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ABSTRACT 
'I'he purposc of this artidc is to present cxplici t and asymptotic methods 

lO counl varfous kinds of t retJs. In nl l cases the use of gene.rating functions 
is ~ntial. Explicit fo rmulo.e are derived wit b help of Lngrangc's invcrsion 
formula. On Lhc othcr hand singularity analysis of generating functions lcads to 
Mymptotic formulas. 

RESUMEN 
&I propósi to de este nrticulo es presentar explícitame.nte y asintóticamcntc 

métodos para contar vario.<¡ tipos de árboles. En todos los casos el uso do 
funciones generatrices es esencial. Explíci tas fórmulas son deriva.das con la ayuda 
de la fórmuJa de inversión de Luplnce. Por otro lado, análisis de singularidad de 
la,, funciones gcncrMriccs conduce a f6rmula.s asint.óticas. 

K ey word11 n nd phrmw11: l ll!CI, gc11crnlin9 funcl1oru , smgufori ty 111111/yi,, 
Mnlh. Subj. C hm1 .: 05Al5, 05A l 6 

Introduction 

1tccs are d flned ns connected grnphs wit.hout. circles , and t.heir propcrties are 
bn.sics oí graph theory. For example , n connect.ed graph is a t.ree ií nnd 011\y if the 
numbcr oí ed¡es equals t.he number of nodes minus l . Furt.hermore, each pair of nodes 
la connected by a unique pat.h etc. 
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lf we mark a specific node r in a tree T t.hen it is called rooted tree. A rooted 
tree may be easily described in terms of generntio'" or levW. The root is the 0-th 
generation. The neighbors of the root conslitute the firs t generation, and in general 
the nades of distance k from the root form the k-th generation (or leve!) . lf a node 
of leve! k has neighbors of leve! k + 1 then these neighbors are also caJled .rncce.uon. 
F\J.rthermore, if v is a nade in a rooted tree T t hen v may be oonsidered as the root of 
a subtree T., of T that consists of ali iterated successors of v. This means that rootccl 
trees can be const.ructed in a recursive way. Due to t hat property counting problems 
on rooted t. rees are usually easier than on unrooted trees. 

Rooted trees have also va rious applications in computer science. They naturally 
appear as data structures, e.g. the recursive structure of folders in any computcr i! 
just a rooted t ree . F\Jrthermore , fundamental algorithms such as QuicksorL or the 
Lempel·Ziv data compression a lgorithm are closely related to rootcd Lrees, nam ly 
to binary and digita l search trees which are also used to s tore (and search fo r) data . 
Rooted trees even occur iu information theory. For example, prefi x free codes on an 
alphabet of order m a re easily encoded as t he set o f leaves in m·ary t rees. 

In what follows we will present methods fo r counting trees that are based 0 11 the 
concept of generating functions. Generatings functions are qui te natural in this contcxt 
since (rooted) trees have a recursive structure which translates to recurrence rclations 
for corresponding counting problems. And generating functions are a proper tool fo r 
solving recurre nce equations. There are lots o f references in t.he literature concerning 
t ree enumeration with gcnerating functions. We just mention two of them, the book 
of Harary and Palmer [9) a nd the article of Vitter and Flajolet [18J. 

T be present article is divided into two main parts. In Section 1 we considcr severa! 
kinds of trees (binary trees, planted plane trees , simply generated trees, unrootcd 
t rees) and show bow we can obtain explicit and aymptotic formul as for t be numbcrs of 
trees o f size n. Sect ion 2 is devoted to more in volved counting problems, fo r cxarnplc 
one is interested in th e numbcr of trees o f size n with le leaves e tc. Both sec tions a.re 
foUo wed by 2 appendices where sorne additional material from combina tori cs ruid 

FIGURE l. Biaary tree 
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1U1ymplotics for gencrnting functions is collected (with proofs) that can be applied 
to thc nbovc mcntioncd tree enumeration problems on trees. 

1 Counting Trees Wit h Generating Functions 

1.1 Rooted Trees 

Onc of thc basis objccts in the context of trees are binary t.rees. Binary trees are 
rootcd trecs, whcre each nocle is either a leaf (that is, it has no successor) or it. has 
two succcssors. Usunlly these two successors are distinguishable: t he left. successor aud 
thc right successor. Tite leaves of a binary t rees are also call ed extenrn/ nodes anrl 
thosc nodes wit.h t.wo succcssors i11ternal nades. It is clear that a binary tree wit.h n 
iutcrunl nades has r1 + l externa! nades. T hus, the total numbcr of nodes is a lways 
odd. 

Our firs t result is an explicit formula for the number of binary trees. 

Thcorem 1 Thc 11umber Ún of binary trccs with n int.ernai nodcs is given by 

b - _1 (2") 
11 - n+ 1 11 · 

P roof. Suppose that a binnry tree has n + 1 interual uodes. Tben the left and right 
subtrccs are also binary trees (with k resp. n - k internal nades, where O ~ k ~ n). 
Thus, on direct ly gets tbe recurrence for the corresponding numbcrs: 

b .. +1 = ¿b,,bn- lr · 
lr=O 

The lnital \"alue is bo = l (w here t he tree consists just of the root). 
This recurrence can ea.sily be solved with help of the generaLing fun ction 

B(x) = L b.x• 

" ~º 

Oy ( l} wc find Lhc relotion 

B(x) = 1 + xB(x)' 

nnd consequcntly a.n expli cit representation oí the íorm 

1 - ,¡¡:-;¡x 
B(x) = --2-x--. 

(1) 

(2) 

(3) 
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• 
R emark Thcre is also an alteruate way oí deriving a formu la far t he coefficieut s 
with help of (2) . Set Íi(•) = B(•) - l. Then 

Íi(•) = •(I + Íi(•)) ', 

and we ca n use Lagrange's inversion formula (see Theorem 9 of Appendix 1.A ) with 
'il'(.t) = (1 + ::i:) 2 to obtain (for n ~ 1) 

b,, = [•"JÍi(•) = ~ [u"- 1 ]{ 1 + u) '" 

1( 2") 1 (2") =;¡ n - 1 =;+¡ n · 

B iospecling thc proof of T heorem 1 one observes that lhe recurrence relation (1) 
- togcther with its int.ial condition - is c.xactly a t. rans latioo of a recursivc description 
of binary trees: 

A binary trecs B is eithcr just. an externa! node or a.o interna! nade (the 
root) wi th two subtrces thnt are aga.in binary t rees. 

Formn.lly we can wri te this in the fo rm 

B = o+ o X B X B =o+ o X 8 1 ' 

where we denote an externa\ nodc by O and an internal nade by o. The int.eresting 
fact - 11i•hi ch is a lso t he kcy to most of thc subsequenct considerations - is t hnl 
this recursi,·e descri pt.ion dircctly translat.es to a corresponding relation (2) far thc 
gcnerating funcl. ion: 

B(x) = 1 + •B(•)'. 

We will d monst.rntc t.his kind oí prod cu re with plon'ed plane tree3. P lantcd plane 
t rees are aga.in rootcd trecs, whcre cach nodc has an arbi1rary numbcr oí successors 
with n natural lcft to ri ght. ord er (simila rly as above) . 

1 f'or a Jl"09"er SC!riCI o(z) = E ,, 2: 0 o,,z" we will tue the nota1ion lr"Jo(z) to dtnotc t hc cocfficknt 
a., o(.::" . 
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FIGURE 2. Planted plane tree 

T hcorcm 2 Th e rwmber p,, o/ plantcd plane trces with n ~ 1 nodes is given by 

-2. (2n -2) 
p., - n n- 1 · 

Proof. \Ve dircctly proceed in a formal way. Lct P denote t ite set of plantecl plane 
trces. Then from t he a.bove desc ript ion we obtain the recursive relation 

'P = 0 + 0 X p + 0 X p 2 + 0 X pl +. 

With 

tlds lri\ns lates to 

P(x) = x + xP(x) + x P(x)' + xP(x)' = 1 _ ~(x) · 

ll e u ce 
1-vT=<lX 

P(x) = --2-- = xB(x) (4) 

nnd consequently 

p,. ::: bu- \ = - . 1 (2n -2) 
n n - 1 

• 
Romn.r k l As in t hc en.se of binnry t rccs we can a.Isa use Lagra.nge's inversion formu la 
(w ith .,,(x) = 1/( 1 - :z:) Lo ob tnin p,. ex plidLly: 

p = 2.¡,,.•-'J(! _ u) - "= 2_ ( -n ) (-J¡n- • = 2_ (2n -2). 
" n n n - 1 n n - 1 
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Remark 2 The relation Pn = bn-1 has a deeper meaning. There is a natural bijection 
between planted plane trees with n nades and binary lrees witb n - 1 int.emal nades : 
the rotation correspondance. Let us start witb a planted plane trees with n nades and 
apply the following procedure. 

l. Delete the root and ali edges going to tbe root. 

2. If a node has successors delete all edges to tbese successors depite one edgc to 

t be most left one. 

3. Join ali theses (previoue) successors with a path (by horizontal edges). 

4. Rotate ali these new (horizontal) edges by rr/4 below. 

5. The remaining n - 1 nades are now cons idered as interna! nades of a binnry 
tree. Append the (missing) n externa! leaves. 

Tbe res ult is a binary trees with n - 1 interna! nades. It is ea.sy to verify that t his 
procedure is bijective. 

Anotber kind of rooted trees where we can solve Lhe counLing problem dircctly 
Yt ith help of generating functions are m-ary rooted t.rees, where m ~ 2 is a fixed 
inleger. As in the bina.ry ca.se (m = 2) we jusl take into account t he number n of 
inlerna1 nades. The number of !caves is t hen given by (m - l)n + l and t he total 
nu rnber of leaves by mn +l . 

Theore.m 3 The number b!,m ) of m -ary tree.! with n interna/ nodes is given by 

b(m ) - _ l_ (mn) 
" - (m - l)n + 1 n · 

P r oof. As in t.he bina.ry case, m-ary Lrees Bm can be formally dcscribed by 

8111 =O+ O X B:;:. 

T hus, thc gcncraling funct ion 

Bm(•) = L:>~mlz" 
n !!: O 

sa tisfics tbe rela tion 
Bm(•) = 1 + zBm(•) '". 

Sctling Bm(x) = Bm(x) - l we get. 

B..,(z) = •P + Bm(•ll '" 
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nnd by Lagrange's inversion formula (far n ~ 1) 

b~"') = [x")Bm(x) = ~[u"-'J(l + u)"'" 

1 ( mn) 1 (mn) =;¡ n-1 = (m-l)n+l n · 

• 
A similar counting procedure applies to labe\ed (rooted and unrooted) t rees, t00. 

T he nades of n labeletl free of size n are labeled wi th t he numbers 1, 2, ... , n. An 
unrooied lnbeled trec can be a leo interpreted a.s a spanning tree on t he complete 
gro.ph Cn wit.h nades 1, 2, .. , n. 

T hcorem 4 Tl1e number 1,, of 1·ootetl labeled tree3 o/ si.z.e n ¡,_, given by 

Co11111:quenlly the mimber o/ unrootetl labeled lrees o/ size n equals n"- 2 . 

P roof. Lct C. denote the set of labeled rooted trees. Then C. can be recursively de­
iicribed as a root fol\owcd by an unordered k-tuple of labeled rooted trees fo r sorne 
k ~ O. Note lliat. (for examp le) n pair of labeled t.rees (of slzes m and n) naturally 
corr~pcnds LO (m,;;11 ) pttirs whicb are labeled with the numbers 1, 2,. . , m + n. Thus, 
it is appropriate to use t.he ex.ponential generati.ng fu.nction 

L(x) = L ~x" 
n~O 

of 111 1 since the a.hove recursivc description is then translated to 

L(x)' L(x)' 
L(x) = x + xL(a:) + x~ + :i::J! + ··· = xeL(;i:l. 

With heJp of Lagrange's inversion formula we t.hus get 

l .. = n!Jx"JL(x) = ~[u"- ')e"" 
n 

nn- 1 n 1 

= (n - l)! (n _ l )! = n - . 

Noie íunher that the number of unrooted labeled t.rees of size n equals l 11 /n since 
cve.ry node in a.n unrooted trec can be used a.s a root. (and produces n different rootecl 
~rees). • 
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1.2 Simply Generated 'I\'ees 

Simply generMed trees have been introduced by Meir and Moon [12J and are proper 
generaliz.a tions of severa! types of rooted Lrees. Let. 

ip(x) = tpo + ip1x + v>ix2 + · 

be a power seri es wit h non-negative coefficienl-s, in parti cular we ass umc t hat. ¡po > O 
and ip, > O fo r some j ::=: 2. We then define the weight w(T) of a fiu ite rooted trce T 
by 

w(T) = Il 'Pf'(T), 
j~O 

where D,(T) denotes the uumbcr of nades in T with j successors. U we set 

y,, = L w(T ) 
ITJ::::: n 

then the generating fu11ctio11 

y( x ) = ¿ y., x" 
n ~ I 

sntisfies tb e fu nctioual cquation 

y(x) = x<p(y(x)) . 

In tMs COn lCX'I y,. denotes a wcighted numbcr of trces is siz.e n . For cxamplc, if '{J1 = 1 
for a.JI J ~ O (thnt. is, ip(x) = 1/( 1-:z:)} then ali rooted t rees ba,•e wcight w(T) = 1 a.nd 
Jln = Pn is thc nu mber of plantcd plane trees. An other example is ip(x) = 1 + :r; + x2 

lhlll lead.s to Mot:.k in t reC3. Horc ouly rooted trees, whc.re aJI nodes havc 1 ss than 3 
successors gct (a 11 on-z.cro) weight w(T ) :;;: l: Yn is the number of Molzkin trces with 
n nodes. 

Blnary trees a re nl so covcrcd by t hi s approad 1. JI we set ¡p(z) = l + 2x + :z:2 ::: 

(1 + .r)2 tbcn nodes wit.h one succcssor get t hc w ight 2. This takes into account 1lrn t 
bmary trees (whcrc extern o.! nades a re disregardecl} have 1.w o kinds of nodcs with 
onc: successor, nn mcly t hosc with a lcft brand1 but no right branch and thosc wi t h 
n right branch but. 11 0 loft brnnch. Simita rly, m-n ry Lrees are coun ted with h lp of 
,,.(z) = (1 + z¡m. 

In ' ' U?.'1'1' o f this cxnrnplcs it is convcnicnt Lo thin k oí simply gcncratcd trccs T as 
a -.-eighted recursh•c stru cturo of Lhc fo rm 

T = '(JO 0 + '()1 · 0 X 7 + 1.f>2 • 0 X T2 + · 

U ali , are (non-ncgat.iv ) i ntcgers th en t hc wc1ghted number Vn is actually n num bcr 
ol ccrt&m root.ed t reos of slzc n. 
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lntcrestingly there is nn intimate relation to Galton-Watson branching processes. 
l_,e t {be non-negnt.ive intcger valued random variable. The Gal lOn-Watson branching 
pro css (Zti lt '.::'o Is th n given by Zo = 1, and fo r k ~ 1 by 

z•-1 
Z1: = L {yrl, , .. 

wh re the ({! '"»11 ., are iid random vari ables distributed as {. 
ll is clear t hat altou-Wntson branching processes can be represented by ordered 

(fi nl te or mfi ni tc) root d trecs 1' such that the sequence Zk is just t he number of 
nodes al le\·el k and Eo o Z1: (which is called t he total progeny) is the number of 
nodC!I ITI of T . We will denote by v(7') the probabilit.y that a specill c t ree T occurs. 
T he g nenuing íu nction y(::r:) = L: 11 ;:: 1 y11 x 11 oí the numbers 

y ,. = Pr[ITI = nJ = ¿: v(T) 
ITl=n 

sMis(i th íu nctiona l cqualion 

y( x) = • 'l'( y(x )), 

whcr (r) = E t<= L !fJJtl wi th !fJJ = Pr[{ = jJ. Note thal 

"(T) = IT 'l'f; (T) = w(T ). 
j~O 

Thc wcighr of T is now l hc probability oí T . 
Dy Lagra.nge's iaversion formu la we get fo r aU simply genera ted t rees (and fo r a li 

Gnhon~Wauon branching proccsscs ) 

(5) 

Oul the:rt are only few cases where we can use l his formula to obain n ice explicit 
xprc331ons Cor l.'n· Nev rt. heless there is a qu ite general asympt.otic result wh ich relies 

0 11 the raca that (und r cerlain conditions) the genera tiog funct ion y( :z:) has a fini te 
radiu! r of coa,·erg nce nnd t.h at y(x) has a singularity of square root. t.ype al x0 = 1· , 
thnt is, M"(z) has a rcpr s natiou or t.he form 

y(z ) - g(r) - h(z )j1 - ~ = co + e, J x - xo + c,(x - xo) + O (l x - xo f'' ' ) , 

wht'.re g{z} a.ad h(.r) a re o.n a lytic al xo. For binary and planted planc trees thi s has 
bct.n mnde uplidt , (3) and (4). Of course, such represe.nta tfons can be used 
to dem ymoto1 ic xpansions fo r t.hc coeffi cients Yn (fo r details sec l he proof of 
'fhcortm 10 m the Appendix \.B ). l t. should be fur t.her mentioned lhat formu la (5) 
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can be also used to derive asymptotics far Yn via a sa.ddle point method a pp lied to the 
integral f (cp(u) / u)" du, where the coutour of imegration is tbe circle lul = T (compare 
also with Theorem 17). Of course1 one gets the same result. But t.he met.hod presented 
in Theorem 10 is much more general. It works fo r general fu nctional equntions of the 
form y= F(x, y) a nd not only for equations of t he form y= xcp(y) . 

Theorem 5 Let. R de1wte the radius o/ conueryence o/ rp (t.) and suppose tlrnt t/lerc 
exists; wilh O < T < R that satisfies np'(-r) = cp(r). Set d = gcd{j > O: cp, > O}. 
Th en 

(n = l mod d) (6) 

and y,. = O 1J n ~ l mod d. 

Proof. We apply T heorcm 10 for F(x, y) = xcp(y) and assume first fa r simpl icity t hnt 
d = l. Then ali ass umptions are satisfi ed. ln particul ar we have x0 = l /VJ'C'r) and 
Yo= T . 

U d> 1 ihen it is ea.sy to see that 'Yn = O if n ~ 1 mod d. Consequcntly we l11wc 
y(x) = Ji(xd) / xd- i and (of course) ~(x) = t;;(xd) for anaJytic fun ctions ii(x) nnd y;(x). 
Tbey saliSÍ)' Ji(x) = xiP(Y(x)) and the co rresponding gdc d = l. Thus , Theorcm 10 
can be direct I)• applied to this cquation and we obtain (6) in general . • 

ote that fo r m~ary trecs and for planted plane trees this asymplotic formula nl5o 
fo llov.'S from the ex pli cit formula.e for b!,"'1 and Pn via Sti rling 's formu la. 

1.3 Unrooted Trees 

Let T denote the set oí unla.beled unrooted trecs and T t.be set oí unlabe led rootcd 
trees . The correspondi ng card inalities of these trees (of size n) are denoted by i,. and 
tn , and tbe gcncrat ing functions by 

f(x) = .L l,. x 11 and t(x) = ¿ tnxn. 
n~ I ,. ~ ¡ 

Thc nructure of l.hcsc trecs i:J much more difficu lt than that oí rooted trees, whorc 
t he successors hnve n leít to right ordcr. lt turns out that one ha.s to apply Pólyn's 
thcory of coun1.ing andan amuzing obscrvntion (8) by Otter {15] . 

Tbcorcm 6 Thc gcncmting /1m ctio113 t(x) and f(x) sahsft¡ th.t: functior1<1/ cq11at.1011 s 

t(x) = x cxp (i (x) + ~t(x') + ~t(x') + · · ·) (7) 

ond 

i(x) = L i,.x" = t(x) - ~t(x)' + ~l (x'). 
.. ~ ¡ 

() 
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Thcy haue o com mon rodius o/ convergence p ~ 0.3382 19 which is given by t(p) = 1, 
thal J.J , t(z} 1.1 conueryent al x = p. Purthermo re, they hove a local expansion o/ the 
jorm 

l(x) ~ 1 - b(p - x )'i' + c(p - x) + d(p - x )' i ' +O ((p - x)') ) (9) 

and 

1 + t.(p' ) b' - pt' (p') 
i(z) ~ - 2- + --2--(p - x) + bc(p - x )'i ' + O ((p - x )' )) , (JO) 

wht:rt b::: 2.68 11 266 and e= b1 /3 i:;:;: 2.3961466, and x = p is the only singularity on 
lhr: CH'CC o/ conut:rgence lx l = p. Finally, tn and in are asymptotically given by 

(11 ) 

tllld 

(12) 

Rcmn.rk In 193i Pó lyn j1 6] nlrcady discussed t he genera t ing (uucti on t(x ) an d 
showed 'ha1 the radi us of convcrgence p sat isfi es O < p < l and that x = p is 
thc only tmgulnrity on t he circle of convergence lxJ =p. Later Otter [15] showed that 
t(p) = l a.nd u!ed the representation (9) to dedu ce t he asymptotics for t 11 • He a lso 
cnlcu lnaed p::: 0.3382 19 nncl b ::::: 2.68 11 266. However, his main contribut ion was to 
11how ( ). Conseq uently he derived (10) and (12 ). 

P roo f. We first show (7 ). As in thc previous cases we can t.bink oí rooted trees in 
a recu rsh·e way, th a t is, T is a root fo llowcd by a set o/ roo ted trees. Howcver, thesc 
roolcd subtrees are not ordered from left to right a.nd tbere are no labels. In other 
words a tubtree st ruct urc and a li its pcrmutations just count once. On the leve! of 
g ncnling functions t his ca.11 be managed with help Pólya's t beory of count ing. Let 
Z(S,. ; .r1, :r1 , • .. 1 x1r) denote the cycle lndex of t he symmetric group S1r. then we get 

Since 

w ' obo obl4ln e;). 

t( x ) = x I:; Z(S ,; t(x), t(x'), .. , t (x')). 
k ~ O 

The radius oí convergencc p of t(x ) surely snt.isfi es t $ p $ 1. (This follows from 
t,. $ p,. and tn -+ .) Ncxt we show t.hnt t(p) is finite (although x = pis a singulari ty 
of i(.r)) and that, p < l. From (7) i t follows t hat. log(t.(:z:) / x) ~ t.(x) for O < x < p. 
Hcnct., 

t(x )/x 1 
log(t(x)/ x) :<; :;-
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and consequently t (p) has to be finite. [f p = l then t(pk) = t(p) far ali k ;::: l and it 
would follow that 

lim et(:r)+ft(:r2 )+ ft (:r')+ ··· = oo 
z-t p-

which is im possible. T hus, p < l and consequently the functions t(x2 ) , t(x3), ... a re 
regular at x = p. Moreover, t hey are analytic for l:z: I ::; p +e (for sorne sufficiently 
sma.11 e> O) a nd are also bounded by lt( xk)I ~ Clx"I in this range. Hence, t(x) may 
be considered as the solution of the functional equation y = F(x , y) , where 

F(x, y) = x exp (y+ ~t(x2 ) + ~t (x3 ) + · · ·) . 

This íunction satisfies t he assumpt ions or Theorem 10. In particular , the singularity 
:z: = p and r¡ = t(p) satisfy t he system of equations 

ry= pcxp (ry + ~t (p' ) + ~t(p3 ) + ··· ) , 

1 = pexp ( ry + ~ t (p2 ) + ~t (p3 ) + · · ·) 

that directly gives r¡ = t(p) = l. Now, by usi ng the expansion (9) and (7) we also 
get e= b2 / 3 by comparing coefficients . Thus we obtain (10) and (11 ). Note a lso t hat 
Theorem 10 implies t hat x = pis the on ly singularity on t he circle of convergence of 
t(x). 

Next , observe t hat (9) and (8) imply (10) and (with help of the transfor lemma 
(Lemma 1.1} (12). Thcrefore it remains to prove (8) . 

\Ve consider t hree sets of t recs, the set T of rooted trees, the set f of un rootcd 
trees a.nd t he set T (P) of (unordered) pairs {T1 , T2} of rooted trees of T with T1 -::/; T2. 
(It will be convcnient to consider t he pair {T1 , T2 } as a t ree t hat is rooted by an 

addjt ional edge joi ning the roots of T 1 and T2-) Let dt') denote the number of pairs 
of tbat kind with a total number of n nades, and Jet tCPl (x) denote the generating 

function of t!rl. Then by Pólya's theory we bave (see [9J) 

t(•l(x ) = ~t(x )2 - ~t(x2 ). (13) 

\Ve will now show that t here is a bijection between T and T U T (p) . 2 In vie w of ( 13) 
such a bijection implies (8). 

Recall t hat an arbitrary (fi nite) tree has either a cental node or a centmf edge. 
T he central edgc e = (v, w) is called symmetry line if the two subtrees rooted at the 
endpoints v and w are equal. 

We first partition t he set 7 into 6 subsets: 

l. Let 7i denote those rooted t rees that are rooted at t he cent ral node. 

2Th1S bijection was pointed out to me by Bernhard Giuenberger. 
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2. Let 72 denote those rooted trees that have a central node that is different from 
the root. 

3. Let 73 denote those rooted trees that have a central edge which is not a sym­
metry line and where one of the two endpoints of the cent ral edge is the root . 

•l. Let T.. denote t hose rooted trees that have a central edge which is not a sym­
metry line and where t he root is not one of the two endpoints of the central 
cdge. 

5. Let ?; denote those rooted trees that have a central edge which is a symmetry 
line and where one of the two endpoints is the root . 

6. Let 76 denote those rooted trees that have a central edge which is a symmetry 
line and where the root is not one of the two endpoints of the central edge. 

In a similar way we partition the unrooted trees T: 

l. Let iJ. denote t hose unrooted trees that have a central node. 

2. Let f; denote those unrooted trees that have a cent ral edge , that is not a 
symmetry line. 

3. Let t denote those unrooted trees that have a symmetry line as a central edge. 

Finally we partition T (P), that we consider as trees rooted at an edge. 

l. Let Tip) be the set of pairs {T1, T2 } with T1 =I T2 with t he propery that if we 
join the roots of T1 and T2 by an edge then the resulting t ree has a central node. 

2. Let "fiPl be t he set of pairs {T1 , T2} with T1 =I T2 , such that the tree that results 
from T1 and T2 by joining the roots by an edge has a central edge that is not a 
symmetry line and that is different from the edge joining T1 and T2 . 

3. Let 'fi,,1 be the set of pairs {Ti. T2} with T1 =/: T2 , such that the tree that results 
from T1 and T2 by joining the roots by an edge has a central edge that is not a 
symmet ry line and that is different from the the edge joining T1 and T2 • 

4. Let T,,(p) be t he set of pairs {Ti. T2 } with Ti =I T2 , such that the tree that rcsults 
from T1 and T2 by joining the roots by an edge has symmetry line as a central 
edge that is different from the the edge joining T1 and T2 . 

Now there is a natural bijection between 7í and fí . We only ha ve to take t he 
central node as the root. 

Next , there is a bijection betwenn 72 and 'T(Pl. We identify t he first edge from the 
path conne<::t.ing the root and the central nade with the edge joining T1 and T2. 

Next , there is a trivial bijection between sets 12 and 'TiP). Furthermore, by marking 
one of the t.wo endpoints of t he cent ral edge in the trees of f2 we obtain 13. Of course , 
this can be rewritten as a bijection between 73 and i; U "fiPl . 
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Next, t.here is a bijection betwenn 14 and T}P). We identify the first edge from 
t he path connecting the root and the central edge witb the edge joining T1 a.nd T2. 

Similarly t here is a bijection between To and -r;iPl . 
Finally, t here is a natural bijection between 15 a.nd i;. • 

ln a similar (but easier) way one can aJso treat planar trees P. We already discussed 
planted plane trees P and their generating function p(x) which satisfies p(x) = x/(J -
p(x)). U p(x) denotes the generating function of the numbers p,. of planar (unrooted) 
trees of size n t.hen the following relations hold. 

Theorem 7 The generating functions p(x) is given by 

p(x) = x L Z(C,;p(x),p(x2 ), .. ,p(x')) - ~p(x) 2 + ~p(x2 ), (14) 
k~O 

where Z(Ck;X 1, xz, ... ,xk) = f L:dlkip(d)x~/d denotes the cycle indexo/ lhe cyclic 

group Ck o/ k elements. The numbers Pn of planar {unrooted) trees of size n are 
a.symptotica fly give11 by 

(1 5) 

Proof. First. of ali , t.he generating function r(x ) of root.ed planar t.rees is given by 

r(x ) = x L Z(C,;p(x) ,p(x2 ), .. ,p(x') ). 
k;::o 

Th.is is due to tbe fact that the subtrees of the root in planted plane trees have a 
left.-to-right a rder but rotations around t he root are not allowed. Second, as in the 
proof of T heorem 6 one has 

p(x) = r(x ) - ~p(x) 2 + ~p(x2 ). 

Consequent.Jy fJ(x) has a local expansion of t be form 

¡l(x) = ~(1- 4x)3i 2 + . 

which gives (15) wit.h help of the transfer lemma (Lemrna 1.1 ). 

1.4 Other Types of Trees 

• 

We just want. to mention that t.here are severaJ other types of trees, far expample 
recu rsice trees, binary search trees, digital search trees, tries, quad-trees etc. that 
will not be discussed in this paper. Nevertheless, in ali t.hese cases the concept of 
generating funct.ions can be used to rephrase the counting problem into this more 
analyt.ic Janguage (far details see Flajolet. et al. [7] and Sedgewick and Flajolet [17]). 
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Appendix 1.A: Lagrange Inversion Formula 

Let a(x) = E anx" be a power series with ao =O and a1 "#O. The Lagrange inversion 
o > O 

formula provides an expicit representation of the coefficients of inverse power series 
al- ll(x) wh;ch ;, defined by a(al-> l(x)) = al - >l(a(x)) = x. 

Theorem 8 Let a(x) = E anx" be a fonnal power series with ao = O and a 1 "/:- O. 
n ~ O 

Let b(x) = a!-1l(x) be the inverse power series and g(x) an arbitrary power series. 
Then the n-th coefficient of g(b(x)) is given by 

1 ( u )" [x"]g(b(x)) = ~[u"-'Jg'(u) a(u) (n 2'. 1). 

In tree enumeration problems the following variant is more appropriate. Note that 
Theorems 8 and 9 are equivalent. If a(x) = x/,P(x) then al- 1l(x) = y(x), where y(x) 
satisfies the equation y(x ) = x,P(y(x)). 

Theorem 9 Let <J>(x) be a power series with <P(O) "# O and y(x) the {unique) power 
series so/ution of the equation 

y(x) = x~(y(x)). 

Then y(x ) is invertible and the n-th coefficient of g(y(x)) {where g(x) is an arbitrary 
po wer series) is given by 

[x"Jg(y(x)) = ~[u"- 'Jg'(u)~(u)" (n 2'. 1). 

Proof. Since Theorems 8 and 9 are equivalent we only have to prove Theorems 8. 
We just present an ana.lytic proof for complex coeflicients. Of course, the resulting 
analytic ident ities are formal ones, too. 

We start with Cauchy's formula and use the substitution u = b(x). Note that if 
'Y is a contour with winding number 1 around the origin the ¡' = b('r) has the same 
propcrty: 

[x"J (b(x)) = .2., r g(b(x)) dx 
g 21íi }.., xn+I 

1 r a'(u) 
= 2,;i },, g(u) a(u)•+> du. 

Since 

( 1 )' , 1 a'(u) 
g(u) a(u)" = g (u) a(u)" - ng(u) a(u)•+> 

it follows t hat ¡ a'(u) 1 ¡ , 1 
g(u)--du = - g (u)-(-)-du 

..,, a(u)"+1 n ..,, a u n 
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and consequently 

1 ¡ , un du 
l•"Jg(b(x)) = - g (u)-, )" n 

n -y' a u u 

1 ( u )" = ;;lu"- 1]g'(u) a(u) . 

• 
Appendix 1.B: Functional Equations 

Let y(z) be a power series that. is the solution of a funtional equation of the form 
y = F(x , y), wherc F is function with certain properties. ln this section we show 
how we can obtain asymptotic expansions for the coefficients of y(x). One majar 
rngred1ence of the proof of Theorem 10 is the transfer lemma of Fla jolet aud Odl yzko 

18]. 

Len:una 1.1 Let 
A(x) = L a 0 x" 

n~O 

be analytic m a region 

~ = (x: l•I < xo + " ' l Mg{x - xo)I > ó), 

m IL'hrch x0 and '1 are positive real numbers and O < ó < 7r / 2 . Furthermore suppose 
tha l thert: erists a real number o such that 

A(x) = O ((1 - x/xo) - 0 ) (x E ~ ). 

Then 
On =O (xQ"nª- 1 ) . 

Proof. One uses Cauchy 's formula 

ª" = _21 . ! An~ ? dz , 
1n .., z 

where -y is a suitable chosen path of integration around t he origin. In particular one 
can use 'Y= ')'1U"/'!.U1'3 U ')'4 1 where 

¡ 1 = { x = xo + ~ : lz l = 1, ó S j arg(z)I S 1T}, 

12 = { x = xo + te'6 : ~ S t S r¡} , 
'}'3 = { x = xo + te- 16 : ~ S t S r¡ } , 

~· = {x' lx l = Jxo +e16"J, arg (xo +e"") '.5 largxl '.5 •}. 
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lt is ea.sy to show that the bound IA(z)I ~Gil - z/x0 ¡-a directly proves that 

whereas the integal over ¡ 4 is exponentially smaller: O ((x0 + r¡) - n). • 
Remark Suppose that a function is analytic in a region of the form .ó. and that it 
has an expansion of the form 

(x E <l.), 

where fJ < o. Then we have 

a - 1 

a,. = lx" )a(x) = c;(o) •o"+ O ( •o"nm~{a-2 .P -l}). (16) 

This is due to t he fact that 

Theorem 10 Suppose that F(x,y) is an analytic function in x , y around x =y= O 
such that F(O, y) = O and that all Taylor coefficients o/ F around O are real and 
non-negative. Then there exists a unique analytic solution y= y(x) o/ the functional 
equotion 

y= F(x , y) (17) 

with y(O) = O that has non-negative Taylor coefficients around O. 
lf the region o/ convergence o/ F(x,y) is large enough such that there exist positive 

solutions :t = x0 and y = y0 o/ the system o/ equations 

y= F(x,y) , 

1 = F,(x,y) 

with Fi:(:to1Yo ) -:f. O and F11 11 (:to,Yo) -:f. O then y(:t) is analytic for l:tl < :to and 
there enst junctions g(x ), h(:t) that are analytic around x = x 0 such that y(x) has a 
representation o} the form 

y(x) = g(x) - h(x)/1 - ~ 
•o 

locally around x = xo- We have g(xo) = y(xo) , and 

h(xo) = 2:toF.z(:to,yo) 
F1111(xo,yo) 

(18) 
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Moreover, {18} prouides a local analytic continuation o/ y(x) (for arg(x - xo) #:-O). 
lf we /urther assume that /xn ]y(x) > O for n ~ no then x = xo is the only 

!ingulanty o/ y(x) on lhe circle lxl = x0 and we obtain an asymptotic expansion for 
lx"Jy(z ) o/ th e form 

l•"]y(>) = (19) 

R emark 3 Note t hat the assumptions F:i:(x0 , yo) '# O and F1111 (x0 , y0 ) -:/:-0 are real\y 
necessary to obtain a representation of the form (18). If F:z: (xo , yo) = O then F(x,y) 
(and y(x}) would not depend on x. Furthermore, if Fy 11 (xo , Yo) =O then F is linear 
in y: 

and consequently 

F(x, y) =yF1(x)+F2 (x) , 

y(x) =~ 
I -F1(•) 

(20) 

(21 ) 

is explicit and surely not of the form (18). However, a representation of the form 
(21) (where F1 (x) =F. O) usually leads to almost t he asymptotic expansions fo r the 
coefficients of y(x) in t he case covered by Theorem 10. Suppose that the radius r 
oí convergence of F1 (x) is large enough that there is O < x0 < r with F1 (x0 ) = l 
and that [x"]y(x) > O for n ~ n0 then Xo is the only singularity on the ci rcle of 
convergence lxl = Xo of y(x ) and one gets 

l•"]y (x) = l'F'\'(o))x¡;" +O ((•o+ ~)- ") 
Xo XQ 

for sorne '1 > O. 

Proof. Firstly, we show that t here exists a unique (analytic) solution y = y(x) of 
y= F(z,y) with y(O) = O. Since F(O,y) =O it follows that t he functional mapping 

y(x) ,_, F(x, y(x)) 

is a contraction for small x. Thus the iteratively defined functions yo(x) = O and 

Ym+1(x) = F (x,ym(x)) (n <'. O) 

con \'erge uniformly to a limit function y(x) which is the unique solution of (17). By 
definition it is clear that y,,.(x) is an analytic function around O and has real and non­
negative Tay lor coefficients. Consequently, the unifo rm limit y(x} is analytic, too, 
with non-negative Tay lor coefficients. 

ll is also poss ible to use t he implicit function theorem. Since 

F,(O, O) = O;" l. 

t.here ex.ists a solution y= y(x) of (17) which is analytic around O. 
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However, it is useful to know t hat all Taylor coefficients of y(x) are non-negative. 
Namely, it follows that if y{x) is regular at x' {which is real and positive) then y(x) 
is regular for ali x with lxl :5 x'. 

Let x0 denote the radius of convergence of y(x). Then x0 is a singularity of y( x). 
The mapping 

x ,_, F,(x,y(x)) 

is strictly increasing for real and non-negative x as long as y(x) is regular. Note t hat 
Fy(O,y{O)) = O. As long as F11 (x,y(x)) < 1 it follows from the implicit function 
theorem that y(x) is regular even in a neighbourhood of x. Hence there exists a finite 
limit point :i:0 such that lim y(:i:) = y0 is finite and satisfies F11 (x0 , y0 ) = l. If y(x) 

z-+:1:0-

were regular at x = x0 then 

y'(xo) = F,(xo, y(x)) + F,(xo,y(xo))y'(xo) 

would imply F:i:(x0 , y(x0 )) = O which is surely not true. Thus , y(x) is singular at 
x = x0 (that is, x0 is the radius of convergence) and y{x0) is finite. 

Now, !et us consider the equation y - F(x , y) =O around x = x 0 and y = y0 . We 
have l - F11 (x0 ,y0 ) = O but -Fyy(x0 ,y0 ) :j:. O. Hence by the Weierstrass preparation 
theorem (see [I 1]) there exist funct ions H(x, y), p(x), q(x) which a re analytic around 
x = x0 a nd y= Yo and satisfy H(xo ,yo) :j:. 1, p(xo) = q(x0 ) =O and 

y - F(x, y) = H(x,y)((y - Yo) 2 + p(x)(y - Yo )+ q(x)) 

localty around x = xo and y = Yo· Since Fz(xo ,Yo) :j:. O.we also have Qz(x0 ) :j:. O. 
This means that any analytic fu nction y= y(x) which satisfies y{x) = F(x , y(x)) in 
a subset of a neighbourhood of x = x0 with x0 on its boundary and is given by 

p(x) ~ 
y(x) = Yo - 2 ± y--";¡- 4- -- q Ql(xx¡). 

Sincc p(x0) =O and Qz(xo) :j:. O wc have 

!_ (p(x)' - q(x)) 7' O, 
ax 4 z=zo 

too. T hus there exist an analytic function K(x ) such that K (xo) :j:. O and 

p(x)' 
- 4- - q(x) = K(x)(x - x0 ) 

locally around :r: = x0 . This fina lly leads to a local representat ion of y= y(x) of the 

kind 

y(x) = g(x) - h(x) J1 - 2-, 
Xo 

(22) 

in which g(x) and ft(x) are analytic a round x = x0 and satisfy g(xo) = Yo and 

h(xo) < O. 
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I.n order to calculate h(x0 ) we use Taylor's theorem 

O= F (x, y(x)) 

= F,(xo,Yo)(x - xo) + ~F.,(xo,Yo )(y(x) -yo) 2 + · (23) 

= Fz(xo,yo)(x - xo) + ~F1111 (xo,Yo)h(xo) 2 (1- x/xo) + O()x - xol 3/ 2 ) . 

By comparing the coefficients of (x - x0 ) we immediately obtain 

h(xo) = 2x0 F:z,(xo,yo) 
Fy¡.o(xo,Yo) 

\Ve now want to apply the transfer lemma (Lemma 1.1). For this purpose we 
have to show that y(x) can be analytically continued to a region of the form 6- . The 
representation (22) provides such an analyt ic continua tion for x in a neighborhood of 
x0 . Now suppose that lx11 = x 0 and 1 arg{x 1 )1 ~ J. Then the a.ssumption y11 > O for 
n :=:: n0 implies that ly{xi)I < y(lxil) = y(xo) and consequently 

IF,(x ,, y(x ,))I S F,(lx,l,ly(x,) I) < F,(lxd ,y( (xd)) = F,(xo,Yo) = l. 

Thus, F11 (x 1 , y(x 1 )) '#;. l an<l the implicit function theorem shows that there exists 
an analytic solution y = y(x) in a neighborhood of x 1 . For lxl < x0 this solution 
equals t.he power series y(x) and for lxl 2: xo it provides an anaJytic continua.tion to 
a region of t be form /)., (by compactness it is sufficient to consider fin itely ma.ny x1 

with lxil = x0 and1 arg(xi)I 2: ó). So finaJly we can apply Lemma 1.1 (resp. (16) with 
o = - 1/ 2 and {3 = - 3/2; the anaJytic part of g(x) provides exponentia.lly smaHer 
cont ribut ions.) This completes the proof of (19). • 

2 Parameters in Trees 

2.1 The Nurnber of Leaves 

In t his section we will treat more involved enumeration problems. As an introductory 
example we consider the numbers Pn,k of planted plane trees of size n with exactly 
k leaves. Again the concept of generating functions is a valuable too! for deriving 
e.xplicit and asymptotic results. 

Theorem 11 The mtmbers Pn ,k o/ planted plane trees of size n with exactly k leaves 
a~ giuen by 

1 (") (" - 1) p,.,k = ~ k k . 
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Proof. Let p(x , u) = Ln,kPn,kx"zk denote the bivariate generating function of the 
numbers Pn ,k· Then following the recursive description of planten plane trees one gets 

'"°"' k xp(x , u) 
p(x,u) = xu+ x L.,p(x,u) = xu + ¡:-( ) . 

.i:~l p x,u 

For a moment , \et x be considered as a parameter. Then we have 

p(x,u) = u 
X ( 1 - l-p(:z- ,1.1)) 

and consequently 

Finally t his implies 

• 
By using Stirling 's formula we directly obtain bivariate asymptotic expansions for 

Pn, k of the fo rm 

p,, ,, = 2rr1kn (); )" (n: k) ' i " - k) · ( 1 +O(~)+ O (n ~ k)) 

=__!___ ~ ( 1 ~~)"·(-1 .)'"·(1+0(~)+0(-1 ))· 
211'n2 k ~ 1 - ~ k n - k 

(24) 

In part icular , if we fix n then Pn,k is maximal if k :::::: n/2 and we local/y get a behaviour 
of the kind 

4" ( (n-2k)') p,.,k"' 1fn2 exp ---n- . (25) 

This approximation has several implications. First, it shows that it is most likely 
that a typical t ree of size n has approximately n/2 leaves and the distribution of the 
number of Jeaves around n/2 looks like a Gaussian distribution. 



126 Michael Drmota 

We can make this observation precisely. Let n be given and assume that each of 
the Pn plant.ed plane trees of size n is equally Hkely. Then the number of leavcs is a 
random variable on this set of trees which we will denote by X.,. More precisely, wc 
ha ve 

Pr[X,, = k] = P;,:'. 

Then it t.urns out that E X,, = n/2 + O (1) and Var X,. = n/B +O ( l), and (25) can 
restat ed in a way that the normalized random variable 

converges weak ly to the normal distribution N(O, 1). 
lnterestingly, both observed properties , t he bivariate asmyptotic expansion (24) 

and the Ga ussian limiting distribution are intrinsic properties of a fun ctional equation 
of the form y= F(::r:,y,u) (for the unknown function y= y(x,u)), compare with 
Theo rem 15, 16 and 17.) 

In particular , we get the following general result for simply generated trees. for 
the so.ke of brcvity we just state the central limit law and not the bivariate asymptotic 
expansion for y 11 , 1; (compare with t he Remark following Tbeorem 12). 

Theorem 12 Let R. <ie11ote the rndi·us of conuergence of r,o (t) and suppose that there 
u 1st.s r w1th O < T < R lhat sotisfies rr,o'(r) = r,o(r) . Let X., be that ra11dom variables 
descnb rng the 11umber of lcaves in trees o/ size n , that is 

Pr[X,, = k[ = ""·', 
y,, 

where Yn ,k = ¿ w(T). Then EX .. = µn+O ( l ) andVar Xn = a 2 n+O( I), 
ITl = n,Do(T) ==- k 

wh ere µ = 'fJo/ t.p(r ) and 

Furth ermore, X,, satisfies a (weak} centra l limit th eorem o/ the form 

X., - EX,, 
) VaI X,, -+ N(O, 1). 

Proof. Set 

11.k 

Then y(x, u) satisfies the functional equation 

y(x, u) = \Oox(u - !) + X\O(y(x , u)) . 

Thus, we just have to apply Theorem 15 and 16 of Appendix 2.A. • 
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Remark Suppose that d = gcd{j ~ O : cp; > O} = l. Then we can apply Theorem 15 
and 17 to get bivariate asymptotic expansions for Yn,k• too. We will demonstrate this 
for thc case of planted pla.:ne trees, that is cp(x) = 1/(1 - x). 

From Theorem 15 we gct 

y"(u) = ~·(JU+ 1)2" ·n-3/' · (1 +O(.!.)). 
2•(JU + 1)2 n 

Hent:e, in terms of T heorem 17 we have .\(u) = (,fii + 1)2 , µ(u) = ,fii/ (,fii + 1), 
u2(u) = JU/ (2(JU+ l )2 ), h(y) = (y/(1-y))', and ,\(h(y)) = l / (1 - y) 2 • Consequently, 
Theorem 17 prov ides the same a.symptotic expansion as (24). 

2.2 Additive Parameters 

The above concept casily generalizes to so-called additive parameters. Let v(T) denote 
thc value of a paramctcr of a rooted trees T. We call it additive if 

v(T) = v(O x T1 x T, x · · · x T,) = e,+ v(T,) + v(T2 ) + · + v(T.), 

Mil where T1, ••• , Tk denote the subtrees of the root of T that are rooted at the successors 
of the root and c1: is a given sequence of real numbers. Equivalently 

v(T) = L; c; D;(T). 
i?. O 

For example, if eo = l and e; = O for j ~ O then v(T) is just the number of lea.ves. 
For n ~ l we now set 

and 

y"(u) = L w(T)u'(T) 
ITl=n 

y(>, u)= ¿y,,(u)x" . 
n ?. l 

Of course, the dcfinition of v (T) and the recursive structure of simply generated trees 
implies that y(:z: , u) satisfies the functional equation 

y(x,u) = x L ''"u"y(x,u)'. 
k ?_O 

If Ck are non·negative integers then Yn(u) may be interpreted as 

y,,(u) = L y,,,. u', 
k?.O 
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where Yn 1r denotes the (weighted) num ber of trees T of size n wit.h v(T ) = k. lt is 
convenient. now to consider t he random variables X n defined by 

(26) 

tha.t is, X n describes the distri but.ion of v(T) on the set oí t rees of size n, where 
these t rees a.re dist.ributed according to their weights w(T). In particular, ií cJ are 
non-negative integers then 

P r [X,. = kJ = Yn.> . 
Yn 

As above, the disLribution of X 11 is (usually) Gaussian wi th mean value and vari ance 
of order n. 

T heorem 13 Let R denote th e radius oj convergence oj r.p (t) and suppose that th ere 
uuU T un th O < T < R tliat satisfies rr.p'(r) = r.p(r). Furtherm ore, Jet c1r (k :2: O) be 
a .fequence oj real numbers such tlwt the junction 

F( x, y, u}= x L r.p1r uc"y" 
1r ;:::o 

u an alyll c at x = x0 = 1/i.p'(r), y = y0 = T , u = l. Then th e mndom vannble 
Xn defin ed by {26) lrns expected value E Xn = µ n + 0(1) and vanance Var X ., = 
o1 n + O (1 ), where µ = L1r>o q r.p 1r -r " / r.p(-r) and u 2 ~ O . Furthermore, if u2 > O then 
X,1 sa tu fi e.1 a {weok} ce11traT limit theo rem of the form 

X~ -> N (O, !). 
V var An 

Proof. We jusl have to apply Theorem 15 a.nd 16 of Appendix 2.A. • 
Remark \Vi th hclp of thc Remark fo llowing Theorem 16 it would have been possible 
to provide a.n explici t fo rmula for a2 t hat is not really elegant . Note also that there 
are ca.ses wit h u2 = O. For exam ple, if C1< = l for ali k ~ O then v(T) = 11'1 and 
consequently X n is concent rated at n. 

2.3 Un.root ed Trees 

lt is also in1crsti 11 g to consider t he class T of unrooted t rees and defi ne a additive 
parnmeler v by 

v(T ) = '¿ c; i'!,(f), (27) 
J> I 

where b,('f) denotes t hc number of nades in T of degree j. For example, if C1< = 1 
fo r some k :2: 1 and e, = O for j .¡. k thcn v(f) is just t he number of nodes of degree 
k(seej6J). 
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In order to tackle v('i') we also have to consider the class T of rooted trees and 
use the two generating functions 

t(x,u) = Z::: xlTiu,'(T) = Z::: ( Z::: u"'(T)) x" 
Teí n~l ITl=n 

and 

i(x,u) = Z::: xlTlu"(T) = Z::: ( Z::: u"(T)) x" 

TeT n~l li'l=n 

where u' is the proper version of v for rooted trees T: 

v'(T) = Z::c;+ 1D;(T). 
;>o 

Following the combinatorial constructions of section 1.3 we obtain the following sys· 
tem of functional equations: 

(28) 

" ' ' ( k k) 1 ' 1 ' ' i( x, u) = x + x L., u" Zk(S,; t(x, u), t(x , u ), .. , t x , u ) - ;¡t(x, u) + ;¡t(x , u ). 
k~ I 

(29) 

Finally, we introduce the random variable Xn (describing the distribution of v on 
trees of size n) in the usual way: 

EuXn = ;_ L Uv(TJ. 

tn li'l=n 

The following theorem is a generalization of [6]. 

(30) 

Theorem 14 Let (ck)k>I be a bounded sequence of real numbers, and let v(T) and 
X11 be defined by {21) and (30). Then there erist µ and 0'2 ?: O with E Xn = µn+O (1) 
and Var Xn = 1J2 n+ O (1). Furthennore, if 0' 2 >O then Xn satisfies a {weak) central 
limit theorem o/ the fonn 

Xn -EXn _, N(O l) 
./VarXn ' . 

Proof. The plan of the proof is the following one. First, we apply Theorem 15 to (28) 
whk h implies that t(x, u) has a square root singularity of the kind (35). Second, we 
use this representation and (29) to gel an expansion for l(x, u) of the form 

( )
3/2 

f(x,u) =g(x,u)-h(x,u) 1- f~u) . (31) 
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Then we apply the transfer lemma (Lemma 1.1} to obta.in an asymptotic expansion 
fo r in (u). and fi nally we use the quasi power theorem (Theorem 16). The last two 
steps are direct applications. So we just have to look at the fi rst two steps . 

ln arder to apply Theorem 15 we just have to ensure that the functions 
t(x2 , u2}, t(x3 , u3 ), . . . are analytic if x is clase to p and u is clase to l. Since t he 
sequence C¡, is bounded we have lckl S M Cor sorne M > O and thus lv'(T)I $ M ITI · 
Hence, if lul > 1 and lxuM 1 < p then we ha ve 

lt(x , u)I :S L t. lulM" lxl" = t(lxu"I , !). 
n ~ l 

ln pa rticular if !xi S p + 17 and lul S (..JP/(p + 17)) 1/ M (where 1J > O is small enough 
tha t (.,fi>/ (p + ry)) 1/ M > J) we get fo, k ~ 2 

lt(x', u')I :S t( lxuMI'. I ) :S t(p'I', ! ) :> Cp' i '. 

Thus, we can apply Theorem 15 with 

F(x,y,u ) = x L 1 ,c ~ + 1 Z1:(S1:;y, t(x2 ,u2), • • , t (x k ,u 1: )) 
k ~O 

and obta in an represental.iou of the form 

t(x,u) = g(x,u) - h(x,u)jl - f~u)' 

where 91 = g(f(u). u) satisfies the rclation 

91 = /(u) L u"" Z,(S, ;g1, t(!(u)', u') , ... , t(! (u) ' , u')) . 
.1: ;::0 

(32) 

Consequently, from (33) a ucl (29) we obtain a representation for f(x, u ) of t he form 

i(x, u) = g2 (x, u ) - h,(x , u)jl - J~u), (33) 

where 

hl(x , u) = h(x, u) ( x ¿::: uc• O~ Z,, (S.1:; g(x , u), t(:z: 2, ul), ... , t(:z: " , uk )) 
.1: ;:: 1 1 

- g(x, u)+ (x - /(u))H (x, u)) 
in which /f (:z: , u) denotes an analytic function in :z: and u. Note t ha t 
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This implies tbat 

h2(/(u) ,u) = h(/(u),u)/(u) ('L,u" a~ z,(S,;g1 , •• )- 'L, u"+>Z, (S,;g1 , •• )) 

k ~ l 1 k~O 

=O. 

Hence, h~(x, u} can be represented as 

h,(x,u) = h(x,u) (1 - /~u)) 
Of course, this implies (31} and completes the proof of Theorem 14. • 
Appendix 2.A: Asymptotic Normality 

We start with a slight extension of Theorem 10, where we add an additional parameter 
u (see [5J). 

Theorem 15 Suppose that F(x,y, u) = En,m Fn,m(u):z:nym is an analytic func tion 
in x, y arou nd O and u around O such that F(O, y , u) = O, that F(x, O, u) t O, and 
that ali coefficients Fn,m( l) of F(x , y, 1) are real and non-negative. Then the unique 
Jo /ut1on y= y(x , u)= En Yn(u)xn o/ the functional equation 

y= F(x,y,u) (34) 

with y(O, u) = O i3 analytic around O and has non-negative coefficients Yn( l) for u = l. 
f'urthermore, i/ the region o/ convergence o/ F(x, y, u) is large enough such that 

lh ere exut non-negative solutions x = x0 and y = y0 o/ the system o/ equations 

y= F(x , y, ! ), 

1 = F,(x,y,1 ). 

w1lh Fz(%0,¡¡o, 1) f. O and Fn(xo,y0, 1) #-O then there exist functions f(u), g(x,u), 
h(x , u) wh1ch are analytic around x = :z:0 , u = 1 such that y(x, u) is analytic for 
fxl < x0 and lu - II ~ é (!or sorne é < O) and has a representation o/ the form 

y(x,u) = g(x,u)-h(x,u)jl - /~u) 

locally around :r: = :r:o, u = l. 
1/ Yn0) > O for n ;::: O then we also get 

y.(u) = /(u)F,(/ (u) ,y(f(u),u),u) /(u) - •n- 3/2 (!+o (n- ') ) . 
2•F,,(/(u), y(/(u), u), u) 

umformly fo r lu - 11 < é. 

(35) 

(36) 

.1 
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Pro o f. T he proof is completely the same as that of Theorem 10. We just ha ve to take 
care of lhe additionaJ analytic parameter u. • 

Interestingly there is a strong relation to ra.ndom variables that are asymptotically 
Caussia.n. We state here a slightly modified version of a quite general tbeorem due 
to H.-K. Hwang [10] that usually referred as the Qua.si Power Theorem. (Similar 
theorem.s can be found in [l, 2J). 

Tbeorem 16 Let X,. be a random variable with the property that 

EuX" = e-'~ ·a{u)+b(u ) ( 1 +O (-k)), 
hold$ uniformly in a complex neighborhoud of u = 1 where ,\,. and tjJ,. are sequences 
of positiue real numbers with >.11 --t oo and </J,. --+ oo , and a(u) and b(u) are analytic 
/ undions in th is neighborhood of u = 1 with a(l) = b(l) = O. Then E X,. = µ>.,, + 
O (1 + >. ,. N ,,) and Var X,, = 0'2 A,, + O (I + >. ,. /tjJ,.), where µ = a'(l) and u 2 = 
a' ( l ) + a" ( I ). F'urthermore, if u2 > O then Xn satisjies a central limit theorem of the 
/orm 

X~,, -t N(O, 1) . 
V var An 

Proo f. By assumption we obtain far t in a neighborhood of t = O 

E e i1 X" = e it>..,.1• - ! t1.\ ,.u1+ 0( >.. .. 1')+ 0(1) (t + O (f.:)) 
Set Yn = (Xn - A,.µ)/ ..;>:;;i'I when u 2 > O. Then by replacing t by t/v>:;;UI one 
directl y gets 

Th us, Yn is asy mptotically normal since An --+ oo and <Pn --+ oo. 
Next set f,.(u) = Eux". Then 1:,(1 ) = EXn. One the other hand , by Cauchy's 

fo rmuJa we also have 
, 1 ¡ fn(u ) 

f,,(I) = 2,ri (u _ I)' du. 
lu - l l=P 

ln part icular, we use the circle Ju - I I = 1 / An as tbe path of integration and get 

E Xn = 

2K; I 1 + (-1,, a ' ( I) + b' ( l ))(u - 1) + O (-ln (u - 1)2 ) ( ( 1 )) 
(u _ l) 2 1 + O ~ du 

lu- l l= l / A,. 

=,\ ,,a' (! )+ O (1 + ::,._ ) . 
~ .. 
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Similarly, we can treat the variance. Set 9n(u) = /n(u)u ->.,.o.'(l) - b'(l J. Then 
Var X" = g'( l ) + g"(l) +O (l + AnftPn)· By using the same kind of complex in­
tegration on the ci rcle lu - l l = l/>..n and the approximation 

exp (,1,.(a(u) - a'(l) logu) + (b(u) - b'(l) log u) 

(u 1)2 
= 1 + (,\0 (a"(l) + a'(l)) + (b"(l) + b'(l)))--T- +O (,\0 (u - 1)3 ) 

one obtains 

Var Xn = ,l,.(a"( l) + a'(l)) + O (1 + ~) . 

Finally note that Y" and (Xn - E X") /../Var Xn have the same limiting distribu-
tion (if <1 2 > O). This completes the proof of Theorem 16. • 

Remark In particular , if F(x, y,u) satisfies the assumptions of Theorem 15 
and y(x, u) is t he solution of y = F(x,y,u). Then Xn , defined by E ux .. = 
/x"Jy(x, u) //x"Jy(x, 1), is asymptotically normal. We have a(u ) = - log(/(u) /x0), 

where /(u)= x(u) (and y(u)) are the solutions of the system 

y= F(x, y, u) , 

1 = F, (x , y ,u ). 

¡1 and <1 2 are then given by 

x'(l) x"( l ) 
µ=-- and <1 2 =µ + µ2 ---. 

XO Xo 

By implicit differentiation one gets (alter some algebra) 

x'(l) = _ F.(xo,Yo,l) = -~ 
F,(x0 ,yo, 1) F, 

and 

x"( l ) = -f- (F,,x'( l )2 + 2F,,x'(l)y'(l) + F,,y'(l)2 + 2F.,x'(l) + 2F.,y'( l) +F •• ) , 

where 
y'( l) = _ F,,x'(l ) +F.,. 

F., 

Thus, it is possible to calculate µ and 0'2 explicitly. 

Appendix 2.B: Bivariate Asymptotic Expansions 

Thc next theorem shows how the k-th coefficient of the n-th powers of funct ions 
behaves if n and k are proportional (see [3, 4]) . 
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Theorem 17 Suppose that a sequence o/ generating function y,1(u) is asymptotica/ly 
g1ven by 

y,,(u) = g(u),\(u)". (1 +o m) 
um/onn/y for a $ l1tl $ b and 1 arg(u)I :$: 8 (for sorne O< a< b and O< 8 < rr/2 ) 
and bounded by 

¡y,,(uJI $ e -X(lulJI' - "'" 
for o S lul $ b and 8 $ ! arg(u)I $ :rr and some 11 > O, where g(u) and ,\(u) are 
analytic m a region containing the range a $ lul $ b, 1 arg(u)I $ 8. 

Set 
() - d'(,) 

µ' - ,1(,) 

and suppose tl1at 

2 1 r,\'(r) r 2>."(r) r 2 ,.\'(r)2 

u (') = 'µ (') = T(;r + --¡¡;:) -~ > o 

for a$ r $ b. Let h(y) denote the inverse function o/ µ(r). 
Then we have 

[u'] (u) =-J _g(h(~))-X(h(~))" 
"" ,ff,;;;u(h(~)) "m' 

um/ormly f or n, k with µ(a) S k/n $ µ(b). 

Proof. We use Cauchy's formula 

' 1 r y.(u) 
[u J Yn(u) = 2;i }¡ul= r ~ du 

.... •here r is deflncd by 
r,\'(,) 
T(;r 

that is, r = h ( ~ ) . Note that r is exactly tbe saddle point of the function 

>.(u)"u- .1: = enlog>.(u)- klogu_ 

Now a st.an da rd saddle point method (see [4] or [14J) yields 

[u' [y,,(u) = ~g(,),\(,)", - • . (1 +O(.!.)) . 
y271'nq2 (r) n 

Re cei ved: Nov 2003 Revisad : Harch 2004. 

• 
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