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ABSTRACT
In this article, we explore the fundamentals of an emerging technique appli-
cable, at least, in principle, to robot navigation, or motion planning. Termed the
Second Method of Lyapunov, it is currently a powerful mathematical technique
used to study the qualitative behaviour of natural or man-made systems that
could be modeled, in an approxi way, by i We review
the Lyapunov method and then in a simple and direct way, we use it to propose
a theoretical technique to control the monon of a planar arm in a constrained
The ¢ llers are ical entities which are nonlinear in
nature. (‘omputer imulati are used to i the effe
posed controllers.

of the pro-

RESUMEN
En este articulo exploramos los fundamentos de una emergente técnica apli-
cable, al menos en principio, a ndutica de robot o planificacién de movimientos.
El llamado Segundo Método de Lyapunov es actualmente una poderosa técnica
matemdtica usada para estudiar el comportamiento cualitativo de sistemas nat-
urales o artificiales que pueden ser modelados, en una forma aproximada, por
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ecusciones diferenciales. Examinamos el método de Lyapunov, y en una forma
simple y directa lo utilizamos para proponer una técnica tedrica que permite con-
trolar el movimiento de un planar arm en un medio ambiente restringido. Los

lad: son entidad; icas no lineales en ! imulaci

©
computacional es utilizada para ilustrar la efectividad de los controladores prop-
uestos.

Key words and phrases:  Lyapunov Stability, Lyapunov Function, Robot
Dynamics and Control, Findpath Problem
Motion Planning

Math. Subj. Class.: 34D20, 37B25, T0E60

1 Introduction

In [5] . Meyer cleverly brings within the grasp of mathematicians the interesting math-
ematical and physical concepts associated with planar robot arms or manipulators.

An interesting two-dimensional geometric problem arising from Meyer's work is as
follows: Given a robot and a description of its working space or workspace, which could
be cluttered with stationary or mobile solid objects or obstacles, propose a collision-free
path that will lead the robot from the desired starting point to the desired location or
target. This is known as the findpath problem, the quest for the solutions of which is,
at present, one of the most interesting theoretical undertakings in robotics research.
For a review of various findpath schemes, see, for example, Sheu and Xue (7). A more
recent review is by Kumar et al. (3.

Meyer proposed a findpath scheme based on the velocities of the various com-
ponents of the arm. In this article, we build on the work of Meyer by applying a
relatively new scheme that is based on acceleration. The scheme gives us the ad-
vantage of including constraints that might affect the operation of the arm. First
proposed in 1990 by Stonier (8] and then elaborated on in 1995 and 1998 by Van-
ualailai et al. (9], [10], with follow-ups by Ha and Shim in 2000 (1] and 2001 (2],
the scheme is based on elementary differentiation, and thus, is within the grasp of
the college sophomore. However, at the heart of the control scheme is a powerful
mathematical technique, called the Direct Method of Lyapunov (4] or simply, the
method of Lyapunov, that requires some understanding of the nature of solutions of
autonomous systems of first-order ordinary differential equations.

We start by re-looking at the equations used by Meyer to control the arm via
velocity.
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2 Velocity Control

Figure 1 shows a sch ic rep ion of the simplified robot arm idered by

Meyer.
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Figure 1: Schematic representation of the planar robot arm.

The position (z(t),y(t)) of the end-effector at time ¢ is given by the forward
kinematic equations

2(t) = |y cos By (t) + L cos(61(t) + 62(t)) , )
y(t) = i sin 6y (t) + L2 sin(6y (t) + 62(t)) .
The instantaneous velocity (z'(t),y'(t)) can be obtained from the equations

a'(t) = —y6y(t) — Lasin(By(t) + 62(1))85(2) , @
y'(t) = w6y (t) + L2 cos(Bx (£) + 62(2))65 (1) -
One way to guide the end-effector is to control the velocities, (z',3') and 6] and 6.

If we want to maintain a constant velocity, say, (z'(t),y'(t)) = (v1,v2) for all time
£ >0, then our velocity control scheme is as follows:
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Step 1. For the end-effector, fix the desired velocity, say, (z'(t),y'(t)) = (vy,v2) at
all time t > 0.

Step 2. Record the current position of the end-effector, say (z,y) = (p1,p2), with
the left-hand-side of (1) and then derive the angular positions 6; and 6,.

Step 3. Insert (z,y) = (p1,p2), (#',¥') = (v1,v2), 6 and 6, into (2) and then derive
the angular velocities ] and 5.

The computer controlling the robot then moves the joints at the angular velocities
#, and #, while maintaining the constant velocity (vy,v;) of the end-effector at the
point (z,y) = (p1,p2):

Our scheme to be proposed essentially allows one to control the velocities 6} (t)
and #(1) at every time ¢ by controlling the instantaneous angular accelerations, 8 (t)
and #7(t). But, first, let us briefly look at the Direct Method of Lyapunov on which
our scheme will be based.

3 The Direct Method of Lyapunov

In 1892, Lyapunov [4] established a qualitative method of analyzing solutions of
autonomous systems of first-order differential equations of the form

7y (t) = fu(z1(t), 2a(t), ..., za(t))
3 (3)
z,(t) = fa(zi(t), 22(t),... , Za(t)),

with the known solution, (2y(to),...,zn(to)), at some time t = to > 0. This known
solution is referred to as the initial state of system (3). The basic assumption is
that the solutions of (3) exist at any given time ¢ and are unique, with each solution
depending on the initial state and continuable to +co. That is, we have unique and
continuous solutions of the form z,(t) = zy(t; to, 2, (to)), =+, Zn(t) = znu(t; to, Za(to)),
which may be regarded either as a curve in the space of the n+ 1 variables z,,zs,...,t
or as a curve in the space of n variables zy, 23, ..., z, with ¢ regarded as a parameter.
In the latter case (which will be our principal concern), the curve is called a trajectory
in the phase space - the space of n variables, zy,z,,...,2,. If at a particular point
(P1.---.pa) in the phase space, we have that (fy(p1,...,Pn)y---s fa(P1y. - Pn)) =
(0.....0) for all time ¢ > 0, then we say that the point is an equilibrium point of
system (3). We will henceforth assume that at least one such point exists.

A question that the Lyapunov method can answer is as follows: Let (py,...,pn) be
an equilibrium point of system (3) in a region of the phase space. If we start from the
smitial state wathin the region and close to the equilibrium point, does the trajectory
(z1(t). ..., 24(t)) remain within the region and close to (py,-..,pn) for all time t7

If the answer is yes, then we say that the point (p;,...,p,) is stable.



A\ Ty

'& Moving a Robot Arm: An Interesting Application of ... 135

Precisely, if we let x(t) = (21(t),...,@n(t)), and xX* = (p1,...,pn), then x* is a
stable equilibrium point of (3) if for all to > 0 and € > 0, there is §(to,€) > 0 such
that

[Ix(to) = x*|| < 4(to,€) ,
implies
[I(t; to, x(t0)) = x*[| < €,
for all t > to. The beautiful aspect of the Lyapunov method, as revealed in the
theorem below, is that we do not need the explicit form of the solutions to establish
stability.

Theorem 1 (Lyapunov [4]) Let x* be an equilibrium point of system (3). If, in
an open neighborhood D of the equilibrium point, there ezists a real scalar function
V' such that (a) V(x) 1s continuous on D) and has continuous first partial derivatives
with respect to x, (b) V(x*) =0, x* € D, (c) V(x) > 0 for all x € D, x # x*, and
(d) the time-derivative of V' with respect to system (3) is

iVl = X g V0l o) <0

for all x € D, then x* 15 a stable equilibrium point of system (3).

The scalar function V' in Theorem 1 is called a Lyapunov function for system (3) on
To understand therefore the behaviour of trajectories in the neighbourhood of the
equilibrium hinges only on discovering a Lyapunov function without the need to find
the explicit solutions, which, particularly for nonlinear systems, are usually difficult
to formulate in closed form. This single aspect of the Lyapunov method makes it a
powerful tool in the stability analysis of nonlinear systems. The Lyapunov method is
now a critical component in specializations such as control engineering, power system
engineering, robotics, neural networks, chaos and economics, to name but a few. A
good review of the method, including recent advances and several applications can be
found in Sastry [6].

For our application, where we desire the convergence of trajectories to equilib-
rium points, Theorem 1 tells us that stability ensures only boundedness of solu-
tions in & neighbourhood of x*. However, it is known that if in addition f(x) =
(fi(x),..., falx)isb ded for x bounded, then wh d[V (x)]/dt < 0 for x # x*
and diV(x*)}/dt = 0 in Theorem 1, the equilibrium point x* is not only stable, but
also attracts trajectories to it. That is, x* is asymptotically stable, which is clearly
more desirable than stability from a practical point of view. In this paper, to simplify
our discussion, it is suffice to guarantee stability. The computer is then used to find
initial conditions that guarantee attraction.

4 Acceleration Control

As mentioned earlier, we intend to control the end-effector by controlling the angular
accelerations, #7(t) and 64 (t). If we are to achieve this via the method of Lyapunov,
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then, first, we need to have a system of first-order differential equations describing
the motion of the planar robot arm. Thus, if we let

zy(t) = the z-component of the position of the end-effector,

z2(t) = the y p of the position of the end-effector,

z3(t) = the angular position, 6, (t), of Link 1 ,

z4(t) = the angular position, 8,(t), of Link 2 ,

z5(t) = the angular velocity, &|(t), of Link 1 ,

z4(t) = the angular velocity, 8(t), of Link 2 ,

uy(t) = the angular acceleration, 6/ (t), of Link 1 ,

uz(t) = the angular acceleration, 5 (t), of Link 2,

at time £, then using equations (2), we have (on suppressing t),

()

x) = —@awy — lysin(zs + z4)ze, Ty =725, TE=u,
Th = 2@ + Iy co8(z3 + T4)Ze, Ty =7Zs, Tg=Uz.

Before we actually start looking for a Lyapunov function for system (4), we may
want to look for any difficulty inherent in the basic geometric structure of the robot.
As shown by Meyer, there is indeed a problem: there exists at least one direction in
which the end-effector cannot be moved no matter how we choose the joint velocities
@ and &, This arises when 0, = 0, 7. In our scheme, we want to avoid these singular
configurations. We may also want to take into account other constraints in the system.
These include, for example, the allowable space or area to work in, or the allowable
velocity or acceleration of the end-effector. Hence, our acceleration control scheme
via the Lyapunov method can be stated as follows:

“Step 1.” Let the final destination of the end-effector be (z,y) = (p1,p2), achieved
at the angular positions z3 = py and x4 = py and let us call (py, pa, ps, p4,0,0)
the target.

“Step 2." Identify system constraints (these include singular configurations) and
appropriately construct mathematical functions to model them. Call the con-
straints antitargets or obstacles to be avoided.

“Step 3.” Construct a Lyapunov function such that u; and uy render system (4)
stable, meaning that (pi,p2,pa, ps,0,0) is an equilibrium point of system (4)
and that the trajectory (zy,z2,z3, 4,75, 2g) starts and remains, for all time
¢ > 0, near the target (py, p2, p3, pa, 0, 0) while it avoids stationary and /or mobile
obstacles in the workspace.

In Step 1, intuitively, we want to have a kind of a yardstick that measures, at time f,
the position of the end-effector from the point (z,y) = (py,p2) and the rate at which
it approaches or moves away from (py,p2). The following choice of probable functions
accomplishes this (on suppressing t),

Vo(zyy ... z0) = %[(z, - p)? + (22 = p2)?) + 22 + 23]
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noting that
Vo(p1,p2,p3,4,0,0) = 0,

and
Vo > 0 for (1,22, 23, 74,25, 76) # (P1,P2,P3,P4,0,0).

In Step 3, if a trajectory ever converges to the target, then it remains there for all time
¢ since Vilpy, p2,ps, P4, 0,0) = 0. The use of Vy, together with appropriate collision
avoidance schemes, should enable us to construct Lyapunov functions that ensure
that trajectories remain near (p, pa, ps, s, 0,0) while avoiding obstacles.

In the next section, we consider several possible avoidance scenarios, in which we
use the vector notations x = (z1,...,&n) and x* = (py, p2, p3, p4,0,0).

5 Possible Avoidance Scenarios

5.1 Scenario 1: Avoidance of Singular Configurations

The singular configurations occur when 8, = z4 = 0, ; = z4 = 7 in the anticlockwise
direction or #; = 24 = —7 in the clockwise direction. For the confi i consider
the functions

Wi(x) = [e4| and Wa(x) =7 — z4],

for 24 ¢ (==,0)U(0, 7). Now, let us, for the moment, consider the effect of the ratios
B Ba
(EL0 iy
g toosllan

for some constants 3, and f,. If the robot arm approaches any one of the singular
configurations, it is clear that one of the ratios will increase. Hence, if the ratios form
parts of a Lyapunov function for system (4), intuitively the ratios will act as avoidance
functions that repel the robot arm from the singular configurations. Indeed, by the
mere fact that we will have a Lyap! function, all traj ies will converge to a
neighbourhood of the target, implying therefore that we cannot have the situation
where W, = W, = 0. This is in turn means that we cannot have, at any time, the
angular position of Link 2 as py = 0, py = m or py = —m. In this sense, we can think
about singular confi as mobile obstacl

5.1.1 A Lyapunov Function
Let us finally suggest the following function as a tentative Lyapunov function for

system (4)

Bi
Wilx)'

V(x) = Vo(x) + F(x) Y

where 4, and J, are positive constants and

Fo) =5 (@ =) + @ po)?] -

—————
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Clearly, V' is continuous and positive on the domain
D(V) = {x € R® : W, >0, W, > 0}
={x€R®: -w<z4<00r0 <z <7},

and V(x®) =0, x* € D(V), so that we may take D(V) as the neighborhood D of the
equilibrium point x* in Lyapunov's Theorem 1.
Along a particular trajectory of system (4), we have (on suppressing ),

Vg = {|(I:“Pz)‘-h—(n—pl)r;](l+2|’:, %:)-#u,}:_-,
+ {lz [(z2 = pa) cos(z3 + z4) — (21 — p1) sin(z3 + 74)] (1 + 2.2 . ﬁ'{»)
i (b ) v

= {G1(x) + w1 }ag + {Ga(x) + uz}ze .

For some numbers a; > 0 and ay > 0, define

~ors =Gy +u and —axze =Ga+uy.
Then
Vi)' = —auz} — a3,
provided we have the nonlinear controllers as uy = —a 25— G, and uy = —aazg —

(5. Since V4 nonpositive and continuous for all x € D(V), by Theorem 1, V is a
Lyapunov function for system (4) on D(V) establishing the stability of x*. Hence,
the stable system that governs the motion of the arm is
z| = —29a5 — Iy 8in(z3 + 24)26, 23 =725, Ty =-az5 -G, ®)
Th) = 2,25 + ly cos(z3 + T4)T6, Ty =7Zs, ZTg=—aa%6—Ga.

We see that an equilibrium point is (py, p2, p3, p4, 0,0). Our Lyapunov function guar-
antees only stability of this equilibrium point. Clearly, a Lyapunov function which
ensures asymptotic stability is more desirable. This is the most challenging part of the
Lyapunov method, given the difficulty in constructing such a function for the path-
path problem. A new development in this direction is to guarantee stability and also
prove that certain sets of initial conditions ensure asymptotic stability. This looks
promising and at present is applicable to a point-mass system with one stationary
obstacle and one stationary target. The interested reader can refer to the paper by
Ha and Shim (2] for more details.

In this article, to simplify discussions, it is enough to consider a stable equilibrium
point and then use a computer to help us decide which system parameters to use for a
desirable run. These parameters are ; and f,, which we shall call control parameters,
and a; and a;, which we shall call convergence parameters. It can be shown that the
larger a control parameter is, the greater is the repulsion from the associated obstacle,
and the larger a convergence parameter is, the slower is the trajectory [10].
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5.1.2 A Computer Simulation

I'he computer is used to numerically integrate system (5) to obtain the solution
(£y,. . z¢) and plot the points (2 (t),2(t)) at time ¢ in the z;z,-plane until the
points converge to a neigborhood of (py,p2) and stay there as ¢t — oo. For our
example, Table I gives the parameters, and Figure 2 gives the trajectory of the arm.
Notice the slowing down of the arm as it approaches its final configuration. This could
be explained in terms of the potential energy “cup” of the Liapunov function [10].
I'he arm reaches its final configuration in about 15 units of time. In Figure 2, the
links are drawn every 1 unit of time.

Table I: A Scenario 1 1
Lengths of Links n=h=s

| Initial Conditions X = (—3\/5/2,3/2, m/2,2m/3,7/90, 7/90)
| Planar Target (p1,p2) = (4,4)

L,fﬂ"”"] Parameters B = B2 =0.01

| Convergence Parameters ay =110, ap =20

6
%2

Initial

fiqurati ion

S A4 82 1 0 1 2 .3 04 .5

Figure 2: The motion of the arm from an initial configuration
1o a final configuration as determined by system (5).
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5.2 Scenario 2: Movement in A Rectangle

An interesting scene involves restricting the motion of the arm within a rectangular
region in the first quadrant of the zy-plane. We place the bottom left corner of the
rectangle at (0,0) where the base of the arm is located as shown in Figure 3, in which
we call the constraints or obstacles the left wall, right wall, floor and roof. These are
fixed obstacles. The mobile obstacles are the singular configurations.

Yy
roof
e R R T s e e b e =
Gy) :
|
|
|
|
|
|
Link 2,/, |
|
|
left | nght
wall | wall
B o
o _ |
|
|
Link 1, /, |
|
|
|
|
0, |
(4 :
a X
floor

Figure 3: The planar robot arm in a constrained environment.
For obvious geometrical reasons, we construct the following avoidance functions
that ensure that the end-effector (and, hence, Link 2), Link 1 and the joint do not
collide with the fixed obstacles.
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5.2.1 Avoidance Functions for the End-effector

Table 11 gives the functions that will ensure that the end-effector does not collide with

fixed obtacles.

Table II: Avoidance functions for the end-effector.

[ Obstacle

Avoidance Function

Sign

Left wall, z; =0

| Right wall, z; = a
| Floor, z3=0
Roof, r3 = b

W3 >0 for all z, € (0,a)
Wy >0 for all z; € (0,a)
Ws > 0 for all z; € (0,b)
Ws > 0 for all z, € (0,b)

5.2.2 Avoidance Functions for Link 1

Table 111 gives the functions that will ensure that Link 1 does not collide with fixed

obtacles
Table III: Avoidance functions for Link 1.
(Obstacle Avoidance Function Sign
Floor, z3 = 0 Wy = 23 W7 > 0 for all z3 € (0,7/2)
Left wall, 73 = 7/2 Wy =m/2-23 Ws > 0 for all 23 € (0,7/2)

523 Avoidance Functions for Elbow

Table IV gives the functions that will ensure that the joint or elbow between Link 1

and Link 2 does not collide with fixed obtacles.

Table IV: Avoidance functions for elbow.

Obstacle

Avoidance Function

Sign

Roof, z
‘l(xghl wall, 2, =a

Wy = b~ lysinzy
Wi =a -l coszy

Ws > 0 in rectangle
Wyo > 0 in rectangle

524 A Lyapunov Function

Here, we simply provide a Lyapunov function and the controllers, the derivation of
which is similar to that in Scenario 1.
For constants 4, > 0,i=1,...,10, we consider

10 B,
V=VW+FY o,
aw

o0 the domain D(V) = {x € R : W; > 0,i = 1,...., 10}, where Vo, W1, Wz and F are
A4 those in Scenario 1. Then along a trajectory of system (4) in D(V'), we have, for
ap.ay > 0, the time-derivative

' 2 2
Vig' = —auz5 - ang,

[ e——
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if we define the controllers as

uy = a5 — Gy and uy = —aazs — Gy,
where
L)
Gy = Gy(x) = [(22 — p2)z1 — (21 — p1)72) (1 + Z W‘)
=i
B B Bs _ Be
G (G )=
B B Ba Bio
W_1,7 - ﬁ - W,f" 0823+ 73 l;smza] »
and

10
Gy = Ga(x) = Iz [(x2 = pa) cos(zs + 74) — (21 — p1) sin(z3 + 24)] (1 g %—)
w1

ol 80) e ot

+ (%; - %) I3 cos(z3 +z4)]

These render the system

(6)

Iy = ~Ta%p — lysin(zy + 24)ze, Ty =25, Ty =-aT5 -Gy,
Th = 21T -+ lacos(x3 + 24)T6, T4 =26, Zp=—azze— Gy,

stable at the equilibrium point x* = (py, pa, p3, p4, 0.0).

5.2.5 A Computer Simulation

Table V shows the parameters used for a case in Scenario 2, and Figure 4 gives the
motion of the arm. The arm reaches its final configuration in about 10 units of time.
Table V: A Scenario 2 example.

|l Lengths of Links L=0L=3
| Initial Conditions x = (2.95,0.52, 7 /18, —27 /3, 7/90, 7 /90)
Planar Target (p1,p2) = (2.2,5.2)
Control Parameters Bi=Pr=Bs=Pa=Be=Ps=Po=bPwo=1,
Bs =10,8; =5
Convergence Parameters a; = az = 100
Right wall, Roof a=32b=55
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ouso
AU

5 7
~< Jrajecto|

Fipal UG
configuration

Initi
/ configuration
1 /
0
x
0 06 12 18 24 3

Figure 4: The motion of the robot arm from an initial configuration
to a final configuration as determined by system (6).

6 Conclusion

\ known drawback of the Lyapuov method, which is classified in the robotic literature

p al field method, is the possibility of having collision-free paths leading not
ded target but to “traps” outside of the target. These traps, like the target,
et local minima or points of zero kinetic and potential energy. As mentioned
Sartier an encouraging development to deal with this problem was recently reported
v Ha wnd Shim (2], Another likely drawback of the Lyapunov method might well
tur be the large amount of computation required for a multirobot environment.
Howewer this may eventually cease to be a problem given the ever improving power
Stal computer. Hence, as far as the application of the Lyapunov method to
+ problem is concerned, there are, at the present stage of development,
uraging signs that could promote the wider use of the method.

Received: March 2003. Revised: Jun 2003.
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