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ABSTRACT
system of Fredholm integral

foll.

‘We consider the

u.(t):/lg.(t,a)R(s,un(s).u:(s),--- Jun(s))ds, t€[0,1], 1<i<n.
L

Criteria for the exi of three tant-si lutions of the system will be
presented. The generality of the results obtmned is illustrated through applica-
tions to several well known boundary value problems. We also consider a similar
problem on the half-line [0, c0)

)= [ o) P, us(o)ua(s) un(s)ds, € [000), 1S i< m,
;
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RESUMEN

sistema de de Fredholm.

Consideramos el si

ui(t) = /ol gi(t, s)Pi(s,u1(s), u2(s), - ,un(s))ds, t€[0,1], 1<i<n.

Se presentarén criterios para la de tres soluci de signo
del sistema. La generalidad de los resultados obtenidos es ilustrada a través de la
id Ademis, i

aplicacién de varios problemas de limite bien
un problema similar en la recta real positiva

) = [ 0t )P ur(s), ), un(s)ds, € 0,00), 1< i <.

Constant-sign solutions, system of Fredholm
integral equations, boundary value problems.

Math. Subj. Class.: 45B05, 45G15, 45M20

Key words and phrases:

1 Introduction
In this paper we shall consider two systems of Fredholm integral equations, one is on

a finite interval
ui(t) =/1g.(t,s)i’.(s,ux(s),uz(s),~~~ yUn(s))ds, t€[0,1), 1<i<n (L1)
o

while the other is on the half-line [0, c0)
o0
w®) = [ 98P ur(s),ua(s) un(ods, 1€ [0,00), 1<i<n (1)
0

A solution u = (u1,uz, "+, un) of (1.1) will be sought in (C[0, 1)) = C[0, 1] x---x
C[0,1] (n times), whereas a solution u = (u;,uz,- - ,u,) of (1.2) will be sought in a
subset of (BC[0,00))™ where lim;_,o u;(t) exists for each 1 < i < n. Here BC|0, %)
denotes the space of fucntions that are bounded and continuous on [0, c0). In both
cases, we say that u is a solution of constant sign if for each 1 < i < n, we have
;u; > 0 on [0,1] for (1.1), or on [0, 00) for (1.2), where 6; € {1, —1} is fixed.

For each of (1.1) and (1.2), we shall establish criteria so that the system has at

least three constant-sign solutions.
Recently, Agarwal et al [1, 2] have investigated the existence of positive solutions
of the nonlinear Fredholm integral equation

1
u(t) = /0 o(t,5)f(y())ds + h(t), ¢ € [0,1]. (13)

—  ’
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Particular cases of this equation are also considered in [15, 16, 20]. We remark that
a generalization of (1.3) to a system with existence criteria for single and multiple
constant-sign solutions has recently been presented in [4, 5. The main tool employed
has been Krasnosel’skii’s fixed point theorem. In the present work, besides extend-
ing (1.3) to a system, we will be using other fixed point theorems, namely, that of
Leggett and Williams [19] as well as Avery [9], to derive criteria for the existence of
triple constant-sign solutions. Note that the term A(t) in (1.3) has been excluded as
we wish to apply the results to h boundary value probl (in which case
h(t) = 0), which have received almost all the attention in the recent literature (see the
monographs [3, 6] and the references cited therein). However, it is not difficult to de-
velop parallel results with the inclusion of h(t) or even h;(t), 1 < i < n. Many papers
have discussed triple solutions of boundary value problems [7,8,10-14,23,25,27,28,30~
32). Our problems (1.1), (1.2) generalize almost all the work in the literature to date
as we are considering systems as well as more general nonlinear terms. Moreover, our
present approach is not only generic, but also improves, corrects and completes the
arguments in many papers in the literature.

The outline of the paper is as follows. In Section 2, we shall state the relevant
fixed point theorems of Leggett and Williams [19] and Avery [9]. Our main results for
(1.1) are presented in Section 3, whose usefulness is illustrated in Section 4 when we
apply them to several well known boundary value problems. Finally, parallel results
are established for system (1.2) in Section 5.

2 Preliminaries

Definition 2.1. Let C (C B) be a nonempty closed convex set. We say that C'is a
cone provided the f i are

(a) fu € C and a > 0, then au € C;
(b) fu € C and —u € C, then u=0.

The cone C induces an ordering < on B. For y, 2 € B, we write y < z if and only if
z-y€C.Ify,z € B withy < z, we let (y,2) denote the closed order interval given
by

(n2)={ueB|y<u<z}

Definition 2.2. Let C' (C B) be a cone. A map v is a nonnegative continuous
concave functional on C if the following conditions are satisfied:

(a) ¥ :C = [0,00) is continuous;

(b) ¥(ty+ (1 -1t)z) > tyh(y) + (1 —t)y(z) forally,z € Cand 0 < t < 1.

Definition 2.3. Let C (C B) bea cone A map ﬂ ns N nonnegatwe continuous convex
functional on C if the following are

Ve ot
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(a) B:C — [0,00) is continuous;
(b) Blty + (1 —t)z) < tB(y) + (1 —t)B(z) forally,z€ Cand 0< t < 1.
Let 7,8, © be i i convex fu Is on C and a, 9 be nonneg-

ative continuous concave functionals on C. For nonnegative numbers w;, 1 < ; <3,
we shall introduce the following notations:

C(wy) ={v € C | |lull <w},

C(h, w1, w2) = {u € C | P(u) > w; and [ju|| < wy},

P(y,w1) = {u € C | y(u) <w},

P(y,e,wy,w) = {u € C | a(u) > w; and 7(u) < w,},

Q(v, 8, w1, w2) = {u € C | B(u) < wy and y(u) < w,},
P(7,0,a,w1,w2,w3) = {u € C | a(u) > wy, O(u) < wy and 7(u) < ws},
Q. 8, %, wy, w2, ws) = {u € C | P(u) > w1, Bu) < wy and y(u) < w3}.

The following fixed point theorems are needed later. The first is usually called
Leggett- Williams’ fized point theorem, and the second is known as the five-functional

fized point theorem.

Theorem 2. 1 [19] Let C (C B) be a cone, ami wy > 0 be given. Assume that ¢
is a concave functional on C' such that ¢(u) < |]u|| for all
u € C(ws), and let 5 : Clws) —» C(wy) be a 7 and P
operator. Suppose that there ezist numbers wy, w2, ws where 0 < wy < wp < w3 < Wy
such that

(a) {u € C(p, wa, ws) | Y(u) > w2} # 0, and P(Su) > w; for all u € C(P, w2, ws);

(b) lISull < wy for all u € Clwn);
(c) Y(Su) > w; for all u € C(, w2, wa) with [|Sul| > ws.
Then, S has (at least) three fized points u*, u® and u® in C(ws). Furthermore, we

have
ul € C(wy), u?€ {ue C(, w2, ws) | ¥(u) > wz} and
u® € C(wi)\ (C(9, w2, ws) UC(wy)) . (2.1)
Theorem 2.2. [9] Let C (C B) be a cone. Assume that there ezist positive num-
bers ws, M, convez fi Is 7,8, © on C, and nonnegative

continuous concave functionals &,y on C, with

a(u) <Bu)  and  |lul| < My(u)

R
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for all w € P(y,ws). Let S : P(y,ws) — P(y,ws) be a continuous and completely
continuous operator. Suppose that there exist nonnegative numbers w;, 1 < i < 4
with 0 < wy < wy such that

(a) {u € P(y,0,a,w3,ws,ws) | a(u) > ws} # 0, and a(Su) > wy for all
u € P(7,0, w5, wa, ws);

(b) {u € Q(7,B,¥,wr,wa,ws) | B(u) < wa} # 0, and B(Su) < wy for all
u € Q(v, 8, %, w1, wa, ws);

() a(Su) > w; for all u € P(y, @, w3, ws) with O(Su) > wy;
(d) B(Su) < wy for all u € Q(v, B, wz, ws) with Y(Su) < wy.

Then, S has (at least) three fized points u*, u® and u® in P(y,ws). Furthermore, we
have

Bul) <wy, a(u?) >ws, and P(u’) >wr with a(u®) < ws. (2:2)

Remark 2.1. We note that the five-functional fixed point theorem is more general
than Leggett-Williams’ fixed point theorem. Indeed, in Theorem 2.2 if we replace w;
by w;—y, 2 <1 < 5, and choose the functionals y = © = 8 = || - || and « = 1), then
we obtain Theorem 2.1.

We also require the definition of a L?-Carathéodory function.

Definition 2.4. [22] A function P : [0,1] x R" — R is a L% Carathéodory function
if the following conditions hold:

(a) The map t — P(t,u) is measurable for all u € R".
(b) The map u — P(t,u) is continuous for almost all ¢ € [0, 1].

(c) For any r > 0, there exists p, € L9(0, 1] such that |u| < r implies that |P(t, u)| <
1 (t) for almost all t € [0,1].

3 Triple solutions of (1.1)

Throughout we shall denote u = (uy,ug, -+ ,u,). Let the Banach space

B= {u u € (C[o, 1])"} (3.1)

be equipped with norm
= i) = 3.2
lull = gmax oup b= max fudlo (3:2)

Ve N
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where we let |u;|o = supic(o,q) |ui(t)], 1 < i < n. Moreover, for fixed 6; € {1, -1}, 1 <
1 < n, define

k:{uEB

Biu; > 0, lsiSn}

and
K={u€f{

6;u; > 0 for some j € {1,2,--- ,n)} =K\{0}.

For the purpose of clarity, we shall list the conditions that are needed later. Note
that in these conditions 6; € {1, -1}, 1 <14 < n are fixed.

(C1) Let integers p,q be such that 1< p<g<ocoand 1+1 =1 Foreach1 <i<n,
assume that P; : [0,1] x R" — R is a L?-Carathéodory function, and

94(s) = gi(t,8) >0, t€[0,1], a.e. s € [0,1],
g(s) € L[0,1], t € [0,1],

the map ¢ — g! is continuous from [0, 1] to L?(0, 1].

(C2) For each 1 < i < n, there exists a constant 0 < M; < 1, a function H € L?[0,1],
and an interval [a, ] C [0, 1] such that

9i(t,s) > M;H(s) >0, tE€ [a,b], a.e. s € [0,1].

(C3) Foreach1<i<n,
9it,s) < H(s), t€[0,1], ae. s €[0,1].

(C4) For each 1 < i < n, assume that
60;Pi(t,u) >0, u€ K, ae.t€ (0,1)and 6;Pi(t,u) >0, ue K, ae t€(01).
(C5) There exist continuous functions f, b and a;, 1 < i < n with f : R" = [0,00)
and b,a; : (0,1) = [0, 00) such that for each 1 <i < n,

ai(t) < % <b(t), ueK, ae. te(0,1)

(C6) For each 1 <1 < n, there exists a number 0 < p; < 1 such that

ai(t) > pib(t), a.e. t € (0,1).

To begin the discussion, let the operator S : B — B be defined by

Su(t) = (Sua(t), Sua(t),- - , Sun(t)), t € [0,1] (3.3)
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where .
Su.(t)=/ 9i(t,8)Pi(s,u(s))ds, t€[0,1], 1<i<n. (3.4)
0

Clearly, a fixed point of the operator S is a solution of the system (1.1).
Next, we define a cone in B as

C:{ueB for each 1 < i < n, Giu;(t) >0 for t € [0,1],

and min f;u,(t) > M.p-l\l.|o} (3.5)
t€[a,b)

where M, and p; are defined in (C2) and (C6) respectively. Note that C' C K. A fixed
point of S obtained in C' or K will be a constant-sign solution of the system (1.1).

Remark 3.1. Instead of the cone C defined in (3.5), we can also use the cone
C" (C C) given by

F':{thB

for each 1 < i < n, B;u,(t) > 0 for t € [0,1],

and_ min B (0) 2 M,p.nun}.
The arguments that follow will be similar.

If (C1), (C4) and (C5) hold, then it is clear from (3.4) that for u € K,

i ' (1 s)au(6) u(e))ds < 6,5t < / " (6, b(6) ule))ds, L€ (0,1, 1< <.
0 0
(3.6)

Lemma 3.1. Let (C1) hold. Then, the operator S is continuous and completely
continuous.

Proof. As in [22, Theorem 4.2.2), (C1) ensures that S is continuons and completely
continuous. n

Lemma 3.2. Let (C1)-(C6) hold. Then, the operator S maps C into itself.
Proof. Let u € C. From (3.6) we have for t € [0,1] and 1 <i < n,

0i5ut) > [D " g1t s)au(s) F(u(s))ds 2 0. (37)

Next, using (3.6) and (C3) gives for t € [0,1] and 1 <i < n,

1 1
|Su‘(f)l=9,5u.(t)5/0 y-(M)b(!)f(u(S))dSS/o H(s)b(s) f(u(s))ds.

Ve, o\
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Hence, we have
1
ISudo < [ Hbe)f(u(e))ds, 150 <. (38)
0
Indeed, this immediately gives
[ISull = max [Suifo < / H(s)b(s) f (u(s))ds (3.9)

Now, employing (3.6), (CZ), (C6) and (3.8) we find for t € [a,5] and 1 < i < n,

iSui) > /o ailts s)as(s)fu(s))ds

v

1
/D MiH(s)ai(s)f (u(s))ds

1
> [ MHGRE) (ule)as
o
> Mipi|Suilo.
This leads to
é'[’m 0;Sui(t) > M;pi|Suilo, 1 <i<n. (3.10)
Inequalities (3.7) and (3.10) imply that Su € C. [ |

For subsequent results, we define the following constants for each 1 < i < n and
fixed numbers 7; € [0,1], 1 < j < 4:

gi = sup /1ys(t-3)b(5)d5-

tel0,1) Jo

b
ry = min [ gi(¢,5)ai(s)ds,

t€E[a,b)
s
dy; = min / 9i(t, 8)ai(s)ds, (3.11)
y t€(r2,73) Jr,

T4
doi= max [ ot s,
t€[r1,74]
d3i = ‘E[ﬁ’n] [ 9i(t, s)b(s)ds +/ 9i(t, 5)b(s) ]

In view of (C3) and (C2), it is clear that for each 1 <i < n,

1 b -
< /0 H(b(s)ds,  ri> / MHEa(e)ds  and  dai < [ H(s)b(e)ds

(3.12
Lemma 3.3. Let (C1)-(C6) hold, and assume )
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(C7) for each 1 < i < n and each t € [0,1], the function g:(t,s)b(s) is nonzero on a
subset of [0,1] of positive measure.

Suppose that there exists a number d > 0 such that for 6;u; € [0,d], 1 < j <n,
Hunyn e un) < & 158 <, (319)
i

Then, L3 3y i
S(C(d)) € C(d) C Tld). (3.14)
Proof. Let u € C(d). Clearly, we have ;u; € [0,d], 1 < j < n. Applying (3.6),
(3.13) and (3.11), for each t € [0,1] and 1 < i < n we find

1

ISu(0] = 050 < [ ot )ble)(uls))ds
o

1
< sup / g,(t,s)b(s)ids
te(0,1) Jo qi
= %g-g
qi

This implies |Su;lo < d, 1 <7 < n and so ||Su|| < d. From Lemma 3.2, we al-
ready have Su € C, thus it follows that Su € C(d). The conclusion (3.14) is now
immediate. L

The next lemma is similar to Lemma 3.3 and its proof is omitted.
Lemma 3.4. Let (C1)-(C6) hold. Suppose that there ezists a number d > 0 such
that for 6;u; € [0,d], 1 <j <n,

fusun ) < 2 1<,
;

Then, i b
$(C(d)) € C(d).
Our first result makes use of Theorem 2.1.
Theorem 3.1. Let (C1)-(C7) hold, and assume

(C8) for each 1 <i < n and each t € [a,b], the function gi(t, s)ai(s) is nonzero on a
subset of [a,b] of positive measure.

Suppose that there exist numbers wy, wy, w3 with

w;
‘_2 S w3
miny <i<n Mip;

such that the following hold for each 1 <i<n:

0<w <wy <



10 R P Agarwal, D O'Regan & P J Y Wong CuBg

(P) fluy,uz, -~ ,un) < ¥ for 6ju; € [0,wy], 1<j <n;
(Q) one of the following holds:

(Q1) HmSUP|yy | jus), o [tun b0 gu.,u:;_lv n) < “‘—i for some j € {1,2,--- ,n} (j

depends on i);

(Q2) there exists a numbern (> ws) such that f(uy,uz, -+ ,up) < ﬁ for 6ju; €
[0,7), 1<j<m;

(R) flu1,uz, -~ ,un) > %2 for 6u; € [w2,ws], 1<j <n.

Then, the system (1.1) has (at least) three constant-sign solutions u*,u?,u® € C such
that

Jlu| < wi; [u?(t)] > w2, t€[abd], 1<i<m;
[l®]] > wr and min  min |u (t)] < wa. (315)
1<i<n t€fa,b)

Proof. We shall employ Theorem 2.1. First, we shall prove that condition (Q) implies
the existence of a number wy where wy > ws such that

S(C(ws)) € C(ws). (3.16)
Suppose that (Q2) holds. Then, by Lemma 3.4 we immediately have (3.16) where we

pick wy = 7. Suppose now that (Q1) is satisfied. Then, for each 1 < i < n, there exist
N;>0and ¢ < ql such that

flua,uz,- -+, un)

<€, |l luzlye-|un] > Ni (3.17)
Juuj |

Define
= max Uy, U, 0, U, 1<i<n.
Juml€l0N ] 1 <me flug,uz,-o- yun), 1< <

In view of (3.17), it is clear that for each 1 < i < n and some j(i) € {1,2,*:* ,n}, the
following holds for all (uy,ua,:+ ,u,) € R",

fluryuz,++ un) < Mi+ € Jus). (3.18)

Now, pick the number w4 so that

-1
1
w4 > max {w;, ,T&X,,M" (E- - e.) } J (3.19)
Sis i



m‘ Triple solutions of constant sign for ... 1

Let u € C(ws). For t € [0,1] and 1 < 4 < n, using (3.6), (3.18) and (3.19) gives

1Su(] = 6:Sut) < / 0i(t,9)b(6) f(u(s))ds

1
< s [ a0 b6) (M + s fus(o)as
te(0,1) Jo
1
< sup / 9i(t,8)b(s) (M; + €& wy)ds
te(0,1) Jo

= qi(Mi+ € wy)

1
< g [w,; <—~ _(‘,) + & lLu] = Wy
qi

This leads to |Suilo < ws, 1 < i < n. Hence, ||Su|| < ws and so Su € C(w4) C C(wy).
Thus, (3.16) follows immediately.
Let ¢ : C' = [0,00) be defined by

Y(u) = min 6;u;(t).

feeess t€(a,b]

Clearly, ¥ is a nonnegative continuous concave functional on C and () < [[u|| for
allue C.
We shall verify that condition (a) of Theorem 2.1 is satisfied. In fact, it is obvious
that
u(t) = (%‘(wz +wy), %‘(Wz awg)ye- gﬁ‘(wz + ws))

€ {u € C(th,w2,w3) ' W(u) > wz}

and so {u € C(, w2, ws) | Y(u) > wy} # 0. Next, let u € C(sh, w2, ws). Then,
wy < Y(u) < ||u|| < ws and hence for s € [a,b], we have

0juj(s) € [wa,ws), 1 <j <n. (3.20)

In view of (3.6), (3.20), (R) and (3.11), it follows that

P(Su) = min mm 0;(Sw;)(t) > min / gi(t, s)ai(s flu(s))ds
lE[a b]

1<i<n t€[a,b] 1<i<n

121‘_21" cgfﬂ)/‘, gi(t, s)ai(s)f (u(s))ds

b ws
>  min :rel?i!.]b]/,, 4i(t, s)ai(s) Py ds

1<i<n

v

Ti
= min —w, = w.
1<i<n 1

Therefore, we have shown that 1(Su) > w; for all u € C(¥, wa, ws)-
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Next, by Lemma 3.3 and condition (P), we have S(C(w;)) € C(w,). Hence,
condition (b) of Theorem 2.1 is fulfilled.
Finally, we shall show that condition (c) of Theorem 2.1 holds. Recall that w,

satisfies
wy

>
= minici<n Mip;

Let u € C(¢, wa, wy) with ||Sul| > ws. Using (3.6), (C2), (C6), (3.9) and (3.21), we
find

(3.21)

1
WSw) = min min 6(Su)®) > min min /“ 0i(t,9)a(s) (u(s))ds

1
> min [ MBS (u(e)ds
0

1<i<n

1
| > min /u MH(s)pib(s) (u(s))ds
> 1'5“;‘3.-Mm"||3un
>  min Mipiws > ws.

1<i<n

Hence, we have proved that 1(Su) > w, for all u € C(¥, w2, ws) with ||Sul| > ws.

It now follows from Theorem 2.1 that the system (1.1) has (at least) three constant-
sign solutions u!,u?,u® € C(ws) satisfying (2.1). It is easy to see that here (2.1)
reduces to (3.15).

We shall now employ Theorem 2.2 to give other existence criteria. In applying
Theorem 2.2 it is possible to choose the functionals and constants in many different
ways. We shall present two results to show the arguments involved. In particular the
first result is a generalization of Theorem 3.1.

Theorem 3.2. Let (C1)-(C6) hold. Assume there exist numbers 7;, 1 < j < 4 with
0<n<as<m<m<b<n<l
such that

(C9) for each 1 < i < n and each t € [r2,73), the function gi(t, s)ai(s) is nonzero on
a subset of [12, 73] of positive measure;

(C10) for each 1 <4 < n and each t € [r1,7s], the function gi(t, s)b(s) is nonzero on a
subset of [r1,74] of positive measure.

Suppose that there exist numbers w;, 2 <1 < 5 with

w;
& <wg <ws

O0<w, <wg< ——————— < =
2SS minicicn Mipi

such that the following hold for each 1 <i<n:
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(P) f(us,uz, ) < g (wa = “5828) for Gju; € [O,wal, 1< < m;

(Q) flur,ug,= -+ yun) < G2 for Oju; € [0,ws], 1< 5 <m;
(R) flur,uz, -+ un) > 3 for 6ju; € [ws,wa], 1< 5 <n.

Then, the system (1.1) has (at least) three constant-sign solutions u*,u? u® € C(ws)
such that
lul(t)| < wa, t€[m,m), 1<i<n; [u’(t)| >uws, t€[m,m), 1<i<n;

225, RO nd R, (0 O] <
(3.22)
Proof. To apply Theorem 2.2, we shall define the following functionals on C :
() = lull,
Y(u) = lr(n‘lgn g{l:nlo,u,(t)
Al = O(u) = max  max fu(t). ety

1€i€n te[n,r
alu) = ll<n|l2n lsr[mn ]0.u.(t)
First, we shall show that the operator S maps P(y,ws) into P(y,ws). Let
u € P(y,ws). Then, we have 0u; € [0,ws), 1 < j < n. Using (3.6), (Q) and (3.11),
for each ¢t € [0,1) and 1 < i < n we find
1
[Sui()] = 6:iSui(t) < / 9i(t, )b(s) f (u(s))ds

< sup g.(l s)b(:) — ds
tef0.1] /o
= % ws = ws.
G
This implies [Su|o < ws, 1 < i < n and so 7(Su) = ||Sul| £ ws. From Lemma 3.2,
we already have Su € C, thus it follows that Su € P(y,ws). Hence, we have shown
that S : P(y,ws) = P(y,ws).
Next, to see that condition (a) of Theorem 2.2 is fulfilled, we note that
u(t) = (% (ws +wa), B (ws +ws), -, B (ws + wa))

€ {u € P(7,0,a,wy, wq, ws) | alu) > ws

and so {u € P(y,0,a,ws, ws, ws) | a(u) > w3} # 0. Let u € P(7,0, a, w3, wy, ws).
Then, by definition we have a(u) > w3 and ©(u) < wy which imply

Biui(s) € [w,w4], s€[mm), 1<i<n (3.24)
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Noting (3.6), (3.24), (R) and (3.11), we obtain

a(Su) = min  min 6;(Sui)(t) > /g.(t s)ai(s) f(u(s))ds

1<i<n t€[ra,my) 1<:<n ts]v; 3]

o L;[e:.n,,,/,, s ()

s ws
mi i t,s)ai(s) — ds
15Sn elrams] /:, gilt: S)ais) dyi

L odig ¥
x‘gn-l?nr', wy = ws.
Hence, a(Su) > ws for all u € P(y, 0, a,ws, ws, ws).
We shall now verify that condition (b) of Theorem 2.2 is satisfied. Let w; be such
that 0 < w; < ws. Note that
u(t) = (%(wi+wa), B(wi+wp),-, % (wy + w2))

€ quE QB ¥, wi,wa,ws) | Blu) < w2

and so {u € Q(y,5,%, w1, wz,ws) | B(u) < wy} # 0. Let u € Q(v,5,%, w1, w2, ws).
Then, we have B(u) < wy and y(u) < ws which imply

Biui(s) € [0,w2), s € [11,74] and 6iuy(s) € [0,ws), s €[0,1], << 0.
(3.25)
In view of (3.6), (3.25), (P), (Q) and (3.11), we find

B(Su) = max max Hl(Su. (t)

1<i<n te[n,m]

IA

e té'[r:,afq/[, 9i(t: $)b(s) f (u(s))ds
QR e [/ 9i(t, $)b(s) £ (u(s))ds
T 1
+/° g'(t'S)b(S)f(“(a))d”/, 9-(‘»s)b(s)/(u(s>)45]
o ferv‘?.fq/ 9it:s)b(s) = (w2 = EL:’—) ds
S [/u g.'(l,s)b(s)ds+/v)g‘(t's)b(s)ds] %

= ax |[d i 1 wy — - = w;
= ‘!2‘9‘ 2,i & 2 5 +dl,—x = wa.

Therefore, B(Su) < w for all u € Q(v,8, ¥y wy, wy, ws).
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Next, we shall show that condition (¢) of Theorem 2.2 is met. We observe that,
by (3.6) and (C3), for u € C,

O(Su) = max  max 0(Su)(0)

max | max / au(t, 5(s) 1 (u(s))ds

[ H(s)b(s)f (u(s))ds

|<.<n l€[n 4]

[U H(s)b(s) (u(s))ds. (3:26)
Moreover, using (3.6), (C6) and (C2), we get for u € C,

a(Su) = l<|(n ‘eim"n’, 8:(Su,)(t)

[\

3 / au(t,9)au() u(s))ds

min
1€i<n LE[n

min y-(t.')p-b(s)/(u(A))da

min
1€i<n t€fab) Jo

w

2 ;'2'? M-m/ H(s)b(s) f (u(s))ds. (3.27)
Combining (3.26) and (3.27) yields

a(Su) > 12112 M;p; ©(Su), ueC. (3.28)
Let u € P(y,a,ws, ws) with ©(Su) > wy. Then, it follows from (3.28) that

a(Su) > mm M‘p‘ ©(Su) > min M;p;wq > min M, v

Mipi ——————— = w;.
1<i<n 1<i<n i miny <i<n Mipi ?

(3.29)

Thus, al(Su) > w;y for all u € P(y,a,ws, ws) with 6(Su) > w,.
Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. Let
u € Q(v,8,wa,ws) with ¥(Su) < wy. Then, we have f(u) < w; and y(u) < ws
which give (3.25). Using (3.6), (3.25), (P), (Q) and (3.11), we get as in an earlier part

pisw < max max [t e/

wydy i
max max [ "o nte) g (i - 2288) g

a2l 1 wy
+,'§‘¢5"‘,. -e?.‘.f‘l[/n 9i(t, s)b(s)ds + /’ : 9i(t, 8)b(s)ds =

1 wsdy ¢ ws| _
l?f.sin [dn.i E (wz = —q‘ ) +ds; ;] = wa.

—
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Thus, 3(Su) < w, for all u € Q(v, B, w2, ws) with Y(Su) < w;.

It now follows from Theorem 2.2 that the system (1.1) has (at least) three constant-
sign solutions u',u®,u® € P(y,ws) = C(ws) satisfying (2.2). Furthermore, (2.2)
reduces to (3.22) immediately. | |

When 3 =0, 74 =1, 72 = a and 73 = b, then

dyi =1y, d2i = qi and dz;=0. (3.30)
In this case Theorem 3.2 yields the following corollary.
Corollary 3.1. Let (C1)-(C6) hold, and assume
(C9)* for each 1 <i < n and each t € [a,b], the function gi(t, s)ai(s) is nonzero on a
subset of [a,b] of positive measure;
(C10)* for each 1 < i < n and each t € [0,1), the function g;(t,s)b(s) is nonzero on a
subset of [0, 1] of positive measure.

Suppose that there exist numbers w;, 2 <i < 5 with

w;
2 <ws <ws

0<wy <wg < ————— <
miny<icn Mipi

such that the following hold for each 1 <i<n:
(P) flur,uz, - yun) < %2 for fiu; € [0,un), 1<j<m;

(Q) flur,uz,-+,un) < 4 for Oju; € [0,ws], 1<j <n;

(R) flur,uz, - un) > %8 for Gju; € [ws,wa], 1< j <n.

Then, the system (1.1) has (at least) three constant-sign solutions u', u?, u® € C(ws)

such that
il <ws;  [ui(t)] >ws, t€[ab], 1<i<n;
(3:31)

min [u3()] < ws-

1] > wy and min
1<i<n t€fa,b]

Remark 3.2. Corollary 3.1 is actually Theorem 3.1.
The next result is another application of Theorem 2.2.
Theorem 3.3. Let (C1)-(C6) hold. Assume there ezist numbers 75, 1 < j < 4 with
a<N<n<T<1T<b
such that (C9) and (C10) hold. Suppose that there ezist numbers w;, 1 <i <5 with

ws
Wy < ws

0<w; Swp: min Mip; <wy <wg < ———— <
1 = ien P & 2 miny <;<n Mip; =

such that the following hold for each 1 <i<n:
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(P) fluy,ua, -+ up) < a—(wz ""d“)/or O5u; € [wy,wa), 1 <5<y
(Q) flur,ua, ++ yun) S ¥ for 6ju; € [0,ws), 1 <5 <n;
(R) f(ur,ua, =+ up) > & for Oju; € [w,wa], 1< <n.

Then, the system (1.1) has (at least) three constant-sign solutions u*,u? u® € C(ws)
such that

lul ()] <wa, t€[n,m), 1<i<n; Iu‘(l)l Swy, t€[m,m), 1<isn
t d i
l\;;(xn le‘[':u |ud (8)] > wa an |<-<n 'elll;"m,‘ |ui (8)] < ws.
(3.32)

Proof. To apply Theorem 2.2, we shall define the following functionals on C' :

() = [full,

V)= i, g el

AR i 0] (333)
G = |<:l<n ‘El[nm Baui(®),

O(u) = oo N l9-u-(t)

First, using (Q), as in the proof of Theorem 3.2, we can show that S : P(y, ws) —
Py, ws).

Next, to see that condition (a) of Theorem 2.2 is fulfilled, we use (R) and a similar
argument as in the proof of Theorem 3.2.

We shall now verify that condition (b) of Theorem 2.2 is satisfied. Note that

u(t) = (% (w +wa), Flwy +wa), -, G (wr + wa))
€ {u € Q(m: 8, ¥, wy, wa, ws) | Bu) < wy
and 50 {u € Q(y,8, Y, w1, wa,ws) | B(u) < wa} # 0. Let u € Q(7, 4, ¥, wy, w2, ws).
Then, we have ¢(u) > wy, f(u) € w, and y(u) € ws which imply

1<i<n.

Biuy(s) € [wi,wa), s € [m,7a] and  Biui(s) € [0,ws), s €[0,1],
(3.34)

r—
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In view of (3.6), (3.34), (P), (Q) and (3.11), we find
B(Su) = max max 6;(Su;)(t)

1<i<n t€[r,a)

IA

1
max max [ (0 p(6)(ule))ds

= max max, [ i 01t 9)8(6)F (u(s))ds

e /D " gi(t,5)b(5) f (u(s))ds + / g.(t,s)b(s)f(u(s»ds]

£ 1 wsd3 ;
< e, e [ oo 5o (e - 2
o 1
i Wy
+max max " g anas+ [ o pegas] L

ot 1 wsds i ws| _
5, l?tasxn [dz'1 dyi (wz— i s (Gl b

Therefore, B(Su) < w; for all u € Q(, B, %, wr, wa, ws).
Next, we shall show that condition (c) of Theorem 2.2 is met. We observe that,
by (3.6) and (C3), for u € C,
O(Su) = 0:(Sus)(t)

l<1<n tE[r: 7:]
1
max max / ailt, 5)b(s) f(u(s))ds

/ H(s)b(s)f(u(s))ds

1<|<n te (72, n]

/,, H(s)b(s) f(u(s))ds. (3.35)

Moreover, using (3.6), (C2) and (C6), we get (3.27) for u € C. Combining (3.27) and
(3.35) yields (3.28). The rest then follows as in the proof of Theorem 3.2.

Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. As in (3.35),
by (3.6) and (C3), we see that for u € C,

B(Su) = l<fx(xn ‘Er(r:.‘nﬁlﬂ Su;)(t) < / H(s)b(s) f(u(s))ds. (3.36)
On the other hand, similar to (3.27) it follows from (3.6), (C2) and (C6) that for
u€C,

1
¥(Su) = min  min, 0,(Su)() > min M.p./ H(s)b(s)f(u(s))ds.  (3.37)

1<i<n t€[n,T.
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A combination of (3.36) and (3.37) gives
P(Su) > ll'<nii<n'I Mip; B(Su), ueC. (3.38)
Let u € Q(v, 8, wa, ws) with 1(Su) < wy. Then, (3.38) leads to
B(Su) < ;r,;;im—,: ¥(Su) < EuTs‘:TAT:T wy

1 i -
S oM W2 Milicicn Mipi = wy.

Thus, 8(Su) < wy for all u € Q(v, B, wa, ws) with ¥(Su) < wy.

It now follows from Theorem 2.2 that the system (1.1) has (at least) three constant-
sign solutions u',u®,u® € P(y,ws) = C(ws) satisfying (2.2). Furthermore, (2.2)
reduces to (3.32) immediately. | |

4 Applications to boundary value problems

In this section we shall illustrate the generality of the results obtained in Section 3 by
considering various well known boundary value problems in the literature. Indeed, we
shall apply our results to systems of boundary value problems of the following types:
(m, p), Lidstone, focal, conjugate, Hermite, Neumann, Sturm-Liouville and periodic.

Case 4.1. (m,p) boundary value problem

Consider the system of (m,p) boundary value problems

w™(t) + Py(t,u(t)) =0, ¢ € [0,1] 5
uW(©)=0,0<ism-2 uP@)=0 :

where 1 = 1,2, n. For each 1 < i € n, assume that m > 2 is fixed, L < p<m -1
is fixed, and P; : [0,1] x R" - R is a L'-Carathéodory function.
Let G(t,s) be the Green's function of the boundary value problem

—y™(t) =0, te[0,1]
y9(0)=0,0<j<m-2 yPQ)=0.
It is known that [3, p.191]
@) Glt,) = (—m%—l).{ zm-::i::;::_ e z
(b) £ G(t,8) 20, 0<j<p, (t,)€[0,1]x[0,1);
(c) G(t,s) >0, (t8) € (0,1) x (0,1);

P
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d) G(t.s) > (H)™ ‘W(l—s m=p-1{1 - (1-s)?), (t,s)€ [}, 3] x[0,1);
(e) G(t,s) < Grty(1 =)™ P 1= (1= 5)?), (t,5) €[0,1) x [0,1].

Now, u = (u,uz,  * ,Upn) is a solution of the system (4.1) if and only if u is a
fixed point of the operator S : (C[0,1])" — (C[0,1])" defined by (3.3) where

Su;(t / G(t,s)Pi(s,u(s))ds, t€[0,1], 1<i<n. (4.2)
In the context of Section 3, let

" 1 3
9i(t,s) =G(t,s), 1<i<n, &= b=ZY

O™ - (-, 1Sign
(43)
Then, noting (a)-(e), we have g(s) = g;(t, s) € C[0,1] C L*=[0, 1] and the conditions
(C1)-(C3) are fulfilled.
The results in Sections 3 reduce to the following theorem, which is new in the
literature to date.

1\t
M; = (Z) and H(s) =

Theorem 4.1. With g;, a, b, M; and H given in (4.3), and the various constants
given in (3.11), we have the following:

(i) (Theorem 3.1) Let (C4)-(C8) hold. Suppose that there exist numbers wi, w2, ws
with
0<w <wg<ﬁW5wa
such that the following hold for each 1 <i<n:
(P) fluz,us, -+ ,un) < % for Gu; € [0,w1], 1<j <n;
(Q) one of the following holds:
(Q1) LimSupjyy | jus|, - Jun|-o0 ﬂ%ﬁl = ql‘ for some j € {1,2,-:-,n}

(j depends on i);

(Q2) there exists a number n (> ws) such that f(uy,uz, -+ ,un) < 7+ for
Oju; €0,m), 1<j<n
(R) f(ur,uz,-+ yun) > %2 for 6ju; € [wa,ws), 1 <j <n.

Then, the system (4.1) has (at least) three constant-sign solutions u*,u? u® € C

such that
[|ut]| < wy; |ud(t)| > w2, t€[ab), 1<i<n
3 :
[[w?]] > wy and 22 léxl!;nltu (1) < wa.
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(ii) (Theorem 3.2) Let (C4)-(C6) hold. Assume there exist numbers 7j, 1 < j < 4

(i)

with
0Sm<asm<m<b<n <1

such that (C9) and (C10) hold. Suppose that there exist numbers w;, 2 <1< 5
with

w;
— —<wy<uwg
miny <i<pn Mip,

such that the following hold for each 1 <i <n:

0<wy <ws <

(P) fluy,uz,-+ yuy) < ;r,L; ("’a = w'—:’“‘) Jor B5u; € [0,w;), 1 <5 <my;
(Q) fluryua, - up) < %8 for Gju; € [0,ws), L<j<n;
(R) fur,ua,:-+ ,up) > ,-}“'J.- Jor Bju; € [ws,uy), 1 €5 <n.

Then, the system (4.1) has (at least) three constant-sign solutions u' u®
u® € C(ws) such that

lul(t)] < wa, LE([m,m) 1<i<n; Iu’(f)l>w: LE [mym), 1<i<my;

max ui ()] > d n t)| <
1<i<n lE[r T I 101> wa " |<-<n 15‘['3: et ()] < wo.

(Theorem 3.3) Let (C4)~(C6) hold. Assume there exist numbers 7;, 1 < j < 4
with

asn<n<n<nu<bh
such that (C9) and (C10) hold. Suppose that there ezist numbers wy, 1 <i <5
with
ws
0<w Swy: min Mipi <wz <wy < ——————— <wy < w,
S T A s minycien Mipi —

such that the following hold for each 1 <i < n:

(P) flur,ug, - upn) < (Wa = "’"’") for 8,u; € [wy,w), 1< 5 <y
(Q) flua,ua, o un) 42 for ju; € [0,ws], 1< j < n;
(R) fluz,uz,+ yun) > # for Oju; € [wa,we], 1<j<n.

77u-n, the system (4.1) has (at least) three constant-sign solutions u',u®,
u® € C(ws) such that

()] <wa, t€[m,m), 1<i<n;  |ud(t)>ws, t€[mm) 1<i<n;

max max |uf(t)| > d i <
1<ign lE[v|r|] Hl>wa on l<|2n ;ET,',“ P} ()] < w.
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Case 4.2. Lidstone boundary value problem

Consider the system of Lidstone boundary value problems
(1™ u*™ (1) = Pt u(®), ¢ € [0,1]

(24) (27) (44)
ui?(0) =u;?’(1)=0,0<j<m-1

where ¢ = 1,2,---,n. For each 1 < i < n, assume that m > 1 is fixed and
P, :[0,1] x R" = R is a L*-Carathéodory function.
Let G (t,s) be the Green’s function of the boundary value problem
yem() =0, te[0,1]
y®(0) =y®)(1) =0, 0<j<m—-1.
It is known that [31]
(a) Gm(t,s) = fol G(t,u)Gm-1(u, s)du where
t(s—1),
Gi(t,s) = G(t,s) =
(b) (=1)™Gm(t,5) 20, (t,s)€[0,1]x[0,1];
(©) (=1)"Gm(t,s) >0, (t,s)€ (0,1)x (0,1);
(d) (“)"Gm(t,s) 247 (%)™ sl =s), (t,9) € [, 3] x [0, 1)
(&) (=1)™Gm(t,s) <6=(mVs(1-5), (t,5)€[0,1] x [0,1].
Clearly, u = (uy,uz,: - ,un) is a solution of the system (4.4) if and only if u is a
fixed point of the operator S : (C[0,1])* — (C[0, 1])* defined by (3.3) where
1
Su;(t) =/ (=1)™Gm(t,s)Pi(s,u(s))ds, te[0,1], 1<i<n. (4.5)
o

In the context of Section 3, let

1
alt;s) = (-)"Gm(tys), 1Si<n,  a=z,  b=3,

GprAr v TG e (4.6)
=G ()" = () -
H(s) =6-(mVs(1-3), 1

Then, the conditions (C1)-(C3) are satisfied in view of (a)-(e) (note that
gt(s) = ai(t,s) € C[0,1] € L0, 1]).
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Applying the results in Section 3, we obtain the following theorem which improves
and extends the earlier work of (14, 31] (for n = 1). Note that the P; considered in
(4.4) as well as the methodology used are both more general.

Theorem 4.2. With g;, a, by M; and H given in ({.6), the statements (i)-(iii) of
Theorem 4.1 hold for system (4.4).

Case 4.3. Focal boundary value problem

Consider the system of focal boundary value problems
(=1)™=P ulm)(t) = Pi(t, u(t)), t € [0,1)

(4.7)

u0)=0,0<i<p-1 u1)=0,p<i<m-1

where 1 = 1,2,---  n. For each 1 €i < n, assume that m > 2 is fixed, | < p<m -1
is fixed, and P : [0,1] x R" - R is a L'-Carathéodory function.
Let G(t,s) be the Green's function of the boundary value problem
y™(t) =0, t€[0,1]
y(0)=0,08j<p-1 Y1) =0, p<j<m-1

In (3, p.211] it is documented that

p-1 1
Z("’.' )t’(—s)"‘"", 0<s<t<

¢ = J=0 J
) Ot S T
-Z("‘; )v(—a)“-l-'. 0<t<asy;
J=p

(b) for (t,s) € [0,1] x [0, 1],

10
o
(—1)’“"% G(t,s)20, p<j<m—1;

(-)™P== G(t,8) 20, 0<j<p-1

(€) (=1)™PG(t,5) >0, (t5)e€ (0,1)x (0,1);
(d) for a given § € (0,4),

(~)™7G(t,8) > (~1)"PG(1,5) inf S0

e (t,8) € [6,1-6) x [0,1];

(e) (=1)™"?G(t,5) < (=1)™PG(1,s), (¢t 5) € [0,1] x[0,1].
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Obviously, u = (u1,uz,-++ ,uy) is a solution of the system (4.7) if and only if u is
a fixed point of the operator S : (C[0,1])” — (C[0,1])" defined by (3.3) where

Su,(t) = [)‘(—1)"””0(!,s)P,(s,u(s))ds. te0,1], 1<i<n. (4.8)

Let 6 € (0,3) be fixed. In the context of Section 3, let
gi(t,s) = (-1)™"PG(t,s), 1<i<n, a=4, b=1-

Gz
= 2o G(1, 2)

» (4.9)

and H(s) = (-1)™?G(1,s), 1<i<n.

Then, from (a)-(e) we see that the conditions (C1)-(C3) are satisfied (note that
9(s) = gi(t, s) € C[0,1] C L*[0,1]).

The results in Section 3 reduce to the following theorem which improves and
extends the earlier work of (7, 8, 10, 28] (for n = 1). We remark that the P; considered
in (4.7) as well as the methodology used are both more general.

Theorem 4.3. With g, a, b, M; and H given in (4.9), the statements (i)-(iii) of
Theorem 4.1 hold for system (4.7).

Case 4.4. Conjugate boundary value problem

Consider the system of conjugate boundary value problems
—1)m=P u(m)(t) = P(t,u(t)), t € [0,1
‘ (=1)™=P ulm(2) -(. u(t)), t€[0,1] .10
u(0)=0,0<j<p-1 u(1)=00<j<m-p-1

where i = 1,2, ,n. For each 1 < i < n, assume that m > 2 is fixed, | <p<m -1
is fixed, and P, : [0,1] x R" — R is a L'-Carathéodory function.
Let G(t, s) be the Green’s fi ion of the boundary value probl

y™(t) =0, teo,1]
y90)=0,0<j<p-1 yD(1)=0,0<j<m-p-1
It is known that [23, 25, 29]

=1 fpoizj 5 2 e
> Fra e )] perme ain

= HMm—j5-1)!
(a) G(t,s) = 0<s<t<1
mfx[m_ihl(ﬁ+r—1 (t-1Y(1 - g)™=I!
- L lOE S o
=0 =0 5 )“ 1) ] Fm—j -1 t
0<t<s<I;

(®) (~1)™PG(t,8) >0, (t,8) € [0,1] x [0,1];
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(€) (=1)™"PG(t,5) >0, (t,8)€ (0,1) % (0,1);
(d) for a fixed 6 € (0,1/2),
(=1)""PG(t,8) 2 wlIG(-, 8)ll, (t,s) € [8,1-4]x[0,1]
where
IGC,9)ll = sup |G(t,s)] = sup (~1)™"PG(t,s),
t€0,1] t€[0,1]
the constant 0 < v < 1 is given by

vg = min {b(p) ~min{c(p),c(m — p— 1)}, blp—1)-min{c(p - 1),c(m — P)}}-

and the functions b and ¢ are defined as

_1ym=-1
b(l)=’, (m 1)

T == T and cft) =81 -6)m"""1

(€) (=1)""7G(t,8) < [IG(, 9, (tys) €[0,1] x [0,1].

Now, u = (uy,uz, -+ ,up) is a solution of the system (4.10) if and only if u is a
fixed point of the operator S : (C[0,1])" = (C[0,1])" defined by (3.3) where

Sul(t) = /‘)l(—l)'"-vcu,,)p,(,,u(,))a.. te[0,1), 1<i<n. (@.11)

Let 6 € (0,}) be fixed. In the context of Section 3, let
ai(t,s) = (-1)™?G(t,s), 1 <i<n, a=4, b=1-4,

(4.12)
Mi=v; and  H(s)=|G(-9)l, 1<i<n.
Then, (a)-(e) ensures that the conditions (C1)-(C3) are fulfilled (note that
9i(s) = ault, s) € C[0,1) C L>[0,1)).
Applying the results in Section 3, we obtain the following theorem which improves
and extends the earlier work of [11-13,23] (for n = 1) and [25] (on systems). Note that
the P, considered in (4.10) as well as the methodology used are both more general.

Theorem 4.4. With g;, a, b, M; and H given in (4.12), the statements (i)-(iii) of
Theorem {.1 hold for system (4.10).

Case 4.5. Hermite boundary value problem

Letr > 2and 0 =1 <t <+ <t =1 be given. Consider the system of
Hermite boundary value problems
™ (t) = Pi(t,u(t), te 0,1
w, " (t) = Pi(t,u(t)), t€[0,1] (@13)
() =0, j=0, ;mx=1, k=1, ,r

m—
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wherei = 1,2,-- ,n. For each 1 < k < r, assume m;, > 1 is fixed with }_}_, mx =m,
and for each 1 <1 < n,let P;:[0,1] x R" = R be a L*-Carathéodory function.
For each k = 1,--- ,r — 1, define the constant 7, and the interval I as

- 3t +t t + 3t
Ve = Z m; and I = [% % »
J=k+1

bl

Let G(t,s) be the Green’s function of the b dary value p
y™ () =0, te[0,1]
y D) =0, §=0,--+ ,mp—1, k=1,---,r.
It is well known that [26, 30]

(a) G(t,s) € C[0,1] € L*®[0,1], t € [0,1] and the map t — G(t,s) is continuous
from [0, 1] to C[0, 1J;

() (=1)™G(t,s) >0, (t,5) € [tk,trsa] X [0,1]), k=1, , 7 =1;
() (=1)™G(t,s) >0, (t,3) € (tk,tr+1) X (0,1), k=1,---, 7 =1
(d) for each k=1, ,r 1,
(=1)™G(t,s) > LilIG(, 9)ll, (t,) € Ik x [0,1]
where

sup (~1)G(t,),

G(-, = G(t,s)| =
1G9l t:[tgul (t,)] = iy o

the constant 0 < Ly < 1 is given by

Ly = min { min{ (3“‘ i t*“) , R (E"‘ffﬁ)} max R(t),
tef0,1]

mifo (252). o (457)} /g 00}

and the functions R and @Q are defined as

r-1 r
RW)=Jle-t;™@=-t)™=" and Q) =e™~"[|e—t;I™;
=2

i=1

(&) (=1)™G(t,5) < NIG(,9)l, (t9) € [ta, tesa] % [0,1]), k =

e m—
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We say that u = (uy,ug,+++ ,uy,) is a solution of constant sign if for each 1 < i < n,
we have (=1)"8,u; > 0 on [tk txa], 1 €k <r —1 where 8 € {1, -1} is fixed.

In the context of Section 3, let the Banach space B = (€[0,1])" be equipped with
norm [lul| = maxy<icn Supye(p,y) [uilt)] = maxi <i<n [uilo where we let

= : O, 1<i<
Juilo l:;:)r‘zulu(t)l s grp et u(®)l, 1<i<n.

Define the cone C in B as
G= {n € Bl for each 1 <1 < n, (=1)™8iu(t) > 0 for t € fta, tasa) k=1, ;v — 1

and mi’n(—])"'l),u‘(!) 2 Lipiluilo, k=1,--- ;r = 1}. (4.14)
ely

Clearly, if u € €, then u is of constant-sign.
Now, u = (uy,ua, - ,uy) is a solution of the system (4.13) if and only if u is a
fixed point of the operator S : (C[0,1])" = (€[0,1])" defined by (3.3) where

1
Suy(t) = / G(t,8)Pi(s,u(s))ds, te[0,1), 1<i<n. (4.15)
0

It can be verified that S maps ' into C.
In the context of Section 3, let
" 3tx + tesr th + 8241
i(t,s) = (-1)™G(t,8), 1<i<n, a=—, b= ——,
9 (=1)™G(t,s) r 3 (4.16)
M; = Ly and H(s) = ||G(-,9)ll, 1 €i<n.

Then, noting (a)-(e), we have g!(s) = g:(¢,s) € €C[0,1] € L>[0,1], the conditions
(C1), (€3) and (C2) (for k = 1,2,:+- ,r — 1) are fulfilled. Moreover, the constants
defined earlier in (3.11) are now modified appropriately. We define the following
constants for each 1 < i < n and fixed numbers 7,4 € (0,1, 1 <j <4, 1<k <r—1:

a=g= x| [ (~1)™ Gt 9)b(s)ds,

max
1L teflnin

r, = min mln/( 1)™G(t, s)a(s)ds,

1<k<r=1 tel

¢ 1)
ngsur‘-l Ae[vl:.‘j?‘vml/;.. iSUEC R )d

Tan
e 1
dy=dy = (R ne(r'f‘?’f.q/.‘,. (=1)™G(t, s)b(s)ds,

dy =
(4.17)

dyy=dy= max  max [ / ™ D™, b(s)ds

LEkSr=1 t€[r a.ran]

+/ (—l)"G(l.u)b(a)ds].

P\
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A modification of the argument in Section 3 yields the following theorem, which
improves and extends [30] (for n = 1). We refer the reader to [32] for details.

Theorem 4.5. With the constants defined in (4.17), we have the following:
(i) (Theorem 3.1) Let (C4)-(C6) hold, and assume

(C7)" for each 1 < k < 7 —1 and each t € [tx,tx+1], the function G(t,s)b(s
nonzero on a subset of [0,1] of positive measure;

(CB)" for each 1 < i < n, each 1 < k < r—1 and each t € Iy, the function
G(t, s)ai(s) is nonzero on a subset of Ij of positive measure.

Suppose that there exist numbers wy,ws, w3 with
Wz

O<wy <wp< ————— <y
min<i<n Ming<k<r—1 Lipi

such that the following hold for each 1 <i<n:
(P) flur,uz,- un) < for |u;| € [0,wn], 1< 5 <ny
(Q) one of the following holds:

(Q1) M SUP|y, | jug),e-e Jun =00 ﬂ%‘z—’,ﬂ < % for some j € {1,2,--- ,n};

(Q2) there esists a number 1 (> ws) such that f(uy,uz, -+ up) < 1 for

lujl € [0,m), 1<j<my
(R) flur,uz,- - ,un) > 22 for |uj| € [wp,ws), 1<j<n.
Then, the system (4.13) has (at least) three constant-sign solutions u!,u*,u* €
C' such that
[lud|] < w; [u2(t)| > w2, tG[k,1<k<r—l 1<i<n;
N1l > wy and min min [ud(t)] < w,.

1<i<n l<k<r 1 tel

(i) (Theorem 3.2) Let (C4)-(C6) hold. Assume there exist numbers T, 1 <J <
4, 1<k<r—1 with
Bty -+t te + 3ty
0<ti <Mk < %<Tz.k<ﬁ,k§%l—§n,k5twl <1
such that

(C9)" for each 1 < i < n, each 1 < k < r—1, and each t € [ry 5, 73], the function
G(t,s)ai(s) is nonzero on a subset of [72,k,73.&] of positive measure;

(C10)’ for each 1 < k < r — 1 and each t € [71,k, Ta,x], the function G(t,s)b(s) is
nonzero on a subset of [k, 7ax] of positive measure.
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Suppose that there exist numbers w;, 2 <1 <5 with
PRIV, WD
ming<i<n Ming<i<r—1 Leps
such that the following hold for each 1 <i<n:

(P) flur,uz,--- ,un) < (w, - Hﬁ) for |u;| € [0,wa), 1< j <
(Q) flur,uz, -+ yun) < ¥ for |uy| € [0,ws], 1 <5 <m;
(R) flur,ua, upn) > 38 for |uy| € [wa,wy], 1< 5 <n.

0<wy <wy < <wy < wg

Then, the system (4.13) has (at least) three constant-sign solutions u',u? u® €
C(wy) such that

[ul(t)] < wa, t€[mumal 1Sk<r=1,1<i<n;
i (®)] > ws, t€[mumal 1Sk<Sr—1,1<i<n;

max

max max
1S90 1SkSr=1 LE[r) u.re

l|u“'(l)| >w; and

miny cjcn MiNyccr—1 Miliepry , ry 01 165 (1)] < wy.

(iii) (Theorem 3.3) Let (C4)~(C6) hold. Assume there exist numbers 7;,, 1 < j <
4, 1€k<r-1wth

3ty + ¢, ty + 31
—kT‘ALl Snu<mk<Tyx<Ta < %
such that (C9)" and (C10)' hold. Suppose that there exist numbers w;, 1 <1< 5
with
0 <wy <wy mingicn Minjcrcr—1 Lipi < wy < wy
wy
<wg £ wy

minj<icp Ming<k<r—1 Lips
such that the following hold for each 1 <i < n:
(P) fluryuz, <+ yun) < 5 (wa = 2392) for Juy) € fw,wa), 1< <y
(Q) fluy uz, - un) < 4B for fus| € [O,ws], 1< 5 <my
(R) flus ua,-< un) > 2 for us| € [wa,wa), 15 <n.

Then, the system (4.13) has (at least) three constant-sign solutions u',u® u® €
F(u-;) such that

() <wa, t€[numa), 1Sk<r—1,1<i<n;
(O] > wy, € [mumal 1SkSr—1,1<i<n;

max  max max |ul(t)) > w2 and
1€1€n 16kSr=1 (€[ ran]

minyeicn Mibycrer-1 Miligiry , ry ) 167 (0)] < w.

e



ouso
30 R P Agarwal, D O'Regan & PJY Wong ~  ecs@ew

Case 4.6. N bound

y value p:

Consider the following two systems of Neumann boundary value problems

—ul'(t) + cui(t) = Pi(t,u(?)), t€[0,1]

(4.18)
wl(0) = uj(1) =0
and
uf/ () + rui(t) = Py(t, u(t)), t € [0,1]
(4.19)
4(0) = ui(1) =0
where i =1,2,--- ,n. For each 1 < i < n, assume that ¢ > 0 is fixed, 0 < r < "*—: is
fixed and P : [0,1] x R™ — R is a L'-Carathéodory function.
Let G1*18)(¢,5) be the Green’s function of the bound 'y value probl
—y"(t) +ey(t) =0, t€[0,1]
¥'(0)=y'(1) =0,
and let G(419)(¢, ) be the Green’s function of the bound y value probl

y"(t) +ry(t) =0, t€[0,1]
¥'(0) =y'(1) =0.
It is known that [18]

(a) GU19) (¢ ) = 1 cosh (y/c(1 —t)) cosh (y/es), 0<s<t<1
"7 Vesinh /e | cosh (yE(1 - 5))cosh (vat), 0<t<s<l;
G119 (4 5) = 1 cos (v/r(l—t))cos(v7s), 0<s<t<1
VTSInE | cos (y(1—s))cos (Vit), 0<t<s<l;
(b) G4 (t,5) > 0 and GU19)(1,5) >0, (t,5) € [0,1] x [0, 1];
(e) GH19(2,5) > 0 and G191, 5) > 0, (t,5) € (0,1) x (0,1);

(d) GU8)(2,5) > ﬁm‘m = and G(+19) (¢, 5) > % (t,s) € [0,1] x [0,1];

2
(e) GU¥) (g, 5) < co-!l"" cc and GU19)(¢, 5) < m (t,5) € [0,1] x [0, 1).
Now, u = (uj,uz, -, uy,

) is a solution of the system (4.18) if and only if u is a
fixed point of the operator §

+(C[o, 1)) = (€C[0,1))" defined by (3.3) where

1
Su.(t)=/; GO0 4, ) Py(s,u(s))ds, ¢ € [0,1], 1<i<n. (4.20)
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Likewise, u is a solution of the system (4.19) provided u = Su where
1
Suy(t) = f GU) (¢, 5)Pi(s,u(s))ds, t€[0,1], 1<i<n. (4.21)
o

In the context of Section 3, for system (4.18) let

0i(t,8) =GW8(t,8), 1<i<n, + a=0;, “b=1,
colitA/G (4.22)
Vesinh 2! 2

A
A

1
M= —— AR
cosh? /¢ b @
whereas for system (4.19), let

alts) =G4'0s), 1<i<n, a=0, b=1,
: (4.23)
= = e—— <
M, = cos® \/r and H(s) TR 1<
Then, noting (a)-(e), it is clear that g!(s) = g(t,s) € €[0,1] € L>(0,1] and the
conditions (C1)~(C3) are fulfilled for both systems (4.18) and (4.19).
The results in Section 3 reduce to the following theorem, which not only extends
the work of Jiang and Lui [18] for the special cases of (4.18) and (4.19) when n = 1,
but in particular provides the exi of triple gn solutions.

Theorem 4.6.

(a) With g,, a, b, M; and H given in (4.22), the statements (1)-(iit) of Theorem
4.1 hold for system (4.18).

('b) With g,, a, b, M; and H given in (4.23), the statements (1)-(iii) of Theorem
4.1 hold for system (4.19).

Case 4.7. Sturm-Liouville boundary value problem

Consider the system of Sturm-Liouville boundary value problems
w™)(t) + Pi(t,u) =0, t€[0,1]
u(0)=0,0<j<m -3 (4.24)
cu!™=2(0) - qu:"'"”(o) =0} wu{m"”(l) - 6u£""n(l) — 9

where i = 1,2,--- ,n. For each 1 < i < n, assume that P, : [0,1] x R" = R is a
L'-Carathéodory function, m; > 2 is fixed, ¢, n, w and § are such that

n=0, 6§20, n+¢>0, S+w>0, Fr=s(w++nw>0.

These assumptions allow ¢ and w to be negative.

Py



32 R P Agarwal, D O’'Regan & P J Y Wong .m

Let h;(t, s) be the Green’s fi ion of the b dary value bl
—ymi(¢t) =0, t€[0,1]
y(0)=0,0<j<mi-3
CymA(0) — qymiD(0) =0, wy™ () + syimi(1) =

It can be verified [24] that G(t,s) where

am;—2 it
Glt9) = =y hilts) = h™ " (t,5) (4.25)

is the Green’s function of the boundary value problem
—y"(¢) =0, t € [0,1]
y(0) —ny'(0) =0;  wy(1) +6y'(1) =0.

Further, it is known that (24]

(@) Gt s) = _{ (n+¢s)o+w(-t), 0<s<t

Pl m+¢)s+wd-s), 0<t<s<

(b) G(t,s) 20, (¢)€[0,1]x[0,1];

(c) G(t,s) >0, (t,s)€(0,1)x(0,1);

(d) G(t,s) > AG(s,s), (ts)e€ [%, %] x [0,1] where 0 < A < 1 is given by

dn+¢ 4d+w 4dn+3¢ 46+3w}_
i+ () 1E+w) dn+( H+w

A = min {
(e) G(t,s) < D G(s,s), (t,s)€[0,1]x[0,1] where D > 1 is given by
7 L)
D—max{], T 6+w}'
In the context of Section 3, let the Banach space

u(0)=0,0<j <m—3, 1<:<n}

B= {u = (u,uz, -+ ,un) € (C™I[0, 1))
(4.26)

be equipped with norm

Il = mex sup fu™"(0)| = max fudo (4.27)

where we let |u:lo = supe(o,) Iu('"‘»z)( t)|, 1 < i < n. Further, define the cone C in
B as

= (uy, U2, ,un) € B | for each 1 <i < n, Bu{™ (1) > 0 for t € [0, 1],

T\
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and min Bu{™ (1) > M.p.]u,lo} (4.28)
te[1.3]
where M, = # € (0,1), 1 €i < n. It can be verified that S maps C into C.
If u = (uy,uz,-- ,uy) € C is a solution of (4.24), then u is of constant sign (see

[24]). Clearly, u is a solution of the system (4.24) if and only if u is a fixed point of
the operator S : B — B defined by (3.3) where

1
Sult) = [ MRl u(eds, te[01], 1<i<n (4.29)
0
or equivalently
1
(Su) ™20 = [ G oP@ueds, tei1Sisn  (@30)
0
Now, in the context of Section 3, let
ai(t,s) =G(t,8), 1<i<n, a=1. b=§.
Y 4 2 (4.31)
M, = 57} and H(s)=D G(s,s), 1€1<n.

Then, noting (a)-(e), we see that gf(s) = gi(t,s) € C[0,1] € L*=[0,1] and the condi-
tions (C1)-(C3) are fulfilled. The constants defined earlier in (3.11) are now modified
appropriately. For each 1 < i < n and fixed numbers 7; € [0,1], 1 < j < 4 we define
the following:

a=q= Sllp /l G(t, 8)b(s)ds,

le“ ”/ G(t,8)ai(s)ds,

dyy = mm ]/ G(t,8)a;(s)ds,

dyy=dy = rErll::“ / G(t, 8)b(s)ds, (4.32)

d=do= mas [ [ Gt optonie+ [ Gleponas],

dy = max s G(t,s)b(s)ds,

Elnrd Jmax{n,} }

max{ry, § } 1
d = max [ /; Gt, $)b(s)ds + / : a(:.,)b(,)da] ;

(AN
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A modification of the argument in Section 3 yields the following theorem (see 27
for details).

Theorem 4.7. With the constants defined in (4.32), we have the following:
(i) (Theorem 3.1) Let (C4)-(C17) hold, and assume

(C8)" for each 1 <i <n and eacht € [}, 4] the function G(t, s)a;(s) is nonzero
on a subset of [2, 4] of positive measure.

Suppose that there ezist numbers wy,wa, ws with

w:
0<w <wy < — 2 <ws

ini<icn pi

= Olz.

i<n

such that the following hold for each

<i
(P) flus,uz,++ yun) < 2 for u; € o .(m,_z,.] J1<i<n
(Q) one of the following holds:

(Q1) Hm SUPuy | jus, - fun|~ro0 ﬂ%—"ﬁ & % for some j € {1,2,-- \n};

(Q2) there ezists @ number n (> w3) such that f(uy,uz,- - ,u,) < ,H, Jor
8505 € [0, Gy ] 1< <

(R) f(uy,uz, -+ ,un) > 32 for bju; € [mv#ﬁ]. 1<j<n

Then, the system (4.24) has (at least) three constant-sign solutions u',u® u* €

C such that
(]| < wa; |(u3) =2 (t)] > wa, t€ [},3], 1<i<n;
1| > wa and min  min _|(u?)(™ =2 (t)| < w,.

1<i<n 15” 1]

(ii) (Theorem 3.2) Let (C4)~(C6) hold. Assume there exist numbers 75, 1< j <4
with
0<n <

3
ST:'<7'352S7451

ENT

such that (C10) holds and

(C9)” for each 1 < i < n and each t € (72, 73), the function G(t, s)a(s) is nonzero
on a subset of [2, i) of positive measure.

Suppose that there exist numbers wy, 2 <i <5 with

0<wy <wy < v

such that the following hold for each 1 <i <n:
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(P) flur,uz,--+ un) < & (wa— !gﬁ) Jor B5u; € [o%:_%;] 1<j<n
(Q) fluryuz,-++ un) < ¥4 for b;u; € [o.mu-m], 1<j<nmy
(R) fluy,uz, -+ un) > #2 for Oju; € [E‘Fﬁ“"_ "’_’,),]. 1<j<n.

(m;—2)1" Tmy

Then, the system (4.24) has (at least) three constant-sign solutions u',u® u® €
C(ws) such that

|(u}) ™A (t)| < wyy, tE[m,m), 1Si<ny
(W)™ =) > ws, t€[mm], 1<i<n;

3y(m,~2) 3y(m~2)

JBAX 5 pAxy |(ud) (t)[ > wa and ISK_ e “’I(u 7) (t)] < ws.

(iii) (Theorem 3.3) Let (C4)-(C6) hold. Assume there exist numbers 75, 1 < j <4
with

gn<rz<r:<n§§

==

such that (C9)" holds and

(C10)" for each t € [ry,74), the function G(t,s)b(s) is nonzero on a subset of
[max {n, 1}, 7] of positive measure.

Suppose that there exist numbers wy, 1 <i <5 with
wy
# minycicn pi

such that the following hold for each 1 <i < n:

A
0<w; Swy:—= min gy <wy <wy < <wy < wy
ien

D 1sig

(P) fun,un, un) < (w2 — 2388 for ,u, € [ﬁ-ﬂ—m{,’,—-—ﬁ;]

{m,; =
1€j<n;
(@) flur,uz, - yun) < B for yu € [0, ] 1< <mi

eey
(R) flug,uz,eeo un) > i for Oju; € [_‘_.‘_;m__ ?'.,.—‘:ar] 1<j<n.

(my

Then, the system (4.24) has (at least) three constant-sign solutions u',u? u® €
C(ws) such that

()™= <wa, te€n,m) 1<i<n
()™= ()| > wy, t€[mmn) 1<i<n

(my~2) 3y(mi~2)
(D e |("¢) (8)] > w2 and e I(“ ) ()] < ws.
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Case 4.8. Periodic boundary value problem

Consider the following two systems of periodic boundary value problems
—ul/(t) + cui(t) = Pi(t,u(t)), t € [0,27
1(8) + cui(t) = Pi(t, u(?) [0,27] (@.33)
ui(0) = ui(2m),  ui(0) = ui(2m)
and
u(t) + rui(t) = Pi(t, u(t)), t € [0,27]
wi(0) = wi(2m),  ui(0) = uj(2m)
where i = 1,2, ,n. For each 1 < i < n, assume that ¢ > 0 is fixed, 0 < r < % is
fixed and P, : [0,27] x R" — R is a L'-Carathéodory function.
Let G (¢, 5) be the Green’s function of the boundary value problem

—=y"(t) +cy(t) =0, t € [0,27]
y(0) =y(2m),  ¥'(0) =y'(2m),
and let G139 (¢, s) be the Green’s function of the boundary value probl
y"(t) +ry(t) =0, t € [0,27]
y(0) =y(2m),  ¥'(0) =y'(2m).

(4.34)

It is known that [17]
exp (ve(t — 5)) + exp (Ve(2r — t +5)),
1 0<s<t<2m
2Velexp (2mve) —1] | exp (v/e(s — 1)) + exp (v/e(2m — 5 + 1)),
0<t<s<2m

sin (v/7(t — s)) + sin (V7 (27 — t + 5)) ,

(a) G43(t,5) =

GU (4, 5) = 1 0<s<t<om
2L = cos(2my/] | sin (y(s — 1)) + sin (y/r(2m — 5 + 1)),
0<t<s<2m

(b) G433)(t,5) >0 and G439 (t,5) >0, (t,s) € [0,27] x [0, 27];
(c) GU39(t,5) > 0 and GU39)(2,5) > 0, (¢,5) € (0,27) x (0, 27);
(d) for (t,s) € [0,27] x [0, 27],
G439) __Zexp(mve)
“92 3 e @y ]

(4.34) sin(2m/7) N
G (t9)2 2y/r(1 — cos(2m/7)]"
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(e) for (t,s) € [0,2n] x [0, 2n],

i exp (2m/c) + 1
R o
e (4.34) sin(my/7)
G S T cotr

Now, u = (uy,uz, "+ ,uy) is a solution of the system (4.33) if and only if u is a
fixed point of the operator S : (C[0,2x])" — (C[0,27])" defined by (3.3) where
2n
)= f GU33)(t, 5)Py(s, u(s))ds, t€[0,2n], 1<i<n. (4.35)
0
Likewise, u is a solution of the system (4.34) provided u = Su where

Suy(t) = /oh G434 (1, 5)Pi(s,u(s))ds, te(0,2n], 1<i<n. (4.36)

In the context of Section 3 (obviously the interval [0,1] is changed to [0, 27]), for
system (4.33) let

gi(t,s) = GH3¥)(t,s), 1<i<n, a=0, b=2m,

__2exp(mVo) __exp(2my/o)+1 A
' exp(2m/C) + 1 A — 24/c [exp (2m/c) — 1]’ lsisn
(4.37)
whereas for system (4.34), let
git,s) =G4 (t,8), 1<i<n, a=0, b= 2m,
in(my/7) (4.38)

M; = cos(my/T) and Sk S s

si T
HG) = 7= costm)]
Then, noting (a)-(e), it is clear that gf(s) = gi(t,s) € C[0,2n] C L>(0,2n] and the
conditions (C1)-(C3) are fulfilled for both systems (4.33) and (4.34).

The results in Section 3 reduce to the following theorem, which not only extends
the work of Jiang [17] for the special cases of (4.33) and (4.34) when n = 1, but also
provides the existence of triple constant-sign solutions.

Theorem 4.8.

(a) With g, a, b, M; and H given in (4.37), and the obvious modification that the
interval [0,1] is replaced by [0, 2], the statements (i)-(iii) of Theorem 4.1 hold
for system (4.83).

(b) With g, a, b, M; and H given in (4.38), and the obvious modification that the
interval [0, 1] is replaced by [0, 27), the statements (i)-(iii) of Theorem 4.1 hold
for system (4.34).
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5 Triple solutions of (1.2)

This section extends the results in Section 3 to the system of Fredholm integral equa-
tions (1.2) on the half-line [0, 0). To begin, let the Banach space B = (BC|0, o))"
be equipped with norm

= (@) = i
M= 2, om0 = e e 6

where we let |uilo = supse(o 00 [4i(t)], 1 < i <n.
We shall seek a solution u = (u1,uz, - ,up) of (1.2) in (C1[0, 00))™ where

(C1[0,00))™ = {u € (BC[0, )™ 2l_i'l?,l‘,u.-(t) exists, 1 <i < n}4 (5.2)
For the purpose of clarity, we shall list the conditions that are needed later. Note
that in these conditions 6; € {1, -1}, 1 < i < n are fixed.

(Cl)oo Let integers p,q be such that 1 <p<g<coand 2+; =1 Foreach 1 <i<n,
assume that P; : [0,00) x R" — R is a LI-Carathéodory function, and

gt(s) = gi(t,s) >0, te€[0,00), ae.sE€ [0,00),
gt(s) € LP[0,0), t € [0,00),
the map ¢ — g is continuous from [0, c0) to L?[0, %),
™
there exists g; € L0, co) such that ‘lu?o/ 1g¢(s) — Gi(s)[Pds = 0
2y
(i.e., gf = g in L?[0,00) as t — 00).
(C2)o Foreach 1 < i < n, there exists a constant 0 < M; < 1, a function H € L?[0,00),

and an interval [a, ] C [0, ) such that
gi(t,s) > M;H(s) >0, t€ [a,b], ae.s€[0,00).

(C3)o For each 1 <i <n,
gi(t,s) < H(s), t€[0,00), a.e. s € [0,00).

(C4)oc Let K and K be as in Section 3 with B = (BC[0,0))". For each 1 < i < n,

assume that

6:P;(t,u) > 0, u € K, a.e.t € (0,00) and 6;Pi(t,u) > 0, u € K, a.e. t € (0,00).
(C5)e For each 1 < i < n, there exist continuous functions £, ai, b with f:R" =

[0, 0) and a;,b: (0,00) — [0, 00) such that

0:Pi(t,u)
u

a;(t) < T <b(t), uekK, ae. te (0, 00).
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(C6)o For each 1 < i < n, there exists a number 0 < p; < 1 such that

ai(t) > pib(t), a.e.t € (0,00).

Assume (C1)oo holds. Let the operator S : (Ci[0,00))" — (Ci[0,0))" be defined
by
Su(t) = (Sur(t), Sua(t), - , Sun(t)), t € [0,00) (5:3)
where o
Sui(t) = / gi(t,s)Pi(s,u(s))ds, t€[0,0), 1<i<n. (5.4)
0

Clearly, a fixed point of the operator S is a solution of the system (1.2). We shall
show that S maps (Ci[0,))" into itself. Let u € (Ci[0,00))" and i € {1,2,--- ,n}
be fixed. We need to show that lim_,o Su;(t) exists. Fix r > 0. Since P; is L7-
Carathéodory, there exists py; € L7(0, ) such that [Pi(s, u(s))| < pri(s) for [|ul| < r
and a.e. s € [0,00). In fact, for a sufficiently large r,

[l = 3Rt

< [710t:9) = 8O llunals)lds -+ 0
0
as t — oo. Therefore, as t — co we have
S,:’N,,.F“y d x', Pi(s, ds.
w(t) /0 gi(t,5)P.(s,u(s) “/n () Pu(s, u(s))ds

Hence, S maps (C;[0,00))" into (1[0, 00))™ if (C1)o holds.
Next, we define a cone in B as

o= {u € (C1[0,00))" | for each 1 < i < n, Biui(t) > 0 for ¢ € [0, 00),

and min B;u;i(t) > M;p.\u,h,} (5.5)
t€(a,b]

where M, and p; are defined in (C2)o and (C6) respectively. Note that C' C K. A
fixed point of S obtained in C will be a constant-sign solution of the system (1.2).

Remark 5.1. Instead of the cone C defined in (5.5), we can also use the cone
C' (C C) given by

c'= {u € (Gi[0, o))"

for each 1 < i < n, Biu;(t) >0 for t € [0, 0),

and min fu;(t) > Miﬂi”““}
t€[a,b]

The arguments that follow will be similar.




40 R P Agarwal, D O’'Regan & P J Y Wong

If (C1)oo, (C4)oo and (C5)eo hold, then it is clear from (5.4) that for u € K,
157 git, 9)ai(s)f (u(s))ds < 0:Suilt) <[5 gty 8)b(s) £ (u(s))ds,

€[0,0), 1<i<n.

(5.6)

Lemma 5.1. Let (Cl)s hold. Then, the operator S is continuous and completely
continuous.

Proof. Asin [21, Theorem 5.2.3], (C1) ensures that S is continuous and completely
continuous.

In what follows we shall only state the results for (1.2) parallel to those in Section 3.
The proofs are omitted as the arguments used are similar to those of the corresponding
results in Section 3, with the interval [0, 1] replaced by [0, ).

Lemma 5.2. Let (C1)oo—(C6)oo hold. Then, the operator S maps C' into itself.

For subsequent results, we define the following constants for each 1 < i < n and
fixed numbers 7; € [0,00), 1< j <4:

g® = sup / gi(t, s)b(s)ds,

te[0,00) JO

b
0 — i 5
$ _Lg(‘.:f‘n]/a 9i(t, s)ai(s)ds,

di%, = min / gi(t, s)ai(s)ds,

t€[r2,73]

(5.7)

il
a5, = oax [ " el

n o
g, = max [/ gi(t, 5)b(s)ds +/ g;(t,s)b(s)ds] g
* o telnym Lo s

In view of (C3) and (C2)w, it is clear that for each 1 <i < n,

qf‘g/oc H(s)b(s)ds, r&° /MH s)a;(s)ds and dZ5 / H(s)b(s)ds. (5:8)

Lemma 5.3. Let (C1)oo~(C6) hold, and assume

(CT)oo for each 1 < i < n and each t € [0,00), the function g;(t,s)b(s) S BonEIE

on a subset of [0,00) of positive measure.

Suppose that there exists a number d > 0 such that for 6;u; € [0,d], 1 < J <m

d
flu,uzy o yup) < = 1<i<n.
i
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Then,
S(C(d)) € €(d) € C(d).

Lemma 5.4. Let (C1)x—(C6)x hold. Suppose that there exists a number d > 0 such
that for 8;u; € [0,d], 1 <j <n,

flugug, - yun) € =5, 1<i<n.

=

Then,
S(C(d)) € C

N

d).

Applying Theorem 2.1, we obtain the following result.
Theorem 5.1. Let (C1)o—(C7)oo hold, and assume

(C8) for each 1 < i < n and each t € [a, b], the function g;(t, s)a;(s) is nonzero on a
subset of [a, b] of positive measure.

Suppose that there exist numbers wy, wy, w3 with
0<w <wy < ——2— <uy
miny<i<n Mip;
such that the following hold for each 1 <7 <n:
(P) flur,uz, - up) < 2 for Gju; € [0, wa], 1< 5 <nmy
(Q) one of the following holds:
(Q1) BmSupjy, | jug| - Junl-ro0 Luu_"‘:]ﬁ < ;1; for some j € {1,2,:-- ,n}
(7 depends on 2);
(Q2) there exists a number 7 (> ws) such that f(uy,uz,-  ,un) < ;’,‘: for
Bu; € [0,n), 1<) <m;
(R) f(uz,uz, -+ upn) > 7 for Ou; € [wp,wg), 1< 5 <.

Then, the system (1.2) has (at least) three constant-sign solutions u',u®,u® € C
such that

'l < wi; ()] > we, tE€ab), 1<i<n;
3
| > w and
([l > w1 ll;n‘lél" kg{m Jud(t)] < wa.

The next two results are derived using Theorem 2.2.

Theorem 5.2. Let(Cl)oo~(C6)oo hold. Assume there ezist numbers 7;, 1 < j < 4
with
0Sn<asn<m<b<im<o

such that

T
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(C9)oo for each 1 < i < n and each t € 12,73, the function g;(t, s)a:(s) is nonzero on
a subset of [12, 73] of positive measure;

(C10)s for each 1 <i < n and each t € [71,74], the function gi(t, s)b(s) is nonzero on a
subset of [11,7a] of positive measure.

Suppose that there exist numbers w;, 2 < i < 5 with

0<wy; <w;z <

such that the following hold for each 1 <i<n:
(P) Fluyua,e+ tn) < i (w2 = “282) for 60 € Pwal, 1< <y
(Q) fluyuz,  un) < & for fju; € [0,ws], 1< <mj
(R) flu,uz, < un) > g for 0;u; € [ws,wg], 1< 5 <n.

Then, the system (1.2) has (at least) three constant-sign solutions u',u? u® € C(ws)
such that

[ul(t)] < we, t€[m,ml, 1<i<n;  [|u}(t)] >ws, t€[m,m] 1<i<n;
ax |u; > w and min  min |u; < w3.
1<%. ter[ll % I ( )’ % 1<1<v| t€[r2,73 ]| ( )' s

Remark 5.2. Under the special case when 17 =0, 74 = 00, 75 = a and 73 = b, we

have
i =%, 5% = gf° and  d55 =0.
In this case Theorem 5.2 reduces to Theorem 5.1.

Theorem 5.3. Let (C1)0o—~(C6)so hold. Assume there exist numbers 7;, 1 < j <4

with
a<n <7 <13<T<b

such that (C9)ss and (C10)s hold. Suppose that there exist numbers w;, 1 <i <5
with
o w3
0<w §w2~lxgni|£"M,p,<uJ2 <wz < W <wy <ws

such that the following hold for each 1 <i <n:
P) f(u,uz,- - ,un) < dm (wz = ws"“') Jor 6;u; € [wi,w,], 1< 5 <n;

(Q) fluryuz, -+ sun) < 7& for O5u; € [0,ws), 1<j<ny

\

(R) flur,uz, -+ yun) > g for 6ju; € [ws,wa), 1< j <n.
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Then, the system (1.2) has (at least) three constant-sign solutions u*,u?,u® € C(ws)

such that
[wi )] <wa, t€[mm), 1<i<n i) >ws, t€[nm), 1<i<n
3 n 5 3
e o L SRR e
Received: Sep 2003. Revised: Nov 2003.
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