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ABSTRACT

Suppose that —00 < a < b < 00, @ < uin < Uzn < - < Unp < b, and a <

Utn € Uap € ++ € Unp < b, n > 1. We simplify and strenghthen Weyl'’s definition

of asymptotic equal distribution of U = {{u:n }i= .).,>| and V = {{vin}o1}n>1
by showing that the followi are equi

(1) limpooo 2 30, (F(uin) — F(v.,.)) =0 for all F € C[a, b).
(i) limpoyoo 5 Poiey [tin = vi
(iii) limpoco £ S0 \F(um) - F(u,,.)| =0 for all F € Cla, 8].

RESUMEN
Suponemos que ~o0 < @ < b < 00, 8 £ uln < uzn < -+ < Unn < b,

ya < vin Svap £ -0 € vpp £ b, n > 1. Simplificamos y fortalecemos la

definicién de Weyl de la distribucién de igualdad asmténca de U = {{uin}e1}n>1

y V= {{vin}i=1}n21 do que las sigui son equivalentes:
(i) im0 & 30, (F(uin) ~ p(«." ) = 0 para todo F € Cla,b].
(i) limnoeo & 20, [tin = vin] =

() 0 Tl A G F(u.,,)\ =0 para todo F € Cla,b).
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1 Introduction
The following definition is due to H. Weyl (1, p. 62].
Definition 1.1 Suppose that —oco < a < b < o0,
{uin}e; C[a,b], and {vin}i, C[a,b], n>1.

Then U = {{uin}i1}n>1 and V. = {{vin}; }n>1 are asymptotically equally dis-
tributed if

Jim * g(F(uan) ~ F(v)) =0, FeClab].

We present a simple 'y and sufficient condition for asymptotic equal dis-

tribution and point out that a stronger conclusion is implicit in Definition 1.1.
Without loss of generality, we may assume that

a<uin Supp < SUpp b, a< U KU < S <b, n21 (1)

Theorem 1.2 If (1) holds then the following assertions are equivalent:

Jim 2 3 (Fuin) = Fun) =0, F € Clt @)
Jim 'l—l ; [in = vin| = 0; @)
i, D IF(un) = Flowl =0, F € Clat] 0

Obviously, (4) implies (2). The proof that (3) implies (4) (Section 2) is straight-
forward. Our main effort is devoted to showing that (2) implies (3).

Theorem 1.2 is a special case of more general results in [4] concerning asymptotic
relationships b the ei | or singular values of two infinite sequences of
matrices {A,}52, and {B,}32, related in some way that it is not necessary to specify
here. However, [4] is quite technical and of interest mainly to the linear algebra
community. We think it is worthwhile to present Theorem 1.2 in this expository
article addressed to a larger audience.

Given Theorem 1.2, we suggest replacing Definition 1.1 by the following simpler
definition while bearing in mind that (3) implies (4).

Definition 1.3 U = {{uin},}n>1 and V = {{vin}/L, }n>1 are asymptotically
equally distributed if (1) holds and

o ks
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2 Proof that (3) implies (4)
Suppose that F' € C[a,b] and ¢ > 0. By the Weierstrass approximation theorem,
there is a polynomial P such that
|F(z) - P(z)| <e€/2, a<z<h
By the triangle inequality,
|F(tin) = F(vin)| < |F(uin) = P(uin)| + [P(uin) = P(vin)|
+1P(vin) = F(vin)}
< |P(uin) = P(vin)| + €. (5)

Let M = maxa<z<p |P'(z)|. By the mean value theorem,
|P(uin) = P(vin)| < Mttin = vin-
This and (5) imply that

i
IF(uin) = F(vin)| < € 7 3 [tin = vin.

1 i=1

M

From this and (3),

g 1
lim sup - gj |F(uin) = F(vin)] < &

Since ¢ is arbitrary, this implies (4).

3 Four Required Lemmas

We need the following lemmas to show that (2) implies (3).

Lemma 3.1 (Helly’s First Theorem) Let {¢,,}35_, be an infinite sequence of func-
tions on [a,b] and suppose that there is a finite number K such that

[6m(@)| <K, a<z<b, ond VP(¢n) <K, m>1

Then there is a subsequence of {¢m}oo—, that converges at every point of [a,b] to a
function of bounded variation on (a,b].

Lemma 3.2 (Helly’s Second Theorem) Let {¢m}m—; be an infinite sequence of
functions on [a,b] such that V2 (¢m) < K < 00, m 2 1, and

lim ¢m(z) = ¢(z), a<z<b
m—+00
Then V2(¢) < K and

b
mxgnm/bp(z)dqsm(z) =/ F(z)d¢(z), F € Cla,b].

T
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Lemma 3.3 Suppose that ¢(a) = ¢(b) = 0, ¢ is of bounded variation on [a,b], and
b
/ F(z)d¢(z) =0, F € Cla,b).
a

Then ¢(z) = 0 at all points of continuity of ¢. Thus, ¢(z) # 0 for at most countably
many values of .

For proofs of Lemmas 3.1-3.3, see [2, p. 222], [2, p. 233], and [3, p. 111).
The following lemma is also known 5, p. 108], but we include its short proof for

convenience.

Lemma 3.4 Suppose that 23 < @3 < -+ < Tp and Y1 < Yo < -+ < yy,. Let
{1,82,...£,} be a permutation of {1,2,...,n} and define

n

Q1 6,..6a) = Y (@i —v2.)*

i=1

Then
Qb b, .., t) > Q(1,2,...,n). (6)

Proof. The proof is by induction. Let P, be the stated proposition. P is trivial.
Suppose that n > 1 and P,_; is true. If ¢, = n, P,_, implies P,. If £, = s <n,
choose r so that ¢, = n, and define
¢ ifi#randi#n,
E=R<Cs it =n)
Vi =—(n"
Then

Qs 5,1 2) = Q€ b, -, &) = (Tn —¥s)* + (& —¥n)”
— (20 —¥n)* = (@r —9s)°

= 2(zn = 2r)(¥n —¥s) 2 0. (@

Since ¢, = n, P,_; implies that
QG 6, 6) 2Q(1,2,...,n).

Therefore (7) implies (6), which completes the induction.

4 Proof that (2) implies (3)

We will show that if (2) holds then

L1
Jim ~ g;(u.,. —vim)? =0, ®)
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From Schwarz’s inequality,

1/2
—Zlum—um|<( Z(u.-n—u.n)’) :

i=1

o (8) implies (3).
The proof of (8) is by contradiction. If (8) is false, there is an ¢; > 0 and an
increasing sequence {£;}32, of positive integers such that

o
Z tig, —vie,)* 2 €0, k21 (9)

However, we will show that if (2) holds, then any increasing sequence {€;}72, of
positive integers has a subsequence {nj}?2, such that

ny

B 2 3 (i, = vina)? =0, (10)
k i=1

k=ro0

contradicting (9).
If S is a set, let card S be the cardinality of S. For a < z < b, let

vp(z; U) = card {ilu,,, <a} and wn(z; V) = card{i|vin < a}. (11)

Define
)= {"n(z;U)/") a<sz<b, 12)
Ly o'=b)
and
() = {lllu(z;v)/n, a E z <b, (13)
H i =1bs
If I € C[a, b, then
1S F(uin) = / F(z) dpn (a3 U) (14)
s
and
. b
LY Plun) = [ F@)doa(aiV) (15)
= a

[2, p. 231]. The sequences {pn(+; U)}52, and {pa(; V)}2L, both satisfy the hypothe-
ses of Lemma 3.1. Therefore, there is a subsequence {m;}32, of {£x}72, such that

Yz U):= kl_l:gq Pm, (z;U) (16)
exists for a < z < b, and there is a subsequence {n;}72, of {m;}72, such that

(@ V) i= lim pn, (@ V) (17)

T
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exists for a < z < b. Clearly, (16) implies that
y(z; U) = kllrgopm,(mau). a<z<bh.
From (11)—(13), 7(-; U) and 7(-; V) are nondecreasing,
7(a;U) = 7(a; V) =0, and 7(b;U) =7(b;V) =1.

Therefore, (17), (18), and Lemma 3.2 imply that
b b
tim [ F(&) dons (0) = [ Feynev), Fecps,
k=00 Jq A

and

b b
Jim [P @) don, (5 V) = [ @), Peciy.
Now (2), (14), (15) (20), and (21) imply that
b b
JRCECIE [ FoaEv), Fec,
This, (19), and Lemma 3.3 with ¢ = 7(; U) — 7(:; V) imply that
7(2;U) = (z; V)

except for at most countably many values of z in [a, b].
If € > 0, choose ag, ay, ..., an, so that

a=g <@ <::<am=bh,

a;—a;1<Ve 1<j<m,

and
7(a;;U0) = 9(a;; V), 1<j<m.
Let
i =laj-1,85), 1<j<m-1, I = [@m-1,0m].
Define
Vn, (a1;U), i=1,
Ujx = ""r«(aJ?U)""m.(ﬂJ-l;U), 2SI
"k = Vn, (am—y; U), =
and ¢
g Vny (a1; V), i
o V"'(aj;v)_""n(“zﬂ;v), 2<j<m-1,
% =V (@m—y; V), =

(18)

(19)

(20)

(21)

(22)

(23)
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Then
U = ca.rd{i]u;,.,, €I}, Vj=card {i|vm. €L},
and
e D=l 1<j<m, (24)
kooo  my
from (12), (13), (17), (18), and (23). Since
min(Uys, V) = 2ot Vor = e = Varl,
and
m m
Zujk =ZV;'A- = g,
=1 =1
it follows that
m
" min(Uje, Vi) = ng = 1%, (25)
=1
where
1
e = §Z |Usk = Vil
i=1
Trom (24),
T
A}T;o o 0. (26)

From (22) and (25), there is a permutation 7,, of {1,...,n;} such that

2
(win, = Vri)m)” <€
for ng — ry values of i; hence

i
Z(“m.. = Uy (iyo)? < ke + i (b — @)
i=1

Now Lemma 3.4 implies that

ny

D (ttim, = viny)? < e+ (b= a)2.

i=1

Hence, from (26),
" 1< 2
limsup = (uin, — vin,)* < &

k=voo Tk (=

Since ¢ is arbitrary, this implies (10), which completes the proof.
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