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ABSTRACT
This expository article contains a introduction to some analytic methods of
image reconstruction from data of its projections like integrals over lines, planes
ete.

1 Introduction

One hundred years ago Hermann Minkowski [1] has started the problem: to recon-
struct an even function f on the sphere §? from knowledge of integrals

M/(0)=§/Cfds )

over big circles €. Here ds is the linear element in the Euclidean sphere S?. Minkowski
has proved the uniqueness theorem: vanishing of all integrals of an even continuous
function f implies f = 0. (It is not, of course, true for odd functions, since all the
integrals vanish.) After Minkowski's death, Paul Funk, [2], 1916 has found an explicit
reconstruction formula for [ from data of integrals (1). Funk took the average of
integrals (1) with respect to an actions of the rotation group S* on §%. Considering
M f as a function on the sphere, he showed that the average of M f is related to the
average of f by the Abel transform. A reconstruction of f was done by inversion
of the Abel transform. This gives, in modern terms, an inversion for the operator
M (Minkowski-Funk transform). Johann Radon studied the similar problem for En-
clidean plane E (encouraged, apparently, by W.Blaschke): to reconstruct a function
f from knowledge of integrals

Rf(L) = /L/.L. @
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for all lines L C E. In 1917 Radon (see [5]) found a solution by applying Funk's
method. These papers did not get a development since many years and were almost
forgotten ! (in spite of the term ”Integralgeometrie” survived since then). The focus
of interest (and mode) in analysis moved then to the side of more abstract theories

The situation did not changed until the last three decades when the interest to
reconstruction problems like Minkowski’s and Radon’s ones grew tremendously stim-
ulated by the spectrum of new high-tech methods of image reconstruction. These
are first at all various kinds of tomography: X-ray, gamma NMR, electron, positron,
ultr d, ther ic, seismic ic radar imaging and others

The objective of this paper is to give an lntroduchon to the current theory of inte-
gral transforms like (1), (2). We focus mostly on analytic methods of reconstruction
The problems arising in adaptation of analytic methods to processing of real numeric
data are serious enough for special discussions.

On the other hand, the beauty and richness of the theory make it very attractive
for pure mathematicians.

This article is not a regular survey of the topic; the reference list contains the
items that can help the reader to enter the subject.

2 Radon transform and inversion

2.1 Basic formulae

Let E be an Euclidean space with the interior product (z,y) — z - y. We write the
Fourier integral for a density ¢ = fdV € L (E) in the form

Fuse@)(©) = [ expl-2me- (@), ¢ E° o

where dV is the Euclidean volume element. The Fourier image f = F(fdV) is a
function on the dual Euclidean space E* (which is identified sometimes with E.)

Let n = dim E; denote by An_1(E) the set of all affine hyperplanes in E. Take a
hyperplane H, choose a unit orthogonal vector w to H and denote by p the distance
from the origin to H in the direction w, i.e. w -z = p is the equation of H =
H(w,p). At the same time —w - £ = —p is another equation of the same hyperplane
H(-w,—p) = H(w,p). Thus we have two-fold covering S"~! x R = A,_,(E) where
S™~1 is the unit sphere in E. The topological space A,_;(E) is homeomorphic to
the projective space of dimension n without one point. This point corresponds to the
improper hyperplane in the projective closure of E. Let dS be the surface element on
submanifolds in E. The Radon transform of an integrable function f in E is defined
as follows

Rf(w,p) = /H s

I'The reconstruction formulae of Funk and Radon have attracted no interest and almost forgotten
before the tomography era came. In the ten pages obituary written by P.Funk in 1958 to Radon's
death there is no commentary on the paper of 1917
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This integral is defined for any w and for almost all p € R.

Proposition 1 For an arbitrary f € Ly(E) the equation holds
Feie (f) (0w) = Fyoro Rf(w,p)
This fact is called "slice theorem”. The inversion of the Radon transform can

be implemented by inverting of the Fourier transform: f = F2' | (F,. Rf(w.p)),
where the inverse Fourier transform looks similar to (3):

F*(¢)(e) = /E exp(2mz - £)$(§)dV*" (4)

where dV* is the volume density in E*. Simplifying the composition of two Fourier
transforms yields the following reconstruction formulae:

Theorem 2 For an arbitrary function f in E such that D'f € L, (E) for |i| < n
that satisfies the above conditions and g = Rf we have

(n 2)/2
Sy = (—2%27—.— [, B g 2 )
for even n and
_qy(m=1)/2
1= S [ 8 et - as ©

for odd n.

Here H stands for the Hilbert transform with respect to p-variable. For an arbi-

trary Lipschitz function a € Ly(IR) the Hilbert operator is defined by means of the
principle value integration

Ha(p) = % lim /m» LTl

€0 q

It can be extended to an operator in Ly such that ||H|| = 1. In fact, the equations (5)
and (6) hold for a larger class of originals f : it is sufficient that the right side is well
defined. In the case n = 3 the equation (6) turns to

1 "
@)= —B?/S:g (w,w-z)dS

Note that the formulae (6) are local, i.e. for reconstruction of the value of f in a
point = we only need to know the values of 87 ' Rf for hyperplanes H (w, p) through

the point z. The formulae (5) are nonlocal since we need to know R"~')f for all
hyperplanes.
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2.2 Radon’s formulae
For n even we do the substitution p = w -  + g in (5) and take in account that
9" D(w,p) = 87719 (w,p) is an odd function in p

(n=1)
(2m)" f(z) = lim / / ———(w’w el
€30 Jgn-1 Jjg|>¢ q
(n-1) (=1 -
=nm// gV (ww-z+q) qy (W, —w z+quq
e

The limit exists if g("~V(w,p) is a Lipschitz function with respect to p. Now we
change the order of integration and write the right side as follows

= dg
/ = [/ g("_”(w,w~z+q)du—/g“'”(u,—u<z+q)dw
o 9 LUsn—:

Make the substitution w — —w in the second integral and see that it gives the same
quantity as the first one. Therefore we obtain

IS 27 2l"(n/2 / F(n_”(q)d—q {0

where i
F@) = gy [ 9w 2+ g0

is the normalized back projection and |S™~1| = 27™/2/I(n/2) is the area of the unit
sphere.

3 Factorable mappings

Consider a more general situation. Let X be a Ri ifold of di

n with the metric tensor g and Y = {Y} be a family of closed submanifolds of X
of dimension k, 0 < k < n. Take a continuous function f : X — C that decreases
sufficiently fast at infinity. Define the family of integrals

mi) = [ 1av ). vey ®

where dV (Y) is the volume element on Y induced by the metric g. We call the function
M f|Y generalized Minkowski-Funk-Radon or integral mean transform of f. For an
Euclidean space X and the family of affine subspaces, it coincides with (2). For the
projective plane X = P? and the family of projective lines this transform coincides
w nh (1). Indeed, an even function f on the sphere defines a function on the quotient
52/Z, P2, where the group Z; identifies the opposite points in the sphere. The

I metric in the projective plane is inherited from the Euclidean metric on the

(T
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sphere 8% € £ and the integral over a projective line equals one half of the integral
over the corresponding big circle.

For these two special cases we know the explicit inversion formulae for the integral
transform M. These formulae can be translated to another geometrical situation by
means of the following simple arguments:

Definition. Let @ : X; < X3 be a diffeomorphism of Riemanman manifolds (it
need not to be an isometry), Y = {¥} be a smooth family of submanifolds of X,. We
say that @ is (infinitesimally) factorable with respect to this family if for an arbitrary
Y € Y and arbitrary point z € Y the equation holds for the Jacobian of & :

Vi) (P (@), 2 (Y)) _ .
e j(@)J(Y) (9)

where dV{;) (2, Z) is the Riemannian volume element of a submanifold Z € X,,i = 1,2
at a point z. The functions j : X = R and J : Y = R depend on ¢ only; we call
thig functions jacobian factors of the mapping . An application of this property is
obvious: the problem of inversion of the integral operator M for the family @ (Y) =
{®(Y),Y € Y} is reduced to that for the family Y by

MineEN = /4, fiay = 1) [ (1) (@) Vi = T 0) M1 (7)) )
(Y)

where f is a function on Xy and ©° (f) (z) = f(® (). If there is an inversion
operator I for M|Y,we define the inversion operator for M|® (Y) as follows: [ =
I(JM [®*(f)3]). The reduction can be reverted since the mapping @ g also fac-
torable. Moreover, the transitivity property holds: if a diffeomorphism ¥ : Xy - Xy
is factorable for the family ® (Y) and a Riemannian space Xy, then the composition
W : Xy = Xy is factorable for Y with the jacobian factors

Jwa (2) = 7w (P (2)) Ju (2) | Jua (V) = Jo (®(Y)) Ja (Y)

Example 1. Any conformal mapping ¢ possesses the property (9) for the fami
of all k-dimensional submanifolds with the jacobian factors j = (9* (92) /) )k
1, where gy 3 are the metric tensors in X 5.

Example 2. Let D be the unit disc in Buclidean plane. The phism of D

=1
given by G (z) = 2= (1 + |:|’12 is factorable for the family of circle arcs A C D that

are orthogonal to the circle @D, The jacobian factors are

2(1+r2)"?
r

1- 3

()

where r is the radius of an are A. The image G (A) is the chord in D that leans the
arc A,

Example 3. Let E be an Buclidean space of dimension n, dS be the surfac
in £, Take the projective closure E = EU H, where Hy = P(E) is the improper

jo(z) = o Ja (4) =

lement
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projective hyperplane, and consider a projective transformation L of E. It defines
a diffeomorphism L : E\L™! (Hx) - E\L(H). This mapping is factorable for
the variety A of k-dimensional affine subspaces of E and arbitrary k. To show this
property, we take the Euclidean space E = R+ E of dimension n + 1 with coordinates
Zo, ..., Zn and consider the isometrical embedding e : E = E,e(z) = (1,2). Take &
linear automorphism L of E that generates L, i.e. L = pLe wherep: E\ {zg =0} = £
is the central projection. Let py : E - R be the coordinate projection.

Proposition 3 We have for an arbitrary A € A

dv (L(z),L(4) _ ko1 [L (0%, L (a%)]
A - e : '_[,. =

where a°, ...,a* are arbitrary points in E that span A.

The last condition means that A = {z = ¥ t;a", ¥ t; = 1}. For arbitrary points
8°,...,b* € E the number [b°, ...,5*] > 0 is defined by

o= S R (10)

0=ig<ir<...<ik

(%

where B;, . ;, means the minor of the matrix B formed by the rows b°.....b* with
the columns numbers i, ..., i.

3.1 Reconstruction from data of arc means

Let E; be a half plane in an Euclidean plane, say E; = {(z,y) .,y > 0}, and Y be
the family of circle arcs in E, that are orthogonal to dE.. All orthogonal straight
lines are also included in the family Y. The arc mean transform

Mf(4)= /Afda

is of interest in several applied problems; ds is the length element. The problem of

inversion of M in this form is a complete data problem since for any point p € E.

and any tangent vector ¢ in z there exists at least one curve A € Y through p that is
orthogonal to ¢. This condition is no satisfied in practice, since the integral means for
very long arcs are not available. We consider the same integral transform for limited
data. Take the unit disc D in E and consider the half disc D. = E4 N D. Let Yp be
the subset of Y consisting of arcs A C D. The problem is to reconstruct a function
f in E with compact support supp f C D from the limited arc mean transform M/
Yp. This is a problem with incomplete data since for any point z € D, the normal
vector t to arcs A € Yp runs over two vertical angles of diapason ¢ < n. In fact, w¢
have ¢ = » — a where a is the angular length of the circle through z and the points
£1. The diapason is almost complete for p close to the diameter of D, and is very
small for p close to the circle 8D
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3.2 The limited arc mean problem

The inversion problem for the pencil Y is reduced to the Radon transform in plane
in the following three steps. Choose coordinates (z.y) in E in such a way that B, =
{y > 0}, and D is the unit disc with center in the origin.
Step 1. Introduce the complex coordinate z = z + 1y in D and apply the transform
.1=2
n=F@E=—
The image of E, is the unit disc Dy and the image of D, = E. N D is the right
half-disc. Any arc A € Y is transformed to the circular arc F(A) in Dg that is
orthogonal to the boundary. This transform is conformal hence factorable.
Step 2. Apply the mapping of Example 2 wy = G(z;). It maps Dy onto the identic
disc Dp and the right half of Dg to the right half of Dg. Any arc F(A) is transformed
to the chord with the same ends.
Step 3. Apply the projective transform
1 v
(u,v) = P(u,v1) u=—,v=—
uy uy
The vertical diameter of Dg maps to the improper projective line and the unit circle
is transformed to the hyperbola v? + 1 = u}. The image of the disc Dp is equal to
the set W = {1 + 1 < uf}; the image of the right half is equal to the right connected
component U/ of W. The image of a chord L C Dp is a chord in the set U with
the ends in the hyperbola. By the transitivity property, this mapping is factorable
too. Take the composition @ = PGF; it follows from the previous formulae that it is
factorable with the jacobian factors

x5 4y Y ab :
J(Z)—~m,—)‘5.-](ﬁ)— 14 n—b)

where a, b are the ends of A. This implies the formula

/Mr‘fds' =Ju)/A 1ds

where ds* is the Euclidean line element in U. The support of the function g is a
compact subset of U and curve @ (A) is an arbitrary finite chord of the hyperbola
OU. Let  be the angle of the normal to Q (A); we have [¢| < n/4. Vice versa, an
arbitrary line in U whose normal has angle in this diapason, is a finite chord.

Corollary 4 For functions [ with compact support supp f C Dy the limited arc
mean transform is reduced to the Radon transform wath the hmited angle diapason
|| < m/4

The Radon transform with incomplete data can be inverted by interpolation of
ontire functions of Paley-Wiener class, see Sec.6.
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Remark. There are three classical models of the Lobachewski (hyperbolic) plane:
(i) Poicare’s model in the half-plane E, with the metric y~2ds?, geodesics are the
arcs A € A;
-2
(ii) Klein's model Dy in the disk D with the metric (1 = |z|‘) ds?; geodesics
are arcs orthogonal to dD, and
(iii) Beltrami’s model D in D the metric is

g= (1 - |z|2)72 [(1 - y?) da? + 2zydzdy + (1 — 2*) dy?]

the geodesics are chords.

The mappings F : E; — Dk, G : Dg — Dp are isometries between these models.
These mappings are not, of course, isometries for Euclidean metrics in E; and D,
but they are factorable for the families of hyperbolic geodesics.

3.3 More examples

Example 4. Let Sy be the unit sphere in an Euclidean space E with the center
in the origin, E\ {0} — Sy be the central projection. Take an arbitrary sphere S in
E\ {0}. The projection defines the mapping 7 : S — Sp. It is factorable for the family
of k-spheres F'N S where F is an arbitrary k + 1-subspace of E. The volume relation
is
dV(z,FnS) _ |z**

aV (20, FNSo) e (z—§)|
where £ is the center of S, rp is the radius of the sphere FNS. The jacobian factors
are j(z) = |z - (z — &) |«|**", J (F) = rp. If the origin is inside S, the dominator
z - (z — €) does not vanish on S; otherwise it vanishes in each point where a ray from
the origin is tangent to S.
Example 5. We can take a hyperplane H C E\ {0} instead of the sphere S in
Example 4. The central projection 7 : H — Sp is again factorable:

F, To =7 (Z) (11)

dV(z,FOH) _ |g** £
W0 FNSy) ~ dst(FnHE0 ©°-"@ (¢

This follows from (11) if we apply (11) and move £ to infinity along the line orthogonal
to H at z.

3.4 Spaces of constant curvature

There are three types of plete simply d Ri ifolds of constant

sectional curvature: elliptic, Euclidean and hyperbolic. An Euclidean space has zero
curvature. Any straight line is a geodesic and vice versa. A elliptic space of dimension
n is the real projective space P* = S"/Z, with the metric inherited from the unit
sphere S™ C E where E is an Euclidean space of dimension n + 1. The sectional
curvature of the elliptic space is equal everywhere to 1. For a subspace F' C E of
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dimension 2 the intersection F'NS™ is a big circle; its image in the elliptic space P™ is
a closed geodesic curve . For an arbitrary subspace F' the manifold Y = F N S™/Zy
is a projective subspace. It is a totally geodesic manifold of P™ since any two points
of Y can be connected by a geodesic v C Y. Vice versa, any closed totally geodesic
submanifold of the projective space is equal a projective subspace.

A hyperbolic space of dimension n can be constructed in a similar way. Choose
BEuclidean coordinates zg,z1,..., o, in E and consider the hyperboloid @ C E given
by

Ty =2+ .. tah+1, 39>0

This is one fold of the two-fold quadratic hypersurface. Consider the standard Eu-
clidean metric in E by means of the coordinate system zg,z,,...,z, and take the
induced metric in Q. This is a hyperbolic space H of sectional curvature —1. It is
obviously closed and homeomorphic to a ball. For any subspace F C E of dimension
2 the intersection F N @ is a closed geodesic curve; for an arbitrary F it is a totally
geodesic submanifold of H.

Alongside of Q, we consider the Euclidean submanifold E = {z, = 1} and hemi-
sphere Sy = {z;|z| = 1,29 > 0} as a model of the elliptic space P". The central
projection 7 in E\ {0} defines the diffeomorphisms

Q3EES, (13)

We have 7 (S4) = E and the set mg (Q) is an open ball of radius 1. By the afore-
said, the intersection of these submanifolds with a subspace F is a totally geodesic
submanifold in the elliptic, Euclidean and hyperbolic space, respectively, see Fig.1.

Example 6. The mappings (13) are factorable, namely for an arbitrary subspace
F ¢ E of dimension k + 1 we have

dVs (y, FNSy) 1/2 2\ ~(k+1)/2
o e (14 d? (F)) (1 +z| ) (14)
AV (1, FNQ) _ " 2\ ~(ktD/2
o™ (1-d?(F)) (1 — || ) (15)

where 7 (y) = z is a point in E where the volume forms are compared and d (F) =
distg (F N E,0). Note that (14) is equivalent to (11).

3.5 Geodesic transforms

Let P™ be a real projective space of dimension n, G (P™) be the manifold of projective
subspaces Y C P" (which are images of big spheres C C S™). The integral mean
transform M given by (8) restricted to G (P") is called (generalized) Minkowski-
Funk transform. The particular case n = 2 the transform (8) coincides with (1),
since the function f can be consider as an even function in S and (1) coincides with
M, f (C/Z,) for any big circle C. For an Euclidean space E and for a hyperbolic space
H and consider the integral mean transform (8) on the manifold of totally geodesic
manifolds of dimension k. In all three cases, (8) is called geodesic mean transform. The

1€ . i
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geodesic mean transform in Euclidean space coincides with the affine mean transform;
it is called Radon tr: for affine sub of di =n — 1 and X-ray
transform for k = 1.

Corollary 5 The geodesic mean transform in hyperbolic space H is equivalent to the
affine mean transform in the unit ball of Euclidean space E of the same dimension.
The affine mean transform in E is reduced to the Minkowski-Funk transform in elliptic
space P™.

The inverse reduction does not hold: the Minkowski-Funk transform is reduced to
the affine mean transform only for functions f in S that vanish sufficiently fast on
the equator, more precise, the following condition is necessary: f (y) = o (y5*!) as
Yy € St,yo—0.

3.6 Deduction of inversion formula for hyperbolic space

The Funk formula reads for an even function f on S?:

/2 dF
f = [ D L) (16

sing ™

where
O (o
d(Cy)=q

is the integral mean of M f(C) over the family of the big circles whose angular distance
to the point y € S? is equal g and y° is the geodesic whose distance to y is equal 7/2.
The first term of (16) is thought as a improper Stieltjes integral.

Let g be an arbitrary continuous function in E such that g = o (|z|_2) at infinity.

Define the function f(y) = (1 + |z|*)g(z) on Sy where 7(y) = z. It tends to zero as
y approach the equator of S;; we set f = 0 on the equator and extend it to S as an
even function. By (14) we have for an arbitrary big circle C

Msf(C) = /C faVs = (1+d*(L))"/? f (c)deE (a7

= (1+d*(L))"/*Mpg(L)

where L = 7 (C) is a straight line in E? and Mg is the affine integral transform in E.
If we know Mgg, we can calculate Ms f and apply (16) for the point z = 0,0 = (1,0)
taking in account that the second term vanishes:

/2 AR (y,
joy=-7 [ L0 (18)

sing

where

F(y,q) = /d\[””:q Ms f(v)do
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The distance between A and the origin in E is equal tan g if ds(v,y0) = ¢. Therefore
14 d*(L) = cos™? g and by (17) the right side is equal to

1 / G(z,tang)
Ry Ma(Dap= 25 1ana)
2m €084 Ja(L)=tanq ze 0y cosq

where 1
G =g [ Mso(w)is (19)
™
Substitute this equation to (18) and change the variable ¢ to r = tang:

_1 % d(secqG(y,r))
fly) = e

We have
d(secqG(y,r)) _

+ rdG + Gdr = E +d(rG)
sing

The last term vanishes after 'mtegnmon over the ray (0,00) since the product rG
vanishes at the ends. The equation G = o(r~!) for r = o follows from g =

0 (]z| ") . This yields

il = fign) = 1/‘ dG Or)

Moving the origin to an arbitrary point z € E, yields

oo

l/ dG (z,r) 20)
™ Jo L6

This is Radon’s formula, see Sec.2.2.

The same arguments applied to the projection 7 : Q — E give by means of (15)
the inversion formula for the hyperbolic plane

@)=l [

mJo sinhg (e

where G is again defined by (19) and g is the hyperbolic distance.

Comparing the formulae (16),(20) and (21), we see the obvious similarity. The
form of the dominators: r,sinr,sinhr shows direct impact of Euclidean, elliptical and
hyperbolic geometries, respectively.

3.7 Inversion of Minkowski-Funk transform

We write an inversion formula for the Minkwoski-Funk transform M, restricted
to manifold of projective sub Y c P" of di ion n — 1. Let P™ be the
dual projective space; a points 2 € P™* defines the polar z° which is the orthogonal

V. N
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projective subspaces of P" of dimension n — 1. Let g be a Borel function on P"; the
function M, -19(2°) is defined in [P*. We use the model S"/Z, for the elliptic space
and its dual. Take the point y = (1,0) € S™ C E™*! and consider the family of
spheres {z; (2,y) = cos¢},0 < ¢ < /2 in S™. The average of M,,_1g over a sphere

1

G(o,9) = ey Mg (%) av

(2,y)=cos ¢

By (14) G (s, ) = sec¢ F' (y, tan ¢) where F (r) is the spherical mean of data Mg f (L) ,
n/2

i = ( + |z| ) g over the sphere {d(L) = r = tan$}. By (7) the reconstruction

/ -y dn

= c,./o (ros¢ cos¢) G (s,¢)

is given by

d¢
sin ¢

where n is even and ¢, = 1/2"~2 (—m)"/2T (n/2).

4 General integral mean transform

Consider the general integral mean operator (8) for a family Y of closed submanifolds
Y C X. The reconstruction problem is to find the function f from data of Mf|Y.
More complicated versions of (8) arise in applications. A weight function w = w (z,Y)
(known or unknown) can appear in the integral. Also the "image” f might be not a
scalar function but a section of a tensor bundle, like differential form symmetric or
skew symmetric. The corresponding theories are far from to be exhausted.

We focus on the simplest case where f is a scalar function and w = 1. A closed
analytic reconstruction formula is only known in few cases. If there is no such a
formula one can try to apply numerical methods. An actual numerical algorithm
contains usually a regularization procedure and gives a convergent result whichever
the input data are. To ensure reliability of the result, the family Y (i.e. the acquisition
geometry) should be big enough to guarantee existence of a continuous reconstruction
operator R : Mf|Y + f . The condition of continuity can be specified for a family
Y that has structure of a smooth ifold. The mapping R is then d to be
continuous as an operator from the space of smooth functions f with compact support
to a space of smooth functions in Y.

4.1 Completeness condition

The completeness condition gives an answer to this question.

Definition. A family Y of submanifolds of X is called complete in a subset
G C X if for an arbitrary # € G and arbitrary covector ¢ at z the: 4
that = € Y and t is orthogonal to Y. This condition is almost necessary: if there exists

N\
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a continuous reconstruction operator R for the class of smooth functions f supported
by a compact set K in X, then the family Y is complete in the interior of the set K.
On the other hand, it can shown that if a manifold Y is complete in K, then there
exists, at least, a continuous parametrix for R. Here we use the term ”parametrix”
in a sense similar to that in the theory of pseudodifferential operators. In fact, the
reconstruction is reduced to inversion of a pseudodifferential operator by means of
the back projection operator;

Mig@) = [ (i
Y(z)
¢ is a function on Y, Y (z) is the family of manifolds Y €Y that contain a point z and
do is a measure on this family. The completeness condition means that the operator
MEM is of elliptic type.

4.2 Reconstruction from incomplete data

In the most of practical situations the set of available projections is incomplete. We
discuss a special case of this result in more details.

Limited diapason. The hyperplane means of f are known for hyperplanes
whose angle ¢ with z,-axes are in the diapason ¢ < a < x/2. If the function f has

compact support we can use interpolation methods for band-limited functions. One
of them is

Proposition 6 A function ¢ € Ly (R) such that supp C [~1/2,1/2] can be recon-
structed in (—6,0) for arbitrary & > 0 as follows

st
#0 = o (r/F=C) [ B0 WA %) g gy (22)

mA =
where I' = (00, 6] U [4, ), Re /82 — (2 > 0.

_ Suppose that supp f is contained in the strip |z)| < 1/2. We have F,_,,Rf =
f (pw), hence we know the Fourier transform f'({) in the domain I" = {|¢'| < d|& [}, &' =
(€2,...,&,) .d = tana (a spherical cone around the z,-axes). Fix &-coordinates and
consider the function ¢(¢) = f(¢,€'). It is band-limited and known for |¢| > d|¢|;
the equation (22) can be apply for § = d|¢'|. In the general case we replace f by
Je(xy,2') = f(rzy,2') for an appropriate r and take § = dr|¢'|.

The incomplete data of hyperplane means of f can not dominate the energy Lo-
norm of f. A weaker continuity property holds which is described by the following
result. Consider the quadratic function g(€) = € — d~'|¢|>. Tt is positive in the
domain I' and negative in the complementary set. The energy in the ”audible” zone
I' can be expressed in terms of data by means of

Proposition 7 We have

2 et s 2
/' Jora = anre [los2rs . dpa

( A
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For n even the derivative ("=1)/2 is a pseudodifferential operator with symbol
(2mp) ™" V/2 1t the “silent” zone R™\I' we have only a weak estimate

Corollary 8 For any function f € La(E) with support in the strip |z) —a| < r/2 the
inequality holds

[ 1o (-rrva®) ferae < [ ierac @)
9<0 >0

This estimate can not be much improved.

Exterior problem: to reconstruct a function f in Euclidean plane E, from
knowledge of line integrals for lines L C E\B where B is the unit ball. There is
no simple reconstruction formula. The solution given by A.Cormack is based on the
decomposition of f and M, f in harmonics.

No inversion problem with incomplete data can be solved by means of a explicit
formula or by a stable numerical algorithm. Sometimes it can be solved by more
complicated methods like infinite functional series solving of integral equation of the
first kind or analytical continuation. Important question arises: which meaning has
the solution in a practical situation. A partial answer can be done in geometrical
terms:

Let X be the space where an unknown original function f is defined. Suppose
that a compact set K C X is known such that supp f C K. We wish to reconstruct
f from the mean transform M f defined for a family Y of submanifolds of X. If no
more a priori information is accessible, the energy of unknown original f is assumed
to be spread uniformly over the cotangent bundle T (K). Take a manifold Y € Y
and consider the conormal bundle N*(Y N K) C T*(K) of this curve. Denote by
N*(Y) the union of sets N*(Y N K). This is a conic subbundle of 7*(K). We call this
subbundle the audible zone. It can be shown that the part of the energy of the original
f inside the audible zone can be reasonably estimated by a suitable norm of M f. The
complementary part of the energy which is contained in the silent zone T*(K)\N*(Y)
can be estimated with a weight. This weight is a function in the cotangent bundle
that exponentially decreases, when the point moves away from the audible zone. The

inequality (23) is an example of an estimate of this kind. An exponential factor of
this kind is indispensable.

5 Affine integral transform

Let E be an Euclidean space of dimension n. For any integer k, 0 < k < n we
consider the manifold Ay (E) of all affine subspaces A C E. It is an algebraic manifold
of dimension (k + 1)(n — k). Denote by M; the restriction of the integral means
transform to Ay (E). Suppose we know the integral M, f (A) for all k-affine subspace
A. If k = n — 1 we can recover the function f by formulae of Sec.2. For an arbitrary
k < n a function f can be reconstructed from knowledge of M f in the manifold
Ai(E). Take an arbitrary subspace G € Ay (E). This is again an Euclidean space
and any hyperplane H in G is an element of Agx(E). Therefore we can reconstruct the
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function f|G by means of inversion of the Radon transform in G. Hence we know the
function f in E since the subspace G of dimension k + 1 is arbitrary.
There are, of course, many other methods of reconstruction since the data of M f
is redundant for the case k < n — 1 since (k + 1)(n — k) > n. The case k = 1
which is important, in particular, for the X-ray inversion algorithms in three-space.
The equation (24) shows the rate of redundance of the data A,(E) for n = 3. For
practical applications is important to receive an reconstruction from as small sampling
of integral data as possible.

To avoid redundance we state the reconstruction problem as follows:
Problem: to find a reconstruction formula or an algorithm M, f|X - f for functions
f supported by a compact set K C E for a submanifold £ C A;(E) of dimension
n = dim E. We call such a manifold pencil. The data of line integrals M, f(L), L € £
has no dimension redundancy. We need, of course, assume that the pencil ¥ satisfies
the completeness condition for K.

5.1 Line transform and John equation

We consider for simplicity the case n = 3, k = 1. We have dim A, (E) = 4, hence
g = M, f is a function of 4 variables in any chart of the manifold A, (E). It is far
from to be arbitrary. Take the chart F' that contains all straight lines L that are not
parallel to the plane z3 = 0 in E. Take a point (y;.y2,0) € L; let v = (vy,vs,1) be a
vector parallel to L; the numbers (y1,y2,v1,v2) are coordinates of L in the chart F.
This coordinates parameterize the line mean

oo, = [ f(@)ds
L(y1ya,vi,va)
Proposition 9 The function g satisfies the equation
2
Al (24)
Y20y Oyy0us

= -1/2
where h(ys,ya,v1,v2) = (14 02 +12) ™/ g(y1, 92,01, 03).

ProoF. The line L is given by parametric equations z; = y1 + tvy, =y =

Ya + tug, 73 = t and the Euclidean line density in L is equal to ds = /1 + 1!15 -+ ‘U%-dl
consequently

h(yr, y2,v1,v2) = /f(yl + tvy, ya + tvg, t)dt

Therefore & b 0y
h
= —t)t— t)dt
Bu:00; '/;m(l t)ta:‘:‘az2 (1 + tvy, y2 + tug, t),
We get the same integral formula for the function 8*h/dv;dy,. (m]

The equation (24) is called the John equation. It can be written in the form
&*h t #Ph  *h  Ph _ 0
952 " B o du?




60 Victor P.Palamodov

after a linear coordinate change. This equation, called ultrahyperbolic, does belong
neither to elliptic nor to hyperbolic type. The Cauchy problem is ill posed. There
are, however, well posed characteristic boundary problems that relate to inversion

formulae for the ray transform.

5.2 Characteristic Cauchy problem

We can consider the reconstruction problem as a kind of boundary value problem for
the John equation (24) with data on the hypersurface (pencil) £ C 4; (E®). If we
can solve this equation by means of this boundary data, we obtain M f on A, (E) and
apply reconstruction of f by means of above Corollary. We know from the theory of
partial differential equations that one need to fix two functions on a non characteristic
hypersurface S, for example, g|S and 8, g|S where 8, means the normal to S derivative
to ensure local uniqueness of solution of the Cauchy problem. In the reconstruction
problem only the function f|¥ is known. This implies the necessary condition: the
pencil ¥ is characteristic at each point. This condition turns to be sufficient under
additional assumptions. To clarify the idea, let us consider the general second order

equation
a(y,D)u=0 (25)

in an open set U in an Euclidean space E".
Proposition 10 Let K be a compact in U with smooth boundary T, z € K\T and
F be a solution to a*F = 0, defined in a neighborhood of K such that the restriction
F.|T" is well defined as distribution on I'. An arbitrary solution u can be reconstructed
in the point z from data u|S provided S C T is a characteristic hypersurface for a
and supp F;|I" € S.

PROOF. Take a smooth function ¢ in U such that ¢ > 0in K, ¢ < 0 in U\K
and |[V¢| = 1 on I. The function § = O (9) is the indicator function of R; where
O (t) =1 for t >0 and O (t) = 0 otherwise. Write

u(z) = d. (0u)=/wa' (F)gudVyz./wFaWu)dVy

By the Leibniz formula

a(y, D) (6u) = ba(y, D)u+ Y ia") (v, D)u + % Za,,,a"-f’ (y,D)u
: i

where 8, = 8,8, a'" (z,D) is the differential operator with symbol a*) (z,€) =
da (z,€) /0&;the operator a' is defined similarly. The first term vanishes in virtue
of (25), the second and the third terms are supported in . We have 6; = ¢; 0 (¢)
where 4 is the delta-function, hence, the second term is equal to 6 (¢) ¢a'”) (y, D) u.
Write a = az + ay + ag where a; is a homogeneous differential operator of order j.

Then ¢,a"") (y, D) = 7 +ay (¢), where 7 = ¢; (y) al’ (y, D) is a vector field. We have
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7(¢) = ¢iay’ (v, V) = 2a2 (4, V) = 0 in S, since S is characteristic. This means
that 7 is tangent to S. We have further

0i; = ¢i9;0' (¢) + i 6(9),
% Z 6;.;a"9 (y, D) = az (y, V) &' (¢) + a2 (v, D) (¢) & ()

The first term vanishes in S since ay (y, V) = 0. This yields Fa (8u) = (1 + a) uFd (¢)
where a = a; (¢) + az (¢) . The product Fd (¢) is well defined as a distribution on I’
by the condition which yields

w@= [+ urs@av, = [ ¢+ ayuris

where dS = dV/d¢ is the Euclidean surface area element in I. The integral de-
pends only on u|S, since S contains a neighborhood of the support of the distribution

Fi(¢).

6 Reconstruction from ray integrals

Now we study the case dim £ = 3 in more details. There are several cases where
there is well-defined reconstruction formulae:

1. Choose a plane H C E and consider the pencil £ of straight lines that are parallel
to H. Take an arbitrary plane H' that is parallel to H. Any line L C H' belongs to
Ly hence we know the line transform M, f(L) = fL fds. Apply the inversion of the
Radon transform in H' and reconstruct the function f : H' — C for each plane H'
that is parallel to H.

2. Take a curve C C P(E) such that any plane H C E has non-empty intersection
with € at infinity. Consider the pencil £(C) of lines L that meet C at infinity. There
exists a reconstruction method for this pencil. Indeed, take a plane H; let ¢ € C be a
point where H meets C. Any line L C H that contains the point ¢ at infinity belongs
%(C). Such lines L are parallel one to another and makes a foliation of H. Let T ¢ H
be a line that is orthogonal to L. By Fubini’s theorem

L]ds:Ldt/;jds

where dt is the Euclidean density in 7. Thus we know the Radon transform M, f for
any plane H in E and can reconstruct the function f.
3. Let I' be a curve in E and X(T") be the pencil of rays with vertices in I'. A function
f with compact support can be reconstructed if the completeness condition (Sec.5.6)
is satisfied. The pencil £ (I') is characteristic.

Note that the pencil By as in case 1 is equal to the pencil £ (C) where C =
H N P(E) is an improper line. The class 2 can be reduced to the class 3, since
the curve € can be transported to E by a suitable projective transformation P. The
mapping P transforms lines to lines, hence, P (X (C)) = £ (P (C)). By Proposition 3

A
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a reconstruction formula for ¥ (C') can be translated to a reconstruction formula for
X (P(C)) and vice versa.

4. Let S be a surface in E and ¥(S) be the pencil of rays with vertices in S that are
tangent to S. It is also characteristic. A reconstruction of a function f with compact
support is possible under the completeness condition. Class 3 is, in a sense, contained
in the closure of class 4, see Remark below.

6.1 Rays with verticis on a curve

Theorem 11 [Grangeat,Finch] Let T' be a curve in an Euclidean space E® and the
plane H (w,p) = {z;w-a = p} meets I in a point y. Then for an arbitrary f € C*(E)
such the set supp f N H is compact we have

sz<H / 2 My F(L (@00 () (26)

where L(g,w) = {z = y + t(v + qw), t € Ry}, v is a unit vector in H (w,0), and di
is the area element on a unit circle in H (w,0).

PROOF. We have
ML) = (140" [ 0+ 100+ gt

since (1 + qz)l/2 = |v + qw| . Take the derivative

1/2

oo (L) M (La ) = [ o+ 100+ qw)a

where g = w - Vf. Integrating against the element d¢ and setting ¢ = 0 we get
[ o0+ Mo (B, Do) = [ Mo S (L) a0t )
. //w - Vf(y+ tA)tdtdv = / w-VidS = 2 M, f (H)
H ap

since dS = tdtd¢ is the Euclidean surface element in H. 0

Thus the quantity 8,M, f (H) is reconstructed from data of ray integrals of f for
the family of rays starting from a point y € HNT that are close to H. If the conditions
of this Theorem are satisfied for any hyperplane H in E that meets supp f, we know
the derivative 9,Ma f (H) for all H. Remind that the inversion formula for the Radon
transform in the case n = 3 depends only on second derivative of a,Zsz, Therefore
the information we have is sufficient to apply this formula and recover the function f.

6.2 Rays tangent to a surface

Let C be a curve in E%; a function s : C = R is called a natural parameter if the
differential ds is equal the Euclidean density, i.e. if |s(z) —s(y)| for any points z,y € C
is equal the length the arc of C' between these points.
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Theorem 12 [Denisjuk-Palamodov] Let S be a closed surface in E, H be a plane in
E transversal to S. Then for an arbitrary f € C'(E) such the set supp f N H is
compact in H\S we have

a 1 15, a0l O vow
odaf(t) =1 [ (E - 2 () MAEe alemnds 21

where x = z (s) is the equation of the curve C = SN H, s is a natural parameter, and
K = [z',2",w] is the curvature of C; L(s,q) is the ray given by

o= (s) + t[2'(8) + q(2'(s) x v)], t € Ry

and v = v(z(8)) is a continuous normal vector field to S. We assume that the set
& Y(supp f) is compact for the mapping

E:CxR— H, &(s,t)=x(s)+tz'(s)

and define
2(z) = E sgnk(s)

2=€(s,t)
The number z does not depend on & € K; we assume that z # 0.

The vector z'(s) is orthogonal to v(z(s)) hence the line L is tangent to the curve
C at the point z(s) and belongs to the pencil £(S). If the conditions of this theorem
are satisfied for any plane H we can calculate the first derivative of M, f. Then by

means of the inversion formula for the Radon transform we recover f.
PRroOF. We have

JEGESES / f(©)de = (28)
since the function f|L(s,0) has compact support. Therefore

M (Es,0) = f Z 1@ = [ £16)-@(0) + ta" ()

/f tdt—n/f ‘w x a'(s) tdt (29)
since 2" = xw x z'. Farther
%le(L(s,q))h:o s /f'(g) - 2!(8) X wtdt

The vectors w, z' xw, &' xv are orthogonal to z' hence z' xv = (¢, v, w]w+v-w &' Xw.
This yields

ML D)amo = » [ (7€) bt + 222 B aty (25,00

Ir' v,w) 8q [y u] ds

(AT
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Integrate both sides over H N S against the density ds:
3 a v-w 9
———— M, f(Li —_— d;
/ EiTlo. ”T( (s,0))ds +/ Eag BaM',(L(s'O)) o

= / s / 7(€) - wtdtds = ‘% [ % / F(©)tdtds (30)

Consider the system of coordinates s,¢,p = w - z in a neighborhood of C. We have
9z/d(t,s,p) = det (¢',z' + t",w) = xt. The Euclidean volume element in H is equal
dV/dp, hence 8h/8(s,t) = kt. Therefore

/ P / F(©)tdtds = z /H fdS = zM, f(H)

hence the right side of (30) is equal to z8,M, f(H) and

a K [é] v-w 0
AN () = ¥ RO N L C
255 M (H) / ] Bg Mo (L5, 0)ds + / o35 ™M/ (L6, 0)ds
Integrating by parts in the second term, we get (27). o

Remark. Theorem (11) in the case n = 3 is a limiting case of the above result. Re-
ally, take an arbitrary compact smooth curve I' C V' and consider its e-neighborhood
I'. for some € > 0. If the number ¢ is sufficiently small, the b dary S, of T is a
smooth surface. Take the pencil £(S) of tangent lines and apply formula (27). It is
easy to see that this pencil tends to the pencil £(I') as € — 0 and formula (27) tends
to (26).

One of the reasons this theorem is restricted to the case n = 3 is that in general
the affine transform M; fulfils a complicated system of differential equations. The
arguments of Sec.5 based on a characteristic Cauchy problem can not be applied, at
least, no straightforward adaptation is known. In Sec.8 we obtain a reconstruction
method for the case k = n — 2 by means of duality argument. It is plausible that
there are more geometrically defined of pencils of affine spaces admitting an explicit
reconstruction formula.

6.3 Reconstruction from plane collimated measurements

Let ¢ = fdV be a density of sources of a radiation in the Euclidean space E* with
compact support. For a plane P C E and a point a € P the radiation from sources
in P measured by a detector in position a, is given by the integral

f(z)dS

p |z —al

I(a, P;yp) =

where dS is the area element in P. The problem is to reconstruct f from knowledge
of data of integrals I (a, P). Suppose that these integrals are known for all sources a
on a smooth curve I' in E. The completeness condition looks as follows: any plane P
that meets supp ¢ contains a point a € I'. Denote by K the convex hull of supp .

e A
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Theorem 13 Let I' be a smooth curve in B\K that fulfils the completeness condition
for supp ¢. The function f can be reconstructed from the knowledge of I(a, P;p) for
sucha €T and P 3 a.

PRroOF. Take a point a € I' and choose an Euclidean coordinate system z,y, z
centered at a such that z > 0 in suppip. Apply the projective transformation

il e
e ==

dazdy dédn

bd " eVitere
Choose a number ¢ and take the plane P/(¢) = {z = (z}. We have dS = (cos8)~ dudy,
where 8 is the angle between P and the z-axis, and

fdad f d
cus@l(n.P(]‘P)=/P( Wf‘:/l: E_L:{\/_l_ﬁ it

=/:: (/OMf(zynx,CZ)dz)\/l_*_d:er—@

Denote

L0 = [y fdo = (142 + @ ) fds; (32)
R(n,0) = {y =72,z = (z, >0}

where ds is the Buclidean density in the ray R. The equation (31) is equivalent to

0s01(a P = [ L5 C),

An arbitrary plane through the origin that touch supp ¢ can be written in the form
P = {ay + Bz = a} ,a® + * # 0. We have

cosf I(a, P;p) =/ Lf(n,()do, cosf = (1 + (a2 +ﬁ2)4)_l/2
pe

where P* = {(7,¢) : an+ ¢ = 1} and do is the Euclidean measure in the line P*.
This equation shows that the ray transform of the function Lf (,¢) is known for
any straight line P* in the Euclidean (7, ()-plane, hence the function Lf can be
reconstructed be means of the inversion of the plane Radon transform. From (32)
we find the ray integrals fn fds for all rays R with the vertex a. Therefore the ray
transformation of f is known for any ray starting from a point a € I and the function
f can be reconstructed by means of Theorem 11. (m]
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7 Duality in integral geometry

7.1 Fourier transform of homogeneous functions

Consider an Euclid space E of di ion n + 1 with an Euclidean coordinate
system z = (&g, ..., Z»). The form dV = dxg...dz, is the Euclidean volume element.
We write the Fourier integral for a density ¢ = fdV € Li(E) in the form (3). The
Fourier image f: F(fdV) is a function on the dual Euclidean space E*. Let S(E) be
the Schwartz space of smooth functions in E. It is the class of smooth C*-functions f
in E such that D'f = O ((1 + |z|)_q) for any i = (i, ...,in) and arbitrary natural g.
Let S(E*) be the Schwartz class of functions in E*. An element the space S(E*)dV*
is a density in E* of the form p = dV*, where ¢ is an element of the Schwartz
space S(E*) and dV* = d&...d¢, for the dual coordinate system &, ...,&,. The dual
space S'(E) is the space of tempered distributions and (S(E*)dV*)’ is the space of
tempered generalized functions. Replace the space E by its dual and consider the
conjugated transform (4). This operator maps S(E*)dV* continuously to S(E); the
dual operator is F' : §'(E) — (S(E*)dV*)". The latter is called the Fourier transform
of tempered distributions; the image of such a distribution is a tempered generalized
function. The operator F' agrees with (4) for distributions ¢ € L;.

A distribution or a generalized function u in E is called homogeneous of degree
X € C, if it satisfies the equation L,u = Au where L. denotes the Lie derivative along
the Euler field e = Y z;0/0z;. This equation means that u(L.¢) = —Au(¢) where
L.¢ = e(¢) for any test function ¢ and L. is the Lie derivative along e. This definition
agrees with the classical one, since for a smooth function or distribution u and test
density, respectively, function ¢ the following equation holds

/L,m;s + /uL,¢S = /L,(uqs) -0

In particular, the volume density dV' is a homogeneous distribution of degree n+1 and
the delta-function do(¢dV) = ¢(0) is a h generalized function of degree
—n — 1. Any homogeneous distribution or generalized function is tempered.

7.2 Duality for Minkowski-Funk transform

We denote by (E*) the unit sphere in the Euclidean space E* and by og the corre-
sponding projective volume form. For a subspace L C E the polar L° is the space of
covectors y € E* such that (z,y) =0 for all z € L.

Theorem 14 Let L be an arbitrary proper subspace of E and L° be its polar. We

have
/ fore = for (33)
B(L°) (L)

for any homogeneous function f in E of degree —k, k = dim L
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7.3 Duality in Euclidean space

Definition. Let E be an Euclid space of di n with coordiantes

& = (xy,...,2) . Take an affine subspace A C E\ {0} of dimension k and consider the
system of equations for z € E :

(Z,))p+1=0,y€ A

The set A of solutions is an affine subspace E of dimension n — k — 1. We call this
space dual to A. The double dual space to A coincides with A.

Let Mg be the affine integral transform in E. It turns that the values of Mg on
A and A are related as follows. Consider the standard embedding e : E = E by
z v (1,z) where E = R 4 E be an Euclidean space with coordiantes o, ..., &n. Fix
an integer k,0 < k < n; let f be a function in E such that

(1+1242) £ @) € L1 (B) (34)

2y (k+1)/2
z
) )
It is homogeneous of degree —k — 1. By (34) the density gdrodz...dz, is locally

integrable and the Fourier transform § is well defined in E* = E. It is a homogeneous
generalized function of degree k — n. We call

Define the function in E

T

9(20,7) = zg*! (1 +
To

f@=(+1P) " 50,

k-dual function to f. It is easy to see that the function n — k — 1-dual to f is equal to
1 provided that (1 + |=|’"‘“) (2) € Ly (E). Denote d(4) = dist (4,0).

Theorem 15 Let f be a function in E satisfying (34) for some integer k, 0 < k < n.
Then for arbitrary affine subspace A C E of dimension k we have

&2 (A) Mf () =d' (A) My (4) (35)
where f is the k-dual function.

PrROOF. The density go is integrable on the hemisphere £, = {zﬁ + |.’1:|2 =1,
2 > 0} in E. Let L be the linear span of e (A) in E. By (14) we have

s 1/2 =(d41)/2
[ o= vy [ ((eaf) M gam) e oo
= (14 (4)" Mef (4)

(T
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On the other hand, by (33) we have

e f oL, = gore = / gore
2 nL L) B(Le) B40L°

The polar space L° is equal to the span of A. We apply the equation (36) to the right

side:
\\1/2 =59 2

goro = (1+d* (4 Mgf (A 37

[T = (14 (8) 7 47 (4) @

Now (35) follows from (36) and (37) since d (4)d (A_) =45 (u]

Example 1. Let S be a surface in E® with non-vanishing Gaussian curvature and
A(S) the variety of lines tangent to S. Then we have

A(S) = A(S),
where § is the dual surface, i.e. the envelope of hyperplanes §, y € S.

Example 2. Let I' a smooth curve in £\ {0} and A(T) the variety of lines that
meet . The dual variety A(T') consists of affine n — 2-planes A that are contained
in hyperplanes 7, ¥ € T’ where 7 is dual to the point . The family {7,y € I'}
have an envelope S which is a smooth hypersurface in E if ' generic, for instance
the vectors z’ (s),z" (8),...,#(™ (s) are independent in each point & = z(s) of I'.
The variety A(T) is the family of n — 2-planes that are tangent to S. Note that §
is a hypersurface of very special form. For the variety A (') we have the following
reconstruction method which is a direct generalization of Theorem 11.

Theorem 16 Let I be a curve in an Euclidean space E™ and the hyperplane H (w,p) =
{z;w -z = p} meets " in a point y. Then for an arbitrary f € C"*(E) such the set
supp f N H is compact we have

[n/2)-1 gn-2-
My, f(H) = Z Cnk [ Gon-a-ak le L(g,v))lq=0dS (38)

n

where L(q,w) = {z =y +t(v +qu), t € Ry}, v is a unit vector in H (w,0), dS is the
area element on a unit sphere S"~* C H (w,p) and

ek = (“D)* (2K — 1))? ("Z'k 2)

By the duality we get a reconstruction method for the variety A(I').

8 Spherical mean transform

Let E be a Euclidean space of dimension n. The spherical mean transform of a function

Fin X inn

* integral

1 i fse 277/2
Ms{ (2,r) = rorireey / LA 18N = v
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The function Mg f is defined in the space Xg =
closed half-line; we have Mg f (z,0) = f (z).
For an arbitrary conti function f in an Euclid space E™ the spherical

mean transform g = Mg f satisfies the Euler-Poisson-Darboux equation in X = E x
Ry

X x Ry where Ry stands for the

Dgﬁ(r;;ﬁ-#(n—l)——n& )g(z,r):

The principal part of the Darboux operator is equal to the wave operator 0] where
0 = 87 - A, with the velocity 1. A hypersurface £ C X is characteristic for the
Darboux (and for the wave) operator at a point (z,r) € X,r > 0, if the principal
symbol vanishes on the conormal vector v to ¥ at z i.e., if v — 2 = 0, where v, € E
and v, € R are the components of v.

Proposition 17 The variety X (Y) is characteristic at each its point.

It follows that the reconstruction problem can be reduced to the characteristic
Cauchy problem: given a solution g of the Darbour equation is known on a charac-
teristic hypersurface, to find this solution on the boundary E x {0}. We have then
f(z) = g(z,0). The method of Sec.5.2 can be applied for reconstruction of f from
the data Msf|2(Y), provided the variety £ (Y) is complete at each point € supp f.

9 Integral transform of differential forms

Let V' be a vector space of dimension n, a be a smooth differential form in V with
compact support. Suppose we know the integrals

Ma('y)=/a,'yel‘ (39)
v

for a family T of closed algebraic submanifolds 4 C V. The problem is which infor-
mation on a can be recovered? All integrals (39) vanish if a = df for a form 8 with
compact support, hence, we can not expect to reconstruct the form « uniquely. The
problem can be specified in the following way:

Problem: is it possible to reconstruct the form da from the integral information

(39)? To avoid the redundance we ought to assume that I' is a n-parametric family.
This is, in fact, equivalent to reconstruction of the form a modulo the subspace of
exact forms df such that supp f is compact. There is a large variety of interesting
special cases of this problem. We consider here only two simplest examples.

Radon transform: I' is the family of hyperplanes in V

Proposition 18 The form da can be uniquely reconstructed from-data of Ma|H for
all hyperplanes H C V and a form a with compact support.
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PROOF. Let H be a hyperplane with an orientation and V (H) be a half-space
bounded by H. We have by Stokes’

/ da:f a
V(H) H

Choose an Euclidean structure in V; let dV be the volume element in this structure.
Write da = ¢dV for a function ¢ and set H = H (w, p) . Taking p-derivative we get

of a=[  sw=Rown
H(w,p)

H(w,p)

‘We recover the function ¢ by means of inversion of the Radon transform. o

Integrals over quadrics. Consider a family of quadratic hypersurfaces ¢ (z) = 0
in V. Fix N points pi,...,pxy € V in general position, where N = n(n + 1) /2 and
take the family T'y of quadrics that contain these points: g(p;) = 0,5 = 1,...,N.
The family of quadratic functions g satisfying these equation is a vector Q space of
dimension 7 + 1, hence the family I'y has n parameters.

We show that the data Ma|Ty is sufficient for reconstruction, at least, locally.
Choose a basis o, ..., ¢ in Q; it defines the algebraic mapping ¢ : V = R™*! ¢ =
gj(z), j = 0,..,n. Consider the projective space P" = P (R"*!) and choose an
affine chart, say, the chart W = R™ with coordinates y1 = & /&0, ., un = &/
The mapping ¢ : V\{go =0} — W is well defined; choose an open subset V' C
V\ (go = 0) such that the mapping V' - W is an embedding. This means that the
functions y; = g; (¢) /g0 (z),j = 1,...,n are coordinates in V'. Any linear equation
ap + a1y1 + .. + @ayn = 0 is equivalent to aggo + ... + @ngn = 0, i.e. any hyperplane
H belongs to the family I'y. For an arbitrary form a of degree n — 1 such that
suppa C V' all the hyperplane integrals are known. According to Proposition 18 the
form da can be reconstructed from this data.
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Figure 1: Intersection of S, B, @ with a plane F through origin




