft.'<lllCCd lo t.lrnt for Lhc fiunily y by 

M [/[ (•l• ( Y))= /, frfllm = .l(Y) { •l•.(f)j(•)dl'111 = J(l') MW(f) j[(l' ) 
·~O' I }y 

wluiri• f is a foncLion on X 2 nnd <11• (/) (x) :::: f ( '11 (.T)) . lf thf't1' is 1\11 i11wrsiln1 
np11rat.11r J for i'fl )' .wf· duf111ú Lbc i11versit111 opcrMor far M iel> ( )') as fnl lows: J = 
/ (JM ¡c11· (/)JI) . T hc rcduct.io n cJU1 be rnvortcd sincc t he nm¡>ping (1,- 1 i!! 11lsn fnc­
t.nrahlt•. Mor \ 'tr. thc tmr1s1t.ivit11 propcrt y holds: if a diffoomorphism "'1 : X2 ~ X3 
is fnrt.ornblc for 1hc faunily 11• (Y) und a llicuuumi:m spn X1. thcn 1hc c(J111positior1 
tlt•I• : X 1 ...¡. X3 is fa.ctomblc for )' wit.h thc jucobinn foctors 

J++ (r ) = Í• (•1• (x)) j.1• (x), ./••(Y) = .1+ ( <1> (l' )JJ+ p ·) 

Exumple l. Any conf rnml umpping 111 posscSSc.5 the prope.rt)' (9) for thc fnmily )' k 

nf ali k-di111CJ1:;:i nN subnmnifolds wiLh thc jru:obinn foctors J = ( tti · (9~) /fl• )(·/ 'J.,.} = 
1, whOrP g1,, llrC: Lhc motric tummrs i11 X1 .2· 
Exomple 2. l.A't D bt• Lhc unit. diÑc in Eudidum1 planc. Thc aut morphiÑm o f D 

f!.,ivuu by e (:) = 2: ( 1 + 1•12 ) - I ill f11ctomhlr íor thr frumly of MM"'ll' l líl'.ll A e D t.hnl, 

an• o rthogonn.I to thc- ca rclc áo. Thu jacobian fo tors ru-r 

1 - 1•1' 2 (1 + ''>'" Jc(z) = ---, , ./c (JI ) = ----
(1 + lzl') ' 

whm1· ,. L:I &lu.· r~.chus of /\ll /U'(' A. T hc imng e (J1) i!t thl' chord i11 /) 1.Jmt h·11m1 t lw 

IUT A. 
Exnm plc 3 . L<-1 E bt lUI 8111·tld1•n11 SplU'(' or dimcnsion n , d lM" tlH' surfoc·1· l"lt•tn1•11L 

111 E. Ti\kt' ah pf'OJ('('ll\•t· el1.1i111n• i:: = & u JI .._ whcrn JI,= P ( E') is lhc il11pro1wr 
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projective hyperplane, and consider a project.ive uansformt.t.ion L of t . 1l defin'9 
a diffeomorphism L : E\L- 1 (H00) -+ E\L(H00). Thla mapping is fact.orable for 
the variety A,1; of k~dimensional affine subspaces of E and arbitrary k. To show th11 
property, we take the Euclidean space E = IR+ E o{ d.imension n + 1 with coordmaltf; 
x 0 , ... , Xn and consider the iSÚmetrical embedding e : E -+ E ,e(%) = (1,:i). 1'akt a 
linear automorphism L ofE that generates L, i.e. L = pLe wbere p : E\ lzo =O) -t E 
is the central projection. Let A>: E --t!R. be the coordinate pro}ection. 

Proposition 3 We have for an arbitrary A E A1r 

where a0 , .. ,ak are arbitrary points in E that span A. 

The last condition means that A = { x = L t¡ai , L t, = 1}. For arbitrary ¡>0inlll 

b0 , ... , b' E E the number [b0 , ... , b'J ~O is defined by 

(b", ... ,b'] 2 = L JB;,. ... ,;.12 (10) 
O= io<i1<·· <i~ 

where B ;0 , •. .,i. means the minar of the matrix 8 formed by t.he rows bº .... b~ w1th 
t he eolumns numbers io, ... , ii,, . 

3 .1 R econstruction from data of are means 

Le t E+ be a half plane in a.:n Euclidean plane, say E+ = {(x,y) , y > O} , and l' bt 
t he fam ily of circle ares in E+ that are orthogonal to 8E+. Ali orthogonal strl\ighl 
liues a.re a lso inclurled in the family Y. The a.re mean transform 

MJ(A)= /,tds 
is of interest in severa! applied problems; ds is the length clement. The problem (lf 
inversion of M in t.h is form is a complete data problem since for any poinl p E E~ 
and any tangent vector t in x t here exists at least. one curve A E Y t.hrough p that is 

orthogona.I to t. This eondition is no satisfied in practice, si:nce the integral me.u\J for 
very long ares are not avai lable. We eonsider the sa.me integral lransform for limil.Cd 
data. Take the unit dise D in E and consider t he half disc D+ = E+ n D. ~t Yo bt 
tite subset of Y consisting of ares A e D. Thc problcm is to reconstruct a funcuon 
/in E wilh compact support supp f C D+ from t he limited a.re mean transfonn M f 
P'o· This is a problem with incom¡Jlete dnta since for any poml x E D-. l11e nonnal 
vcc;LOr t to arc.s A E l ' o ru11s ovcr two ver tical angles of diapa.90n 4' < w. In fact. •r 
havC' f> = 1t - o wherc o is t hc a ugular lcngth of t.hc circle through T ami thC' ¡H>111t~ 

± 1 ThC' diapa.'K>n is a.J 111o!lt. complete for 1' closc lo tite diametrr of D + :uul ill w•ry· 
:-1111\JI fur p cl06C' LO thC' ci rd•• OD. 
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3.2 The limited a.re m ean proble m 

Thc invcrsion preblem for thc poncil Y iz:t rcduccd to thc Rndon lt1Ulsform in pla uc 
in thc fo llowing throo s t.cpfl. Choosc coordlrll\t.ctt (:i:.y) in E in such a wny t.h1H E+ = 
{y > O}, a11d D is thc u nit. di,c wit.h ccnt.er in t.hc o rigin . 
S t c p l . Introduce t.he complcx coordi nntc z = :i: + 1y in O and apply thc Lr11nsform 

: 1 = F (z) :: : ~ ~ 

T lrn iumgc of E+ is t.hc unit, dh1c DK ll.n<I t.hc imngo o f O~ = E+ n D ifl 1.Jw r ight. 
lu\\fwdisc. Any are A E Y is t.nuu1formccl t.o thc circular are F (A) in DK t.lrnt. Í!I 

ort.hogona.1 to the boundary. T his t.runsform is c:onformnl hence fac1-0rablc. 
Stc p 2 . Ap ply t.hu mnpping o f E xnm plc 2 w 1 = G(: 1). l t mnps DK ont•O t.hc \dcnt.it: 
diHC DIJ nnd the right ha lf o f DK to thc rigl1t ha lf o f Do . An.)' ar F {A) ia t.rnnt1fon 11l 'l l 
to t ite chord with t.hc sama cnds. 
S t e p 3 . Appl y t hc projcct.ivc t.rnnaform 

1 u, 
(u ,11) = P{u 1,v¡) u =- , u=-

u 1 u 1 

T hc vcrLicnl dirunet.cr oí Dn ru nps to thc improper projecth-e line and t.hc uni L drt! t> 
iH Lrnnsformed to t.h c hy¡>t"rho la u? + 1 = uí. T hc imngc o í the disc Do i!I (:q11 nl t.n 
t hc HCl W = {u?+ 1 < u~}; !,he inmgc of Lho righL hnlf is equaJ LO the ri ght co ru 11•c t.1 ~d 
componcnt U o f IV . T ho imngtJ of a cho rd L C O o is n d1ord in 1 he set U wiLh 
thu undl:I in the hypcrhola . By th o tramli t.ivi ty propr r ty, this map ping i!I factornb l1· 
too. 'füke the composi tio11 Q = PG F; it fo llows from thc prcvious fo rmul ac t.Jmt i1, i11 
fac;tornblc with 1hc jncobinn fact.ors 

1+(~) ' o -b 
• 471 

1( :) = ( l _ ¡,¡')" J (A) = 

wlicrc a. b are thc nds o f A. T ltis iruplics rhe fo rm uln 

{ ;- ' f d3 = J (A) J [d.< 
j Q(A) A. 

wlu:rc dl! " ¡_._ th~ EnclidcA.n lino olcrnc11 t in U. Thc su pport of tlw fu nct.lon !J is a 
compnrt $Uhs<>t of U 1uid curve Q (A) is 011 nrbitrnry fimte chord o í thc hyporboh\ 
au. Lct iti be Lhe Mglc of thc uor mo.1 to Q (il); V.1! ht\\ 1 1 < 'lf/4. Vice V('rHH , nu 
llrbltmry li.ne m U wh nor mnl has ung lc in t his din¡>a..."On. ¡_,. R finiLC chord . 

Cor o l.l n.r)' " For jurl(' fl(nt ,• 1 witli CQlll JXICI $UJIJ10r1 supp J e D+ l/i c lim itrrl (ll'r 

m1·t111 iruru./otTTI 1.t rcd11cctl ID llw R111lon tmn:sjonn 1md1 lhc lnnrtcd "11ylc diuw1.<to 11 

lif,¡ < </'l 
Thr: R&don \ransfon n wi t.h incom plc.tc dntn en.u be IO\"Crled by i11 tcrpola l.io11 o f 

uutirc íunctlon.s of Pnl ywWi oncr dn.'8 , soo Soc.6, 
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Remark. There are t hree classical models of t he Lobachewski (hyperbolic) plane: 
(i) Poicare's model in thc half-plane E+ with t he metric y - 2ds2 , goodesics are the 

ares A E A ; 

(ii) Klein 's model DK in t he disk D with the metric ( 1 - lzl2 ) -
2 ds2; geodesics 

are ares orthogonal to OD, and 
(iii) Beltrami 's model D o in D the metric is 

g ~ ( 1 - 1z12r' [(! - y2 ) dx2 + 2xydxdy + (1 - x 2 ) dy2 ) 

the geodesics are chords. 
Thc mappings F: E+-+ DK, G: DK-+ Da are isometries between thesc models. 

These mappings are not, of course, isometries for Euclidean metrics in E+ and D, 
but they are factorable for the families of hyperbolic geodesics. 

3.3 More exa mples 

E xarnp le 4 . Let. S0 be the unit sphere in an Euclidean spacc E with the centcr 
in the origin, E\ {O} -+ So be the central projection. Take an arbitrary sphcrc S in 
E\ {O}. The projection defines t he mapping 1f : S -t S0 . It is factorable for the family 
oí k-spheres F n S where F is an arbitrary k + 1-subspace oí E. Thc vol u me rclation 
is 

dV (x, F n S) lxl"' 
dV (xo, F n So) = lx. (x - rn rp , Xo = >(x) (1 1) 

where { is the center oí S, rp is t he radius oí the sphere F n S. Thc jacobian factors 
are j (x) = Jx · (x - {)1- J lxl'H1 , J (F) = rp. If t he origin is inside S, the dominator 
x (x - {) does not vanish on S; otherwisc it vanishcs in each point whcre a ray from 
the origin is t angent to S. 
Example 5 . We can take a hyperplane H e E\ {O} instead of the sphere S in 
Example 4. The central projection 1f : H -+ So is again factorable: 

dV (x,Fn H ) 

dV (xo, F n So) 

lxJ"+t 
dist(F n H, O) ' " 0 = ~(x) ( 12) 

This follows from ( 11) if we apply ( 11) and move { to infinity along the line orthogonal 
to H atx. 

3.4 Spaces of const a nt curvature 

There are threc types of complete simply connected Iliemannian manifolds of constant 
sectional curvature: ellipt ic, Euclidean and hyperbolic. An Euclidean space has zero 
curvaturc. Any straight line is a geodesic ancl vice versa. A elliptic spacc of dimcnsio11 
1t is t hc real projectivc spacc !P" = S" /Z2 with t he metric inhcr ited from thc unit 
sphcre S" C E where E is an Euclidean space of dimension n + 1. The sectional 
t:urvaturc of thc elliptic spacc i::; cqual evcrywhcrc to l. For a subspacc F C E of 
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dirncnsion 2 the intcrscct.ion FnS" is a big circle; its image in the elliptic space IP'" is 
a d OSC<I goodesic curve¡. For an arbitrary subspace F the manifold Y = F n S" /Z2 

is n projcctivc subspncc. l t is a totally geodesic manifold of lP" since any two points 
of Y can be conncctcd by a gcodesic ¡ e Y. Vice versa, any closed totally geodesic 
submanifold of Lhe projectivc space is cqual a projective subspace. 

A hypcrbolic spacc of dimcnsion n can be constructed in a similar way. Choose 
Euclidcan coordinatcs x0 ,x1 , ... ,x,. in E and consider the hyperboloid Q C E given 
by 

X~ =X~+ ... + X~+ l , Xo > Ü 

This is onc fold of the two-fold quadratic hypcrsurfacc. Consider the standard Eu· 
cl iclcan rnctric in E by 1ncans of the coordinate system x0 , x 1 , .. . , x,, and takc the 
induccd mct.ric in Q. This is a hyperbolic spacc H of sectional curvature - l. lt is 
obviously closcd ami homcomorph ic to a ball. For any subspace F e E of dimension 
2 thc intcrscction F n Q is a closed geodesic curve; for an arbitrary F it is a totally 
gcodcsic subman ifolcl of f/ . 

Alongsidc of Q, wc consider the Euclidean submanifold E = {xo = 1} and hemi· 
sphcrc S+ = {x; lxl = 1,xo > O} as a model of thc ellipt.ic space IP'". The central 
projcction 11' in E \ {O} defines the diffeomorphisms 

(13) 

Wc ha.ve 11' (S+) = E and the set 'TfE (Q) is an open hall of radius l. By the afore­
said , the intcrscct ion of these submanifolds wit h a subspace F is a totally g(~<lcs ir. 
t) llhmanifold in thc clliptic, Euclidean and hyperbolic space, rcspcctively, sce Fig. l. 

Exrunple 6. The mappings {13} are factorable, narncly for an arbitrary subspace 
F e E or dimension k + 1 WC havc 

<Jlfs (y, F n S+) = (1 + d' (F))' ' ' (1 + lxl')-'"'"' (14) 
r1v. (x, F n E) 

dVH(y, F n Q) = (1 - d' (F))' ' ' (1-1x1' ) -1'+1)/2 (15) 
dVE( x, F nE) 

whcre 11' (11) = x is a point in E wherc the volume forms are comparcd and d(F) = 
tlist6 (F n E, O). Note that {14) is equivalcnt to {ll }. 

3.5 Geodesic transforms 

Lct P" be a real projcctivc spacc of dimcnsion n , G (P") be the manifold of projective 
subspaces l' e P" (which are images of hig spheres C e S"). The integral mean 
transfom1 M given by (8) rcstrictcd to G (P") is called (generalized) Minkowski­
Punk lransform . The particu lar casen = 2 the transform (8) coincides with (1). 
since lhc function f can be consideras an cvcn function in 5 2 and ( 1) coincides with 
M 1f (C/~) for any big cirde C. Por an Eucl idcan spacc E and for a hypcrbolic space 
ll and consider t hc integral mean transform (8) 011 the manifold of totally geodesic 
11111.nifolds of di1nension k. in ali t hrcc cases, (8) is called geodesic mean transform. The 
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goodesic mean transform in Euclidean space coincides with the affine mean transform; 
it is ca11ed Radon transform for affine subspaces of dimension k = n - l and X-ray 
transfonn for k = 1. 

Cor o llary 5 The geodesic me.an tmnsform in hyperbolic space H is equivalent to the 
affine m ean transform in the unit ball of Euclidean space E of the same dimension. 
The affine mean transform in E is reduced to the Minkowski-Funk transfonn in elliptic 
space P". 

The invcrse reduction does not hold: t he Minkowski-F\ink transform is reduced to 
t he affinc mean transform only for functions f in S+ that vanish sufficiently fast on 
the equator, more precise, the following condition is necessary: f (y) = o (y~+l) as 
y E S+.Yo -t 0. 

3.6 Deduction of inversion formula for hyperbolic space 

The Funk formula reads for an even function f on 5 2 : 

f(y ) = _ .!_ 1.• I' dF_(y , q) + .!_Mf(yº ) 
7r 0 smq 7r 

where 

F(y, q) = -21 1 Mf(C)ds 
7r d(C,y)=q 

(16) 

is the integral mean of M f(C) over the family of the big circles whose angular distancc 
to the point y E 5 2 is equal q and yº is the geodcsic whose distance to y is equal 7r /2. 
The first term of (16) is thought ~a improper Stieltjes integral. 

Let g be an arbitrary continuous function in E such t hat g =o (lxr2 ) at infinity. 

Define the function / (y) : (1 + lxl2 )g(x) on 5+ where ?r(y) = x. It tcnds to zcro as 
y approach the equator of S+ ; we set f = O on the equator and extend it to 52 as an 
even function. By (14) we have for an arbitrary big circle C 

Msf(C) = { fdVs = {! + d2 (L))'i ' l. gdVE 
Je w(CJ 

(17) 

= (I + d'(L))' i' MEg(L) 

where L = 7r (C) is a straight line in E 2 and ME is the affine integral t ransform in E. 
lf we know M eg, we.can calculate M sf a.nd apply (16) for the point x = 0, y0 = (I ,O) 
t aking in account that thc second term vanishes: 

/(y) = _ .!_ 1.•/2 dF_(y , q) 
7r 0 smq 

(18) 

where 

F (y,q) = _!_ { Ms/b)d</> 
211" l ds fT.11)= q 
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Thc dist.ance beLwoon >. and Lhe origin in E is equal Lanq ií ds(1', y0 ) = q. Thcrefore 
1 + cfl(L) = cos- 2 q and by (17) the right side is equal to 

_ l_ { MEg(L)~ = G(x,tan q) 
21rCOSQ 'd(L)= trrnq COSq 

where 
G(x,r): _.!._ { M8 g(L) d4> 

271" 'd(L)=r 
(19) 

Subst ituLe this equation to ( 18) and change the variable q to r = tan q: 

/ (y)= _.!_ 1 00 d(sec qG(y,r)) 
71" 0 smq 

Wc havc 
d(secqG(y, r)) = '!Q + rdG + Gdr = '!Q + d(rG) 

smq r r 

The lasL term va.nishes after integration over the ray (O,oo) since the product rG 
vanishes at the cnds. The equation rG = o (r- 1 ) for r --+ oo follows from g = 
o (lx1-2 ) . This yields 

g(O) = /(y) =_ .!_ 100 dG (O, r ) 
• o r 

Moving thc origin to an arbitrary point x E E , yields 

(20) 

This is Radon 's formula, see Sec.2.2. 
The sarne arguments applied to the projection 7r : Q --+ E give by means oí (15) 

the inversion formula for the hyperbolic plane 

g(x) =_.!_ l oo dG(x , q) 
71" 0 smhq 

(21) 

where Gis aga.in defincd by (19) and q is the hyperbolic distance. 
Comparing the formulae (16),(20) and (2 1) , we see the obvious similarity. The 

form oí thc dominators: r, sin r,sinh r shows direct impact of Euclidean, elliptical and 
hyperbolic gcomctrics, respectively. 

3. 7 lnversion of Minkowski-Funk transform 

\Ve writc an invcrsion formula for the Minkwoski-F\mk t ransform M,._1 restricted 
to manifold oí projectivc subspaces Y C !?" of dimension n - l. Let !?"º be the 
dual projecLive spacc; a points z E P" º defines the polar zº which is the orthogonal 
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projective subspaces of !P"' of dimcnsion n - l. Let. g be a Borcl function on IP" ; t hc 
function .M,,- 1g(zº ) is dcfincd in P". We use the model S"/Z2 for the clliptic spacc 
and its dual. Take the point y = (1, 0) E S" C E"+ 1 and consider thc family of 
spheres {z; (z, y) = cos4>}, O :S 4> :S: tr/ 2 in S" . The average of M.,- 1g overa sphcre 

By (14) G (s , 4>) = secc/¡ F (y , tan </i) where F (r} is the spherical mean of data ME/ (L) , 

/ = ( l + lxl2) - "12 g over the sphere {d (L) = r = tan 4>}. By (7) thc reconstruction 
is given by 

¡"''( a )"-1 d~ = c., cos~-8~cos~ G (s,~)~ 
o '+' sm t/> 

where n is even and c., = l /2"- 2 (- n-f112 r (n/2). 

4 G eneral integra l m ean transform 

Consider t he general integral mean operator (8) for a family Y of closed submanifolds 
Y e X . The rcconstruction problem is to find thc function / from data of M JI Y. 
More complicated versions of (8) arise in applica t ions. A weight function w = w (x, Y) 
(known or unknown) can appear in the integral. Also thc " image" f might be uot a 
scalar funct.ion but a section of a tensor bund le, like different ial fonn symmetric or 
skew symmetric. The corresponding theories are far from to be exhausted. 

We focus on the simplest case where J is a scalar function and w = 1. A closed 
analytic reconstruction formula is only known in few cases. lf t here is no such a 
formula one can try to apply numerical methods. An actua1 numerical algorithm 
contains usually a regularization procedurc and gives a convergent result whichevcr 
t he input data are. To ensurc rcliability of thc result , t he family Y (i.e. thc acquisition 
geometry) should be big enough to guarantce existence of a cont inuous rcconstruction 
operator R : M JI Y i-+ J . T he condition of cont inuity can be specified for a family 
Y that has structure of a smooth manifold . T he mapping R is then supposcd to be 
continuous asan opera.tor from the spacc of smooth functions J with compact support 
to a space of smooth functions in Y. 

4.1 Completeness condit ion 

Thc complctcness condition gives an answer to this qucstion. 
De Hnitio n. A family Y of submanifolds of X is called complete in a subsct. 

e e X if for an arbitrary X E e ancl arbitrary covcctor l ª" X there exists y E y such 
that :r. E Y and t is orthogo11al to Y. This condition is almost ncccssary: if thcrc cxist8 
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11. continuous reconstruction o¡>erator R for the class of smooth functions f supported 
by a compact set K in X, then the family Y is complete in the interior of the set K. 
O n thc ot.her hand, it can shown that if a manifold Y is complete in K , thcn therc 
cx ists , at lcast, a continuous parametrix for R. Here we use t he term " parametrix" 
in a scnse similar to that in the theory of pseudodifferent ia1 operators. In fact , the 
rt..><:onst.ruction is rcduced to inversiou of a pseudodifferential operator by means of 
t.hc back projcction operator ; 

M1g (x) = ! g(Y)da 
Y(:r) 

y is a funct.ion on )' , Y(z) is the family of manifolds Y E Y t hat contai n a point x and 
do is a mea.surc 011 this family. The completeness condition means that the opcrator 
M 1M is of ell iptic typc. 

4.2 R econstruction from incomplete data 

In thc most of practica\ situations the set of available projcctious is incomp\ete. We 
discuss a spccial ca.se of this resu lt in more details . 

Limited diapason. The hyperplane means of f are known for hyperplanes 
wh08C angle ¡jJ with z 1-axes are in the diapaso11 rf> ~a < rr / 2. lf the function f has 
compacl support wc can use interpolation methods for band-limited functions. One 
of them is 

Propos ition 6 A function </>E L2 (Ill) such tl1at supp J> e l- 1/2, I /2J can be rncon­
tJ trn cted 111 (-ó, ó) for arbitrar¡¡ ó > O as follows 

~(<) = cxp (•v'6' - <')Ir sin ~I~ ~(>.)d>. (22) 

w/1m r = (- '-6] u 16, oc), Re v'6' - (2 > o. 
Suppose Lhat supp f is contained in the strip Jxil :S 1/2. We have Fp _,, pRf = 

i (~) . hencc we know the Fouricr transform j(~) in the domain r = {lel :S dl~1 I}, e = 
({2, ... , {n) ,d = ta.no (a spherical cone around the x1-axes). Fix {1-coordinates and 
consider t he fonction ¡JJ(() = j((,e). It is band-limited a.nd known for l<I ;::: d\fl; 
thc equalion {22) can be apply for ó = d le'\ ln thc general case we replacc f by 
f r(:t1 , r' ) = j (rx 1 , x') for an appropriate r and take ó = drlfl. 

'l'h incompletc data of hypcrplanc mcans of j can not dominate the energy L2-

norm of j . A wcaker continuity property holds which is described by the following 
rcsult. Consider thc quadratic function q(~) = {? - d- 1 1{12 • It is positive in t hc 
domrun r and ncgative in the complcmcntary set. The energy in t he "audible" zonc 
r can be expresscd in t.crms of data by means of 

Proposition 7 We liauc 
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For n even the derivative 81 .. - l l/2 is a pscudodifferential opera to r with symbol 
(2np)(n- t l/:2 . lt the "silent" zone !R"\f wc have only a weak estimatc 

Corollary 8 For any fuw ;.tion f E L2(E) with supporl. in the strip Jx1 - al $ r /2 the 
inequality holds 

J 1 cxp (-m/qffi) i (Ol'd{ ,, J li Wl'd{ 
q < O q~O 

(23) 

This estimate can not be much improved. 
Exterior problem: to reconstruct a function J in Euclidean plane E, from 

knowledge of line integrals for lines f_, e E\B where B is tbe unit ball. Therc is 
no simple reconstruction formula. Thc solution given by A.Cormack is based on the 
decomposition off and Mif in harmonics. 

No inversion problem with incomplcte data can be solved by means of a explicit 
formula or by a stable numerica\ algorithm. Sometimes it can be solvcd by more 
complicated methods like infinite functional series solving of integral equat ion of thc 
first kind or analytical continuat ion. Important. question arises: which meaning has 
t.he solution in a practical situation. A partial answer can be done in gcometrical 
terms: 

Let. X be the space where an unknown original function f is defined. Supposc 
that a compact set K e X is known such t.hat supp f e K . We wish to re<:onstruct 
f from the mean transform M f defined for a family Y of submanifolds of X. lf no 
more a priori informat ion is accessible, t he energy of unknown original f is assumcd 
to be spread uniformly over the cotangent bundle T• (K ). Take a manifold l' E Y 
and consider the conormal bundle N• (Y n K) C T• (K ) of this curve. Denote by 
N"( Y) the union of sets N•(Y n K ). This is a conic subbundle of T" (K ). We cal\ this 
subbundle the audible zone. It can be shown that t.he part. of the energy oí t hc original 
f inside the audible zone can be reasonably est.imated by a suit.able norm of M f . Thc 
complement.ary part of the energy which is contained in t.he silent zone T"(K)\ N" (Y) 
can be estimated wit.h a weight. This weight is a function in t he cot.angent. bundle 
t.hat. exponent.ially decreases, when the point moves away from the audible zonc. The 
inequalit.y {23) is an example of an estimate of this kind. An exponential factor oí 
t.his kind is indispensable. 

5 Affine integral transform 

Let E be an Euclidean space of dimension n . Far any integer k , O < k < n we 
consider t he manifold A1.: (E) of ali affine subspaces A e E . It. is an algebraic manifold 
of dimension (k + l)(n - k). Denote by M,, the rcst.riction of the integral means 
t ransform to A,, (E). Supposc we know thc integral M1J (A) for ali k-affine ::iubspace 
A . H k = n - 1 we can rccovcr t.hc íunct.iou f by formulae of Scc.2. For an arbit rnry 
k < n a funct.ion f can be rccom1t.ructed írom knowledge of M¡,f in t.he rna11ifold 
At(E). Take an arbitra.ry subspace G E AH¡(E). This is again an Eudidcan spacc 
and a..ny hypcrplanc H in Gis an elemf'nt of A1t: (E ). Thercfore we can r(..'<:Oustruct t hc 
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íunction flG by mea.ns oí inversion oí the R.adon transfo rm in G. Hence we know the 
íunct i n f in E since the subspacc G oí dimension k + l is arbitrary. 
Thcre are, oí course, many other meLhods oí rcconstruct ion sincc the dat a of M 1,J 
is red1mda11t fo r t hc case k < n - 1 sincc (k + l )(n - k) > n . Thc cru;e k = 1 
which is imporlnnt , in particu lar , fo r t hc X-ray inversion algorit hms in t hrce-space. 
T hc e<1unt.ion (2'1 ) shows the rate of redundance oí the data A1 (E} fo r n = 3. For 
practica! applicat ions is ini¡>orta.nt to rcceive an reconstruction from as small sampling 
of integral data as possiblc. 

To 1:1.void redundancc we state the reconstructiou problem as follows: 
Problem: to find a reconstruction fo rmula oran algori thm M1 J IE H J fo r functious 
f supported by a compact set K C E far a submani fo ld E C A 1 (E ) of dimension 
n = dim E. We call such a manifold pencil. 'fhc data of line integrals M1 f(L) , L E E 
has no dimcnsiou rcdundancy. We necd, of course, assume that the pencil E satisfies 
thc complcteness condition for K . 

5.1 Line transform and John equation 

We consider for simplicity the case n = 3, k = 1. We have dim A¡( E) = 4, hencc 
g = M1f is a function of 4 variable8 in any chart of t he manifo ld A1 (E} . lt is far 
from to be arbitrary. Take the chart F that contains ali straight lines L that are not 
para11cl t.o the plane x 3 = O in E. Takc a point (y1, y2 ,0) E L; !et u= (v 1 , v2 , 1) be a 
vccLOr paralle.I LO L¡ the numbers {y1 , y2 , u1 , v2 ) are coordinates of L in the chart F. 
T his coordinates paramcterizc t he line mean 

P ropos ilioo 9 Tlw junction 9 satisfies tl1e equation 

(24 ) 

wherc h(y¡, l/l , V¡, V<!) = (t + v? + 1J~ rl /2 9(y¡,y2, V ¡ , V<!). 

P ROOF. The \ine L is given by parametric equations x1 = y, + tvi. x2 = 
y2 + h~ , :i:3 = t and the Euclidcan line density in L is equal to ds = Jl + v ~ + vi dt 
consequently 

Thcrefore 
8' J. l oo 8' J 

OyiBv, = _ ( l - t )t 8x 18, 2(y1 + tv1,Y2+ tv,, t) 1lt 

We gel the samc integral fo rmula fo r tlw function 82 h/ 8 v18Y2 - O 
Thc cqualion {24) is called t he John ec¡uation . lt can be wri ttcn in thc form 

a2 11 a2 11 a2 11 a2 11 

a.~2 + 8v2 - 8t2 - &u2 = o 



60 Victor P.Palamodov 

after a linear coordinate change. This equation, called ultrahyperbolic, does belong 
neither to elliptic nor to hyperbolic type. The Cauchy problem is ill poscd. There 
a re, howcver, well posed characteristic boundary problems that relate to inversion 
formulae for the ray transform, 

5.2 Characteristic Cauchy problem 

We can consider the reconstruction problem as a kind of boundary va1ue problem for 
t he J ohn equation (24) with data on the hypersurface (pencil) E e A1 (E3). lf we 
can solve t his equation by means of this boundary data, we obtain M fon A1 (E) an<l 
apply reconstruction off by meaos of above Corollary. We know frorn the theory of 
partial differential equations that one need to fix two functions on a non characterislic 
hypersurface S, for example, glS and 8.,gjS where 8., means the norma1 to S derivativc 
to ensure local uniqueness of solution of the Cauchy problem. In the reconstruction 
problem only the function / /'E is known. This implies the necessary condit ion: thc 
pencil 'E is characteristic at each point. This condition turns to be sufficient under 
additional assumptions. To clarify the idea, Jet us consider the general second orclcr 
ec¡uation 

a(y, D)u = O (25) 

in an open set U in a n Euclidean space E". 

Proposition 10 Let K be a compact in U with smooth boundary f, x E K \ f muí 
F be a solution to a· F = ó., defined in a neighborhood o/ K such that the restri ctio11 
F., jr is well defined as distribution on r . A n arbitrary solution u can be reconstrocted 
in the point X from data u/S provided s e r is a characteristic hypersur/ace /or a 
and supp F.,jr @ S . 

PROOF. Takc a smooth function <P in U such that <P ~ O in K , <P < O in U\ K 
and IV<PI = 1 on r . The function () = e (<P) is the indica tor function of IR+ whcrc 
0 (t ) = 1 for t ~ O and 9 (t) = O otherwise. Write 

u (x ) = J, (Ou) = fw a· (F ) OudV, = l Fa (Ou) dV, 

By thc Leibniz formula 

a (y, D ) (Ou ) = Oa (y , D) u + L O;a1;' (y, D ) u + ~ L 0;,;aU,j) (y , D) u 
j I J 

where (), = 8,8, a< i l (x , D) is the diffcrcntial opcrator with symbol a f•) (x ,() 
80 (:r:,{) /8{,;the opcrator ai.J is dcfi ned s imilarly. Thc tirst term vanishes in virtuc 
oí (25), t.he second and thc third tcrms are supported in r . Wc havc (), = <f>; ó (<P) 
wherc ó is t.hc dclta-íunct.ion, hencc, thc sccond tcrm is equal to 6 (</>) <f>,·af•I (y , D) u. 
Writc a = a2 + a 1 + ao whcrc aJ is a homogcncous diffcre.ntiaJ opcrator oí ordcr j. 
T hen </J,c1l•l (y. D) = r +c11 (<J¡) , wherc r = <P, (y)~,¡ (y , D) is a vector fic/d. Wr l1aw 
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T (¡/)) = ¡/;;~· > (u, 'il¡/;) = 2a2 (y, 'il</J) = O in S, since S is cbaracteristic. This means 
t.hat. T is ta ngcnt to S. We have further 

O;,; = 4>;4>;ó' (4>) + 4>; ,, ó (4>) , 

~ L º· Jª¡; ,j ) (y, D) = ª' (y, '14>) ó' (4>) +ª'(y, D) (4>) ó (4>) 

Thc finit tcrm vauishcs in S siucea2 (y, 'il¡JJ) = O. This yiclds Fa (8u) = (r +o) uFc5 (4') 
whcrc o :::::: a1 (¡Jl) + a2 (<P). The product Fc5 (<P) is well defined as a distribution on r 
by thc condition which yields 

ti (x) = l (-r+o)uFc5(¡JJ)dV~ = l (T+o)u FdS 

whcrc dS = dV/ <t¡JJ is t.hc Euclidean surface area element. in r . Thc integral de­
pcnds only on ulS, sincc S cont.uius a neighborhood of t.he support. of t he distribution 
n~ o 

6 Reconstruction from ray integrals 

Now wc st.udy thc case dim E = 3 in more details. There are severa\ cases whcrc 
thcre is well-defincd rcconstruction formula.e: 
l. Choose a planc JI C E and consider the pencil EH of straight. lincs that are parallel 
to 11 . Tuke an arbit.rary plaue 1/' that is parallel t.o H . Any line L e H' bclougs to 
Eu hcncc we know the line transform M1 f(L ) = f¿ fds. Apply thc inversion of the 
Roclon t ransform in H' a.nd rcconi;truct the function f : H' -+ C for each plane H 1 

t.hat is parallcl to H . 
2. Takc a curve C e P( E) such that any plane H e E has non-empty intersection 
wit.h C at infi nity. Considcr the pcncil E(C) of lines L that meet C at infinity. There 
cxists a rcconstruction method for this pcncil. lndeed, take a pla.ne H ; lct e E C be a 
polnt whcre /1 mcet.s C. Any line L e H that contains the point e at. infinity belongs 
E(C) . Such Unes L are parallcl onc t.o another and makes a foliation of H. Let T C H 
be a line tha.t is orthogonal to L. By F\ibini's theorem 

/, fdS = /, dtf, fds 
lf T L 

where dt is the Euclidean densit.y in T. Thus we know the Radon transform Md for 
any plan e 11 in E and can rccoustruct the function f . 
3. Lct r be a curve in E and E(r ) be t.hc pencil of rays wit h verticcs in r . A function 
f with compact support can be reconst.ructed if t.hc completeness condition (Sec.5.6) 
is satis.fi cd. Thc 1>cncil E (r) is charactcristic. 

Ole: tluit t.hc J>Cncil Eu as in case 1 is equal to the pencil E (C) where e = 
H n P (E) is fUl impropcr linc. The class 2 can be reduced to the cla.ss 31 sincc 
t.hc cu rve C can be transport.cd to E by a suitable projective transformation P. Thc 
mapping P transforms lincs to lincs, hcncc, P (E (C)) = E {P (C)). By Proposi tiou 3 
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a reconstruction formula for E (C) can be translated LO a reconstruction formula for 
E ( P ( C)) a.nd vice versa. 
4 . Let S be a surfacc in E and E(S) be the pencil of raye with vertices in S that. are 
tangent to S. l t is also characteristic. A reconstruction of a function f wit.h compact 
support is possible under the complcteness condition. Class 3 is, in a scnsc, contained 
in the closure of class 4, sec Remark below. 

6 .1 Rays with ve rticis on a curve 

Tbeorem 11 [Grangeat,Finch} Let r be a CUf'tle in an Euclidean space E 3 and the 
plane H (w , p) = {x;w ·x = p} meets r in a point y. Then /01· an arbitmry f E C 1(E) 
such the set supp f n H is compact we have 

(26) 

where L(q, w):::: {x =y+ t(v + qw) , t E IR+}, vis a unit vector in H (w, O), and d<jJ 
is the orea element on a unit circle in H (w, O). 

PROOF. We have 

M,f(L(q,v)) = (1 + q')'1' f f(y + t(v + qw))dt 

since (1 + q2 ) 112 = lv + qwl. Take the derivative 

~ (! + q2f' 1' M,f(L(q, v)) = f g(y + t(v + qw))tdt 

where g = w · V/. lntegrating against the element d4> and setting q = O we gct 

j ~[(l + q2 ) - ' 1' M,f(L(q , v))Jl,=od~(v) = j ~M,f(L(q, v))l,=od~(v) 

= j j w · 'Jf(y + t!.)tdtdv = l w · VfdS = ~M0_,¡ (H) 

since dS = tdtd</> is the Euclidean surface clement in H . O 
Thus t.he quantity &pM2 f (H ) is reconst.ruct.ed from data of ray integrals off for 

t.he fru.nily of rays starting from a point. y E H n r that. are close t.o H . lf thc conditious 
of this Theorem are satisfied for any hyperplane H in E that meets supp f , we know 
the derivative 8pM2 f (f/ ) for ali H . Remind that the inversion formula for the Raclo11 
t.ransform in t.he casen = 3 depends only on second derivat.ive of 8'f,M2 f . Therefore 
the information we have is sufficient to apply t his formula and recover the function f. 

6.2 Rays tangent to a surface 

Let. C be a curve in E3 ; a functiou s : C -+ IR is called a natural 1>aramctcr if the 
difforent ial ds is cqual t hc Euclidean clcnsit.y, i.c. ifla(z )-.!(y)J for any points x , y E C 
is cqual thc lf'ng1.h t he are of C beLwecn thcse points. 
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Theorem 12 {Denisjuk-Palamodov] Let S be a closed sur/ace in E , H be aplane in 
E trnMuersal to S. Then for an arbitrory f E C 1 (E) such the set supp f n H is 
compact m H\S we haTJe 

/) 11 ( ' 8 8 ( V •W )) -8 M, f (ll ) = - -1 ,- -
1

-8 - -¡¡- -1 ,--1 M,f(L(s,q))l,=ods 
p z e x,v, w q us x,v,w 

(27) 

wl1ert :r: = X (s ) is t.he equation o/ the cunie e = s n H , s is a natural pammeter, and 
,;. = lx', x", w] iJ tlie cw"!Jatun~ o/ C; L(s,q) is the roy gi11en by 

x = x (s) + t [x'(s) + q(x'(s) x v )], t E 111+ 

cmtl 11 = 11(x (11)) is a continuous normal vector field to S. We assume that the set 
{- l (supp /) is compact for tlle mavping 

(' C X Dl-> JI, ((s,t) = x(s) + tx'(s) 

and defin e 

z(x) "° L sgn <(s) 
:i:=H•,t) 

The m.unbcr z doe.s not depend on x E K ; we assume that z 'f: O. 

Thc vector x'(s) is orthogonal to v(x( s)) hence thc line Lis tangent to the curve 
C at thc point x(s) a.nd belongs to the penci l E(S). If t he conditions of this theorem 
are satisfied fo r any plane H we can calculate the first derivative of M 2 /. Then by 
means of the inversion formula for the R.adon transform we recover f. 

PROOF. We ha ve 

J f'(O · x(s) tdt = J f,J(()dt = O (28) 

since the function JJL(s, O) has compact support. Therefore 

f, M,j(L(s,O)) = j f.!({)dt = J /'(0 · (x'(s) + tx"(s))dt 

= J /'(<) · x"(s) tdt = 'J /'({) · w x x'(s) tdt (29) 

since z 11 = KW x x' . Farther 

~M,f(L(s,q))l,=o = J /' (0 ·x'(s) x vtdt 

The vecL-Orsw, x' x w, x' xv areorthogonal to x' hencex' x v = [x1 , 11,w]w+ v·w x1 xw. 
This yields 

, a J , 11·w a lx', v,w] o;¡A1,J(L(s, q))lo=O = < (/ (O ,w) tdt + lx '. v,wJ a,M,f(L(s, O)) 
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lntegrate both sides over H n S against the density d1t: 

/ -[, K 1: M,/(L(s,O))ds+/ -1 ~·w J:M,f(L(s,O))ds 
:r: , v,w vq x , v ,w v s 

= j K j !'(O · w tdtds = f, j K J f({) tdtds (30) 

Consider t he system of coordinates s, t ,p :::: w · x in a neighborhood of C. We have 
fJx/ fJ( t ,s,p) :::: det (x' ,x1 + tx" ,w) :::: K.t . T hc Euclidean volurneelement in H is equal 
dV/ dp, hence 8h/ 8 (s ,t) = Kt. Thercfore 

j K j f({) tdtds = z l fdS = z M,j(H ) 

hence the right side of {30) is equal to zfJ,,Md(H ) and 

iJ ¡ < iJ ¡ v · w iJ z 0 M,j(H )= -1-, - 1.,,-M,/(L(s, O))ds + -1-, - 1-8 M,J(L(s ,O))ds 
vp x , v,w vq x , v,w s 

Integrating by parts in the second term, we get (27). O 
Remark. T heorem (11 ) in the casen :::: 3 is a limiting caseof t he abovc result.. Re­

ally, take an arbitrary compact smooth curve r C V and consider its e-neighborhood 
r € for some E> O. If t he number e is sufficiently small, the boundary 5€ of r t: is a 
smooth surfacc. Take the pencil E(St: ) of t angent lines and apply formula (27). lt is 
easy to see that this pencil tends to t he pencil E(r) as E -¡. O and formula (27) tends 
to (26). 

One of t he reasons this theorem is rest ricted to t he case n :::: 3 is t.ha t in general 
the affine transfonn MJ: fulfils a complicatcd system of differential equat ions. The 
argurnents of Sec.5 based on a characteristic Cauchy problem can not be applied, at 
least , no straightforward a.dapta tion is known. ln Sec.8 we obtain a reconstruction 
mcthod for the case k :::: n - 2 by mcans of duality argument.. lt is plausible that 
t here are more goomctrically defined of pencils of affine spaces adrnitting an cxplicit 
reconstruct ion formula. 

6 .3 R econstruction from plan e collimated m easurements 

Let V' :::: / dV be a density of sources of a radiation in t he Euclidean spacc E3 witb 
campa.et support.. For a plane P C E and a point a E P the radiation from sources 
in P measured by a detector in position a, is given by thc integral 

l (a , P ;<p) "' f /l (x)dSI 
}p X - U 

where dS is t.hc arca elcmcnt in P. The problcm is to recons truct. / from knowle<lgc 
of data oí int.egrals I (a, P ). Suppose that t.hcsc intcgrals are known for a ll sources a 
on a smoot.h cun ·e r iu E. T hc complctcnL'SS condition looks as follows: any plane P 
t.hat lfl('('LS i;upp\O contaim:i a point a E r . Denote by K the convex hull of supp \(). 
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Theorem 13 Lct r be a llmooth curve in E\K that ful.fil$ the cnmpletenelJS condition 
/or supp¡/I. The fun ction f can be reconstructed from the knowledge of I1(a, P; ip) /or 
1mcli a E f and P 3 a. 

PROOF. Takc a point a E r and choose an Euclidean coordiuate system x,y,z 
centered nt a such that x > O in supp t.p. Apply the projective t ransformatic;m 

1 y z <= -, ry= -, (= -
X X X 

By Proposition 3 dxdy = € - 3 ~d17, hence 

dxdy d<dry 

¡;=a¡ = "y'! + ry' + (' 

Chooscanumber( andta.ketheplaneP~() = {z = (x}. WehavcdS = (c0s·0~- 1 dxdy, 
whcre O is thc anglc betwcen P and the x-a.:Xis, and 

/, fdxdy J Jd< dry 
cosO I(a,P,;<p) = -

1 
-

1 
= '2 ~ 

P.:, p-a <, yl+172+(2 
(3[ ) 

=!~ (f~ f(x,ryx ,(x)dx) ~ 
-oo Ío 1+172 + (2 

Denote 

(32) 
R(ry,().: {y= ryx,z = (x, x >O } 

whcre ds is the Euclidean density in llhe ray R. The equation (31) is equi·valent t0 

cosO[.(a,P,;<p) = j Lf(ry ,()dry , 

An arbit.rary plane t.hrough the origil'!. that t.ouch supp t.p can be writiten in the form 
P = {oy +/3z = x} ,o:2 +{32 '=f: O. We have 

/, ( ¡) - 1/2 
cos o l (a,P;<p ) = ,. Lf(ry,()du, cos o = 1 +(a' +~'r 

where p· :: { (r¡, () : ar¡ + {3( = 1} and da is t he Euclidean measure in the line p•. 
This cquation shows t ha.L tibe r.ay transform of the íunct.ion Lf (17,() is known for 
nciy straight linc p• in tlhe Euclide<Ul (fJ , ()-plane , hence the íunctlion Lf can be 
rt.'COnSLrucLcd be menns OÍ t!he inversion OÍ the p\ane Radon transform. F\iom (32) 
wc find the ray intcgrals J n f ds for ali rays R with lhe vertex a. Therefore tbe ray 
transfonnation off is known for anlf ray start.lng Erom a point a E r am.I the functi0n 
f can be rcconst.ructed by means oí Theorem 11 . [\ 
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7 Duality in integral geometry 

7 .1 Fourier transform of homogeneous functions 

Consider an Euclidean space E of dimension n + 1 with an Euclidean coordinate 
system x = {x0 , ... , Xn)- The form dV = dx0 ••• d:xn is the Euclidean volume elemcnt. 
We write the Fourier integral for a density 4> = fdV E L1 (E) in the form (3). The 
Fourier image j = F(/dV) is a funct ion on the dual Euclidean space E " Let S(E) be 
the Schwartz space of smooth functions in E . It is t he class of smooth C"°-functions / 

in E such that D; / = O ( (1 + lxl)-q) for any i = (i0 , •.. ,in) and arbitrary natural q. 

Let S(E" ) be the Schwartz class of functions in E " An element thc space S(E")d\f • 
is a density in E" of the form p = 'ljJdV" , where tjJ is an elemcnt of the Schwartz 
space S(E") and dV" = d€0 ... d<,, for the dual coordinate system ~0,. . ., ~ .. . Thc dual 
space S(E) is the space of tempered distributions and (S(E')dV" )1 is t he space of 
tempered generalized funct ions. Replace the space E by its dual and cousidcr t.he 
conjugated transform (4) . This operator maps S(Eº )dV' continuously to S(E); the 
dual operator is F': S(E)--+ (S(E" )dV' )'. The latter is called the Fouricr t ransform 
of tempered distributions; thc image of such a distribution is a tempered gcncralizcd 
funct ion. The operator pi agrees with (4) for distributions tfJ E L 1 . 

A distribut ion or a genera!ized function u in E is called homogeneous of degn,>(' 
.\ E <C, if it satisfies the equation Lcu = Au where Le denotes thc Lic derivat.ive along 
the Euler field e = L. x;{)/8x;. T his cquation means t.hat u (Lct/J) = - Au(rf¡) whcrr 
L.,rp = e(rf¡) for any test function rp and L~ is the Lle derivative along e. This defiuition 
agrces with the classical one, since for a smooth function or distribution u and test 
density, respectively, func tion rp the following equation holds 

f L,wp + f uL,~ = f L.(u~) =O 

ln particular, t he volume deusity dV is a homogeneous distribution of dcgrce 11 + l ancl 
the delta-function óo(iJ>dV) = rp(O) is a homogeneous generalizcd function of degrce 
- n - 1. Any homogeneous distribution or generalizcd funct.ion is tcmpered. 

7.2 Duality forMinkowski-Funk transform 

Wc denote by E(E") t he unit sphere in thc Euclidcan space E' and by ª E t hc corre­
sponding projective volume form. F'or a subspace L C E t he polar Lº is the spacc of 
covectors y E E" such that (x, y) = O for a ll x E L. 

Tbeore m 14 Let L be an arbitmry prover subspace o/ E and Lº be its polar. We 
have 

{ faL • = { f a L 
} r;¡t,•) } r;¡t,¡ 

(33) 

for ar1y homogtneou.s ftm ction f i71 E o/ degree - k , k = dim L. 
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7 .3 DuaHty ln EucHdean space 

Dcf\nition. Lc>L E be an Eudidcan space of dimeusion n with coordiantes 
x = (x 1 , ••• , :i:n) . Tn.kc n.n aflinc subspacc A e E\ {O} of dimension k and considcr t hc 
sy8lC111 of ('Quations for .r e E : 

{x,y) 8 + 1 = 0, y E A 

T hc KCL 1i of ~lutions is 1u1 affü1e subspace E of dimension n - k - l. Wc cal\ this 
svncr dual Lo A. Thc double dual spacc Lo A coincides with A . 

L('L M 6 be thr affinc integral l rarniform in E. lt. turns t ha t the valucs of Me 011 

A ami A are rclatcd ns follows. ConsidC'r thc standard embcdding e : E -+ E by 
.r (l , z) whcrc E = R +E be an E11clidcan space with coordianl<'S xo .... , x,, . Fix 
an intcgcr k ,0 < k < n; lcL f be a functiou in E such LhaL 

( 1 + l•I"+') f (x) E L , (E) (34) 

Dcfiuc the function in E 

1t iti homogcnoous of dcgrce - k - l. By (3•1) the density gd.x0 clx1 •. dx,, is loca\ly 
integrable and lhe Fouricr trausform gis well dcfined in E· ~ E . lt. is n homogenco11s 
g •norn.lizcd function of dcgrcc k - n. We call 

• ( ')(lt- ra) / l 
! (x) = 1 + l•I ii( l .z) 

k·tlual funclion to f. lt is casy to scc that the function n - k - 1-dua\ to j is equal to 

f prnvidcd that ( 1 + lxl'"-") j (x) E L, (E). Denote d (A) = dist {A,0) . 

Theorem 15 Let f be a function in E satisfyi11g (3.1) for ,,orne it1t.eger k, O< k < n . 
7'/1en /or orb1lroq¡ o/Jine subs¡mce A C E o/ dimens ion k we have 

d' l 2 (ii) Mj(ii) = d'l '(A)M/ (A) (35) 

wl1ert j u the k · d11ol ftmction. 

PnooF. The density !JO iii integrable on Lhe hemisphere E+ = { z5 + lxl2 = l , 

.c0 > O} in E . Lc.t L be thc linear span of e {A) in E . By (14) we have 

go = ( l + tl'{A)) l +lxl g( l , x) dV, /, >/2 f (( ')-''+•11' ) 
t: . n L A 

(36) 

= (t + d2 (A))'1' M•f (A) 
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On the other hand, by (33) we ha.ve 

/, 11, 11, - /, -9ªL = - 9UL = - 90L• = 90 L.• 
E+nL 2 E(L) 2 E(Lº ) E+nL • 

The polar space L º is equal to t he span of A. We apply the equation {36) to the right 
si de: 

(37) 

Now (35) follows from (36) and (37) sincc d (A) d (.4) ; l. O 

Example l . Let S be a surface in E 3 with non-vanishing Gaussian curvaturc and 
A(S) the variety of lines tangent to S. Then we have 

h(S); A(S), 

where Sis the dual surface, i.e. the envelope of hyperplanes ij , y E 5. 

Example 2. Let r a smooth curve in E"\ {O} and A(r) t be variety of lincs that 
meet r. The dual variety A(r) consists of affine n - 2-planes A that are contained 
in hyperplanes )', 'Y E r whcre t is duaJ to t he point ¡. The family fi','Y E r ) 
have an envelope S which is a smooth hypersurface in E if r generic, for instancc 
the vectors x' (s), x 11 (s) , ... , x( " ) {.s) are independent in each point x = x (s ) of r. 
T he variety Á(r) is the family of n - 2-planes that are tangent to S. Note t.hat S 
is a hypersurface of very special form. For the varjcty A (f) we havc the following 
reconstruction method which is a direct gencra1ization of Theorem 11. 

Theorem 16 Let r be a curoe in an Eu.clidean space E .. and t}¡e hyperplane H (w, p) = 
{x;w . X ::::::: p} meets r in a point y. Then for an arbitrary I E C"- 2(E ) su.ch tl1e set 
supp / ñ H is compact we have 

¡;r -2 /n / 2)- 1 J an- 2 - 21: 

&pn- >M"_ ,J(H) ; L Cn,k aqn_, _,.M,j(L(q, v)Jl,=odS 
i:= O 

(38) 

where L(q,w) = {x = y+ t (v + qw), t E IR+ }, v is a unit vector i11 H (w,O), dS U the 
area elernent on a unit sphere s n- 2 e H (w , p) and 

' ' (n-2) e,,,, ; (- 1) ( (2k - l )'!) 2k 

By the duaJity wc gct a reconstruction mcthod for the varicty Á(f ). 

8 Spherical m ean transform 

Let E bt- a Euclidean spacc of dimcusion n. Thc spherical mean transform of a function 
f m X is th«> inl(>gral 

M .:. --'- l. S / ,,_,, _ 2'1r"¡ 2 
sf(x,r)- IS"- ' l r"- ' '' ,, Jd, s - r (n/2) 
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Thc function Ms/ is dellned in thc space X s :: X x R+ where Dt+ stands for t he 
closcd half-line; wc havc M s/ (x,O) == / (:e). 

l:Or an arbitra.ry continuous function J in nn Euclidean space E" thc spherical 
mean tra.ns fonn g = Msf satisfics the Euler-Poisson-Darboux equation in X = Ex 
DI+ 

( ª' 8 ) Dg : r 8 , 2 +(n - l )a,. - r6.z g(z , r )= O 

The principal part of t he Darboux operator is cqual to the wave operat.or rD where 
O = tJ; - D.z with the velocity 1. A hypcrsurface E C X is charact.eris tic for the 
Darboux (and fo r thc wavc) operator at a point (x , r ) E X , r > O, if t.hc principal 
symbol vanishes on the conormal vector v t.o E at x i.e., if v; - v~ = O, wherc Vz E E 
nnd v,. E R are thc components of v. 

Pro1>osit.ion 17 Tf1e variety E (Y) is characte1-ütic at each i ts pomt. 

lt follows that thc recom1truction problcm cau be reduced to t he characterist.ic 
Cauchy problcm: give11 n .'JOlution g of the Darboux equation i.s know11 on a charac­
tcnsti c hwersurfa ce, to find tf11.'J solution on the boundary E x {O} We have thcn 
/(z) == g(z, O). The method of Sec.5.2 ca.n be applied fo r reconstruction off from 
thc daia Ms/ IE (Y), provided thc varicty E (Y) is complele at each point x E ¡;upp f. 

9 Integral transform of differential forms 

Let. V be a veclor space of dimcnsion n , o be a smooth diffcrent.ia\ fo rm in V wit.h 
compact support. Suppose we know the integrals 

Mo b) = J, o, 1 e r (39) 

for a fami_ly r of closcd algebraic submanifolds -y e V. The problem is which infor­
mal.ion on o ca.n be rccoverecl'? A 11 integrals (39) vanish if o = d/3 fo r a form {3 with 
compact support , hence, we can not expcct to reconstrucl the form o uniqucly. Thc 
proble.m can be spccified in the following way: 
Proble.in: is it possible to rcconstrucL thc form da from t.hc integral information 
{39)? To ª '"Oid t hc rcd11 ndance we ought to assume thaL r is a n-pammctric family. 
This is. in fa.et , equivalen!. to rcconstrncLion of the fom1 o modu lo the subspace of 
cxact forms d(J such that. supp fj is compact. Thc.rc is a largc varicty of intcresting 
~pccial C'l\SC:S of this problcm. Wc considcr here on ly two simplest examples. 

Radon lrausform: r is tite family of hy¡>erplMCS in V 

Propositioo 18 Tl1e form do can be 1miquely recorutrocted fro1wdata of Mo\ H for 
ali hypn-pfanc.s Jf e \I tmd a /onn o with compact .tupport. 
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PROOF. Let H be a hyperplane with an orienLation and V (H ) be a half-space 
bounded by H. We ha ve by Stokes 1 

r da-/, a 
lv(H) - H 

Choose an Euclidean structure in V ; !et dV be the volume element in this structure. 
Writ e da= ,PdV for a function <P and set H = H (w1 p) Taking p-derivative we get 

a,f, a=f, ~dV = R~(w, p) 
H(w ,p) H (w,p) 

We recover the function <P by means of inversion of t he Radon transform. O 
Integrals over quadrics. Considera family of quadratic hypersurfaces q (x) = O 

in V. Fix N points P1, ... ,pN E V in general position, where N = 11 (n + 1) / 2 and 
take the family rN of quadrics that contain these points: q (pi ) = 0 , j = l , ... , N. 
The family of quadratic functions q satisfying t hese equation is a vector Q space or 
dimension n + 1, hence the family rN has n parameters. 

We show that the data M alf N is sufficient for reconstruct.ion, at least, locally. 
Choose a basis q0 , .•• , q., in Q; it defines t he algebraic mapping q : V --+ !11:"+1 , { 1 = 
q¡ (x ), j = O, ... , n. Consider the projective space IP'" = 11' (JR"+1 ) and choose an 
affine cha rt., say, the chart W f:! IR" with coordinates y1 = ~i/~o . ... , y ,, = {,, /{0 . 

The mapping q : V\ {q0 = O} --+ W is well defined ; choose an open subset V' C 
V \ (q0 = O) such t.hat t he mapping V 1 --+ W is an embedding. This means that t.hc 
funct ions Yi = q¡(x) /q0 (x) , j = 1, ... , n are coordinates in V '. Any linear equation 
ao + a1y¡ + ... + ª "Y" = O is equivalent to OoQo + ... + anQn = O, i.e. any hyperplane 
H belongs to the family r N. For an arbitrary form o of degree n - 1 such that 
supp a e V ' ali the hypcrplane integrals are known. According to Proposition 18 the 
form da can be reconstructed from this data. 
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