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ABSTRACT
Two oscillation theorems are derived for a second-order differential equation
with piecewise constant argument.

RESUMEN
Dos teoremas de oscilacién son derivados para una ecuacién diferencial de
segundo orden con argumentos constantes por partes.
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First order delay differential ions with pi were
initiated by Cooke and Wiener (1] and Shah and Wiener [2] As mentioned in [1-6], the
strong interest in such equations is motivated by the fact that they represent a hybrid

of continuous and discrete dy ical systems and bine the properties of both
1iff ial and diffe i The oscillatory and nonoscillatory properties of
first order delay differential ions with pi ise constant ar have been

the subject of many investigations (see, e.g. [1-15]), while those of higher order
equations are relatively scarce.
However, there are reasons for studymg higher order equanons with piecewise
ar Indeed, as d in [10], a | application of these
equations is in the stabilization of hybrid control systems with feedback delay, where a
hybrid system is one with a continuous plant and with a discrete (sampled) controller.
As an example, suppose a moving particle with time variable mass r(t) is subjected
to a restoring controller —¢(z[t]) which acts at sampled time [t]. Then the Newton's
second law asserts that
(r(t)a'(®)" = —¢(alt])-

Since this equation is ‘similar’ to the harmonic oscillator equation
(r(t)z'(t))" + sz(t) = 0,

we expect the well known oscillatory behavior of the later equation may also be found
in the former equation, provided appropriate conditions on r(t) and f(z) are imposed.

In this paper we study a slightly more general second-order delay differential
equations with piecewise constant argument

(r()a' @) + £tz () =0, t>0, 1)

where r (t) is positive and continuous on [0, c0), f (t,z) is continuous on [0, +00) x
(—00, +00) such that zf (¢,z) > 0 for t > 0 and z # 0, and [] is the greatest-integer
function. Two oscillation theorems for (1) will be obtained.

We will also assume the following property for f: there exist functions p(t) and
¢ (z) such that p(t) is continuous and nonnegative on [0,0), ¢ (z) is continuously
differentiable and nondecreasing on (-0, +00), z¢ (z) > 0 for z # 0, and

f(t,z) 2 p(t) ¢(z), = #0,t>0.

Note that when ¢(z) = z and p(t) = & > 0, the condition that f(t,z) = kz is just
the Hooke's restoring force.

By a solution of (1) we mean a function z () which is defined on [0, +o0) and which
es the condition (i) ' (¢) is continuous on [0, c0); (ii) r () z' (t) is differentiable
at each point ¢ € [0,00), with the possible exception of the points [t] € [0, 00) where
one-sided derivatives exist; and (iii) substitution of z(¢) into Eq. (1) leads to an
identity on each interval [n,n + 1) C [0, +00) with integral endpoints.

As is customary, a nontrivial solution z(¢) of (1) is said to be eventually positive
(eventually negative) if there is some T > 0 such that z(t) > 0 (respectively z(t) < 0)
for t > T; and z(t) is said to be oscillatory if it is neither eventually positive nor
eventually negative
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Lemma 1 Let z (t) be a solution of (1) such that there is some T > 0 and z (t) > 0

fort > T. If
! il @
v = +00,
SO ’
then @' (t) > 0 for t > k, where k is any integer > T.
Proof. Suppose to the contrary that there exists some integer j > T such that
@'(j) < 0. Let 2'(j) = —6 where § > 0. In view of (1), for t € [j+i—1,j+i),i = 1,2, ...,
we have
'
(r(@®) ' ()" = ~f(t (=([1) < =p ()¢ (= ([t]) < 0. (3)

Hence, 7 () ' (t) is nonincreasing in [j +1 — 1,j +1). So,

A )y st 1)
1) € rielli) = i <, @
and )
; i
4 < L) '
@'(j+2) < TaEC Uls0.
It is easy to show that, for any positive integer 7,
oy i=1 !
z'(j +1) < Mw’(;+z—l)<0. (5)

(5 +1)
Since 7 (¢) ' (¢) is monotonic nonincreasing in [j, j + 1),
2 (1) r(5)

< T—t)m'(j). tejj+1). ©)

Integrating the above inequality, we have
2 el tdy i
2(0) < 6) +r(i)e') [ 75 teli+ ).
i ()

Let ¢ = (j + 1), we get

+1
(5 +1) < o6) + 1)) [ 5 @

so that G
i+ 1) < () = 6rG) | o ®

Repeating the same argument leads to

z(j+2) < (J+1)+r(]+1::(]+1)/ r()‘
1 v,
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By (4), (8) and (9), we see that

a i+2
s(22 = a0 bl o) z’(j)/’ dv
7

i (G +1) +1 @
' oy
= 1(J+1)"5"(J)/j+1 @)
, D) N
< r(J)-MJ)fJ_ m«éru)/j“ &

it2 g

= ) -orti) [ =
9

By induction, for any positive integer 7, we have

3 gy )
I'+i<z'~5r'/ ==,
G+ <26)-0r6) [ 105
which is contrary to the assumption that z (t) > 0 for t > T, since by taking i — oo,
the right hand side tends to —co in view of (2). Therefore, z' (k) > 0 for any integer
k > T. Because 7 (t) ' (t) is nonincreasing in [k, k + 1), we have

r(k+1)z' (k+1)
7 (t)

Since 2’ (t) is continuous on [0, 00), it is clear that 2 () > 0 for ¢ > k. The proof is

complete. "

Theorem 1. Suppose (2) holds. Suppose further that

z' (t) > >0, te[kk+1).

+00
/ p(v)dv = +oo. (11)
0

Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory solution z (t) . Without
loss of generality, we may assume that z (t) > 0 for t > 0. By Lemma 1, 2’ (¢) > 0 for
t>0. Let

_r@®a ()
“O=Semy i
Then u () > 0for ¢t > 0 and u (k™) > 0 for k=1,2,... . In view of (1), we see that
iy = _fhe(k=1) s
VT - BRI S p(t), te[k—1,k). (13)
Noting that z¢ (z) > 0 for = # 0 and that ¢ (z) is nondecreasing,
(k) " (K .
u(k) = Sm=u(k). (14)
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Integrating (13), we have
t
u(t)—u(k—l)s—-/ () s e = TR (15)
k=1

Let t — k—, we get
k
u(k")—u(k—l)S—/ p(v) dv. (16)
k-1
In view of (14) and (16),

u(27) =u(0) = u(27)-—u()+u(l)-u(0) <u(27) —u(l)+u(1”) -u(0)
2 1 2
< - [r0a- [ pww=- [pw)d.

By induction, for any positive integer k, we have

k
w(k) v < - [, 17

which is contrary to the fact that w(k~) > 0 for k = 1,2, ..., since by letting & tend
to 0o, the right hand side tends to —oo in view of (11). The proof is complete. [ ]

Theorem 2 Suppose (2) holds. Suppose further that

L:‘d%i:”—)<+oo, _(W%<+m (18)
for some € > 0, and
+2 +o0  go +oo
/" p(v)dv < +o00, /u TS) L p(v)dv = +o0. (19)

Then every solution of (1) is oscillatory.
Proof. Suppose to the contrary that (1) has a nonoscillatory solution z (t) . Without
loss generality, we may assume that z () > 0 for t > 0. Lemma 1 shows that &' (t) > 0
for t > 0. So, z(t) is nondecreasing on [0, +0). In view of (1), for k = 1,2, ..., we
have

(r®z' ) =-ft,a(k-1) < -pt)d(z(k-1), telk-1,k. (20

Hence

t
rmz'(n-r(k-l)z'(k—l)s—w(z(k-l))/k pl)dy, telk—1,K). (21)
1

Ve . oY
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Let t — k~, we have
k
r(t)a’ () ~r(k-1)a'(k-1) < -¢(a (k- 1))/ p(v)dv. (22)
k-1
From the above inequality, we can see that

} 1 k r(k) %
. (k:—l)2mc—_—l)'ﬁ(z(k—1))/k_1p(v)du+r(k_1)z ® k=12.. (3)

Integrating (20) from s to g, we have
r@# @ (9 () S -6k -1) [ P, (2
where k — 1< s < g < k. Let g = k=, we get
P07 030 < ~oEE-1) [ p@d s€k-1B. @)

Noting that z'(¢) > 0 for ¢ > 0 and z¢(z) > 0 for z # 0, by (23) and (25), for
s € [k — 1,k) we have

zi(5)r > L:ﬁ —1)/ du+—z (k)

2

2

1 i r(k+1) ,
«s(x(k))/k po)dv+ DT (k+1))
>

From (23) and the above inequality, we may prove by induction that for any positive
integer and s € [k — 1,k),

z'(s) (¢(x(k)/ p(v)dv+¢ z(k+1))/ p(v)dv
k4n+1
+...+¢(z;(k+n))/ p(u)dv). (26)
k+4n
Since ¢ (z) is nondecreasing, for any positive integer and s € [k = 1,k), we have
Z(s) 1 k4ntl k+ndl
dv= — 2 27,
ez, rem=ci fr e i

T —
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Let n = +00, yields
' (s) 1 e
_ > — v)dv, s€[k—1,k). 28
PO = 7 iy P s !
Integrating the above inequality from k — 1 to k, we have
k +oo k ' 2(k)
ds / z' (s) dw
—_ pud’ug/ —ds:/ —_— 29,
/k-n 7(8) Jish+1 ) k-1 ¢ (2 () 2(k—1) ¢ (w) 2
By (29), for any positive integer n,
n ds /+w n /k ds /+uu
—_ v)dv = = v) dv
/o r(s) |,]+1p( ) E; k17 (8) [.)Hp( )
i =5y /‘("’ dw
k=,/z(k—1)¢("/) = z0) 9 (w)
+oo gy
) 30
/x(D) #(w) (&)
which is contrary to the conditions (18) and (19). The proof of Theorem 2 is
complete. [ ]
As an 1 ider the
(exp(~0)z' ()’ + 2 () exp (£ + (z[£)*) =0, ¢ 2 0. (31)

If we let r(t) = exp(—t), ¢(z) = @, p(t) = exp(t?) and f(t,z) = zexp(t* + z?), then
it is easy to see that
f(t,2) 2 p(t)d(x), = #0,t >0,

0o
——dt = +00,
/0. (t)

and
0
/ p(t)dt = +oco.
o

In view of Theorem 1, every solution of (31) oscillates.

Received: October 2003. Revised: January 2004.
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