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ABSTRACT
We present here a review of some recent existence, uniqueness and regularity
results for elliptic equations with infinitely many variables. Operators considered
here are: the Gross Laplacian, the Ornstein-Uhlenbeck operator and their regu-
lar perturbations.

RESUMEN
Presentamos acéd algunos Itad i acerca de exi ia, unicidad
y regularidad para ecuaciones elipticas con infinitas variables. Se consideran los

operadores Gross Laplacian, Ornstein-Uhlenbeck y sus perturbaciones regulares.
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1 Introduction

We are concerned with the following differential operator

Kop(z) = %Tr [QD?*¢(2)) + (Az + F(z), Dp(x)), z € D(A)ND(F),  (L1)
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on a separable Hilbert space H. Here A: D(A) C H — H is the infinitesimal gen-
erator of a strongly continuous semigroup e*4 in H, Q: H — H is a symmetric
nonnegative bounded linear operator in H (possibly the identity operator I), and
F: D(F) C H — H is nonlinear. Moreover, D; represents the derivative with respect
to t, D the Fréchet derivative with respect to  and Tr the trace.

Let {ex} be a complete orthonormal system in H and set z = (z,ex) and Qp x =
(Qen,ex) for all z € H, h,k € N. Then we can write Ky as

Kop(z) = > QuiDaDrp(@) + Y (Az + F(z), en) Dap(a),
h k=1 h=1

where Dy, represents derivative with respect to z;. Therefore Ky can be seen as an
elliptic operator with infinite many variables z, k € N.

If Q is invertible and Q™! is bounded we say that differential operator (1.1) is
strictly elliptic, otherwise that it is elliptic degenerate.

We are interested in the parabolic equation

Dyu(t,z) = Kou(t,z), t>0,z€H,
(1.2)
u(0,z) = p(z), z€H,

where ¢ € C,(H), the Banach space of all uniformly continuous and bounded map-
pings ¢: H — R, endowed with the norm

llello = sup [o(z)],
z€EH

and in the elliptic equation
M - Koy = f, (1.3)

where A > 0 and f € Cy(H) are given.
One of the main motivation to consider the operator K comes from the following
stochastic differential equation,

dX(t,z) = (AX(t,z) + F(X(t,2)))dt + VQ dW(t), t>0, z € H,
(1.4)
X(0,z)=2z, z€H,

where W (t) is a cylindrical Wiener process in H and E represents the expectation, see
e. g. [12]. Equation (1.3) is an evolution equation in H perturbed by noise. Several
equations in Physics have this form, we mention the reaction—diffusion equations and
the Burgers and Navier-Stokes equations. In these cases often H is an L? space,
A is the Laplacian with suitable boundary conditions and F represents a non linear
function describing interactions.

There is in fact a strict connection between the process X (t,z) and the solutions
of (1.2),(1.3), given by the formulas (which have to be justified !),

u(t,@) =E[p(X(t,2))], t20,z¢€H, (1.5)
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and
+00
v = [ MBS e H, (16)
0
respectively. However, we shall not use these formulas in this paper, but we shall only
consider deterministic tools as fi ional analysis and measure theory, in particular

Gaussian measures.

There is an increasing interest in equations with an infinite number of variables,
starting from the pionering work of L. Gross [16] and Yu. Daleckij [8], see [14] and
references therein. Since the theory is still at the beginning, we shall confine in this
paper, to the more understood case of a regular F' (but with A being unbounded in
general). Also, for the sake of simplicity, we shall look for solutions of (1.2) and (1.3)
in spaces of continuous functions. For the important case of irregular nonlinearities
and solutions in spaces L?(H, v) where v is an invariant measure for X (t, x) we refer to
[14] and references therein, see also the approach based on Dirichlet forms, (1],(2],(21]
and (25].

Let us outline the contents of the paper. Section §2 is devoted to the case when
A = F = 0, the heat equation, section §3 to the case when F = 0, the Ornstein-
Uhlenbeck equation. Finally, in §4 we shall present some results for more general
equations. We will follow closely [14] with the exception of §4.3.

We end this section by giving some notation and recalling the definition and some
properties of Gaussian probability measures in a Hilbert space H which will play an
important role in what follows. We shall outline some proofs, for details see e.g. [14,
Chapter 1].

We shall fix in all the paper a separable Hilbert space H (norm |- |, inner product
(-,+)) and denote by L(H) the Banach algebra of all linear bounded operators in H
endowed with the usual norm:

IT|| = sup{|Tz|: z € H, |z| =1}, T € L(H).
Since e*4 is a strongly continuous semigroup, there exist M > 0 and w € R such that
lletAll < Met, ¢ > 0. (7

We shall denote by L*(H) the subset of L(H) of all symmetric, nonnegative operators
and by L,(H) (resp. L{(H)) the subset of L(H) (resp. L*(H)) of all operators of
trace class. One can show that a linear operator @ € L*(H) is of trace class if
and only if there exists a complete orthonormal system {e;} in H and a sequence of
nonnegative numbers {Ax} such that

Qex = Mex, k€N, (1.8)
and

)
HRGE= Z)\k < +00.
k=1
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For any a € H and @ € L} (H) we define the Gaussian probability measure N, ¢ in
H by identifing H with ¢2 (1), and setting

oo
Nog =[] Naoupns = (@ex), kEN. (1.9)
k=1
Obviously, the measure N, q is defined on R*, the product space of all real sequences,
but it is concentrated on €2 (that is p(¢2) = 1) since, in view of the monotone con-
vergence theorem, we have

o N
[l Nogtde) = 3 [ stNosnlde) = (0 +a) < 4o
R k=1 k=1

If @ = 0 we shall write N, = Ng for brevity. We shall always assume Ker @ = {0}

in what follows. 4
If H is n-dimensional, n € N, we have (since det @ > 0)

Nao(dz) = (2m)~"/2(det Q)~1/2 ¢~# (@7 (z=)z=0) gy, (1.10)

Let us list some useful identities about integrals with respect to the measure
yt := Naq. They are straightforward when H is n-dimensional and they can be
proved in the general case letting n — co. We have

[, 1ePuta) = 2@+ (L1
/H(z,h);‘(dz) = e (1.12)

/”(x — o, ) {z — o, Kyu(dz) = (@M, K), B,k € H. (1.13)
/H oM y(dz) = eiate=h @AM h e . (.14

The range Q'/2(H) of Q'/? is called the Cameron-Martin space of Ng. If H is infinite
dimensional Q'/?(H) is dense in H but different from H and it is important to notice
that

No(Q'/*(H)) =0. (1.15)
Let us introduce the Cameron-Martin formula. Consider a measure Ng and the
translated measure No,q with a € Q/2(H). If H is finite dimensional, it follows from
(1.10) that N, o and Ng are equivalent and,

MNog () _ =HQAaP+@ 0@ ) e (L16)
N

122 is the space of all sequences {x} of real numbers such that |z|2, := 52, [zx|? < 400,
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This formula does not generalize i ly in infinite . In fact in this
case the term (Q~'/2a, Q~'/2z) is only meaningful when = belongs to Q*/*(H) which,
however, is a set having Ng measure 0 by (1.15).

To give a meaning to formula (1.16) in infinite dimensions, it is convenient to
introduce the white noise function W. Let us start with the function

WO :QY*(H) C H - L*(H,u), f— W},

where
Wi(z) = (x,Q7'/%f), z€H. (1.17)

In view of (1.13) we have
/;, Wi @)W, (@)u(de) = QQT1,Q7 20) = (f,9), frge H.

Thus, W is an isomorphism and, since Q'/?(H) is dense in H, it can be uniquely
extended to a mapping W from H into L*(H, p).
If f € H it is usual to write in the literature (“par abus de language”)

Wy(z) = (w,Q"Y/2f), z€H,

even if this is meaningful only when f € Q'/2(H). We shall also follow this convention.
Now the following result can proved by a straighforward limit procedure, see e.g.
(14, Theorem 1.3.6] for details.

Theorem 1.1 Let Q € L} (H) and a € Q'/*(H). Then the measures N, g and Ng
are equivalent (%) and

%?(1) = exp {—%|Q”‘/7a|2 +(Q™V/2a, Q-lﬂz)} L zeH. (1.18)

We stress the fact that the term (Q~'/2a,Q~'/2z) in the exponential above, should
be intended more precisely as Wg-1/2,(z).

2 The Heat equation

2.1 Introduction
We are here concerned with the following problem
1
Dyu(tyz) = 5 T [QD*u(t,z)], ¢>0, z€H,

(2.1)
w0,2) = (), z€H, ¢eCy(H).

where Q € L*(H).

2If a ¢ Q'/3(H) then Na,q and Ngq are singular.
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A function u : [0,+00) x H — R is said to be a strict (resp. classical) solution
to (2.1) if the derivatives Dyu(t,z) and D?u(t,z) exist for all ¢ > 0 (resp. t > 0)
and z € H, are continuous and bounded on [0, +00) x H (resp. (0,+00) x H) and u

satisfies (2.1).
When H is finite dimensional (H = R?, d € N), problem (2.1) can be written as

d
Dyu(t,z) = % Z Qi;DiDju(t,z), t>0, z€RY,

J=1 (2.2)
u(0,7) = ¢(z), ¢€CyR?), z€RY,

where Qi; = (Qej, ;) and {e;} is an orthonormal basis in R%. In this case it is well
known (recall that detQ > 0) that there exists a unique classical solution of (2.2),
given by

ut,z) = (2m)~92(det @)1/ / e~} QW y(z 4 y)dy
ko
(2.3)

I

/R L Pl@+y)Nigdy), z€ RY.

Moreover, setting Sip(%) = u(t,z), S, is a strongly continuous semigroup of linear
bounded operator in Cy(R?) (3).

Assume now that H is infinite dimensional and let Q € L*(H). Then the last
integral in (2.3) is still meaningful provided Q is of trace class. This is in fact a
necessary condition if one want to solve the problem for “enough” functions, see 14,
Proposition 3.1.2].

From now on, we shall assume in this section that Tr Q < +00. Then we define
So = I and, for any t > 0,
Siwl@) = [ ola+u)Nald), = € H, ¢ € Cu). (24)
H
It is easy to see, see [14, Proposition 3.5.1] that S, is a strongly continuous semigroup
of linear bounded operators on C,(H) and that
1Sello < llello, >0, ¢ € Co(H).

We shall denote by A its infinitesimal generator. For any ¢ € Cy(H) the function
u(t,z) = Syp(x) is called a generalized solution of (2.1).
S; is called the heat semigroup, it has been introduced in a different setting by L.
Gross [16], see also Yu. Daleckij [8].

3INotice that if one replace Cy(H) with the space of all continuous and bounded functions on H,
then S is not strongly continuous.
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It is important to understand how the generator A looks like. The usual way is
to find a core (*) Y4 of A, where A has an explicit differential expression. When H
is finite dimensional, a core is provided by CZ(H) (°). However, when H is infinite
dimensional C?(H) is not dense in Cy(H), see [22] (one can show, however, that
Oy (H) (°) is, see [19)).

To define a core we shall proceed as follows. First we shall introduce, following L.
Gross [16] the concept of Q-derivative (or derivative in the directions of the Cameron-
Martin space Q'/2(H)). A mapping ¢ : H — R is called Q-differentiable if for any
z € H the function F(y) = ¢(z + Q'/*y), y € H, is differentiable at 0. In this case
we set Dgy(z) = DF(0) and call Dqy(z) the Q-derivative of ¢ at z. If ¢ € C} (H)
then it is Q-differentiable and we have Dqyp(z) = Q'/*Dy(z). We shall denote by
C}(H) the set of all ¢ € Cy(H) that possess uniformly continuous Q-derivatives. In
a similar way we define second order Q-derivatives and the space C%(H).

Now, the following subspace is a core for A, see (23].

Ya = {p € C4(H): Dip e Cy(H,Li(H))). (2.5)
Moreover, if ¢ € Y4 we have

1
Ap = 5 Tr [Dg¢)-

Before proving in §2.3 existence and uniqueness for equation (2.1), we shall present
in §2.2 the mazimum principle. This result will be useful to obtain uniqueness. In
§2.4 we consider the elliptic equation (1.3) and present Schauder estimates. Finally,
in §2.5 we study a generalization of equation (2.1), taking Q = C(t) depending in
time. This will be used in §3 to study the Ornstein-Uhlenbeck equation.

2.2 The maximum principle
We shall prove the maximum principle for more general equations of the form
% Tr [Q(t,z)D?u(t,z)], t>0, z€H,
(2.6)
u(0,z) = p(z), z€ H, p € Cy(H).

Dyu(t,z) =

where Q : [0, +00) x H — L} (H) is continuous.

“That is a dense subspace Y of Cy(H) which is also dense for the domain D(A) of A endowed
with its graph norm.

SFor any k € N, CF(H) is the subspace of Cy(H) of all functions @ : H — R which are k times
Fréchet di i on H with uni il and bounded derivatives D" with h less than
or equal to k.

G2 (H) is the space of all functions ¢ € C} (H) such that Dy is Lipschitz continuous.
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Let T > 0 be fixed. Assume that u, not identically equal to 0, is a strict solution
of (2.6). Setting v(t,z) = e~*u(t,z), we have

Di(tia)= % T [Q(t, 2)D%u(t, 7)) — v(t,z), te(O,T), zeH  (27)

If v attains a maximum on (%o, Zo) € [0, T] x H then to = 0, otherwise (2.7) will yield
a contradiction. Consequently, in this case we have

sup _e~*||u(t, o < [l¢llo- (28)
te(o,T)

We are going to show that (2.8) is always true (maximum principle), the problem in
proving this fact is that v does not attain a maximum in general. To overcome this
difficulty, we shall use the following Asplund lemma, see e.g. [3]. Roughly speaking
it says that, given a continuous and bounded function u defined on a bounded subset
K of a Hilbert space X, it is possible to change “slightly” u by a linear function in
several ways so that it attains a maximum.

Lemma 2.1 Let X be a Hilbert space, K a closed bounded subset of X, and ( a
bounded real continuous function on I. Then there ezists a dense subset £ of X such
that the mapping K = R, & = ((z) + (z,y), attains a mazimum in K for all y € .

Notice that we cannot apply the Asplund lemma to our function v(t, z) defined above,
since it is defined on [0, 7] x H which is not a bounded subset of the Hilbert space
X = R x H. However, it is not diffucult to find a ball B € H and a function v close
to v such that

sup{d(t,z) : (t,z) € [0,T] x H} = sup{i(t,z) : (t,z) € [0,T] x B}, (2.9)

so that we will able to apply the Asplund lemma to the function #(¢, z). More precisely
the following lemma holds, see [14, Lemma 3.2.6].

Lemma 2.2 Assume that K is a closed subset of a Hilbert space X, and that u is a
bounded and continuous function on K. Then, for any € > 0 there exists p € C§°(X)
and C > 0 such that

(i) u+ p attains its mazimum on K,
(ii) lipllo + 1Dpllo + ID*pllo < Ce.

Now the proof of the following maximum principle is straightforward, for details see
[14, Theorem 3.2.7].

Theorem 2.3 Let € CZ(H) and let u be a strict solution of (2.1). Then

sup e~lu(t,-)llo < [lello-
tefo,7)
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2.3 Strict solutions
In this subsection we show that if the function ¢ is sufficiently regular then (2.3)
defines a strict solution to (2.1). Notice first that, by a straightforward change of
variables, we can write
Sip(z) = / oz +VEy)No(dy), t>0, z€ H. (2.10)
H
Now, we can prove the following result.

Theorem 2.4 If ¢ € C}(H), then the function u(t,") = Sip is the unique strict
solution of (2.1).

Sketch of the Proof. Let ¢ € CZ(H). By (2.10) it follows that u(t,-) € CZ(H) for
all t > 0 and,

(Du(t, ), h) = / (D(w + vVt y),h)No(dy), t>0, =€ H, (2.11)
H

(D*u(t,z) - h,h) = / (D2p(z + Viy)-hh)Ng(dy), t>0, zeH (212
H

It remains to show that u is differentiable with respect to ¢ and (2.1) holds.
By the Taylor formula we have that

u(t,z) = p(x) + Vi /, (Dla) ) Naldy) + 5 ¢ /H (D*¢(z) - v, ) No(dy) + r(t,2),

where 7(¢,z) is a “small” remainder. Since Ng has mean 0, the second term of the
right hand side vanishes by (1.12). Moreover, by (1.13)

Sy [, PaDest@manNa(dn =+ [@D*(@),
h k=1

/(D #(=) -y, y)No(dy)
where Dyo(z) = (D(z),en), yn = (y,en) and {ey} is defined by (1.8). Consequently
u(t, ) = p(@) + 5 1 T [QD*p(a)] + (1 2),

and we deduce that

Difu(0,2) = = ’Dr{QD2 0,2)), z€H,
so that u fulfills (2.1) for ¢ = 0. Using the fact that S; is a semigroup, it is standard
to see that u fulfills (2.1) for any ¢ > 0. The existence is proved. Uniqueness follows

from the maximum principle. L]

We end this subsection by proving some regularity results of Ryp. We notice that
if H is infinite dimensional the operator @ is compact and consequently its inverse
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is not bounded. So, the operator % Tr [QD?y] is never strictly elliptic in this case.

As a consequence, if ¢ € Cy(H) and t > 0 we cannot expect in general that Sy is
more regular than ¢ as in the finite dimensional case. As proved by L. Gross, see [16],
Sip is differentiable infinitely many times along the direction of the Cameron-Martin
space Q'/2(H). Let us give an idea of this interesting fact.

Theorem 2.5 Let ¢ € Cy(H) and u(t,") = Sip. Then for allt >0, and z € H we
have u(t,) € C3(H) and (7),

(Dau(t2)1) = 7 [ (@) oy Wple +Nia(d), heH,  (213)

(Dgutta)- W =1 [ (@@ Pu i N, heH (214
H
Sketch of the proof. Let z,g € H, t > 0 and a € R. We have
s +0Q"%g) = [ ola+1)Noguapan(@)

By the Cameron-Martin formula (1.16) it follows that

dNog1/200
dNwg

(y) = e~ TP+ 5 0.0~ ),

Therefore
; &
u(t,z +aQ'%g) = /H ol +y)e” FOHTOCDTEI NG ),

Taking the derivative with respect to a at a = 0 yields (2.13). Equation (2.14) can
be proved similarly. ]

2.4 Elliptic equations
We are here concerned with the elliptic equation (1.3) which we write in the more
convenient form,
1
(@) - 5DV = £(z), = € H, (215)

where A > 0 and f € Cy(H).
We say that ¢ defined by

b= (= AL = /om M f(z)dt, = € H, (2.16)

7In formulas (2.13) and (2.14) we have to read ((tQ)~"/?y,h) = Wi(y) where W is the white
noise function related to the Gaussian measure N;Q-
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(which is well defined by the Hille-Yosida theorem) is a generalized solution of (2.15).
Y is said to be a strict solution if € C3(H), Dy € Co(H, Ly(H)) and fulfills (2.15)
(®).

There is a misprint in the second line of Page 89: (Qzy, ex( should be replaced by
(Qen, ex(.

It is well known that, even if H is finite dimensional (with dimension greater
than 1), a strict solution of (2.15) does not exist in general since the domain of A is
not C#(H). However, several regularity results for the solution ¥ can be proved, see
(14, §4.2]. We recall in particular a maximal regularity result which generalizes the
classical Schauder estimates, proved in [4].

We need the following notation. For any 8 € (0,1) we set

Cy(H) = {¥ € Co(H) : ¥(Q'/) € CE(H)}.
We define C:)”(H), k € N similarly.
Theorem 2.6 Let A > 0,6 € (0,1) and f € C&(H). Then
Y=(0\-A)"'feCHH)

and there exists C > 0 such that

[1ll2+0,0 < Cllglle.q- (2.17)
Remark 2.7 It is not known whether D?y)(z) € L,(H). However, one can show, see
[24], that Dgu(x) € La(H) (the space of all Hilbert-Schmidt operators) and there

exists C} > 0 such that

[1D3¥(Q"/2z) — DG (Q*y)llLam) < Canlz - w)I°, 7,y € H. (2.18)

Remark 2.8 Theorem 2.6 can be used to solve, by using maximum principle and
the continuity method, the following heat equation with variables coefficients:

1
AY(z) - Ay(z) - iTr [F(z)Dgy(z)] = g(z), =€ H. (2.19)
In fact, the following result was proved in (4]. For a more general equation, involving
lower order terms see [28].

Theorem 2.9 Let6 € (0,1),A>0,g € Cg(H), and F € Cf(H; Ly(H)) be such that
I+ F(z) € L*(H) for all z € H. Then there exists a unique strict solution v to the
equation (2.19).

$That is if ¥ belongs to the core Y defined by (2.5)
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2.4.1 Potential

It is well known that if H = R", n > 3, and f € Cp(H) has a bounded support then
there exists a unique function (up to an additive constant) ¥, called the potential of
g, such that

~% Ay =g. (2.20)
Moreover, ¢ € Cy 77 (H) for all § € (0,1) and it is given by
o0
9(v)
= = — H, i
o(z) /ﬂ Pyg(z)dt = Cn /R =y dy, z€H, (2.21)
where C,, is a positive constant.

This result was lized in infinite di i by L. Gross, [16]. We have in
fact, see [14, §4.3].

Proposition 2.10 Let g € C}(H) with bounded support and set
o0
Y(x) =/ Pyg(z) dt, z € H. (2.22)
o
Then ¢ € Y4 (the core of A defined by (2.5)) and

—% Tx [Dju(z)] = g(z), z € H. (2.23)

2.4.2 The Liouville theorem

We say that function 1) € Cy(H) is harmonic if it belongs to D(A) and Ay = 0, or,
equivalently, if Spp = 1) for all ¢ > 0.

The following result is a generalization of the classical Liouville theorem, see [14,
Theorem 4.3.4].

Theorem 2.11 Any harmonic function in Cy(H) is constant.
Sketch of the proof. Let ¢ € Cy(H) be such that P = ¢, ¢t > 0. Then by

Theorem 2.5 it follows that ¢ € C(‘](H)‘ Moreover, from (2.13) it follows, using the
Hélder inequality, that

1
[Dgep(x)] < 7 llello, t>0, z€H.

Letting t — oo we see that Dqgep(z) = 0 for all z € H. This implies that ¢ is constant
in Q'/2(H). Since Q'/?(H) is dense in H, it follows that  is a constant as required.
n

e &\
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2.5 A generalization to time dependent coefficients
We consider here the problem
Dyu(t,z) = L Tr [C(t)D?u(t,z)], t>0, z€H,
2 (2.24)
u(0,z) = p(z), «€H,

where €' is a mapping from [0,T) into L(H) such that C(-)z is continuous for all
z€ H.
When H = RY, d € N, (2.24) can be written as

d
Duta) = 1Y cuODDuty, >0 zeRs,

ij=1 (2.25)
u(0,2) = (@), zeRY

where C;(t) = (C(t)e;, ;) and {e;} is an orthonormal basis in R?.
Notice that equation (2.25) is elliptic and its coefficients depend on ¢ but not on
x. Then, if
(C(t)z,z) > v|z|*, z€RY,
for some » > 0 and ¢ € Cy(R?), there exists a unique classical solution of (2.25),
given by

utD) = @0 Q) [ e @ )y
R (2.26)
= [, e+ o @), =ere
where "
Qm:/ C(s)zds, z€H. (2.27)
0

If H is infinite dimensional, formula (2.26) is still meaningful provided @, is of trace
class for all t € [0, 7).
Proceeding as before we can prove the following result.

Theorem 2.12 Assume that
Qi€ L(H) forall t>0. (2.28)
If o € C}(H), there exists a unique strict solution u to (2.24), given by
u(t,z) = / ¢(z +y)Ng,(dy), ze€H, telo,T) (2.29)
H
Remark 2.13 In order that condition (2.28) is fulfilled it is not necessary that C(t)

is of trace class for some ¢ € [0,7]. We shall see an example of this situation in the
next section.
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3 The Ornstein—Uhlenbeck equation
We are here concerned with the following equation
Dlu(t ) % T [QD?u(t, o)) + (Az, Du(t,z), >0, z € D(4),
(3.1)

u(0,z) = p(z), =€ H,

where A is the infinitesimal generator of a strongly continuous semigroup e'! in H
fulfilling (1.7) and Q € L*(H). We set

e = % T [QD%0(@)] + (Az, Dp(z)), t> 0, z € D(A).

We call (3.1) Ornstein-Uhlenbeck equation because it is the Kolmogorov equation
corresponding to the Ornstein-Uhlenbeck process X (t, ), which is the solution of the
following differential stochastic equation,

{ dX (t,z) = AX(t,z)dt + /QdW(t), t>0, z€H,
(3.2)

X(0,2)=m, “aEH.

A function u : [0,+00) x H — R is said to be a strict solution to (3.1) if the
derivatives Dyu(t,z) and D*u(t,z) exist for all ¢ > 0 and z € D(A), are continuous
and bounded on [0, +00) x H and u satisfies (3.1).

In order to solve equation (3.1), we make a change of variables, see [8] and [4],
setting u(t, ) = v(t,e'z). Then v satisfies the following problem

D) = %1& [4Qet Du(t,z)], t>0, z € H, A

v(0, ) = ¢(z), z€H,

which is of the form (2.24). Thus, in order to apply Theorem 2.5, we have to assume
that the operator Q,

t
Qv =/ e Qe zds, T € H, (3.4)
0

is of trace class for all t > 0. In this case, if ¢ € C}(H) by Theorem 2.5 it follows
that problem (3.3) has a unique strict solution given by

u(t,z) = /' e+ uNo, (), =€ H 20 @5)

Coming back to u we find the following result.
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Theorem 3.1 Assume that Q is of trace class for all t > 0. Let p € C}(H) be such
that QD*p € Cy(H; Ly (H)). Then problem (3.1) has a unigue strict solution u given
by
u(t2) = [ pletha+y)Na, (), 20,z €H. (36)
H

Now we define the Ornstein-Uhlenbeck semigroup setting
Reo(e) = [ plea s y)Na (@), z€H, 20, peClH). (1)
H

We shall always assume from now on that Tr Q; < +oc for all t > 0. Note that
this condition does not imply that @ is of trace class. So, it can happens that the
operator Ly is strictly elliptic as the following example shows.

Example 3.2 Assume that A and Q are such that

Aex = —axer, Qex = Mex, k€N,
where {ex}ren is a complete orthonormal system in H and {ax}ken, {M}ren are
sequence of positive numbers.

Then we have

Quex = 2% (1-e?™ e, keN.

Thus, the condition Tr Q; < +o0o0 is equivalent to

o0

Z 1\5 < +00.

= Ok

For instance, it is fulfilled if @ = I and oy = k?, k€ N. []

The semigroup R, is not strongly continuous in Cy(H), unless A = 0. In fact, if
on(z) = =Mz e H with h € H different from 0, we have, by a direct computation,
that

Riph = @oasy, t>0.

Now, it is easy to see that Rypn does not converge to s in Cy(H) as t = 0.

3.1 The case when L is strictly elliptic

Let us assume that the operator Ly is strictly elliptic, that is Q' € L(H). Then
Ry is hing (as in finite di ions), that is it maps Cy(H) into Cj°(H) for all
t > 0. Let us give an idea of this fact.

Proposition 3.3 Assume that Q~' € L(H) and ¢ € Cy(H). Then for all t > 0 we
have Ryp € Ci°(H) and, in particular (°),

(DRyp, ) = /H (COR Qo2 +1)No,(dy), heH,  (38)

91n formula (3.8) we have to read (P()h, @ /?y) = Wr(ya(y) where W is the white noise
function related to the Gaussian measure Ng, .
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where the operator

() = Q7 %, >0, 39)
is well defined and bounded ('°). Moreover, there ezists ¢ > 0 such that (*')
IDRegllo < ct™/2e“" [iplfo- (3.10)

Sketch of the proof. By a straightforward change of variables we can write
Riplo) = [ p0)Naseo @), 20,2 € Hp € B(H)
H

In order to differentiate Ryp(z) with respect to = we shall use the Cameron-Martin
formula (1.18), by replacing integration with respect to N, g, with integration with
respect to Ng,. To apply (1.18) we need that

tAH) c Qi/*(H), t>0. (3.11)

In fact (3.11) always holds when Q~! € L(H), see the discussion below. Now, by
Theorem 1.1 it follows that
dN,iaz g,

~} PP+ Oz %)y e g,
dNg,

(W) =e
Therefore, we can write
-1/2
(z) =f (W) Noiaz q, (dy) =/,,€‘* PO+ 2.7 ) (y) No, (dy)
H

and, differentiating with respect to z, (3.11) follows. For (3.10) see next comment.

-

In order to understand the ing of condition (3.11), it is c ient to consider
the following deterministic controlled equation in [0, 7],

v'(t) = Ay(t) + VQu(t), y(0)==z, (3.12)

where z € H and v € L3(0,T; H). Here y(t) represents is the state and u(t) the
control of system (3.12). Moreover E(u) = fo |u(s)|?ds is called the energy of u. The
mild solution of (3.12) is given by

t
yltiw) = etz + / e=04./3 u(s)ds. (313)

\\mm (3.12) is said to be null controllable if for any T > 0 there exists u €
(0,T; H) such that y(T;u) = 0; in this case u is called a control driving the state

e 12
It is easy to see that Ker Q¢ = {0} 50 that Q;"'/? is well defined but it is not bounded in general.

By saying that I'(t) is well defined we mean that e*A(H) ¢ Q}/?(H), t > 0. See the disciismloATANY
!Recall that w is defined by (1.7) g
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y to 0 in time T. One can show, see [27], that system (3.12) is null controllable if
and only if condition (3.11) is fulfilled. In this case, the minimal energy for driving y
from z to 0 in time 7T is precisely |I'(t)z|*> where () is defined by (3.9).

When @Q is continuously invertible it is easy to see that (3.12) is null controllable
50 that (3.11) is fulfilled. In fact in this case, fixing T > 0 and choosing the following

control (*?),
u(t) = —% et4Q 2z, te(0,T),

we find by (3.13) that y(T,u) = 0. Moreover, for the minimal energy |I'(T)z|* we
have, recalling (1.7), that
T
wwnﬁgamgMW”m*“w/e“m.T>o
0

Therefore the following useful estimate holds
D) < ct™/2evt, t>o0, (3.14)
for some ¢ > 0. By using the Holder inequality in (3.8), it implies (3.10).

Remark 3.4 Condition (3.11) may be fulfilled even if Ly is not strictly elliptic. In
this case we say that L is hypoelliptic because when H is finite dimensional, condition
(3.11) reduces precisely to the Hormander’s hypoellipticity condition for the operator
Ly. In this case the conclusions of Proposition 3.3 still hold.

3.2 The infinitesimal generator of R,

As we have noticed before, the semigroup R, is not strongly continuous in C,(H)
when A # 0. R, belongs to a class of semigroups, called 7-semigroups, extensively
studied in [23], see also [15). However, a notion of infinitesimal generator of R, can
be defined as follows, see [6). Consider the Laplace transform of Ry,

+00
FOf@ = [ eMRif@at, [ eCE), A>0,z€ .
0
Then, it is easy to see that F'(}) is one-to-one and that fulfills the resolvent identity,
F(A) = F(p) = (A= WFEN)F(p), Apu>0.
Consequently, there exists a unique closed operator L in Cy(H) such that F()\) =

(A= L)™" for any A > 0. L is clearly m-dissipative in Cy(H) (**); it is called the
infinitesimal generator of Ry.

12y is not the control of minimal energy in general.

13That is the resolvent set of L includes (0, +00) and its resolvent fulfills [|(A = L)~"||1(c, (1)) <
A=! forall A > 0. If A # 0 then D(L) is not dense in Cy(H) and L is not the infinitesimal generator
of a strongly continuous semigroup in Cy(H).
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Remark 3.5 By (3.10) it follows easily, taking Laplace transform, that
D(L) C Cy(H).
It is useful to define a subspace Y of D(L), that plays the réle of a core, where

the expression of L coincides with Lo. Following (7], we denote by Y7 the set of all
¢ € Cy(H) such that

(i) » € C3(H),
(ii) Dp(z) € D(A*) for all z € H and the mapping H = R,z — (z, A" Dy(z)),
belongs to Cy(H).

(iii) QD¢ € Cy(H, Ly(H)).
If p € Y we have
1
Le(z) = 5 T [QD*6(@)] + (¢, 4"Dp(@)), =€ H.
Moreover, the set Y7, is pointwise dense in Cy(H) in the following sense

For arbitrary ¢ € C}(H) there exists a sequence {¢,} C Y7 such that

(i) llgallo < 2[l¢llo, n € N,
(ii) ¢n — o uniformly on any compact subset of H.

3.3 Elliptic equations

We are here concerned with the elliptic equation
1
Ap(z) - 5 T[QD*¢(x)] - (Az, Dp(a)) = f(z), =€ D(A), (3.15)

where A > 0 and f € Cy(H).
We say that ¢ defined by

+oo
p=MA-L)7'f =/D e MRy f(z)dt, z € H, (3.16)

is a generalized solution of (3.15). ¢ is said to be a strict solution whenever ¢ € Y.

As in the case of the heat equation, there is no hope to give a simple characteriza-
tion of the domain of L. The situation could be better in the space Cf (H), 6 € (0,1),
the space of all #-Hélder continuous and bounded real functions on H. It is easy
to see that Cf(H) is invariant for R;. Let us denote by Rf the restriction of Ry to
C{(H), and by L? the part of L in Cf(H) :

L¢ =Ly, Vype DL’ ={peDL)NCI(H): Lye Ci(H)}.

Also the characterization of the domain of L? is still an open problem. However
two mazimal regularity results are known when Ly is strictly elliptic. The first one,
generalizes the classical Schauder estimates, see [11] and [5].
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Proposition 3.6 Assume that Q™' € L(H). Let f € CJ(H), with 6 € (0,1) and
A> 0. Setp = (A= L~ f. Then we have p € Cb”(H) and there ezists N > 0
(independent on A and on f) such that

llellgasoqary < Nl llcg - (317)
The second one is the following, see [10]

Proposition 3.7 Assume that Q=' € L(H). Let f € C{(H), with 6 € (0,1) and
A > 0. Set p= (A= L)~} f. Then Dyp(z) belongs to D((—A)*/?) for any « € H and
that (—A)'/2 Dy € CY(H).

Both results can be used to study more general equations with variable coefficients.

4 The case when F' is nonlinear

Here we still assume that the operator
e .
Qiz =/ Qe zds, z € H,
0

is of trace class for any ¢ > 0, so that the Ornstein-Uhlenbeck semigroup R, in Cy(H)
is well defined. We still denote by L its infinitesimal generator. We are given in
addition a uniformly continuous and bounded function F: H — H.

We shall consider the linear operator

Nog(z) = Lp(z) + (F(z), Dp(z)), @€ DIL)NCHH), z€H.  (41)

In §4.1 and §4.2 we shall assume in addition that Q = I so that Ny is strictly elliptic.
In this case we know by Remark 3.5 that D(L) C C} (H), so that the term (F(z), Dp)
is well defined for any ¢ € D(L). In this case we say that the operator Nj is a
perturbation of L. Then it is not difficult to solve the parabolic equation concerning
Ny by a fixed point argument, see §4.1. Moreover, one can show, see §4.2, that the
operator Ny is m-dissipative ('), that is it resolvent set includes (0,+00) and the
following estimate for the resolvent holds

I = N)"tello < IIV’IIo. ¢ € Co(H).

More difficult is the situation, treated in §4.3, when the operator @ is general,
since in this case we do not know whether D(L) is included in C} (H) or not. We can
only show that Ny is essentially m-dissipative in C,(H), that is Ny is dissipative and
its closure (a-priori multi-valued) is m-dissipative.

N does not generate a strongly continuous semigroup because its domain D(L) is not dense in
Cy(H).
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4.1 Parabolic equations when Q =1
We assume here that ) = I and consider the problem,
Dyu(t,z) = % Tr [QD*u(t, )] + (Az + F(z), Du(t,z)), t>0, z € D(A),
W0,2) = pla), sed,
(4.2)
where ¢ € Cy(H).
We shall write problem (4.2) in the following more abstract form
(4.3)

{ Dyu(t, ) = Lu(t,) + (F(), Du(t,")), t>0, z€H,

u(0,7) = ¢.

We say that u is a mild solution of (4.3) if it fulfills the following integral equation
t
u(t;) = Rup+ | Rucs((F(), Du(s, Mds, £20. (44)
o

Since, by Proposition 3.3, R, maps Cy(H) into C} (H), it is natural to try to solve (4.4)
by a fixed point argument in a space of differentiable functions. So, let us consider
the following space Zr consisting of all functions u : [0, 7] x H — R such that

(i) u is continuous in (0, 7] x H.

(ii) u(t,-) € C3(H) for all t > 0.

(iii)) sup t"/2[|u(t, )|l < +oo.

t€(0,7]
We notice that condition (iii) is ispired by estimate (3.10). It is easy to check that
Zr, endowed with the norm
[lullzr = Ilullo + sup_t/*[fu(t, )[ls,
te(0,7)
is a Banach space.
Now, the proof of the following result is a straightforward application of the con-

tractions principle, see [14, Proposition 6.5.1] for details.
Proposition 4.1 For any ¢ € Cy(H) there is a unique mild solution of equation
(4.2)
4.2 m-dissipativity of Ny

Here we make the same assumptions as in §4.1 and consider the operator Ny with
domain D(L)
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Proposition 4.2 N is m-dissipative in Cp(H).
Sketch of the proof.

Step 1. There exists Ao > 0 such that (A, +00) belongs to the resolvent set of

No.
Let us consider in fact the equation
Ap = Now = \p — Ly — (F(z), Dy) = f,

where A > 0 and f € Cy(H) are given.
Setting ¥ = Ap — L, equation (4.5) becomes

Y-Tap =]
where T, is defined by

Ty(z) = (F(a), DR(\, L)(z)), ¥ € Cyp(H), z € H.

Taking the Laplace transform of (3.10), we see that

ITx9llo < ey/ 5= IFllo [1¥lo-

Therefore, if A > Ay where
Xo i= w + nc?||F[5,

(4.8)

T\ is a contraction in Cy(H) and so, equation (4.6) has a unique solution ¢. Conse-

quently, equation (4.5) has a unique solution too ¢ € D(L) given by
p=A-07'1-T0)7'f
and Step 1 follows.
It remains to show that No is dissipative (*°).

Step 2 If F is in addition Lipschitz continuous, Nj is dissipative.

It is convenient to introduce for any € > 0 an operator N, approximating No,

New = Lo+ Fep, ¢ € D(L),

where 1
Fep(w) = - (p(n(e,z) - (), (4.9)
and 7 is the solution to the initial value problem
m(t,z) = F(n(t,z)), n(0,z)=z¢€ H. (4.10)
1510 fact, it is well known that a dissip: operator is issipative if and only if its resolvent

#et contains a positive number.

T —.
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Clearly for any ¢ € C} (H) we have
lim Fep = (F,Dy) in Cy(H). (4.11)
Now, given A > 0 and f € Cy(H), we consider the equation
Me = Lipe = Fepe = f, (4.12)
which can be solved as before by a standard fixed point argument depending on the
parameter e. We have clearly
Eh_%(p, = in Cy(H). (4.13)
Now by (4.12) we find that
1 1
(,\ & ;) we = Lo =f+2 o(n(h,z)), (4.14)
and so, by the dissipativity of L, it follows that
Moello < 52 (Il + 7 llecl
%u_/\_‘_% o+ 2 llello ] »
which implies [|¢c[lo < + |f[lo. Consequently, letting & tend to 0 yields
1
llpllo < 5 141lo-
Therefore N is dissipative as required.

Step 3. Conclusion.

By [26] there exists a sequence {F,} of Lipschitz bounded functions from H into H
which converges to F' in Cy(H, H). Set
N = Lip + (Fu(z),Dy), ¢ €D(L), n€N.
Given A > Ao (defined by (4.8)) and f € Cy(H), consider the equation
Apn = Nugn = f, (4.15)

which can be solved as before by successive approximations. Due to the uniformity
in n of the estimates, we have that

lim @, = (A= N)~'f in Cy(H;H).
n-roo
Moreover, by Step 2, N, is dissipative so that [l@nllo < % Ifllo. As n = oo we find
1
llello < 5 fllo, V@ € H,

and conseq ly No is m-dissi ve.
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43 E ial m—dissipativity of Ny

We are again concerned with the linear operator Ny defined by (4.1), where now we
assume that F € C7(H; H). Let us write Ny in the following form

Nop = Lo+ Fp, @€ D(L)NCy(H),
where F is the linear bounded operator
Fo=(F(),Dy), ¢ €Cy(H).

Notice that F is the infinitesimal generator of a strongly continuous semigroup of
contractions e in Cy(H) given by

e%p(x) = p(n(t,z)), t20,z€H, g€ Cy(H),
where 7 is the solution to the initial value problem (4.10). Therefore F is m-
dissipative in Cy(H).

It is useful to consider the sequence {F,},~0 approximating F defined by (4.9).
Clearly, F, is also m-dissipative. The following result is proved in [9].

Theorem 4.3 Ny is dissipative and its closure Ny is m—dissipative in Cy(H).

Sketch of the proof. We claim that N is dissipative in Cy(H) and that the range
of A = Np is dense in Cy(H) for A large. This will imply the conclusion by the
Lumer-Phillips theorem, see [20]. To prove the claim, we introduce the following
approximating operators

Nep=Lo+ Fep, @€ D(L), €>0.

We know from Step 2 of Proposition 4.2 that N, is m-dissipative. This easily implies
that Nj is dissipative.

It remains to prove that that the range of A — Ny is dense in Cy(H) for A large. To
this purpose, fix f € C3"'(H), A > 0, and consider the solution ¢, € D(L) N C} (H)
of the equation

Ape — Lipe — Fe(pe) = f, (4.16)
which is equivalent to
Ape = Nowe = f + Fe(pe) = Flpe)- (4.17)
We claim now that
lim[Fe (pe) = Fpe)) =0 in Co(H). (4.18)

This follows from the estimates, see [9, equations 2.11 and 3.2},

€
I70e = Feipello < 5 (IFNGlpelly + N F ol Fllsllelly)
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and

el < e,

for a suitable constant ¢; > 0. From (4.18) it follows that

by

lim[Ape — Nowe] = f  in Cy(H).
€0

Therefore the closure of the range of A — Ny includes Cb"l (H) which is dense in Cy(H)
]

[19] and the result follows.

Received August 2003. Revised Nov 2003
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