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ABSTRACT
The purpose of this article is to present explicit and asymptotic methods
to count various kinds of trees. In all cases the use of generating functions
is essential. Explicit formulae are derived with help of Lagrange’s inversion
formula. On the other hand singularity analysis of leads to
asymptotic formulas.

RESUMEN

El propésito de este articulo es

métodos para contar varios tipos de drboles. En todos ]os casos el uso de

funciones generatrices es esencial. Explicitas férmulas son derivadas con la ayuda

de la fétmula de inversién de Laplace. Por otro lado andlisis de singularidad de
las fi ices conduce a férmulas
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Introduction

Trees are defined as connected graphs without circles, and their properties are
basics of graph theory. For example, a connected graph is a tree if and only if the
number of edges equals the number of nodes minus 1. Furthermore, each pair of nodes
is connected by a unique path etc.
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If we mark a specific node r in a tree T then it is called rooted tree. A rooted
tree may be easily described in terms of g ions or levels. The root is the 0-th
generation. The neighbors of the root i the first generation, and in general
the nodes of distance k from the root form the k-th generation (or level). If a node
of level k has neighbors of level k + 1 then these neighbors are also called successors.
Furthermore, if v is a node in a rooted tree T then v may be considered as the root of
a subtree T, of T' that consists of all iterated successors of v. This means that rooted
trees can be constructed in a recursive way. Due to that property counting problems
on rooted trees are usually easier than on unrooted trees.

Rooted trees have also various applications in computer science. They naturally
appear as data structures, e.g. the recursive structure of folders in any computer is
just a rooted tree. Furthermore, fundamental algorithms such as Quicksort or the
Lempel-Ziv data compression algorithm are closely related to rooted trees, namely
to binary and digital search trees which are also used to store (and search for) data.
Rooted trees even occur in information theory. For example, prefix free codes on an
alphabet of order m are easily encoded as the set of leaves in m-ary trees.

In what follows we will present methods for counting trees that are based on the
concept of generating functions. Generatings functions are quite natural in this context
since (rooted) trees have a recursive structure which translates to recurrence relations
for corresponding counting problems. And generating functions are a proper tool for
solving recurrence equations. There are lots of references in the literature concerning
tree enumeration with generating functions. We just mention two of them, the book
of Harary and Palmer [9] and the article of Vitter and Flajolet [18].

The present article is divided into two main parts. In Section 1 we consider several
kinds of trees (binary trees, planted plane trees, simply generated trees, unrooted
trees) and show how we can obtain explicit and aymptotic formulas for the numbers of
trees of size n. Section 2 is devoted to more involved counting problems, for example
one is interested in the number of trees of size n with k leaves etc. Both sections are
followed by 2 appendices where some additional material from combinatorics and

FIGURE 1. Binary tree
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asymptotics for generating functions is collected (with proofs) that can be applied
to the above mentioned tree enumeration problems on trees.

1 Counting Trees With Generating Functions

1.1 Rooted Trees

One of the basis objects in the context of trees are binary trees. Binary trees are
rooted trees, where each node is either a leaf (that is, it has no successor) or it has
two successors. Usually these two successors are distinguishable: the left successor and
the right successor. The leaves of a binary trees are also called external nodes and
those nodes with two successors internal nodes. It is clear that a binary tree with n
internal nodes has n + 1 external nodes. Thus, the total number of nodes is always
odd.
Our first result is an explicit formula for the number of binary trees.

Theorem 1 The number by, of binary trees with n internal nodes 1s given by

Proof. Suppose that a binary tree has n + 1 internal nodes. Then the left and right
subtrees are also binary trees (with k resp. n — k internal nodes, where 0 < k < n).
Thus, one directly gets the recurrence for the corresponding numbers:

bupr = Zbkbn—k« (1)
k=0

The inital value is by = 1 (where the tree consists just of the root).
This recurrence can easily be solved with help of the generating function

Blz)'= T tha".
n20
By (1) we find the relation
B(z) = 1+ zB(z)? (2)
and ¢ ly an explicit repr ion of the form
—y1-4z
B 3)
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Hence'
bo = L2

= —5l"(1 - 42}
AL oo
= i 1 (2:)
L ]

Remark There is also an alternate way of deriving a formula for the coefficients
with help of (2). Set B(z) = B(x) — 1. Then

B(z) = z(1 + B(x))?,

and we can use Lagrange’s inversion formula (see Theorem 9 of Appendix 1.A) with
o(z) = (1+ z)? to obtain (for n > 1)

= 1
b, = [z"]B(z) = ;[u"“‘](l +u)?"
N ()
“na\n-1) n+1\n)’
By inspecting the proof of Theorem 1 one observes that the recurrence relation (1)

- together with its intial condition - is exactly a translation of a recursive description
of binary trees:

A binary trees B is either just an external node or an internal node (the
root) with two subtrees that are again binary trees.

Formally we can write this in the form
B=0O+0xBxB=0+0 x B?,

where we denote an external node by 0 and an internal node by O. The interesting
fact ~ which is also the key to most of the subsequenct considerations - is that
this recursive description directly translates to a corresponding relation (2) for the

generating function:
B(z) =1+ zB(z).

We will demonstrate this kind of prodecure with planted plane trees. Planted plane
trees are again rooted trees, where each node has an arbitrary number of successors
with a natural left to right order (similarly as above).

For a power series a(z) = 3,50 anz" we will use the notation [z"}a(z) to denote the coefficient
an of = B

P )
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FIGURE 2. Planted plane tree
Theorem 2 The number p, of planted plane trees with n > 1 nodes is given by
1 (271 - 2)
Pn== ;
n\n-1

Proof. We directly proceed in a formal way. Let P denote the set of planted plane
trees. Then from the above description we obtain the recursive relation

P=0+0xP+OxP*+0xP+....

With
Bla)= pya”
n>1
this translates to
SR 2 ‘o &,
P(z) = z + zP(z) + 2P(z)* + zP(z) =
Hence
b () e VAEase T (1)

2
and consequently

1/2n-2
e s :
Pn 1 n(n—l)

Remark 1 Asin the case of binary trees we can also use Lagrange’s inversion formula
(with @(z) = 1/(1 = x) to obtain p, explicitly:

e

n—1
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Remark 2 The relation p, = b,— has a deeper meaning. There is a natural bijection
between planted plane trees with n nodes and binary trees with n — 1 internal nodes:
the rotation correspondance. Let us start with a planted plane trees with n nodes and
apply the following procedure.

. Delete the root and all edges going to the root.

)

. If a node has successors delete all edges to these successors depite one edge to
the most left one.

w

. Join all theses (previous) successors with a path (by horizontal edges).

'S

. Rotate all these new (horizontal) edges by 7/4 below.

o

. The remaining n — 1 nodes are now considered as internal nodes of a binary
tree. Append the (missing) n external leaves.

The result is a binary trees with n — 1 internal nodes. It is easy to verify that this
procedure is bijective.

Another kind of rooted trees where we can solve the counting problem directly
with help of generating functions are m-ary rooted trees, where m > 2 is a fixed
integer. As in the binary case (m = 2) we just take into account the number n of
internal nodes. The number of leaves is then given by (m — 1)n + 1 and the total
number of leaves by mn + 1.

Theorem 3 The number bs."') of m-ary trees with n internal nodes is given by

B ot "'"),
2 m-1)n+1\n

Proof. As in the binary case, m-ary trees B, can be formally described by
B, =0+0 x By
Thus, the generating function

Bm(z) = ) bmz"

n>0

satisfies the relation
By (z) = 1+ 2Bm(2)™

Setting B (z) = Bm(z) — 1 we get

Bpn(z) =z(1+ Ba(2))™
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and by Lagrange's inversion formula (for n > 1)

B = [2")Bn(2) = 21 + 0™

el e
| |

A similar counting procedure applies to labeled (rooted and unrooted) trees, too.
The nodes of a labeled tree of size n are labeled with the numbers 1,2,...,n. An
unrooted labeled tree can be also interpreted as a spanning tree on the complete
graph C,, with nodes 1,2,...,n.

Theorem 4 The number l,, of rooted labeled trees of size n is given by

ln =1
n = 8

Consequently the number of unrooted labeled trees of size n equals n™~2.

Proof. Let £ denote the set of labeled rooted trees. Then £ can be recursively de-
scribed as a root followed by an unordered k-tuple of labeled rooted trees for some
k > 0. Note that (for example) a pair of labeled trees (of sizes m and n) naturally
corresponds to (™1™) pairs which are labeled with the numbers 1,2, ..., m +n. Thus,
it is appropriate to use the exponential generating function

of [,,, since the above recursive description is then translated to

2 3
L(;) r? ZL_(;!L e )

L(z) = + aL(z) + «
With help of Lagrange's inversion formula we thus get

ln = nl[z"|L(z) = ";![u"-l)eun

an=1 3
=(n- 1)!(7_—1)! ==t

Note further that the number of unrooted labeled trees of size n equals l,/n since
every node in an unrooted tree can be used as a root (and produces n different rooted
trees). [ ]
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1.2 Simply Generated Trees

Simply generated trees have been introduced by Meir and Moon [12] and are proper
generalizations of several types of rooted trees. Let

#(@) = po + P12 + 2z’ + oo

be a power series with non-negative coefficients, in particular we assume that ¢, > 0
and g; > 0 for some j > 2. We then define the weight w(T') of a finite rooted tree 7'

by
w(@) = [T,
320

where D,(T) denotes the number of nodes in 7" with j successors. If we set

tn= D w(T)

ITI=n

then the generating function

y(®)="0 Yzl

n>1
satisfies the functional equation
y(z) = zp(y(z))-

In this context y,, denotes a weighted number of trees is size n. For example, if p; = 1
for all ; > 0 (that is, p(x) = 1/(1—)) then all rooted trees have weight w(T') = 1 and
Yn = Pn is the number of planted plane trees. Another example is p(z) = 1+ z + z*
that leads to Motzkin trees. Here only rooted trees, where all nodes have less than 3
successors get (a non-zero) weight w(7') = 1: y, is the number of Motzkin trees with
n nodes.

Binary trees are also covered by this approach. If we set ¢(z) = 1+ 2z + 2° =
(1+ ) then nodes with one successor get the weight 2. This takes into account that
binary trees (where external nodes are disregarded) have two kinds of nodes with
one successor, namely those with a left branch but no right branch and those with
a right branch but no left branch. Similarly, m-ary trees are counted with help of
e(x) = (1+2)™.

In view of this examples it is convenient to think of simply generated trees 7 as
a weighted recursive structure of the form

T=p0 O+ OXT+p-OxT24--..

1f all ; are (non-negative) integers then the weighted number y,, is actually a number
of certain rooted trees of size n.

Yaaw A
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5

I ingly there is an i relation to Galton-Watson branching processes.
Let € be a non-negative integer valued random variable. The Galton-Watson branching
process (Zg)i~o is then given by Zo = 1, and for k > 1 by

Zny k
Zh= L,

=1

where the ({;“)g,, are iid random variables distributed as £.

It is clear that Galton-Watson branching processes can be represented by ordered
(finite or infinite) rooted trees T' such that the sequence Zj is just the number of
nodes at level k and 37, Zx (which is called the total progeny) is the number of
nodes |T'| of 7. We will denote by »(T') the probability that a specific tree T' occurs.
The generating function y(z) = Y3,..., yne” of the numbers

vn =Pr{|T|=n]= Y »(T)
|T|=n
satisfies the functional equation
(@) = 2p(y(=)),
where p(t) = Etf = 3" ot/ with ¢; = Pr[€ = j]. Note that
v(@) = [ = w(@).
20

The weight of T is now the probability of T'.
By Lagrange's inversion formula we get for all simply generated trees (and for all
Galton-Watson branching processes)

o = 2l lo(w)" )

But there are only few cases where we can use this formula to obain nice explicit
expressions for y,,. Nevertheless there is a quite general asymptotic result which relies
on the fact that (under certain conditions) the generating function y(z) has a finite
radius r of convergence and that y(x) has a singularity of square root type at = = r,
that is, y(z) has a represenation of the form

¥(z) = glz) - h(f)w -‘tin =cq+c1vVZ — 7o + c2(z - 7o) + 0(11 _20‘3/2) )

where g(z) and h(z) are analytic at zo. For binary and planted plane trees this has
been made explm( see (3) and (4). Of course, such representations can be used
to derive asy i for the coeffici Un (for details see the proof of
Theorem 10 in the Appendlx 1.B). It should be further mentioned that formula (5)
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can be also used to derive asymptotics for y,, via a saddle point method applied to the
integral [(o(u)/u)" du, where the contour of integration is the circle |u| = 7 (compare
also with Theorem 17). Of course, one gets the same result. But the method presented
in Theorem 10 is much more general. It works for general functional equations of the
form y = F(z,y) and not only for equations of the form y = zy(y).

Theorem 5 Let R denote the radius of convergence of ¢(t) and suppose that there
ezists T with 0 < 7 < R that satisfies 7¢'(7) = (7). Set d = ged{j > 0 : p; > 0}.
Then

907;(32" 1+0(n™) (n =1 mod d) (6)

h=dy =

andy, =0 ifnZ 1modd.
Proof. We apply Theorem 10 for F(z,y) = z¢(y) and assume first for simplicity that
d = 1. Then all assumptions are satisfied. In particular we have zo = 1/¢'(7) and
V=T
If d > 1 then it is easy to see that y, = 0 if n Z 1 mod d. Consequently we have
y(z) = §(z%) /2% and (of course) p(z) = @(z) for analytic functions §(z) and @(z).
They satisfy §(z) = x@(g(x)) and the corresponding gdc d = 1. Thus, Theorem 10
can be directly applied to this equation and we obtain (6) in general. L]
Note that for m-ary trees and for planted plane trees this asymptotic formula also
follows from the explicit formulae for ™) and Pn via Stirling’s formula.

1.3 Unrooted Trees

Let 7 denote the set of unlabeled unrooted trees and 7 the set of unlabeled rooted
trees. The corresponding cardinalities of these trees (of size n) are denoted by f,, and
ty,, and the generating functions by

i(z) = Z faz” and t(z) = Zl,..r".
>1

n>1

The structure of these trees is much more difficult than that of rooted trees, where
the successors have a left to right order. It turns out that one has to apply Pélya’s
theory of counting and an amazing observation (8) by Otter [15].

Theorem 6 The generating functions t(z) and i(z) satisfy the functional equations

t(z) = zexp (1(1) i %l(x’) 5 %t(x’) + ) (7

fz) =Y ina" = t(z) - %l(x)’ + 211(:’)- (8)

n>1

e &)
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They have a common radius of convergence p ~ 0.338219 which is given by t(p) = 1,
that is, t(z) s convergent at @ = p. Furthermore, they have a local ezpansion of the
Jorm

o) = 1-bp -2} 4 clp=2) +dlp— 22 + O ((p-21) (9
and
i) = O E ot gy piclp-ay 40 (-a),  (0)

where b~ 2.6811266 and ¢ = b%/3 ~ 2.3961466, and z = p is the only singularity on
the circe of convergence |z| = p. Finally, t, and i, are asymptotically given by

tn = %n'““p“" (1+0(n)) (11)
and W
e 4”771-“/%-" (1+0(n ). (12)

Remark In 1937 Pélya [16] already discussed the generating function t(z) and
showed that the radius of convergence p satisfies 0 < p < 1 and that ¢ = p is
the only singularity on the circle of convergence |z| = p. Later Otter [15] showed that
t(p) = 1 and used the representation (9) to deduce the asymptotics for t,. He also
calculated p =~ 0.338219 and b ~ 2.6811266. However, his main contribution was to
show (8). Consequently he derived (10) and (12).

Proof. We first show (7). As in the previous cases we can think of rooted trees in
A recursive way, that is, 7 is a root followed by a set of rooted trees. However, these
rooted subtrees are not ordered from left to right and there are no labels. In other
words a subtree structure and all its permutations just count once. On the level of
generating functions this can be managed with help Pélya’s theory of counting. Let

Z(Sk; 21,72, .., 7x) denote the cycle index of the symmetric group Sy then we get
tz) =g Z(Skit(), t(a?),..., t(z*)).
k20
Since

ZZ(Sk;xl,zg,...,xk) = exp (r, + %z; + %1; +)
k20
we also obtain (7).

The radius of convergence p of t(z) surely satisfies % < p < 1. (This follows from
ty < p, and £, — 00.) Next we show that ¢(p) is finite (although z = p is a singularity
of t(z)) and that p < 1. From (7) it follows that log(¢(z)/z) > t(z) for 0 < z < p.

Hence,
t(x)/x

1
log(t(z)/z) < z
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and consequently t(p) has to be finite. If p = 1 then ¢(p*) = t(p) for all k£ > 1 and it
would follow that
lim et@+3tE)+3E+ = o
z—hp—

which is impossible. Thus, p < 1 and consequently the functions t(z?),¢(z?),... are
regular at z = p. Moreover, they are analytic for |z| < p + ¢ (for some sufficiently
small = > 0) and are also bounded by [¢t(z¥)| < C|z*| in this range. Hence, t(z) may
be considered as the solution of the functional equation y = F(z,y), where

1 1
F(z,y) = zexp (y+ Et(a:z) 3F Et(xz) +) b
This function satisfies the assumptions of Theorem 10. In particular, the singularity
z = p and 7 = t(p) satisfy the system of equations

1 1

1= pexp (n+ 346 + 5t + ) ;
1 1

1= pexp (n +5t0") + §t(p’) +)

that directly gives n = t(p) = 1. Now, by using the expansion (9) and (7) we also
get ¢ = b?/3 by comparing coefficients. Thus we obtain (10) and (11). Note also that
Theorem 10 implies that z = p is the only singularity on the circle of convergence of
t(z).

Next, observe that (9) and (8) imply (10) and (with help of the transfer lemma
(Lemma 1.1) (12). Therefore it remains to prove (8). %

We consider three sets of trees, the set 7 of rooted trees, the set 7 of unrooted
trees and the set 7(”) of (unordered) pairs {73, T2} of rooted trees of 7 with T} # T».
(It will be convenient to consider the pair {T1,T>} as a tree that is rooted by an
additional edge joining the roots of T and T5.) Let t!) denote the number of pairs
of that kind with a total number of n nodes, and let ¢()(z) denote the generating
function of t'7). Then by Pélya’s theory we have (see [9])

9 (z) = %t(;)’ o %c(zzy (13)

We will now show that there is a bijection between 7" and 7 U 7). In view of (13)
such a bijection implies (8).

Recall that an arbitrary (finite) tree has either a cental node or a central edge.
The central edge e = (v, w) is called symmetry line if the two subtrees rooted at the
endpoints v and w are equal.

We first partition the set 7 into 6 subsets:

1. Let 7; denote those rooted trees that are rooted at the central node.

2This bijection was pointed out to me by Bernhard Gittenberger.
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2. Let T denote those rooted trees that have a central node that is different from
the root.

3. Let 73 denote those rooted trees that have a central edge which is not a sym-
metry line and where one of the two endpoints of the central edge is the root.

4. Let 74 denote those rooted trees that have a central edge which is not a sym-
metry line and where the root is not one of the two endpoints of the central
edge.

5. Let 75 denote those rooted trees that have a central edge which is a symmetry
line and where one of the two endpoints is the root.

6. Let 75 denote those rooted trees that have a central edge which is a symmetry
line and where the root is not one of the two endpoints of the central edge.

In a similar way we partition the unrooted trees 7
1. Let 7} denote those unrooted trees that have a central node.

2. Let 7> denote those unrooted trees that have a central edge, that is not a
symmetry line.

3. Let 73 denote those unrooted trees that have a symmetry line as a central edge.
Finally we partition 7(?), that we consider as trees rooted at an edge.

1. Let T,m be the set of pairs {T1,T,} with Ty # T, with the propery that if we
join the roots of Ty and T by an edge then the resulting tree has a central node.

~

Let T,{’) be the set of pairs {T1, T2} with T} # T>, such that the tree that results
from Ty and T, by joining the roots by an edge has a central edge that is not a
symmetry line and that is different from the edge joining T} and T5.

@

Let 7;“’) be the set of pairs {T1, T2} with Ty # Tb, such that the tree that results
from Ty and T, by joining the roots by an edge has a central edge that is not a
symmetry line and that is different from the the edge joining 7} and T5.

=

Let 7;'”) be the set of pairs {T1, To} with Ty # T, such that the tree that results
from Ty and T3 by joining the roots by an edge has symmetry line as a central
edge that is different from the the edge joining Ty and T5.

Now there is a natural bijection between 7; and 7;. We only have to take the
central node as the root.

Next, there is a bijection betwenn 72 and 7',“’). ‘We identify the first edge from the
path connecting the root and the central node with the edge joining T and T5.

Next, there is a trivial bijection between sets 75 and 7;”’); Furthermore, by marking
one of the two endpoints of the central edge in the trees of 72 we obtain 73. Of course,
this can be rewritten as a bijection between T3 and 73 U ’Tz“’).
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Next, there is a bijection betwenn 73 and 7}“’). We identify the first edge from
the path connecting the root and the central edge with the edge joining 7j and 7.
Similarly there is a bijection between 7 and Tf’). i

Finally, there is a natural bijection between 75 and 73. [ ]

In a similar (but easier) way one can also treat planar trees P. We already discussed
planted plane trees P and their generating function p(z) which satisfies p(z) = z/(1—
p(z)). If p(z) denotes the generating function of the numbers $, of planar (unrooted)
trees of size n then the following relations hold.

Theorem 7 The generating functions p(z) is given by

5@) = 2 30 2(Cuiple) e - plR) = 30N+ 306D, (1)
k>0

where Z(Cx; 1,%2,...,3k) = %Zdlk tp(d)zﬁ/d denotes the cycle index of the cyclic

group Ci of k elements. The numbers pn of planar (unrooted) trees of size n are
asymptotically given by

1 5

4"n~%2 (140 (n7Y)). 15

T (1+0(n ™) (15)

B

Proof. First of all, the generating function 7(z) of rooted planar trees is given by
1(z) =2 Y Z(Ck; p(a), p(z%), ..., p(z*)).
k>0

This is due to the fact that the subtrees of the root in planted plane trees have a
left-to-right order but rotations around the root are not allowed. Second, as in the
proof of Theorem 6 one has

2 1 1
#o) = r(e) = 3p(@)* + 5p(a?).
Consequently p(z) has a local expansion of the form
#o) = 51427 4 -

which gives (15) with help of the transfer lemma (Lemma 1.1). ]

1.4 Other Types of Trees

We just want to mention that there are several other types of trees, for expample
recursice trees, binary search trees, digital search trees, tries, quad-trees etc. that
will not be discussed in this paper. Nevertheless, in all these cases the concept of
generating functions can be used to rephrase the counting problem into this more
analytic language (for details see Flajolet et al. (7] and Sedgewick and Flajolet [17)).
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Appendix 1.A: Lagrange Inversion Formula

Let a(z) = 2 a,z" be a power series with ag = 0 and @, # 0. The Lagrange inversion

formula provldes an expicit ion of the coeffici of inverse power series
al=1(z) which is defined by a(a[ U(z)) = al-Y(a(z)) =

Theorem 8 Let a(z) = Y anc™ be a formal power series with ap = 0 and a; # 0.
n>0

Let b(z) = al=Y(z) be the inverse power series and g(z) an arbitrary power series.
Then the n-th coefficient of g(b(z)) is given by

—“—i)" (n>1).

1
n = Sin=1
felal8) = 20 (5
In tree enumeration problems the following variant is more appropriate. Note that
Theorems 8 and 9 are equivalent. If a(z) = z/¢(z) then al=1)(z) = y(z), where y(z)
satisfies the equation y(z) = zé(y(z)).

Theorem 9 Let ¢(z) be a power series with ¢(0) # 0 and y(z) the (unigue) power
series solution of the equation

y(@) = z¢(y(2))-

Then y(z) is invertible and the n-th coefficient of g(y(z)) (where g(z) is an arbitrary
power series) is given by

@) = "l @ (2 1),

Proof. Since Theorems 8 and 9 are equivalent we only have to prove Theorems 8.
We just present an analytic proof for complex coefficients. Of course, the resulting
analytic identities are formal ones, too.

We start with Cauchy’s formula and use the substitution u = b(z). Note that if
7 is a contour with winding number 1 around the origin the 4" = b(7) has the same

property:

= - [ 4

1 a/(u)
om0 “)a( i
Since

'(u)

RN 1 a
(-"“”W) =Wy - ng(u)a(u)—m

/7’ 9(u)a(u /9 (e

it follows that
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and consequently
flota) = & [ o0 S
-2 (35)
-

Appendix 1.B: Functional Equations

Let y(z) be a power series that is the solution of a funtional equation of the form
y = F(z,y), where F is function with certain properties. In this section we show
how we can obtain asymptotic i for the flici of y(z). One major
ingredience of the proof of Theorem 10 is the transfer lemma of Flajolet and Odlyzko
8]

Lemma 1.1 Let

- Do

n>0
be analytic in a region
A ={z:|z| < zo +n, |arg(z — z0)| > 6},

in which zo and n are positive real numbers and 0 < § < m/2. Furthermore suppose
that there enists a real number o such that

A(z) =0(1-z/20)™") (z€A).

Then
an =0 (g5"n""").

Proof. One uses Cauchy’s formula
1 A(z)
= om / it 4
where 7 is a suitable chosen path of integration around the origin. In particular one
can use vy = 7y U2 U~y3 U4, where

z
m={r=a+ijl=1,8<angl) <7},
’72={Z=Io+te“"iiit$ﬂ}v

73={z=zo+te"". L gzgq},

v ={z:[z| = |wo + €|, arg (zo +€*'n) < |argz| < 7}.

T\
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It is easy to show that the bound |A(2)| < C|1 — z/zo|~* directly proves that

o
7Ur2Uys #

whereas the integal over 74 is exponentially smaller: O ((zo +1)~"). L

= 05",

Remark Suppose that a function is analytic in a region of the form A and that it
has an expansion of the form

a(z) =C(1—§o)_°+0((1- ;—D)_ﬁ) @ea),

where § < a. Then we have

"ﬂ—l
— [ » —n —n, max{a—2,6-1}
a, = [z"]a(z) CI‘(a) 7"+ 0 (10 n ) 5 (16)

This is due to the fact that
—a nea
—1)" ek il a-2)
0 (77) = T +0 )

Theorem 10 Suppose that F(z,y) is an analytic function in z,y around z =y =0
such that F(0,y) = 0 and that all Taylor coefficients of F around O are real and
non-negative. Then there exists a unique analytic solution y = y(z) of the functional
equation
y=F(z,y) (17)

with y(0) = 0 that has non-negative Taylor coefficients around 0.

If the region of convergence of F(z,y) is large enough such that there ezist positive
solutions = xo and y = Yo of the system of equations

y=Flz,y),
1= Fy(2,y)
with Fy(zo,y0) # 0 and Fyy(z0,y0) # O then y(z) is analytic for |z| < zo and

there ezist functions g(z), h(x) that are analytic around = = zo such that y(z) has a
representation of the form

y(@) = 9(a) — h(z) 1~ = (18)
Zo

locally around = = zo. We have g(zo) = y(20), and

220 Fz (20, Y0)

el Fyy(o0,0)
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Moreover, (18) provides a local analytic continuation of y(z) (for arg(z — zo) # 0).

If we further assume that [z")y(z) > 0 for n > no then & = zo is the only
singularity of y(z) on the circle |z| = zo and we obtain an asymptotic ezpansion for
(z"]u(z) of the form

[z")y(z) = “———;?:‘;v((z;:’?:) z5"n"2 (140 (n7Y)). (19)

Remark 3 Note that the assumptions F; (o, %0) # 0 and Fyy(o,y0) # 0 are really
necessary to obtain a representation of the form (18). If F;(zo,y0) = 0 then F(z,y)
(and y(z)) would not depend on z. Furthermore, if Fy,(zo,%0) = 0 then F is linear

iny:
F(z,y) = yFi(2) + F2(2), (20)
and consequently e
") = a1

is explicit and surely not of the form (18). However, a representation of the form
(21) (where Fy(z) # 0) usually leads to almost the asymptotic expansions for the
coefficients of y(z) in the case covered by Theorem 10. Suppose that the radius r
of convergence of Fy(z) is large enough that there is 0 < zo < 7 with Fy(zo) = 1
and that [z"]y(z) > 0 for n > no then z is the only singularity on the circle of
convergence |z| = o of y(x) and one gets

F3(z0)

[z"]y(z) = mza" +0 ((zo+m)7").

for some n > 0.

Proof. Firstly, we show that there exists a unique (analytic) solution y = y(z) of
y = F(z,y) with y(0) = 0. Since F(0,y) = 0 it follows that the functional mapping

y(z) = F(z,y(z))
is a contraction for small z. Thus the iteratively defined functions yo(z) = 0 and
Ym+1(z) = F(z,ym(z))  (n20)

converge uniformly to a limit function y(z) which is the unique solution of (17). By
definition it is clear that yy,(z) is an analytic function around 0 and has real and non-
negative Taylor coefficients. Consequently, the uniform limit y(z) is analytic, too,
with non-negative Taylor coefficients.

It is also possible to use the implicit function theorem. Since

Fy(0,0)=0#1.

there exists a solution y = y(z) of (17) which is analytic around 0.

&S N
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fFoi

However, it is useful to know that all Taylor of y(z) are non-neg 5
Namely, it follows that if y(z) is regular at z' (which is real and positive) then y(z)
is regular for all z with |z| < a'.

Let zo denote the radius of convergence of y(z). Then o is a singularity of y(z).
The mapping

z = Fy(2,y(2))
is strictly increasing for real and non-negative z as long as y(z) is regular. Note that
F,(0,y(0)) = 0. As long as Fy(z,y(z)) < 1 it follows from the implicit function
theorem that y(z) is regular even in a neighbourhood of z. Hence there exists a finite
limit point zo such that B;n y(z) = yo is finite and satisfies F,(zo,y0) = 1. If y(z)
220~

were regular at z = o then
y'(20) = Fz(20,y(2)) + Fy(20,y(20))y' (o)

would imply F:(zo,y(z0)) = 0 which is surely not true. Thus, y(z) is singular at
z = zq (that is, zo is the radius of convergence) and y(zo) is finite.

Now, let us consider the equation y — F(z,y) = 0 around z = z¢ and y = yo. We
have 1 — F,(z0,y0) = 0 but —F,,(x0,%0) # 0. Hence by the Weierstrass preparation
theorem (see [11]) there exist functions H(z,y), p(z), ¢(z) which are analytic around
z =z and y = yo and satisfy H(zo,y0) # 1, p(z0) = q(zo) = 0 and

v - F(z,y) = Hz,y)((y - %0)* + P(=) (y ~ vo0) + ¢(=))

locally around z = zo and y = yo. Since F(Zo,y0) # 0 we also have g, (zo) # 0.
This means that any analytic function y = y(z) which satisfies y(z) = F(z,y(z)) in
a subset of a neighbourhood of & = o with o on its boundary and is given by

Since p(zg) = 0 and ¢z(z0) # 0 we have

> (2 —q(z))mu 0,

too. Thus there exist an analytic function K (z) such that K (zo) # 0 and
2
T
20F_ @) = K(o)e ~ 20)

locally around z = zo. This finally leads to a local representation of y = y(z) of the
kind

= (22)

y(@) = g(z) - h(z)

Zo
in which g(z) and h(z) are analytic around z = z( and satisfy 9(z0) = yo and
h(zo) < 0.
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In order to calculate h(zo) we use Taylor’s theorem
0= F(z,y(z))
1
= Fz (w0, yo)(w = 20) + 7 Fyy (@0, v0) (y(2) = v)* + - (23)

= Fu(a0,00)(& = 20) + 3 Fyy(0,30)h(20)*(1 = 2/20) + Oz = o[/,

By comparing the coefficients of (¢ — z¢) we immediately obtain

) .

We now want to apply the transfer lemma (Lemma 1.1). For this purpose we
have to show that y(z) can be analytically continued to a region of the form A. The
representation (22) provides such an analytic inuation for  in a neighborhood of
7. Now suppose that |¢;| = @ and |arg(z,)| > 6. Then the assumption y, > 0 for
n > ng implies that |y(z1)| < y(|z1|) = y(zo) and consequently

[Fy(z1,y(20))] < Fy(leal, ly(@)]) < Fy(lzily(eal) = Fy(zo,0) = 1.

Thus, F,(z1,y(1)) # 1 and the implicit function theorem shows that there exists
an analytic solution y = y(z) in a neighborhood of z;. For |z| < zo this solution
equals the power series y(z) and for |z| > z¢ it provides an analytic continuation to
a region of the form A (by compactness it is sufficient to consider finitely many x,
with |z,| = 7 and | arg(z1)| > 6). So finally we can apply Lemma 1.1 (resp. (16) with
a = —1/2 and f = —3/2; the analytic part of g(z) provides exponentially smaller
contributions.) This completes the proof of (19). [ ]

2 Parameters in Trees

2.1 The Number of Leaves

In this section we will treat more involved enumeration problems. As an introductory
example we consider the numbers pn x of planted plane trees of size n with exactly
k leaves. Again the concept of generating functions is a valuable tool for deriving
explicit and asymptotic results.

Theorem 11 The numbers pn,i of planted plane trees of size n with ezactly k leaves

are given by
_1(n\(n-1
Pk = ol e




-4

ouso Combinatorics and Asymptotics on Trees 125

Proof. Let p(z,u) = 35, , Pn k22" denote the bivariate generating function of the
numbers pn x. Then following the recursive description of planten plane trees one gets

ep(@u)

plz,u) = mu+zZp(z,u)" =zu+ =)

k21

For a moment, let = be considered as a parameter. Then we have
u

2 (1- )

:
[4Ip(a,u) = £+ ( : _)
puk = [a"u¥ p(o,0)

)k

n, k=1 z
fe"o* ) ( —
o 9 e
(n - 1) (n - 1)

n\(n-1

k k)

[ ]
By using Stirling’s formula we directly obtain bivariate asymptotic expansions for
Pa,x of the form

1 nyikf p \2OH 1 1
Pk = orkn (I) (n—k) .<1+0(E)+O(n~k>)
o\ 2k i 2n i :
) (_) (o) ro () oo
In particular, if we fix n then pp x is maximal if k & n/2 and we locally get a behaviour

of the kind i ( oky?
n =
Pk~ WGXP (_—n ) 2 (25)

p(z,u) =

and consequently

Finally this implies

Ei

!IH H‘|>—‘ B"IH

This approximation has several implications. First, it shows that it is most likely
that a typical tree of size n has approximately n/2 leaves and the distribution of the
number of leaves around n/2 looks like a Gaussian distribution.
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We can make this observation precisely. Let n be given and assume that each of
the p, planted plane trees of size n is equally likely. Then the number of leaves is a
random variable on this set of trees which we will denote by X,. More precisely, we
have

PrlX, = k] = 2ok

Then it turns out that E X,, = n/2+ O (1) and Var X,, = n/8 + O (1), and (25) can
restated in a way that the normalized random variable

X, -EX,

v/ Var X,

converges weakly to the normal distribution N (0, 1).

Interestingly, both observed properties, the bivariate asmyptotic expansion (24)
and the Gaussian limiting distribution are intrinsic properties of a functional equation
of the form y = F(z,y,u) (for the unknown function y = y(=z,u)), compare with
Theorem 15, 16 and 17.)

In particular, we get the following general result for simply generated trees. For
the sake of brevity we just state the central limit law and not the bivariate asymptotic
expansion for y,  (compare with the Remark following Theorem 12).

Theorem 12 Let R denote the radius of convergence of ¢(t) and suppose that there
exists 7 with 0 < 7 < R that satisfies 7o' (1) = (7). Let Xy, be that random variables
describing the number of leaves in trees of size n, that is

Pr{X, = k] = L2k
Yn
where yn k = hIn W(T). Then B X, = pn+0 (1) and Var X, = 0>n+0 (1),
[T|=n,Do(T)=k
where i = o/ (r) ond
@0 ©} 3

Telr) (P TRe(n)e"(r)

Furthermore, X, satisfies ¢ (weak) central limit theorem of the form

Xn—EX,

—+ N(0,1).

Proof. Set

y(z,u) = Zy"*z U

nk

Then y(z, u) satisfies the functional equation
y(z,u) = poz(u = 1) + zp(y(z, u)).

Thus, we just have to apply Theorem 15 and 16 of Appendix 2.A. [ ]
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Remark Suppose that d = ged{j > 0: ; > 0} = 1. Then we can apply Theorem 15
and 17 to get bivariate asymptotic expansions for yn k, too. We will demonstrate this
for the case of planted plane trees, that is o(z) = 1/(1 — z).

From Theorem 15 we get

it m'(ﬁ+l)’"~n‘m< (1+O(%)),

Hence, in terms of Theorem 17 we have A(u) = (v + 1)?, p(u) = Vu/(Vu + 1),
o (u) = Vau/(2(vu+1)?), h(y) = (y/(1-y))? and A(h(y)) = 1/(1-y)*. Consequently,
Theorem 17 provides the same asymptotic expansion as (24).

2.2 Additive Parameters

The above concept easily generalizes to so-called additive parameters. Let v(T') denote
the value of a parameter of a rooted trees T'. We call it additive if

U(T) =v(0 x Ty x T x - x Tg) = cx + v(T1) + v(T2) + - + v(Tk),

where T}, ..., T) denote the subtrees of the root of T' that are rooted at the successors
of the root and ¢ is a given sequence of real numbers. Equivalently

o(T) = " ¢;D;(T).

720

For example, if co = 1 and ¢; = 0 for j > 0 then v(T) is just the number of leaves.
For n > 1 we now set

) = D w(@ut®

|Tl=n

and

yieu) = Y yalu)a™

n21

Of course, the definition of v(T") and the recursive structure of simply generated trees
implies that y(z, u) satisfies the functional equation

Yo, u) =2 Y pruy(z,u)k.
k>0

If ¢ are non-negative integers then yn(u) may be interpreted as

Un() = 3 ynput,

k>0

e —
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where y,, « denotes the (weighted) number of trees T of size n with v(T) = k. It is
convenient now to consider the random variables X, defined by

Bu¥e = 1), (26)
Yn
that is, X,, describes the distribution of v(T) on the set of trees of size n, where
these trees are distributed according to their weights w(7'). In particular, if ¢, are
non-negative integers then
— 1) Ynik
Pr(X, = k] = ==
Yn

As above, the distribution of X, is (usually) Gaussian with mean value and variance
of order n.

Theorem 13 Let R denote the radius of convergence of p(t) and suppose that there

ezists 7 with 0 < 7 < R that satisfies 7¢' (1) = @(7). Furthermore, let cx (k > 0) be
a sequence of real numbers such that the function

Fz,y,u) =z pruy*
k>0

is analytic at = z9 = 1/¢'(1), y = yo = 7, u = 1. Then the random variable
X, defined by (26) has expected value E X, = pun + O (1) and variance Var X,, =
o n+ O(1), where p = Y 4o ckox7* /p(7) and 0 > 0. Furthermore, if a® > 0 then
X, satisfies a (weak) central limit theorem of the form
X, -EX,
VVar X,,

Proof. We just have to apply Theorem 15 and 16 of Appendix 2.A. [ ]

- N(0,1).

Remark With help of the Remark following Theorem 16 it would have been possible
to provide an explicit formula for o? that is not really elegant. Note also that there
are cases with ¢ = 0. For example, if ¢x = 1 for all k > 0 then v(T) = |T| and
c ly X, is ated at n.

2.3 Unrooted Trees

It is also intersting to consider the class 7 of unrooted trees and define a additive
parameter v by
o(@) =Y ¢;D;(T), (27)
321
where D,(T) denotes the number of nodes in T of degree j. For example, if cx = 1
for some k > 1 and ¢; = 0 for j # k then v(T) is just the number of nodes of degree
k (see [6]).

Y Y
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In order to tackle v(T") we also have to consider the class 7 of rooted trees and
use the two generating functions

t(z,u) = Z 2Tl = Z ( z u"'(T)) T

TeT n21 \|T|=n
and
t(z,u) = z 2Ty ™) = Z ( E u"(T)> Tt
Tef n2l \|T|=n
where v' is the proper version of v for rooted trees T':
V(T) =3 ¢ Dy(T).
720

Tollowing the combinatorial constructions of section 1.3 we obtain the following sys-
tem of functional equations:

Ua,u) =2 Y uH Zy(Si; bl w), e, u?), . b, b)), (28)

k>0

{(z,u) = ;t+a:Zu“'Zk(Sk;t(a:,u),t(zz,uz),,4.,t(a:“,u")) = %t(ac,u)Z + %t(zz,uz).
k1

(29)

Finally, we introduce the random variable X, (describing the distribution of v on
trees of size n) in the usual way:

EuX» =t=1« Y @ (30)

™ |Fl=n
The following theorem is a generalization of [6].

Theorem 14 Let (ck)k>1 be a bounded sequence of real numbers, and let v(T) and
X, be defined by (27) and (80). Then there egist p and 0® > 0 withE X,, = pn+0 (1)
and Var X,, = 0>n+ O (1). Furthermore, if 0® > 0 then X, satisfies a (weak) central
limit theorem of the form
X, -EX,
v/ Var X,,

Proof. The plan of the proof is the following one. First, we apply Theorem 15 to (28)
which implies that ¢(z,u) has a square root singularity of the kind (35). Second, we
use this representation and (29) to get an expansion for (z, u) of the form

= N(0,1).

3/2
i(z,u) = gz, u) - h(z,v) (1 2 ﬁ) ; (31)
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Then we apply the transfer lemma (Lemma 1.1) to obtain an asymptotic expansion
for #,(u), and finally we use the quasi power theorem (Theorem 16). The last two
steps are direct applications. So we just have to look at the first two steps.

In order to apply Theorem 15 we just have to ensure that the functions
t(z?, u?), t(z*,u%),... are analytic if z is close to p and u is close to 1. Since the
sequence ci is bounded we have |cx| < M for some M > 0 and thus |v'(T)| < M [T)|.
Hence, if |u| > 1 and |zuM| < p then we have

[t w)] € 3 talulM"al” = t(lzu™], 1).

n>1

In particular if [z| < p+7 and |u| < (v/B/(p + 1))/ (where n > 0 is small enough
that (,/5/(p + )™ > 1) we get for k > 2

Jt(z*, ub)| < t(jzuM]¥, 1) < t(p*/2,1) < Cp*2.
Thus, we can apply Theorem 15 with

Fla,y,u) =2 3 u™+ Zi(Skiy, te?,v?), ..., t(a*, uh))
k>0

and obtain an representation of the form

(e, ) = gl ) — h(z, ), /1= == v (32)

where gy = g(f(u),u) satisfies the relation

91 = f(u) 3 u™+ Zi(Ski g0, tf (), 00), . 1 (w)*, ).

k>0

Consequently, from (33) and (29) we obtain a representation for #(z,u) of the form

i(z,u) = ga(z,u) — ha(z,u),/1 (33)

fu)’

where

d
s cu v 229 k ok
ha(z,u) = h(z,u) (:c’;)’u 7 Zx(Sk; 9(z,u), t(z?,u?), 2%, H(z*, uk))

= 9(@,u) + (z - !(u))H(z,u))
in which H(z,u) denotes an analytic function in z and u. Note that

a_Zk(Sk?Ihu»ka) = Zk-1(Sk-1,%1,- -, Tk—1)
Ty

N
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This implies that

ha(f(u), u) = h(f(u),u)f(u) (Z u”"-a%zk(sk;yx. e U Z (Sl »))
k21

k>0
=0.

Hence, ha(z,u) can be represented as
ha(z,u) = h(z,u) (1 - L)
flu)
Of course, this implies (31) and completes the proof of Theorem 14. [ ]

Appendix 2.A: Asymptotic Normality

We start with a slight extension of Theorem 10, where we add an additional parameter
u (see [5]).

Theorem 15 Suppose that F(z,y,u) = E“'m Fom(u)z™y™ is an analytic function
in z, y around 0 and u around 0 such that F(0,y,u) = 0, that F(z,0,u) # 0, and
that all coefficients F, (1) of F(z,y,1) are real and non-negative. Then the unique
solution y = y(z,u) = ¥, yn(u)z™ of the functional equation

y=F(z,y,u) (34)

with y(0, u) = 0 is analytic around 0 and has non-negative coefficients y,(1) foru = 1.
Furthermore, if the region of convergence of F(z,y,u) is large enough such that
there exist non-negative solutions T = o and y = yo of the system of equations

y=F(z,y1),
1= Fy(z,y,1).
with Fy(z9,y0,1) # 0 and Fyy(zo,y0,1) # 0 then there exist functions f(u), g(z,u),

h(z,u) which are analytic around @ = zo, u = 1 such that y(z,u) is analytic for
|| < 2o and |u — 1| < € (for some € < 0) and has a representation of the form

y(z,u) = g(z,u) = h(z,u),/1- @ (35)

locally around z = 2o, u = 1.
If ya(1) > 0 for n > 0 then we also get

(o) = | P P a2 140 (07). (00

uniformly for lu—1| <e.
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Proof. The proof is completely the same as that of Theorem 10. We just have to take
care of the additional analytic parameter u. [ ]

Interestingly there is a strong relation to random variables that are asymptotically
Gaussian. We state here a slightly modified version of a quite general theorem due
to H-K. Hwang [10] that usually referred as the Quasi Power Theorem. (Similar
theorems can be found in (1, 2]).

Theorem 16 Let X, be a random variable with the property that

EuXe = ernal)+b(w) (1 10 (L)) ;
n

holds uniformly in a complez neighborhoud of u = lwhere A, and ¢, are sequences
of positive real numbers with A, = 0o and ¢p, = o0, and a(u) and b(u) are analytic
functions in this neighborhood of u = 1 with a(1) = b(1) = 0. Then EX,, = pA, +
O(1+ A\n/¢n) and Var Xp = 0%\ + O (1+ An/¢n), where p = a'(1) and 0% =
a'(1) 4 a"(1). Furthermore, if 0® > 0 then X,, satisfies a central limit theorem of the
form

X, -EX,
[ " N(0,1).
N oD

Proof. By assumption we obtain for ¢ in a neighborhood of t = 0

EeitXn = githn= 420 +0 () +0(0) (1 +0 (¢i)) :

n

Set Y, = (X — Anpt)/v/An0? when o2 > 0. Then by replacing ¢ by t/v/A.02 one
directly gets

Eeitte = o-140(8 V) +0(t/vAT) (1 +0 (d’i))

n

Thus, Y, is asymptotically normal since A, — oo and ¢, — co.
Next set fn(u) = EuX». Then f;(1) = E Xp. One the other hand, by Cauchy’s

formula we also have l o)
1y = L n(u
Sul1) = 2mi / (u—1)2 G
Ju-1|=p

In particular, we use the circle [u — 1| = 1/, as the path of integration and get
RBXn=
1 1+ (Ana’(1) + (1)) (s = 1) + O (An(u — 1)?) (1 +0 (%)) s

2ri (u—1)2
Ju=1[=1/An

=na'(1) + 0O (1 + %) 2

n

n
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Similarly, we can treat the variance. Set gn(u) = fa(uw)u=2=a"M=Y'(1), Then
Var X,, = g'(1) + ¢"(1) + O (1 + An/@n). By using the same kind of complex in-
tegration on the circle [u — 1| = 1/), and the approximation
exp (An(a(u) — a'(1) logu) + (b(u) — b'(1) log u)
—1)?
=1+ (An(a"(1) +a'(1)) + (0"(1) + b’(l)))% +0 (An(u—1)%)

one obtains o
Var X, = An(a”(1) +a'(1)) + O (1 + —") ¥

&n
Finally note that Y;, and (X, — E X,,)/v/Var X, have the same limiting distribu-
tion (if ¢ > 0). This completes the proof of Theorem 16. [ ]

Remark In particular, if F(z,y,u) satisfies the assumptions of Theorem 15
and y(z,u) is the solution of y = F(z,y,u). Then X,, defined by EuX» =
[#")y(z,u)/[z")y(z, 1), is asymptotically normal. We have a(u) = —log(f(u)/z0),
where f(u) = z(u) (and y(u)) are the solutions of the system
y = F(e,y,u),
1= Fy(z,y,u).
and o? are then given by
' "
i i) Sach sy,
To To
By implicit differentiation one gets (after some algebra)

Fu(20,90,1) Fy
Yy e i ) P
0= —F oD =

and

(1) = —Fl (Fezz'(1)? + 2F2ya’ (V)y' (1) + Fypy' (1) + 2F 22’ (1) + 2Fy’ (1) + Fu)

where Foyr'(1) + F,
T ar
y'(1)=- 2y’ By
Fyy

Thus, it is possible to calculate 42 and o explicitly.

Appendix 2.B: Bivariate Asymptotic Expansions

The next theorem shows how the k-th coefficient of the n-th powers of functions
behaves if n and k are proportional (see [3, 4]).
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Un(u) is ptotically

Theorem 17 Suppose that a sequence of generating fu

given by
n(u) = g(u) A(w)™ - (1 0 (%))

uniformly for a < |u| < b and |arg(u)| < 6 (for some 0 < a < band0 < 6 < 7/2)
and bounded by

[yn(w)] < CA(Ju)*=""
fora < |u| < band @ < |arg(u)| < 7 and some n > 0, where g(u) and A(u) are
analytic in a region containing the range a < |u| < b, |arg(u)| < 6.

Set N
T T
u(r) = )

and suppose that
s e A ) e ) A X (r)?
o o 1 D o 21

for a <r <b. Let h(y) denote the inverse function of p(r).

Then we have
i it s (-0 ()

uniformly for n, k with p(a) < k/n < p(b).

>0

Proof. We use Cauchy’s formula

Yn(u)
W) = g [ 3

where r is defined by
rX(r) _k

Ar) ~n’
that is, r = h (ﬁ) Note that r is exactly the saddle point of the function

M) u=* = gnlogA(w-klogu

Now a standard saddle point method (see [4] or [14]) yields

(1] vn(w) = mg(rw)"r* : (1 t0 (5)) ;

Received: Nov 2003 . Revised: March 2004.
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