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RESUMEN
Se presentan resultad les en el i de dores seudo dife-
renciales en L”(R"). Se cnnsxdern principalmente operadores con simbolos no
regulares, los cuales son versiones generales de la clase de Hormander's SJ'. Se
trata la teoria en una forma cldsica y elemental.

Key words and phrases:  pseudodifferential operator, L? boundedness in B",
nonregular symbols.
Math. Subj. Class.: 85505, 47G30.

1 Introduction

The theory of pseudodifferential operators was born in the early 1960’s and, thereafter,
it evolved with the theory of partial differential equations. Therefore, many topics in
these two theories are closely related, like the hypoellipticity of operators, the sharp
form of Garding’s inequality, the parametrix of operators, and so on. In the theory
of pseudodifferential operators, one of the most interesting topics is to investigate the
behavior of pseudodifferential operators of Hérmander's class, S}, in L”(R") and
Sobolev spaces. The behavior of operators in L”(R") spaces plays an essential role
in the theory of linear and nonlinear partial differential equations. In the present
paper, we consider operators with nonregular symbols which are generalizations of
Hormander's class SJ'y.

We treat the theory of pseudodifferential operators in a rather classic manner,
dealing mainly with their behavior in LP(R") spaces. We present very elementary
results and methods for the proof of the bounded of pseudodifferential op
in L?(R"). We note that the results presented here may not be the best possible ones.

We do not treat symbols of the form p(z, £, y). In the case of smooth symbols there
is no difference between the cases p(z,£) and p(z, €, y). However, if we consider non-
smooth symbols, the behavior of the operators p(X, D:) and p(X, D:,Y) in L”(R")
may be slightly different. For example, when the symbol is of the form p(z,¢,v),
Hormander’s Theorem 3.1 in Section 3 is a little different (see [9]). Recently, many
authors (see, for example (12], (7]) have treated operators with symbols p(z, £,y) by
using modulation spaces or Besov spaces.

In Section 2, we recall fundamental results on the algebra and the asymptotic
expansion formulas of symbols of pseudodifferential operators. In Section 3, we treat
L*(R") boundedness. In Section 4, we list well-known fundamental results on the
behavior of pseudodifferential operators in LP(R™) spaces. However, the purpose of
this section is to present boundedness results for operators with symbols whose order
is, in some sense, lower than the critical order in L?(R") spaces. In Section 5, we give
a boundedness theorem from L (R") to BMO. For the case p = 1 the main results of
the present paper on the LP(R") b led of pseudodiff ial operators are given
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in Section 6. In the last two sections, Secti: 7 and 8, we ider symbols which

may be useful when considering classes of pseudo (or partial) differential operators
with magnetic potentials. The results in Sections 7 and 8 can be found in [14].

2 Fundamental properties of pseudodifferential
operators

We use the notation found in [10]. Moreover we use a lot of constants C' which are
not the same at each occasion. For a point z € R" we write |z| = ‘/12, ot a?

and (z) = \/1+ 22 + - + z2. For a multi-integer a = (ay, ..., a,), we denote

dlal

& B B
O =105} v OF = s
zy """ Uz,

where |a| = ay + -+ + an, and we write D; = (=1)d;. Hence

For a function f(z,§) on R} x R and multi-integers a and g we write

M@ E)=OEDE (= 6):

We begin with the definition of symbols of Hoi der’s class S},
Definition 2.1. The set of smooth functions p(z, £) on R." x R¢™ which satisfy

[P(3) @,6)] < Casp (€ =01o1*411

for any a and 5 is denoted by

For a function p(z, ) in Sf, we define the pseudodifferential operator p(X, D;)
by

X, Daula) = i | el E)a(6)

where 1(€) denotes the Fourier transform of the function u(z), that is,
i(6) = s [ & Cula)d
() = @ R"e u(z) dz.

Hereafter, we denote integrals f u(z) dzx taken over R" simply by /u(z) dr.

Rn

In the present paper, we mainly treat the case 6 < 1. A very interesting study
by David and Journé [4] considers pseudodifferential operators in L”(RR™) for the case
d=p=1.

Ve ocicianmaaoN
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Norms in LP(R") are

lully = [/ u(@)” dz] YR el

and
l[ulloo = esssup{Ju(z)| : = € R"}  (p=o0).

In order to define a new class of symbols we need to define basic weight functions.
Definition 2.2. A real valued smooth function, A(z,£), which satisfies the two
conditions:

(i) There exists a constant 0 < ¢ < 1 such that 1 < A(z,§) < C(z)7 (£).

(ii) There exists a constant 0 < § < 1 such that, for any multi-indices a and f3, we
have
NG (@,6)] < Cap(z, €)' IoI+4021

for some constant Cq g,
is called a basic weight function.

Of course, the function (£) is a typical basic weight function. The function
Az, §) = /1+ |z|* + [€]* is also a typical example of a basic weight function (see
[1]). This A(z, €) can be used, for example, when we consider various harmonic oscil-
lator problems. In [1], Boggiatto and Rodino consider a weight function A(z, £) which
satisfies

() < M=, 6).
Here, however, we assume that
1< X=,8)
for applications to quantized Hamiltonians problems with magnetic vector potentials.

Let a(z) = (ai(z),a2(x),...,an(x)) be an R™ valued function on R" such that
|0”a,(x)| are bounded for any  # 0 and j = 1,...,n. In Sections 7 and 8, we shall
use a basic weight function of the form

Az, §) = (@ - a(2)) = V1+[§ - a(z)]*.
A simple calculation gives the following lemma.
Lemma 2.1 Let A(z,€) be a basic weight function. Then we have

Az, € +n) < Clm)A(z,§).

Definition 2.3. Let \(z,£) be a basic weight function and let m, p and § be real
numbers such that 0 €6 < p < 1 and § < 1. Then the symbol class s is defined
by

Siea = {p(2,6) : |p{5) (@, €)] < CagA(z, )™ P12 for any & and B).
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We denote S35\ = U,,er Sjs,- For a symbol p(z,§) € S55, we define the
pseudodnﬂerenunl operator P = p(X D;) as above and write p(X D;) € 855, I
the symbol p(z, €) belongs to SJ' | we write p(X, Dz) € S ,. The class S°f’m forms
an algebra in the following sense

Theorem 2.1 Let \(x, £) be a basic weight function and let 0 <5 < p <1 andé < 1.
(a) If pi(X, D) € 554\ (5 = 1,2), then py(X, D:) + Pa(X, D) € SI ,, where
m = max{m;,my}.
(b) If p;(X, Ds) S’;"‘; » (7 =1,2), then there exists a symbol p(z,€) € S",'_'ﬁ’l';'""
such that
P(X, Dz)u(z) = pi(X, Dz)pa(X, D:Ju(z)  (u€S),

and p(z, &) has the foll g p

P, ) ~ Y pa(=,6),
k=0

where

1 iy e
k@& = 30 —pi% (@, E)pajay(@:€) € Spuim O,
la|=k

(c) If p(X,D;) € R then there exists a symbol p*(z,£) € S[s 5 such that
(p(X, Dz)u, v) = (u, p*(X,Dz)v) (u, vES),

and p*(x, &) has the following iptotic exp

p(@ &) ~ Y P, €),
k=0

where

=) =@t sy my+ma—(p—
o= ¥ S e spipme .

Jal=k

3 Fundamental boundedness results in L%(R)

We denote the set of bounded linear operators on a Banach space E by £(E). In (8],
Ho der gives an i ting result about the L?(R™) and L?(R"™) buundedness of
pseudodifferential operators. We start with L?(R") boundedness results.

Theorem 3.1 Let 0< p<1and0< 4§ <1. Then

S7 € L(L*(R")) => m < mo = min [0. %(p - 6)] "

Hérmander shows that the converse is true if 0 < § < p < 1. Moreover by Calderén
and Vaillancourt [2], we have

Ve o osmaaaeN
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Theorem 3.2 (Calderén and Vaillancourt) Let0<§ <1 and0<p < 1. Then
the converse of Theorem 3.1 is true, that is, the inclusion ST'§ C L(L*(R™)) holds.

The Calderén-Vaillancourt Theorem is generalized to the case of nonregular symbols,

Theorem 3.3 (See, for example, [3]) Let 0 < § < p < 1 and § < 1. We put
k= [n/2] + 1. If a symbol p(z,€) satisfies

|{a) (2, €)] < Gaya(E)PIoIH3IAL

for any |a| < & and |B| < k, then the operator p(X, D) is bounded in L*(R™), that
is, there 1s a constant C' such that

[IP(X, De)ull2 < Cllull2.

In particular, in the case § = p =0, if a bounded symbol p(z, ) is such that |p{5) (z,€)|
is bounded for any |a| < & and |B| < K, then the operator p(X, D) is bounded in
L*(R").

In the present paper, our starting point for the L?(R™) boundedness is Theo-
rem 3.3. Then we have the following theorem.
Theorem 3.4 Let A(z,€) be a basic weight function and assume that 0 <6 < p < 1
and § < 1. If the symbol p(z,€) € 5,7.3'.,\ Jfor a positive o, then the operator p(X, D)
is L*(R") bounded, that is, there is a constant C' such that

Ip(X, Dz)ull2 < Cllull2
holds for any u € S.
Proof. If o is greater than n, then, by Theorem 3.3, the operator p(X, D,) is L*(R")
bounded, because |p=g:(x,§)| are bounded when |a| < x and |3| < x, where x =
[n/2] + 1. If the symbol p(z, €) belongs to S; ¢, for o > n/2, then, by Theorem 2.1,
we have
lIp(X, Da)ulla® = (p(X, Dz)u, p(X, D=)u)
= (u, p*(X, D:)p(X, D:)u)
= (u, p(X, Dz)u),
where p*(z,§) € S, ¢, and p(z,€) € ;:ﬂ\. Since 20 > n, we have already seen
that the operator p(X, D;) is L*(R") bounded. So by Schwarz’ inequality and the
boundedness we have
lIp(X, DzYull2? = (u, H(X, Dz)u)
< lull2lp(X, Dz)ull2
< Clulla
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for any u € S. Hence we get the boundedness of the operator p(X, D.) with symbol
plz,§) € 5§\, (¢ > n/2). Boundedness can be proved in a similar way when the
symbol p(z, €) belongs to S7¢ for o > n/4. Repeating this procedure we can prove
the theorem for any positive o. "

Theorem 3.5 Let A(z,€) be a basic weight function and 0 < § < p < 1. If the symbol
pla,€) € S5 5\, then the operator p(X, D) is L*(R™) bounded.

Proof. Putting
[plo = sup{|p(z,¢)| : (z,6) € R x R"}

a(z,€) = v/2[plo — [p(z, )%,

we can see that g(z,§) € ) ; . We have

and

0 < [lg(X, De)ull* = (¢(X, Dz)u, g(X, Dz)u)
= (u, ¢°(X, D2)q(X, Dz)u).

By the expansion formula, we can see that the symbol of the operator ¢*(X, D,) can
be written in the form

a*(2,€) = q(@,8) + qu(2,€) := () + @ (=, )
where ¢, (z,§) € S;xf’;” and we write g(z, £) for g(z, £). Hence we have

9"(X,D2)q(X, D) = 4(X, D2)g(X, D) + q1(X, Dz)q(X, Dz)
=4(X, D:) + qa(X, D:),
where §(z, €) = |g(z, €)|* and g2(z,€) € ;ﬁf’;“. So we can write
0 < (v, §(X, Dz)u + q2(X, Dz )u).
Setting fi(z, £) = |p(x, £)|*, we have
lIp(X, D:)ull3 = (p(X, Dz)u, p(X, Dz)u) = (u, p*(X, D2)p(X, Dz)u)
= (u, p(X, Dz)u) + (u, pr(X, D:)u),

where py(z,€) € S;;f;‘”. Moreover, since

(X, Dx) = 2[plo” - A(X, D),
we have

0 < (u, 2|p[iu = (X, Dz)u + a2(X, Dz)u)

<
< 20plallull3 = llp(X, Da)ull3 + (u, py(X, Dz)u) + (u, g2(X, Dz )u).
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Thus we have
Ilp(X, D2)ully < 2Apfollell3 + (u pi(X, D)u) + (u, ga(X, Da)u).

Since p — & > 0, by Theorem 3.4 we have

[(u, (X, Da)u)]| < llullallpy(X, Dx)ulla < Cllull3,

[(, 92(X, Da)u)| < llellallga (X, D)ullz < Cllull3-
Combining these inequalities, we finally obtain

lp(X, De)ull3 < Cllull3-
-

4 [’ boundedness of pseudodifferential operators
with lower order symbols

In this section, we treat the case of the basic weight function A(z,€) = (£). So the
symbols p(z, §) may belong to Sp% or to the generalized (nonregular) class of S7. In
particular, the case p = 1, § < 1 is important when we study the general boundedness
in LP(R") in relation to the class of Calderén-Zygmund operators (see [3]). We begin
with results by Hérmander (8] and Fefferman [5].

For general 1 < p < 0o we have the following theorem.

Theorem 4.1 (Hormander [8]) Let 0<§ < p<1andd<1. Then

S L(LP(RY) = m < -n(1-p) ’% ~ %l

Therefore we may consider that the order my,, defined by

il
m, =n(l— - ==, 1
p=nti=pl3-1| m
is the critical decreasing order for the L”(R") boundedness of pseudodifferential op-
erators of Hormander's class S5%.
It is known that, for p = 1 and p = oo, the converse to Hérmander's theorem
does not hold. For 1 < p < o0, C. Fefferman proved the connverse of Hormander's

theorem

Theorem 4.2 (C. Fefferman (5]) Let 1 < p< 00, 0<6<p<1andd <1 and

n(l-p)|3 - ,’7| Then

set my,

55" € L(L(RM).

"
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On the b ded of dodi ial operators, it is easy to treat operators
with lower order symbols. Here “lower order” means that the decreasing order of
the symbol at |z| — oo is greater than m, in some sense. We begin with a very
elementary boundedness lemma.

Lemma 4.1 Let the symbol p(z, €) have support in {(z,§) : |€| < R} for some R > 0,
and suppose that

P (,)] < Ca (2)

for la| < x = [n/2] + 1. Then the operator p(X,D.) is bounded in LP(R") for
2 < p < oo. If the symbol is independent of the space variable z, that is, p(z, €) = p(¢),
then the operator p(X, D;) = p(Dy) is bounded in LP(R™) for 1 < p < co. Moreover,
1f inequality (2) holds for |a| < n+1, then the operator p(X, D.) is bounded in LP(RR™)
Jor1<p<co.

Proof. For any u € S we can write

p(X, Dayuta) = [ K (a2 -ty d,

where

K(a,2) = (—2;—)— [e=spta01de

If the symbol p(z, €) satisfies inequality (2) for a with |a| < &, then by Plancherel’s
tduality we have

JICE RS c,,/|z"K(:.:)|’dz

lajsx
= ¥ o [ 0o
lal<x
<cr.
‘fNerefore we have
2
Ip(X, Dayul < | ‘ [k —y)u(y)uy[ dz
< [[e-n @ [ - 9Kz -y o
= [[ = dy [ @01k, d de

<0 [[@-u P dyaz
= ("||u||g.
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This means that the operator p(X, D) is L? bounded. Moreover, we have
P, Da)u(a)| < [ 1K @, ~ )l dy

< [ 1K@ 2l dslfule

<[f (z)*“dz]m [/ (z)“|K(z,z>|’d:]m Nl

Hence, the operator p(X, D;) is L bounded. So, by the Riesz-Thorin interpolation
theorem, the operator p(X, D;) is L”(R") bounded for 2 < p < o0.
If the symbol is independent of the space variable z, we have

)

pD:yu(a) = [ Kz = uts) dy,

where
1 iz
K(z) = W/E £p(€) d&.

Hence, changing the order of the integration, the L'(R™) norm of p(D,) is

[wu@de < [f 1K= wuw) dyde

< [ wena] [ 1w a].

As for the case of L(R") boundedness, we can prove that

[ix@iE<c
by Plancherel’s formula. Hence we have
[lp(Dz)ully < Clluls.

Thus, by the Riesz-Thorin Theorem we have L”(R") boundedness for 1 < p < 0.
If the symbol p(z,§) satisfies inequality (2) for a with |a| < n + 1, then for any
lal € n + 1 we have

K (e, 2) = g
1
@

/c“"p“”(z.f)dfl
[pe0| e <c..

Ly

So, we have
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Therefore
X, Dayulls < [ [ 1K(e,2 - yyuto)] dyde

<6 [[e-n "l dzay

< Cllully-
Thus, the operator p(X, D;) is bounded on L'(R"). So the operator p(X, D) is
LP(R™) bounded for 1 < p < 2. ™

Remark 4.1. As we have seen in the proof of the Lemma 4.1, when we estimate
the L>(R") norm we need to estimate the integral of the integral kernel K (z, z) with
respect to z. On the other hand when we estimate the L'(R") norm, we have to
estimate the kernel K (z, z) itself, except for the case where it is independent of the
variable z. This is why we often have to change the assumptions when we treat the
LP(R") boundedness for 1 < p<2or2<p< 0.

Theorem 4.3 Let 0 < p < 1 and 0 < o < 1, and suppose that the symbol p(z,€)
satisfies
1P (2, £)] < Cu((e)=0)(g) =/ -s)=iel

for any |a| < x = [n/2] + 1, where w(t) is a nonnegative and nondecreasing function
on (0,00) which satisfies
1 2
t
i U 4 < o, @)
0 t

Then the operator p(X, D) is L*(R") bounded, that is, there is a constant C' such
that
|lp(X, Dz )ull2 < Cllulla  for any u € S

Proof. By Lemma 4.1, we may assume that the support of the symbol p(z,¢) is
contained in {(=, &) : |¢| > 4}. We take a nonnegative and smooth function f(t) on R

such that
00 2
/ Mclt=l, supp f C [%1]

Then for any € # 0 we have
00 2
/ PACH
o ¢

Hence we can write

p(X,D;)u(z) = 27[1)"“ /e p(z, &) (€) dé
=@, o[ ornro
= 2,,1). /.) % [ e'=4p(x, &) f(t]€])0e(€) d€,

Ve i
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where v,(z) = f(1]Dz|)u(z), that is, v,(§) = f(t|§])a(€). Noting that the support of
p(z,€) is contained in {€ : [€] > 4}, we can write

: 14y i
o, D2ute) = i [ Gan [ (f e Sp(a, 1l ) wly)

1/4
= / ;dt/[(l(::,z)w(x —tz)dz,
0
where
Kia,2) = o [ e+p (2, 3€) 10D
1@2) = G | €7°P 7€) FUED d.
Now we split the integral in two parts:
1/4
p(X,D:)u(x) = / = dt/ Ki(z, z)ve(z — tz) dz
ot e

t
= A(z) + B(z).

1/4
+/ —dt/ e
0 |z|>er-1

Then by Schwarz’ inequality we have

A=) < L vele — t2)dz
=|fy  n0=0) |t ¢
1/4 1 A
X /ﬂ md‘/mgu—l |Ke(z,2)|*dz] .

From the Plancherel formula and the assumption on p(z, ) we have

[ teset e = g [ (s ) e[ ae

S C/u/:slzlsuw (lfl_-:)J ('f_l)_"“""] i

< Cw((2t)7)tn1-p),
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Thus, we have

e < [ [ ey .u,(,_,z,.zd:]
= () tl-n(1=p) el <to=1
1/4 1
X [-/o mdt/"lsu_lll(,(z,z)lzdz] dz
C/‘/‘ w((2t)7)

/ [/1/‘ a=rED et /m“ . |ve(z — tz)? dz] by

Therefore, from the assumption on w(t) we have

/M(z)l’dz < c/ [/ P dt/lxls"_llu.(:-tz)ﬁdz] do
VR :
< C'/0 mdt/ll"s“_l [/lm(z —tz)| da:] dz
1/4 1
e c/ —dt/m(z)]’dz
o t

Then, since
/n” dt [ (o) da = /m dae [ 1ocrag
/[/ f('lfl) dl]l ()2 de
= [lull3,
we have

[P as < el

In order to estimate the L? norm of the term B(z), for |a| = x we need

O [p (=7 €) s0en] ae
= o = (&) [ (g ) o= raen ae.

Therefore, we have
[ e (=€) o= 1s0em o

SKzz)| <C Y el
a'<a
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and

/l:"f\':(r.:)lzdz <l Z ,—nla'll’

a'<a

Since the support of the function f(|¢|) is contained in 1/2 < |€| < 1, we have

—n(1-p)/2-pla’| -0
o 3ol ()

t
< Ct(n—?n)(l—p)/1+|n'|w((2')a)

/ it
{1/2<)€1<1}

e (= 1) ag-"'{/(iemr .

in the support of the integration. So we get

/|.~"K,(:,z)|’dz < CHn=20-0)y ((20)7)* 3

a'<a
< Ctn=20-0)y (21)7) %,

Thus we have
/|z|2~|m(z,z)|zdz < CHn=2M0-p) ((20)°) .

Writing m = (n — 2x)(1 — p)(= 0), we have

VI
[remﬁdzs/[/n i Izl"“lv-(z—!:)f’dz]

HAVL 2, 2
X -——dl/ z|**| K¢ (2, 2)|* dz | dz.
L [ P2

From the estimate of the L* norm of the kernel |z|*|K(z, z)| we have

| , i 2|~y )2 ds
[imerase | [" dma ] re-ore]
1/4 w((2t)’):
X [/n —_i_d‘ dz

1/4 1 ey §
<C —dl/ z|7** vz - t2)|* dz| dz.
scf|[" 7= [ e =2

So, changing the order of integration, we have

[1B@ra <0 ”‘“ P [/” 2] (/Im(z —t)p d:) d:] @
< ('/:/v‘ % [/|v,(1)|2d.r] dt

< Cllull-
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Combining the L? norm of A(z) we have
[IP(X, Dz)ull2 < Cllulla-

Remark 4.2. We note that the order n(1 - p)/2 of the symbols in Theorem 4.3 is
equal to m.. = m, as defined in (1). Moreover we note that in this theorem we do
not need the continuity of the symbols p(z,€) in the variable z.

When p = 1, we see that m, = 0 for 1 < p < oco. Therefore, combining the
Calderén-Vaillancourt Theorem with Theorem 4.3 we have the following corollary.

Corollary 4.1 Let 0 < § < 1. If the symbol p(z, ) satisfies
' (z,€)| < C(&)~1,
[P (2,€) = P'*) (1, §)] < Cuw(|z ~ yl(€)*)(€) "

for |a| < x = [n/2] + 1, where w(t) is the same as in Theorem 4.3, then the operator
p(X,D,) s L*(R") bounded.

Proof. We take a smooth function ¢(z) with support in {z : |z| < 1} and with
integral

/w(:)dz =4,
We define a new symbol g(x,€) by
a6 = O [ (O (- 0)p. ) dy
= [ ot - O 0 d:
where § < 8" < 1. Then it is not difficult to see that g(z, ) satisfies
laff) (z,€)] < C(g)~lel+'1A1
forany |a| < » and any . Hence by the Calderén-Vaillancourt Theorem, the operator

q(X,D;) is L*(R") bounded.
M t, from the ption we can see that

r(,§) = p(z,§) - q(z,§)

satisfies the conditions in Theorem 4.3. Hence the operator r(X, D,) is also L*(R™)

bounded. Therefore the operator p(X, D;) = q(X, D;)+r(X, D,) is L*(R") bounded.

-

Under a slightly stronger condition than the one in Theorem 4.3, we have the
following L™ (R") boundedness.
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Theorem 4.4 Let 0 < p < 1 and 0 < o < 1, and suppose that the symbol p(z,§)
satisfies
Ip{®) (= 6)I<iau((6)FE) )R A SRR

Jor any |a| < x = [n/2] + 1, where w(t) is a nonnegative and nondecreasing function

on [0,00) which satisfies
1
/ L10) dt < co. (4)
o

Then the operator p(X, D;) is L°°(R") bounded, that is, there is a constant C' such
that
IP(X, Dz)ulloo < Cllulls  for any u € S.

Proof. As in the proof of Theorem 4.3 we may assume that the support of the symbol
plz,§) is contained in {€ : [€] > 4}. We take a nonnegative and smooth function f(t)

such that o A
/ Mdt:l, suppfc[—.l]4
e 2
Then as before, for any ¢ # 0 we have
)
[ 18
0 t
Then we can write
1/4
(X, D2 )u(z) = / ldl/K‘ z)u(z — tz)dz,

where

1
Kilo) = g [ €% (2 7.€) rleD de
We divide the integral of K;(,z) in two parts:

[k ataz= [l [ e e = 40 + B

Then we have

2
A=) € [ dz ] [ |A‘,(z,:)|’d:]
i<t Jel<te=t

1/2
< Cnte- “/’[ |,, £ely? ch

< cgrie=1)/2 / l
& (1/221€1< |) it

< Cw((20)°)
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For x = [n/2] 4 1 we have

1/2
B(z) < [/”)"_I |z|""dz] [’/I"pwIz["‘lm(z.z)l’d:]

< Crin-am-1)/2 [/ T e[ (I';E)ljl(lél)’d{] o

lal=x
nip=1)-2xp -\ ? 2
i w(|§ ) dE]

< Ctin-2m-1)/2 / -
{1/2<¢1<1)

< Cw((2t)°).

1/2

1!

t

Hence
/IK.(z. z)|dz < Cw((2t)7)-
Therefore we have
1
0
00 o
<o [T gy
0

< Oljullos:

/4
X D@l < [ Jdt [ IKm )l fute - 1)1 s

Remark 4.3. The condition in Theorem 4.4 is a little stronger than the one in
Theorem 4.3. In fact it is easy to see that inequality (4) implies inequality(3).

We have the following corollary to Theorem 4.4.

Corollary 4.2 Under the condition in Theorem 4.4, the operator p(X, D) is L"(R")
bounded for 2 < p < 00, and we have

Ip(X, D)ully < Cllull,  (u€ ),
where the constant C is independent of 2 < p < co.

For the L'(R") boundedness we have to put a stronger condition than in the case of
the L*(R") and L*(R") boundedness.

nequalit sps > 0. Assume that the symbol p(z,€) satisfies the
‘quaiity
P! (2, )| < Cw((§)~7)() "1~

for any |al < n + 1, where w(t) satisfies the same condition as in Theorem 4.4. Then
the operator p(X, D,) is L'(R") bounded.
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Proof. As in the proof of Theorem 4.4 we may assume that the support of the
symbol p(z, §) is contained in {(z,) : || > 4}. Then, taking a smooth function f(t)
as before, we write

1/4
p(X, D2)u(z) =/0 %dt/l\"(z,z)u(z ),

where

Ki(z,z

- oy [ e<e (= 7€) 10D &

and write
/K,(I. 2)u(z — tz)dz = / Ki(z, z)u(z — tz)dz
|z|<t=0=m)

+ /l'.ﬂzl—“—" Ki(z, z)u(z - tz)dz

= Ai(z) + By(z).

Since
(a2 < [ |p (=€) | roen de
1 |ra-n 1-°
SC/;slus' Al w<’76 )d{
< Cln(l‘[l)u((zna)y
we have

[Lx,mld; < / [/‘I’I_“_M|K1(z,:)u(:—l:)ld:] dr

< (.v."“-ﬂ*u((ze)")/ [/ |u(:—l:)|d:] dz
\elst=ti=r)

< (‘1"“"”w((2!)")/ /|u(1 —tz)|dzdz
|2 <t=0=)
= Cu((20°) lull

In order to estimate the L' norm of B(z), for |a] = n + 1 we have

o[ ()

1 =n(1-p)=p(n+1)
e ‘/ |75 w ] 4
1/2<0€1<1

< Ct=(="w((2t)7).

,.,) ]
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Hence we have

[1uanas< [ [/mz.-m. 214121 Ko, 2) = !z)ldz] do
< cr“-”w((zz)’)/ [/mzl_u_” |27 ju(z —lz)|dz] dz

< Cl‘“'"’w((?l)")/ o] [/lu(x - l:)ldz] dz
|2z e=0=m)
< Cw((207)ully.
Finally, we obtain

/Ip(X,D.-)u(:)I de < /”‘ L //IK,(I,:)u(r W aves

“wte)
< /., @O gt ully
< Cllull.

L]
Again, by the Riesz-Thorin interpolation theorem, we can get the L”(R") bound-
edness for 1 < p < 2.

Corollary 4.3 If the symbol p(z, ) satisfies the same condition as in Theorem 4.5,
then the operator p(X, D;) is LP(R") bounded for 1 < p < oo, and we have

Ip(X, De)ullp < Cllull, (€ S),
where the constant C 1s independent of 1 < p < co.

In the case 0 < p < 1, the decreasing order, n(1 — p), of the symbols in Theorem
4.5 does not coincide with the optimal decreasing order m; = n(1 - p)/2. In this
sense, the assumption of Theorem 4.5 is too strong. However, in the case p = 1,
since my, = 0, we can get the L'(R") boundedness without using the regularity of
the symbols in the space variable, z, for operators with symbols which have almost
optimal decreasing order.

We give here the result for the case p = 1 as a corollary, which is only a special,
but important, case of Corollary 4.3.

Corollary 4.4 Let o > 0. Assume that the symbol p(z,§) satisfies
P (@,)| < Cw((©) =)
for |a] < n 4 1, where w(t) is a nonnegative and nondecreasing function on [0, )

which satisfies
/ “(')dl <
0
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Then the operator p(X,D,) is LP(R") bounded for 1 < p < oo and there exists o
constant C which is independent of 1 < p < oo, such that

Ip(X, Dz)ullp < Cllull, (u € S).
If the symbols p(x, €) are independent of the space variable, z, then we can get
better results than the assertions in Theorem 4.5 and Corollaries 4.3 and 4.4. In fact

we have the following theorem.

Theorem 4.6 Let 0 < p < 1 and o > 0 and assume that the symbol p(€) satisfies
the inequality
1p(@)(€)] < Cw((€)=7)(E)~"C-r)/2=slal

for any |a| < &k = [n/2] + 1, where w(t) satisfies the same condition as in Theorem
4.4. Then the operator p(D,) is L*(R™) bounded.

Proof. As usual, by Lemma 4.1 we may assume that the support of the symbol p(¢)
is contained in {£ : |€| > 4}. Taking a smooth function f(t) such that

supp f C [%,1] and /Dm@d[=1|

we have
1 Apti/an
p(Dz)u(z) = W/o ;dl/l\"(:)u(z —tz)dz,

where
e
Kite) = [ e+ (G¢) rte e
Then, as in the proof of the L*(R") boundedness, writing
[ixanas < [ Ko dz + [ Ke(e)] dz
|z)<t=0=n) |2|2t=0=)
= A+ By,

we have

A [/H e dz]m [/MS‘_“_'_|A',<:n’d:}m
< Crno-nre [[ b (3¢) mu)]] d{], :

< Cw((2t)?)
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and

i

1/2 v,
815 =[**|Ke(2)? d=
G [/«.' ! “‘z] [/le_wl P ]
< Ct1-p)x=n/2) }: o [/ o) ( )f(lfl)l ]

[al=~

< Cw((20)7).

Hence we have
[ e < cuen)

Therefore, changing the order of the integration, we obtain
1/2
/|p(D,)u(r)|dz S/ Id[/ |K(2)u(z — t2)|dzdz
0

1/2 1
< [ qa [ el
0
co [ 4y,
0
< Cllully.
m
If we combine Theorems 4.4 and 4.6, the Riesz-Thorin interpolation theorem im-

plies the following Corollary.

Corollary 4.5 If the symbol p(€) satisfies the same condition as in Theorem 4.6,
then the operator p(D.) 1s LP(R™) bounded for 1 < p < oo, and we have

lIp(De)ully < Cllull, — (u€ S),

where the constant C is independent of 1 < p < co.

5 Behavior in L®(R") space
We first note that the results in this section are essentially found in Nagase [13).
Let @ be a cube in R with sides parallel to the coordinate axes, and |Q| be its

Lebesgue measure. For a function u(x) defined on R, we define its bounded mean
oscillation (BAMO) norm by

1
Bl = Wullawo = sup = [ fu(e) ~ uql d,
q 1Ql /g
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where uq denotes the mean value of u(z) on Q, that is,

1
uQ = Ia/;u(:)dz

We let BMO = {u(z) : |lul|. < co} denote the space of BMO functions on R™. Then
we easily see that L°(R™) C BMO and

lulle < 2llulle  (Vu € L=(R™)).
The proof of the following Theorem 5.1 is given in [13]. The result itself has been
essentially derived by C. Fefferman [5] (see also, Li and Wang [11]). The proof of the
theorem is a little long but we give it here. Theorem 5.1 will be used in the proof of

our main Theorem 5.2 in this section.

Theorem 5.1 Let p >0 and § < 1 satisfy 0 < & < p < 1. Assume that, for a and
with |a|,|8] < k = [n/2] + 1, the symbol p(z,€) satisfies

In{5) () €)] < Car () FPI=RY2plal=elal:
Then the operator p(X, D;) is bounded from L*(R™) to BMO, and we have
lp(X, Dz)ulls < Cllulls  Yu € L=(R").

Proof. As before, we may assume that the support of p(z, ) is contained in {(z,¢) :
|€| > 4} and p(z, §) satisfies

o3} 8l Clelpsa aseiatisiol N E)
for |al,|B| < k. Moreover, by the Calderén-Vaillancourt theorem we have
llp(X, D2)| Dz |~ 2ullz < Cllulla

because the symbol p(z,£)||"*~#)/2 satisfies the conditions of Theorem 3.3. As
before, we take a nonnegative function f(t) € C5°(R) such that

1 0
suppfc[iyl], /0 i%ldhl-

Thus, we have

/Wmd,ﬂ (Ig1 # 0)-
0

We consider a cube Q = {z : |2; — aj| < d/2} with d < 1, and take a function ¥(¢)
such that
suppp C {l§/<2}, 0<¥() <1,
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and 1(€) = 1 for £ < 1. We set 4(€) = )(d€). We split the symbol p(z, £) as

(2, €) = p(z, )%a(€) + (=, €) (1 — $a(€))
= po(,€) + ().

We begin with the estimate for the operator po(X, D;). As before, we can write
WX, D)) = 77 [ ool 0ate)
and
1 ¢
D., (X, DaJula)} = @ [ =4t @) + m(z. )it
= o [ € Py @) + ple OWale)ile) e
= g [ P @ u0 &
where

P (2,€) = po(e,;) (@, €) + &ipo(2, §)
= {P(e;) (@, €) + &iP(z, €) }a(€)

Hence, using f(t) we can write

D (X, Daute)) = s [ Jat [ e @) (0t e

t

(2n)"/ :“‘/f = (1- ) F(€u(e - tz) dédz
1
t

(2”) / dt/Ko, (t, 2, 2)u(z — tz) dz,
0

where

Kugltn) = [ €49 (= 7€) e ag
= [ [oen (1 €) + 36w (2 7€) va (3e) senac

On the support of the integrand of the kernel Ko j(t,z,z), we have
1 1 1 2
- ¢l > =< & = < -.
S22 psldsa glls3

Therefore, on this support we get d/4 < t. Thus we can write

1/2
D, {po(X, D:)u(z)} = I#)"/d/‘ %dt./Ko,j(l,z,z)u(:t —tz)dz
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Then we write

/[Kn,(t,r,z)[dz =/ |Ko,;(t, z,2)| dz +/ |Ko,;(t, x,2)| dz
(Izl<e-0-0) (lzlze-0-0)

=I+11

By Schwarz’ inequality and Plancherel’s formula we have

1/2 1/2
’ 2
i [/(Mst““‘)) dz] [/{Izlst““”) Mgl dz]
AR 1/2
< orm-an [ [ (=3¢)] f(IEI)’df] )

By the definition of p’(z,£), we can see that

|p' (z%s)| <c (%lfl)l_"“_wz (% <lel< 1) ;

Therefore, we have
1/2
n<ici= / d¢ = E_
{1/2<¢l<1) t
It is not difficult to see that the symbol p’(z, £) satisfies the estimate
() ~mee+1-pla| 1
P (.0)| < cler= 3 <ld<1
for |a| < k, where the constant C is independent of 0 < d < 1. Hence we have

el (3] o

< Ctmm-1-0=plal (% <lel < 1)

1 |~m=ti-slal
7¢

for |a| < k. Therefore, for any a with |a| < k we have

ot [ (3¢))|sormt-ome  (G=imis).
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Thus, again by Schwarz’ inequality and Plancherel’s formula, we have

1/2 1/2
1< / 2|~ dz / |2%% | Ko,;(t, 7, 2)[ dZ}
|z|>t=(=p) |z|>t-=2)

2 B2
< 2R $ [ o [Pi (m%f)” df}

o=k

< Ot~ (n/2=K)(1=p) gmeo ~1=(1=p)5

1
<C-.
L
Hence we have

|D-, lpo(X, DaJu uf<c/ L dtullen

< E"“”eo«

Using this estimate we can see that

[Po(X, Dz)u(z) = po(X, Dz)u(y)| < ek gl oo

Therefore, writing
1
X,Dajulg = 7 [ ol Duls) ey
(po(X, Dz)u)q 1] on( July)
we obtain

é/qh’o(X,D;)u(x) - (p“(X'Dz)“)Qldz

Sﬁ / / [Po(X, D2)u(®) = po(X, Dz)u(y)] dydo

l2 =4l 4y 4o
O / / dy dalull
< Cllulloo- (5)

Now we have to estimate the term pl(X,Dz)U(Z) We take a function
x(z) € C§(R™) such that

X(@)=1 for z = (21,8,...,n) with |7/ 2 (1=1,2,...,n),
X(@) =0 for @ =(21,8,...,en) with |21 24 (1=1,2,...,n).

Denoting the center of the cube @ by 2%, we set

xale) = x(d2(z - %)




S — et

116 Ryuichi Ashino, Michihiro Nagase and Rémi Vaillancourt ."m-b
and write
(X, Dz)u(z) = p1 (X, De){xau}(z) + p1(X, Dz){(1 - xa)u}(z)
= Tu(z) + [Tu(z).

Then, by Schwarz’ inequality we have
2

(Tu)g = ﬁ /Q Tu(z) da| < [ﬁ /0 Im(X'Dz){xau}(z)I’dr]l/ /

Now we write the symbol p, (z,£) as
P1(2,€) = p(=, E)IE" P72 (1~ ya(€)) 6702

and note that p(z, £)|€|"(1=)/2 satisfies the conditions of the Calderén-Vaillancourt
theorem. So, using the L?(R") boundedness of the operator p(X, Dz)|Dz|"*=7/2,
we have
[lp1 (X, Dz)xaullz < CII(1 - $a(Dz))|D2| =" =P/ {xau} |2
< Cd =0 {xqu}|l2
< €02 xgl fuloo-

By the definition of xa(z) we have
IIxallz = d"*/2x]la-

Thus we have
llp1 (X, Dz)xaull2 < Cd™?||ullcs,
and, therefore,
(Tu)q < Cllulloo-

In order to estimate the term ITu(z) we write

d
G ﬁ/n %dt/K;(t,z, (A = xa)u} (= — t2) dz,

Ki,o,2) = [ % (z,%s) [1 "y Gé)] 1€ 6.

Here, in the support of the integrand of the integral kernel Kt z), for z =
(z1,22,...,Zn) € Q we have

where

APl = tzj -2 22, |zj—2} <

Thus, we have
|2} > t71de.
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Hence, for z € @ we have

[t anaz= [ ol
|x|2!"d'

1/2 1/2
< [ o dz] [/ IZI"‘IK:(t.z'z)I’dzJ
lzl2t-1d» ls|z¢=1de

12
< Cee-n/ag-sls-n/2) 3 [/z’"]K,(z,:.:)l’d:]

lal=x

Sclx—n/id—p(x—n/2) z {/

Jal=x

1 1 2 1/2
0% [pta3 01 - vat; ) 106D | ds}

< Crn/2 gep(s=n/2) = (1=p)(K=n/2)

= (‘r""‘"/"d""‘"‘/zl,

Therefore, we have
Bl
1) < Cllll [ dt [ 18,2, ds
0
i 1 ’
< C||u|[.,‘,/n mdld‘?"‘—n D < Cllulloc

Here we used the dition p > 0. Thus bining the esti for Ju(z) we have

i /q [p1(X, D2)u(@) = (1 (X, D2)u)ql d < Cllulle- ©)

Therefore, from (5) and (6) we have

1
a1 [, X, DaJute) = (X, Daudel de < e,
and, since the cube @ is arbitrary, we finally obtain

(X, Dz)ull. < Cllullec.

As a corollary to Theorem 5.1 we have the following boundedness result.

Corollary 5.1 ([5]) Let2<p<00,0<86<p<1,6<1, and0 < p. If the symbol
plz, ) satisfies

[p(3) (2] < C(gymeoietesi
for |a| < & = [n/2] + 1 and |B] < K, then the operator p(X, D;) is LP(R") bounded

and we have
lP(X, Dz )ullp < Collull,-

| ge——
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The proof of Corollary 5.1 can be done by using the Fefferman-Stein interpolation
theorem [6]).

Using the symbol approximation (or regularization) and Theorem 5.1 we can prove
a boundedness theorem for operators with symbols which have a weak regularity in
the space variable, z, and the critical decreasing order. For the symbol approximation
the following two lemmas play an essential role.

Lemma 5.1 (See [13]) Let 0 < § < 1 and ¥(z) be in S. Then ¥({(€)%x) belongs to
SP s and satisfies

EBE D} = Y Yaa ({2} 9 ((6)°2)

lo’|<lal
for any a, where (@) (z) = 33"1/;(2) and Yo, (§) € sl_,tlla'-

Lemma 5.2 (See [10]) Let 0 < 7 < 1 and ¥(z) be in S. Then, for any 3,
3?&'((5)"(( —§)) satisfies

FWOTC-)}r= Y pam@UOTC - O[O T - 8),
Iv1€1Blm <y

—(18l-(1=7) |y~
where U5 4+ (€) € S‘Iélﬂl (A=r)lr=ml)

We shall use Lemma 5.2 in the next Section 6. As one of the main results of this
section we have the following theorem. By Theorem 4.4 and the Fefferman-Stein
interpolation theorem we can prove an LP(R") boundedness theorem for operators
with symbols with critical decreasing order m, for 2 < p < oo.

Theorem 5.2 Let 0 < § < p < 1 and § < 1, and suppose that the symbol p(z,§)
satisfies

ERICH] <GB RT

and

P (2,6) = 5 (3,)] < Culle = yl(©)°)()-na-0/2=slel
for any |a| < k = [n/2] + 1, where w(t) is a nonnegative and nondecreasing function

on [0,00) which satisfies
1
/ o) dt < o0.
o &

Then the operator p(X, D,) is bounded from L>=(R") to BMO and we have

Ip(X, D2)ulls < Cllulle-

T —
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Proof. As usual, we may assume that the support of the symbol is contained in
{(2,€) : |€| = 4}. Take a smooth function ¢ () on R™ such that the support of ¢(z)

is compact and /w(x)d:c = 1. We define a new symbol 5(z,£) by
72,6) = [ ool = O v, 6)dy
G GRS
where §' is a constant such that § < §' < p, and set

a(z,8) = p(z,€) = B(e,€).

Then, by Lemma 5.1 we can see that the symbol p(z, £) satisfies

P(a)

-(u)(z’ 0| < Cﬂ(g)‘n(l—ﬂl/z‘l’hli—ﬁ'lﬂi

for any |a| < x and . Therefore, by Theorem 5.1, the operator 5(X, D;) is bounded
from L*(R™) to BMO, and we have

I1B(X, Dz)ulls < Cllulloo:
On the other hand, we can see that the symbol g(z, £) satisfies

(e, €) | Q)=+ g)=nt =P/l

for any |a| < x. Since §' =4 > 0, the symbol g(z, £) satisfies the conditions of Theorem
4.4 and we have

lla(X, De)ulloo < Cllullco-

Finally, we obtain

lIP(X, Dz)ull. < |Ip(X, Dz)ull. + lla(X, Dz)ull.
< Cllulloo + 2llg(X; Dz)ullon
< Clfuloo-

[ ]
When p = 1, by using Theorem 5.2 we can show a slightly more general result
than Corollary 5.1.

Corollary 5.2 Let § < 1. Assume that the symbol p(z,£) satisfies
0 < el
P (@,6) = P (0,6)] < Cw(( (=~ ue) T,
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for any |a| < &, where w(t) is a ive and d ing function on [0,00)
such that 1

[
o ¢t

Then the operator p(X, D;) is LP(R") bounded for 2 < p < oo.
Proof. We have already seen in Corollary 4.1 that the operator is L?(R") bounded
when p(r, £) satisfies the conditions of Theorem 5.2. Also we have seen that the oper-

ator is bounded from L*(R") to BMO by Theorem 5.2. Therefore the boundedness
follows from the Fefferman-Stein interpolation theorem. [ ]

6 LP(R") estimates for 1 < p < oo
In this section we consider only the case p = 1. When 2 < p < oo, we have already
seen in Corollary 5.1 that we can get the boundedness result even in the case p < 1.
However for, the case 1 < p < 2 and p < 1, we need a slightly different argument to
get the L?(R™) boundedness.
Theorem 6.1 Let § < 1 and assume that the symbol p(z,§) satisfies
[P @0 < cetl,
P, - p(w,8)| < Cul(©)’l=z - w7,

Jor |a| < n + 2, where w(t) is a nonnegative and nondecreasing function on (0, 00)

such that
1
/ ‘ﬂdt < o0.
(I

Then the operator p(X, D,) is LP(R") bounded for 1 < p < co.

Proof. We have already seen that the operator p(X,D.) is L?(R") bounded for
2 < p < c0. So we need only consider the case 1 < p < 2. Let p(z) be a C**(R") even

function with support in {z : |z| < 1} and /w(:)dz = 1. We define a new symbol
B(z,§) by

72,6 = O [ o((© @ - oty €)dy
=@ [ el(@ vpa-wOdy
= [ etz - @ w6 dy,

e ——ECGN
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where § < 7 < 1. Then, as before, we can see that the symbol p(z, £) satisfies

oo (x6)] < Clgytetee

for any A and |a| < n + 2. Moreover we can see that the symbol g(z,§) = p(z,&) —
p(z,§) satisfies
la(z, &) < Cw((€)~=9)(g)~le!

for |a| < n + 2. Hence, by Theorem 4.5 we can see that the operator ¢(X, D.) is
LP(R™) bounded for 1 < p < co. So we have to prove the boundedness for the
operator p(X, D).

We define another new symbol j(z, £) by

3.6 = @ [ (O~ otz ) dc
=@ [ ol pte. 6 - O &
= [e(©ptat - @0

where 7 < p < 1. Then, by Lemma 5.2 we can see that the symbol 5(z, £) belongs to
the symbol class S) . and satisfies

|55 @, €)] < Cage)tottrit )

for any 4 and |a| < n + 2. Moreover we can see that the symbol r(z,€) = p(z,§) —
plz, £) satisfies
)z, < o(gyle==n

for la| € n+ 1. Hence, again, we can see that the operator r(X,D;) is L?(R")
bounded for 1 < p < oo. Writing the operator p(X, D;) as

p(X, D;) = p(X, Dz) +r(z,€) + a(X, D),

we need only show the boundedness of the operator fJ(X ,D;). Since X, D) belongs
to S) ., we can use the algebra of the symbol class S5 . For u and v in S we have

b
(A(X, Dz)u,v) = (u, 5" (X, D:)v),
where the symbol *(z, €) belongs to Sp% and has the asymptotic expansion
il ===
(2,6) ~ z‘ 0.

Hence, using (7) and p > 7 we have

If’.(a)(ﬂ)(z'c)| < C(E)—|a|+ilﬁ|
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for |a| < n+ 1 and any 8. This implies
[1° (X, Da)vlly < Cllvllys
where 1/p+ 1/p' = 1. So, by a duality argument we have
lp(X, D)ullp < Cllullp-

7 Pseudodifferential operators with magnetic po-
tentials

As we stated in Section 3, if 0 < § < p < 1 and § < 1, then the pseudodifferential

operator p(X, D) with symbol S0 ; , is L*(R™) bounded where A is any basic function.

Let a(z) = (a1(z),. .4,a,.(z)) be an R" valued function on R", where a,(z),

=12 ey n, are real valued smooth functions whose derivatives, |8%a;(z)|, are
bounded for any a # 0. We consider the basic function

A@,€) = V1+€ - a(z)P. (8
Thus, Az, £) satisfies the following inequalities:
(a) 1< Mz, §) < Cla)E),

) M3 (@€)< Capr(z, ) -lel.

In this section, we restrict attention to the basic weight function (8) and consider the
symbol class ] | where 0 < 6 < p = 1. Then the problem is to show the LP(R")
boundedness of the operator p(X, D;) € 7 5, for general 1 < p < co. However, this
problem is still open (see Section 8). We present here a slightly weaker boundedness
result, which corresponds to the case of lower order operators.

We first prove the following lemma.

Lemma 7.1 Let p(x,€) be in Sg§, for some positive ¢ > n. Then the operator
p(X, D) is LP(R™) bounded for 1 < p < oo.

Proof. From the definition of the operator p(z, D;), we have
PXDu(e) = g [ o9 ot Eputu) dy i

= /K(I.I -yuly)dy (uES),
where

K(@,) = G [etpiz0rae
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Since o > n, for any multi-index & we have
1 X
o e iz6 ()
812l = e | 91
1
. (@)
<y | [P 0)] a6
<0 [(e-ato)="d
e C/(g)"’dg @
Therefore, we obtain
|K (2, 2)] < C(z)="~
Ip(X, Deully < Cllull, (€ S)-
[ ]

For 2 < p < 00, we can get a slightly stronger result than Lemma 7.1.

Lemma 7.2 Let the symbol p(z,€) satisfy
P (@, €)] < Ca(, €)= 71!

Jor any a with |a| < k = [n/2) + 1, where ¢ is a positive constant. Then the operator

p(X, D) is LP(R™) bounded and we have

IIp(X, De)ull, < Cllull, (v € S),
where the constant C is independent of 2 < p < o0.

Proof. From the definition of the operator p(X, D) we have
il A=)
P, DaJule) = oo [ o= Spte, et ay e

- [ K(@a =ty

where the integral kernel K (z, z) is

K(z,2) = (2% [e= et 9.

For L>(R") boundedness we have
[ 1K@z = vl < 1K@ 2 = )l ey ule
< [ e o, 2) d ulle

<l [ 1K (e, dz]‘“ ;
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From the assumption on the symbol p(z, ) we have

/(:)""‘|K(z,z)|2dz = Z CO/{:°K(x,z)|2d:

Jal<n

= ¥ e [ B 0rE

lal<x
<C [(¢-ata)0d
= C/(er’”d{ = Ceoy (9)

where the last constant, C', is independent of the variable z. Hence we have
[P(X, Dz )u(z)| < Coollulloo-

Therefore, we can get the L°°(R") boundedness with norm bounds not greater than
C.

For the L?(R™) boundedness, using estimate (9), we have
[t pu@de = [ | [ Kz = vyutv) dy

< [[[ - a]
[ [z v a] e

< o [t =) 2 luti)f dy
= Clyllulla

Thus we obtain the L?(IR") estimate. Hence the lemma follows from the Riesz~Thorin
interpolation (see [17]). [ ]

Remark 7.1. In Lemmas 7.1 and 7.2, we do not need the assumption that the
derivatives d,a;(z) are bounded for any j and a # 0. In the proofs we use only the
fact that the functions a;(z) are real valued and measurable for j = 1,2,...,n.

2
dz

Theorem 7.1 Let a(z) be as in Lemma 7.2 and \(z,€) as in Definition 2. Choose
a nonnegative and nondecreasing function w(t) on [0,0) such that

1
U
/ uﬂ dt < oo,
o
and assume that the symbol p(z,€) satisfies

P2, )] < Cad(z, &) 1w(A(z, &))

Jor any a with |a| < n+ 1. Then the pseudodifferential operator p(X, D) is L”(R)
bounded for 1 < p < oco.
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Proof. By Lemma 7.2, we may assume that the support of the symbol p(z,§) is
contained in {(z,€) : |€ — a(z)| = 2}. Now we take a smooth nonnegative function
/(t) such that the support of f(t) is contained in the interval [1/2,1] and

il
[

Since the support of the symbol p(z,£) is contained in {(z,€) : |£ — a(z)| > 2}, we
have

1
X, Dajule) = g [t [ et 00,0010l - ae)yuto) e

-ar | it [f e etemmracy (,,é + a(x)) F(lEDu(y) dé dy

=G )n/ —dt/ iza(2) i, (2, 2)u(z — tz) dz,
m

Ki(a,2) = [ ¢4 (2,5 +ato)) 1060 d¢

If we put p(z,€) = p(z,€ + a(x)), then it is easy to see that
[, €)] < Ca )~ lw((e)~")

for |a| < n + 1. Since the equality

#Ki(a) = .Hzﬁ(j) J oo (= 5) o raen e

holds for |a| < n + 1, we have

|z°Ki(z,2)| < Z tulﬂ( )/

o

<C ;,, Lla’|< ) /}slilﬁ‘

< Cw(t)

where

e (: 5) 2= £(l¢l) 1

" ()-

|Ki(2,2)| < C(&)""w(t). (10)
By inequality (10) and the equality

£
¢

for |a| < n + 1. Therefore we have

1
p(X,D;)u(z) = #/o %dl/e'“ “(’)K,(z,z)u(z —t2)dz



N

126 Ryuichi Ashino, Michihiro Nagase and Rémi Vaillancourt Jm

we can see that the operator p(X, D;) is L' and L™ bounded. That is, the inequalities
[Ip(X, Da)ully £ Cllully,  [Ip(X, Dz)ullee < Cllulloe
hold. So by the Riesz-Thorin interpolation theorem we have the L” boundedness for

1<p< ® When 2 < p, we can show a slightly more general result than
Theorem 7.1, by using Plancherel’s formula.

Theorem 7.2 Let a(x) and N(z,€) be the same as in Theorem 7.1. Choose a non-
negative and nondecreasing function w(t) on [0,00) such that

1
/ Mdt<oo.
o b

Assume that the symbol p(x, £) satisfies
1) (, )] < CaX(z, &)~1"w(X(z,6)7")

for any a with [o| < k = [%] + 1. Then the pseudodifferential operator p(X, D) 15
LP(R") bounded for 2 < p < 00.

Proof. We first show the L> boundedness. We write the operator p(X, D), as in
the proof of Theorem 7.1, in the form

P(X, Dr)u(w) = ﬁ /Dl #/e""'““’lﬁ(z,z)n(z— tz) dz, (11)
where

Kla,2) = [ =% (xf + a(z)) 7(€l)de. (12)

/ll\':(ﬂ”»,z)\dz =

Then,

2) " (2)*|K¢(z, z)| dz

[l 3 li <z>=*|m(m)|’dz]m
e [/lz“lﬂ(n:)ﬁdz]m

IA

I/\

and Plancherel’s equality gives

/\:" Ki(z,2)|*dz = /

< Caw(t).

¢ 5 (=£) e [ a
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Hence, we obtain
[p(X, Dz)u(z)| < Cllulloo-

In order to show the L? boundedness of the operator p(X, D.), using representation
(11)-(12), we have

ey i | e ey |

It follows that

2
|/""“‘ VK(y2)ul- = t2)dz|| = d

et 9@ K, (z, 2)u(z — tz) dz

< /‘/lK;(::,z)u(:t—tz)|dz2

Hence, by Schwarz' inequality we have

dz.

2
/]K,(z.:)u(z —tz2)|dz| <

/(Z)z"”{g(l‘, 2)|2dz /(z)’2‘|u(a: —tz)Pdz.

As above, we can see that

/ @ |Ki(z,2)Pdz < Y fmk,(z 2)|*dz

|al<x
|a.<K/ ’8‘[ (" +“(I)) f(I€|)]

< Cu(t)?.

2

dg

Therefore we obtain

e B Ry | T, 2% M L o
\,‘/!‘ oy 2)u( 2122_ //() |u(z - t2)|* dz do

< Cw(t)?|ull3-

Thus, from the assumption on w(t) we have the L? estimate

[IP(X, Dz)ull2 < Clull2-
Again, by the Riesz-Thorin interpolation theorem, we have the L? boundedness for
2<p<oo ]
8 Conjectures

As was seen in the previous sections, we can expect that the following LP(R") bound-
edness theorem holds.
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Conjecture 1 If the vector function a(z) = (a1(z),...,an(z)), which defines the
basic weight function (8), satisfies

[0%a;(2)] < Ca (13)

for any @ # 0, then, for 1 < p < oo, the operator p(X,Dz) in S{;, is L(R")
bounded, that 1s, the inclusion

Stsa C L(L7(R™)
holds.

As we stated in Section 3, it is known that if the vector function a(z) satisfies the
estimates (13), the operators in 7 5 |, with § < 1, are L*(R") bounded. So if we can
show weak type (1, 1) estimates or boundedness from L>(R") to BM O, then we can
get Conjecture 1, that is, LP(R™) boundedness for 1 < p < oo, by using interpolation
theorems (see, for example, (16], (6]). Therefore, the fundamental conjecture is

Conjecture 2 If the vector function a(z) = (a1(z),...,an(z)), which defines the
basic weight function (8), satisfies

[0%a;(z)| < Ca

for any a # 0, then the operator p(X, D;) in 5?,5,,\ is bounded from L>(R") to BMO,
that 1s, there is a constant C such that

lIp(X, Dz)ullsmo < Cllulls-
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