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First order delay differentiaJ equations with piecewise constant arguments were 
initiated by Cooke and Wiener [1] and Shah and Wiener {2J. As mentioned in jl-6J, the 
strong interest in such equations is motivated by the fact that they representa hybrid 
of continuous and discrete dynamical systems and combine the properties of both 
differential and difference equations. The oscillatory and nonoscillatory properties of 
first arder delay differential equations with piecewise constant arguments have been 
t he subject of many investigations (see, e.g. [l-15]), while those of higher arder 
equations are relatively scarce. 

However, there are reasons for studying higher arder equations with pie<:ewise 
constant arguments. Indeed, as mentioned in [10], a potential application of these 
equations is in the stabilization of hybrid control systems with feedback delay, where a 
hybrid system is one with a continuous plant and with a discrete (sampled) controller. 
As an example, suppose a moving particle with time variable ma.ss r(t) is subjected 
to a restoring controller -<P(x[t]) which acts at sampled time [t). Then the Newton's 
second law asserts that 

(r(t)x'(t))' = -~(x[t]). 

Since this equation is 'similar ' to the harmonic oscillator equation 

(r(t)x'(t))' + .x(t) =O, 

we expect the well known oscillatory behavior of t he later equation may also be found 
in the former equation, provided appropriate conditions on r(t) and / (x) a.re imposed. 

In this paper we study a slightly more general second-order delay differential 
equations with piecewise constant argument 

(r (t) x' (t))' + J (t, x ([t])) = O, t 2'. O, (! ) 

where r (t) is positive and continuous on [O, oo), J (t, x) is continuous on IO, +oo) x 
(-oo, +oo) such t bat x/ (t, x) > O for t ~ O and x :j:. O, and [-] is the greatest-integer 
function. Two oscillation theorems for (1) will be obtained . 

We will a lso assume the following property for /: there exist functions p (t ) and 
l/>(x) such that p(t) is continuous and nonnegative on fO,oo). l/>(x) is continuously 
differentiable and nondecreMing on (-oo, +oo), x<P (x) > O for x :¡. O, and 

/(t,x) 2'. p(t)~(x) , x#O,t <: O. 

Note that when tJ>(x) = x a.nd p(t) = K. > O, the condition that /(t , x) = ,..,x is just 
the Hooke's restoring force. 

By a solution of (1) we mean a funct ion x (t) which is defined on [O, +oo) and which 
satisfies the condition (i) x1 (t) is continuous on ¡o, oo); (ii) r (t) x' (t) is differentiable 
at each point t E fO, oo), with the possible except ion of the points [t] E (O, oo) where 
one-sided derivatives exist ; and (iii) substitution of x(t) into Eq. {l ) leads to an 
identity on each interval [n, n + 1) C !O, +oo) with integral endpoints. 

As is customary, a nont rivial solution x(t) of (1) is said to be eventually positive 
(evcntually negative) if thcre is some T > O such that x(t) > O (respectively x(t) < O) 
for t ~ T ; and x(t) is snid to be oscillatory if it is neither eventuaUy positive nor 
eventually ncgative. 
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Lemmn 1 Let x (t ) be a solution of {1) such that there is sorne T 2 O and x (t) >O 
/or t ?_ T. 1/ 

r~ i 
Ío ;:(V)d11 = +oo, (2) 

then x ' (t) 2 O for t 2 k, where k is any integer 2 T . 

Proof. Suppose to the contrary that there exists sorne integer j 2 T such that 
x'{j) < O. Let x'(j) = - ó where ó > O. In view of (1), far t E [j+i-1,j+i), i = 1, 2, .. ., 
wc have 

(r (t) x ' (t))' = - / (t, (x [ti)) S - p(t) f (x ([ti)) S O. 

Menee, r (t) x' (t) is nonincrea.sing in (j + i - l , j + i). So, 

a11CI 

, . r(j) , . r(j) 
x (J + !) S r(j + l)•(J) = - r(j+ l) ó < 0, 

x'(j + 2) S r((J + l )) x' (j + 1) < O. 
r J + 2 

lt is easy to show t,J1at , for any positive integer i, 

x'(j + i ) S ,.(j(+ i ~) !) x'(j + i - !) < O. 
r J + i 

Since r (t) x' (t) is monotonic nonincreasing in [j , j + 1), 

x' (t) S ~Yii•'(j), l E [j,j + ! ). 

lntcgrating the above inequality, wc have 

!' dv 
x (t ) S x (j) + r(j) x'( j ) J ;:-¡;;) l E [j, j + 1). 

Let t -+ (j + IJ- , we get 

x(j + 1) S x(j) + r(j)x ' (j) t+' r ~:) . 

so that !j+I dv 
x (j + 1) S x(j) - ór(j) ' r (v)° 

Repeating the same argument leacls to 

!i+2 d 
x(j + 2) S x (j + !) + r(j + l)x'(j + !) _(u). 

J + I r U 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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By (4) , (8) and (9), we see that 

r(j) ¡i+2 dv 
x(j + 2) :S x(j + 1) + r(j + 1) r(j + l) x'(j) j+l ;:-¡;;¡ 

Ji+2 dv 
x(j + 1) - ór(j) J+• r (v) 

{;+1 dv . { ;+2 dv 
:S x(j) - ór(j ) J; r (v) - ór(¡) l;+• ;:-¡;;¡ 

( ;+2 dv 
x(j ) - ór(j ) J; ;:-¡;;¡· 

By induction , for any positive integer i, we have 

r j+i dv 
x(j + i) :S x (j ) - ór(j ) J; ;:-¡;;j' (10) 

which is contrary to the assumption that x (t ) > O for t 2:: T , since by taking i ~ 001 

the right hand side tends to - oo in view of (2). Therefore, x' (k) 2:: O for any integcr 
k 2:: T . Because r (t) x' (t ) is nonincreasing in [k, k + 1), we have 

, ( ) r (k + 1) x ' (k + 1) 0 [k k I) 
X t 2:: r (t ) 2:: , t E , + . 

Since x' (t) is cont inuous on [O, oo) , it is clear that x 1 (t) 2:: O for t 2:: k. The proof is 
complete. • 

T h e o r e m l. Suppose (2) holds. Suppose further that 

r+oo 
Í o p (v ) dv = +oo. (11 ) 

Tllen euery sofotion o/ (1) is oscillatory. 
Pro of. Suppose t.o t he contrary that (1) has a nonoscillatory solution x (t). Without 
loss of generality, we may assmne that x (t) >O for t ~ O. By Lemma l , x' (t) ~O for 
t ~ O. Let 

r (t) x' (t) 
u (t) = 1 (x([t]) ) · (12) 

T hen u (t ) ~ O for t ~ O and u (k- ) ~ O for k = 1, 2, .. . In view of (1), we see that 

, f (t, x (k- !)) 
u (t) = - 1 (x(k- l )) :S -p (t), t E [k - 1, k ). (13) 

Noting t hat x(,6 (x) > O for x f:. O and Lhat <P (x ) is nondecreasing, 

r (k) x' (k) r (k) x' (k) _ 
u(k) = 1(x (k)) :S ~ (x (k- l}) =" (k ) · (14) 
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lntegrating ( 13), we have 

u(t)- u (k - 1)$- /.1 p (v)dv, t E[k - 1,k). ,_, (15) 

Lct t --+ k - , we gel. 

u(k- ) - u (k- 1)$- J.' p(v)dv. ·-· (16) 

In vicw of (1<1) and (16), 

u(r) - u(O) u(2- )- u( l )+u( l )-u(O) $ u(r) - u(l )+u (l - ) - u (O) 

$ -!2
p (u)dv- fo 1

p{v)dv =- 1
2

p(v)dv. 

l)y induction, far any positive integer k, wc have 

u (k- ) - u (O) $ - { p (v)dv, (17) 

whirh is contrarv to the fact t hat 1j(k- ) ~ O far k = 1. 2, ... , since by letti ng k 1cnd 
to oo. thc right hand side tends to - oo in view of (l i ). The proof is complete. • 

T hcorem 2 S uppose (2) holds. S1tp¡1ose further that 

¡+00 dw ¡-00 dw 
JH </>(w) < +oo, -~ 4>(w) < +oo (18) 

Jor some t > O, and 

J.+x /.+oo ds l.+00 

p(v)dv < +oo, -() p(v)dv = +oo. 
o o r s f•]+t 

(19) 

7'/ien euery .rnlution o/{!) 1s oscillatory. 

P roof. Suppose to t he contrary tha t (1) has a nonoscillatory solution x (t) W it.hout 
loss gcncrality, we may a.ssume t.ha.t x (t) > O far t 2:'. O. Lemma 1 shows that x1 (t.) ~ O 
far t ~ O. So . .c(t) is nondecreasing on [O,+oo). In view of (1), for J,· = 1,2, .. , we 
h;,,ve 

(•· (t)z'(t)J'=-/(t,x(k - 1))$-p(t),P(x(k-1)), tE[k- 1,k). (20) 

Menee 

r(l)x'(t) - r (k - l)x'(k- 1) $-.P (x(k-l)) J.' p(v)dv, t E[k- 1,k). (21) 
k-> 
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Let t -+ k-, we have 

r (t)x' (t) - r (k - l) x' (k - ! ) s -q\(x (k - 1)) r' p (u) du. (22) 
lk-1 

From the above inequality, we can see that 

1 ¡• r W x'(k-1 )2: -(k )q\(x(k - 1)) p(v)dv+-(k l)x'(k) 
r · - 1 A: - I r -

k = 1,2, .. (23) 

lntegrating (20) from s to q, we have 

r (q) x' (q) - r (s ) x' (s) S -q\ (x (k - 1)) J.' p(u) du, (24) 

where k - l $ s < q < k. Let q -+ k-, we get 

r (k) x' (k) - r (s) x' (s) S -q\(x (k - 1)) [ p(u)du, s E [k - l ,k). (25) 

Noting that x' (t) ;:: O for t ;:: O and xq\ (x) > O for x # O, by (23) and (25), for 
s E lk- 1, k) we have 

1 J.' r (k) x' (s) 2: r (s) q\ (x (k - 1)) • p(u) du + ;:-¡s¡x' (k) 

2: r (k) x' (k) 
r(s) 

;:: ~¡:¡ (rik) q\(x(k)) t' p(v) dv+ r~(;/)x'(k+ 1)) 
1 ¡ k+I r (k + 1) 

;:: ;:-¡s¡q\ (x (k)) ¡ , p (v) dv+-;:-¡;¡-x'(k+I). 

From {23) and the above inequality, we may prove by induction that for any posili\·e 

integer and s E lk- l , k), 

1 ( ¡•+• ¡•+• - () q\(x(k)) p (v) dv +q\ (x(k + 1)) p(u)du 
r s k k+ l 

Lk+n+I ) 
+ ... +q\(x(k +n)) p (u) du . 

.l:+n 

(26) 

ince i;>(z) 1s nondecreasing, for any positive integer and s E !k - 1, k), we have 

x' (.9) 1 ¡.1:+11+1 1 ¡•+n+i 
:¡---( ( )) <! -() p(v)dv = - () p(v)du. 
"'x s r s .1: r s l•)+I 

(27) 
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Lct n --+ +001 yields 

~ > __2-.1+= p(v)dv s E [k- l , k). 
~ (x (s)) - r (s) l•l+l ' 

(28) 

Integrating the above inequality from k - 1 to k, we have 

r' ..'!!...1+=p(v)dv < r' ~ds =J.*' ~. (29) 
},_, r(s) l•(+i - } , _, ~(x(s)) •(>-!) ~(w) 

By (29), for any positive integer n, 

1" ds 1+= - p(v)dv 
o r{s) [•]+1 

"1' d 1+= L ___!_ p(v)dv 
k = t i. - 1 r(s) [•]+i 

" /.:z:(k) dw /.:r;(n) dw :::; E o:(k-1) tJi(w) = o:(O) tP(w) 

!.+<X> dw 

$ •(O) ~(w)' (30) 

which is contrary Lo the conditions (18) and (19) . 
complete. 

The proof of T heorem 2 is 

• 
As an example, consider tihe cquation 

(exp(- t )x'(t))' + x([tj)exp (t' + (x[tJl') =O, t 2'. O. (31) 

(f we (et r(t ) = exp(- t) , ~(x) = x, p(t) = exp(t2 ) and f(t , x) = xexp(t2 + x2 ) , then 
it is easy to see that 

f (t, x) 2'. p(t)~(x), x #O, t 2'. O, 

r= 1 
lo r(t) dt = +oo, 

ond 

1 = p(t)dt = +oo. 

!n view oí Theorem 1, every soluti0n of (31) osdllates. 

Recei ved: October 2003. Revised: January 2004. 
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