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ABSTRACT
In this expository paper we would like to discuss the maximum principle for
the parabolic equations and its applications to the study of Kahler geometry and
Ricei flow on complete manifolds.

RESUMEN
En este paper d discutir el principio de izacién para las ecua-
ciones bolicas y sus aplicaci al estudio de ia de Kihler y fluidos

en variedades completas de Ricci.
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Recall first the classical maximum principle for the heat equation. Let Q be a
bounded domain in IR". If u(x, t) is a smooth function satisfying

(%—A)UZO

on Q2 x (0,T), and continuous on § x [0, T]. Then

min u = min u. )
0x[0,7) (89x(0,T))U(2x{0})
For the Cauchy problem, the simplest form of the maximum principle reads
o T R u(z,0), (2)

assuming that u is a sup-solution, namely (& — A) u > 0, and u(z,t) is bounded on

IR™ x [0, T). If we do not assume the growth restriction on u, the maximum principle
no longer holds. The simplest example can be found, say in the book by Fritz John
[ J], where a solution u(z, t) to (t—% — A) u =0 was constructed with the form

Here go = g(t), g1 =0, g = (j + 2)(j + 1)g;+2 and

=y exp(—t~%), whent > 0,
ot) ‘{ 0, when ¢ < 0.

It can be shown that the serics is uniformly convergent and |u(z, t)| is bounded by

)~ { ;"l: E%O(EE —fe)) >0

Here0 < 6 < 1.

The maximum principle (1) can be generalized to compact Riemannian manifolds
with boundary. The generalization of (2) to the complete noncompact manifolds was
carried in [ K-L], where the author proved that (2) holds on a complete noncompact
manifolds for the bounded sup-solution u if the manifold M satisfies

Va(R) < eC(R+1) ®)

for some C' > 0. Here V,(R) is the volume of By(R). The result is sharp since a
counter-example was given for a manifold with faster volume growth in [ A]. Since
the result was proved only for the bounded sup-solution, it is not very satisfactory in
the view of the example given above. However, the following result was later proved
in [ L] using an improved argument from [ K-L) and [ L-T).
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Theorem 1 Let M be a lete Ri i fold. Let u(x,t) be a smooth

function on M x (0,T) such that (% ~ A)u >0 whenever u(z,t) < 0. Assume that

/T/ exp(—ar?(z))u? (z,5) dvds < 0o (4)
0 M

for some a > 0, where r(z) is the distance function to a fized point o € M. Suppose
u(z,0) 2 0 for all z € M. Then u(z,t) >0 for all (z,t) € M x [0,T).

The reader can consult [ N-T1] for the proof of a slightly more general version of
above result for family of metrics. The condition (4) is optimal by comparison with
the example before.

In [ H1}, a maximum principle was derived for tensors satisfying certain heat equa-
tion on compact manifolds with nonnegative curvature. The tensor maximum prin-
ciple on compact manifolds has proved to be useful in geometric evolution equations
such as the study of Ricci flow [ H3] and the mean curvature flow [ Hu]. In [ H2], in
order to prove the Li-Yau-Hamilton mequallty (or dlﬂ'erentlal Harnack) for the Ricei
flow on complete noncompact ifolds, H loped an argument basically
proves a tensor maximum principle for bounded solution to certain heat equation (sys-
tem) on complete Riemannian manifolds with bounded nonnegative curvature. One
can refer [N=T2, Proposition 1.1 for an improved version, which include the tensor
with pointwise growth control, following Hamilton’s original argument in [ H2]. In
Hamilton's program towards geometrization, which was recently carried further in
| P2] by Perelman, and may have solved Thurston’s geometrization conjecture, one
«lmhc-s the singularity by dllutwus when approaching the singularity and studymg
the limit solutions, which obtained by some pactness th The sol
obtained through this dilation procedure usually are noncompact. But they do have
bounded curvatures if the dilation is chosen centered at points with curvature compa-
rable with its nearby points. Therefore, the maximum principle for bounded tensor
is sufficient for this purpose. However it does have serious drawback since in some
other geometric applications the uniform boundedness assumption on the solution is
not desirable. For instance, in study the geometry and topology of complete mani-
folds it is desirable to have smooth convex (plurisubharmonic) functions as indicated
in, for example, | W]. Geometric construction usually only provides functions with
little regularity. It is natural to use heat equation solution to approximate a con-
tinuous convex (plurisubharmonic) function. Since there is no pointwise control on
the Hessian of the solution, one can not conclude that the convexity is preserved by
the heat equation deformation if one only has Hamilton’s tensor maximum principle
for bounded tensors. This indeed becomes one of the major technical hurdles in the
application of heat equation method on complete manifolds, as shown in [ N-T2].

In a recent paper [ N-T3], joint with Luen-Fai Tam, we proved an optimal tensor
maximum principle for tensors, assuming a similar necessary growth condition as (4).
The integral growth assumption can be verified for most cases in the applications.
The result seems to be effective by proving several theorems on Kéhler geometry and
Ricel flow of complete manifolds. In order to explain the result we have to start with
some notations.
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Let M™ be a complete Kiihler ifold of complex di ion mn (real

dimension n = 2m). We denote the Kihler metric by g,5. The maximum principle
is for Hermitian symmetric (1,1) tensor 5 satisfying the complex Lichnerowicz heat

equation:

a 1
(5 = A) 1y = Rpayitias = 5 (Roptiys + Rpsnap) - (5)

Assume 5(z, 1) is defined on M x (0, T] for some 7' > 0. We also assume that there
exists a constant a > 0 such that

/M [Inll(z, 0) exp (—ar®(z)) dz < (6)

and
i
lirn_l,igf/u /B,(:-) lInll*(z, ) exp (—ar?(x)) dzdt < oo. (7)

Here ||5]| is the norm of 7,5 with respect to the Kahler metric. By (6), we have
I o lle0)d < explar®) -8 ®
(7

where S = [/ [lnll(z,0) exp (—ar?(z)) dz.
In the following, we always arrange the eigenvalues of 77 at a point in the ascending

order.

Before we state our result, let us first fix some notations. Let ¢ : [0,00) — [0,1]
be a smooth function so that ¢ = 1 on [0,1] and ¢ = 0 on [2,00). For any zy € M
and R > 0, let ¢, r be the function defined by

Pao,r(¥) = ¢ (ILZRL")) .

(3-2)r=-1

with initial value @, r. Then fy, r is defined for all ¢ and is positive and bounded
for ¢ > 0. In fact

Let f-, r be the solution of

fronleit) =+ | H(@0, 000 )y

M
In [ N-T3]. we establish the following maximum principle.
Theorem 2 Let M be a plet pact Kihler fold with tii
holomorphic bisectional curvature. Let n(x,t) be a Hermition symmetric (1,1) tensor
satisfying (5) on M x [0,T) with 0 < T' < 3= such that ||n|| satisfies (6) and (7).
Suppose att = 0, 1,5 > —bg,p for some constant b > 0. Then there ezists 0 < Ty < T

depending only on T and a so that the following are true.




OusgQ A imum principle for tensors on I ifolds ... 163

040000 - %

(1) naalz.t) > =bg,s(2) for all (z,t) € M x [0, Ty].

(ii) For any Ty > ' > 0, suppose there is a point z' in M™ and there exist constants
v >0 and R > 0 such that the sum of the first k eigenvalues Ay, ..., Ak of 0,5
satisfies

A+ M 2 —kb+vkpr r
for all = at time t'. Then for allt > t' and for all x € M, the sum of the first
k eigenvalues of 1, (x,t) satisfies

Aot M > kb o+ vk for m(z,t = ).

The result has several applications in the study of the geometry and function
theory of Kahler ifolds. For le, the following result was proved in [ N-T3].

Theorem 3 Let M be a pl pact Kahler ifold with ti

holomorphic bisectional curvature. Let u be a continuous plurisubharmonic function
on M. Suppose that
lim sup ( )

T=00 log r(z)

Then u must be a constant.

One can see that Theorem 3 generalize the well-known results on €™ to general
Kihler ifolds. The similar generalization for harmonic functions was done much
carlier by Yau [ Y], the case which is relatively easier since one is dealing with a
solution to a linear differential equation (harmonic functions). The related differential
equation related to the above Liouville theorem is the degenerated Monge-Amperé
equation (See [ N1J), which is fully nonlinear. The proof of Theorem 3 hinged on
the study of the foliation defined by the degenerated Monge-Amperé equation and
the implications of the maximum principle to the heat equation deformation of the
studied plurisubharmonic functions. The reader can refer [ N-T3] for more details.

Using Theorem 3 we obtain the following result, which can be viewed as a gener-
alization of the splitting theorem of Cheeger-Gromoll.

Theorem 4 Let M™ be a plet pact Kihler ifold with b
holomorphic bisectional curvature. Suppose f is a nonconstant harmonic function on
M such that

1f()|

rite(z)
for any « > 0, where r(x) is the distance of.t from a fized point. Then f must be
of linear growth and M splits isometrically as M x IR. Moreover the universal cover
M of M splits isometrically and holomorphically as M x C, where M'isa complete
Kihler manifold with nonnegative holomorphic bisectional curvature. Suppose that
there exists @ nonconstant holomorphic function f on M satisfying (9). Then M
itself splits as M x C.

lim sup =0, 9)
200



164 Lei Ni e

For the sake of the illustration, we outline a proof of Theorem 4 in the case f is of
linear growth. With some calculation and applying the gradient estimate of Cheng-
Yau [ C-Y], one knows that [V /| is a bounded plurisubharmonic function. Then
Theorem 3 implies that [V f| is a constant, from which it is an easy application of the
Bochner formula to conclude the splitting of the manifold as in the simple analytic
proof of Cheeger-Gromoll splitting theorem in [ S-Y].

Applying Theorem 2 to the Busemann function we obtained the following result,
which sharpens Perelman’s soul theorem [ P1] in the Kahler category.

Corollary 5 (F.-Y. Zheng) Let M be a lete Kdihler manifold with no tis
sectional curvature. Then its universal cover is of the form M = C* x N x L where N
is a compact Hermitian symmetric manifold, L is Stein and L contains no Buclidean
factor. Moreover, there ewists o discrete subgroup I' C I,(C*) which acts freely on
€*, and group homomorphisms p : T = IASN)V : T = Iy(L), such that M is
holomorphically isometric to the quotient of M by T whlch acts on M as

(2,9, 2) = (7(z), P(V) (W), 7(7)(2))

for any v € T'. In particular, M is a halamarzzluc and Riemannian fiber bundle with
fiber N x L over the flat Kihler manifold €*/T. Here Iy(X) denotes the group of
isometric biholomorphisms of a Kihler manifold X. In particular, if M has positive
bisectional curvature, M is diffeomorphic to R*™.

The corollary follows from some general splitting theorems on Kihler manifolds
with nonnegative biscc Lluuul curvature, wluch in particular, imply that any compact
complex sub fold in a simply lete Kahler ifold with ]
twe bisectional curvature must be an isometric /actnr. This sharpen a conjectured
picture, by Yau, on the structure of such manifolds.

Theorem 2 is also true for complete Ri with ive sec-
tional curvature. It becomes very useful when coupled with the Ricci flow. In partic-
ular it was proved in [ N2J:

Theorem 6 Let (M, gi;(x,t)) be complete Riemannian metrics satisfying the Ricci
flow with bounded nonnegative sectional curvature. Let u(z) be a Lipschitz continuous
conver function satisfying

fold,

Jul(w) < Cexp (ar(z)) (10)
for some positive constants C and a. Let v(z,t) be the solution to the time- ~dependent
heat equation [m —A)v = 0. There ezists To > 0 depending only on a and there
exists Ty > Ty > 0 such that the following are true.

(i) For0 <t < Ty, v(,t) is a smooth convex function (with respect to gij(z, ).
(i) Let
K(z,t) = {w € T}°(M)| vij(z,t)w’ =0, for all 5}
be the null space of vij(w,t). Then for any 0 < t < Ty, K(z,t) is a distribution
on M. Moreover the distribution is invariant in time as well as under the
parullel translation.

8 N
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The above result has the following consequences (cf. [ N2]) on geometry and the
Ricei flow on complete manifolds.

Corollary 7 Let M be a plete simply d Ri i ifold with
bounded nonnegative curvature operator. Then M is a product of a compact Rie-
fold with gative curvature operator with a complete noncompact

manfold which is diffeomorphic to RK. In the case of dimension three, the same result
holds if one only assumes that the sectional curvature is nonnegative.

Remarks. The compact factor in the above result has been classified by Gallot and
Meyer [ Ga-M] (also in [ Ch-Y] by Chow and Yang) to be the product of compact
symmetric spaces, Kdihler manifolds biholomorphic to the complex projective spaces
and the manifolds homeomorphic to spheres.

The above result was proved earlier in [ No] by Noronha without assuming the
boundedness of the curvature tensor. Our method here has this restriction since we
have to use the short time existence result of Shi in [ Sh2] on the Ricci flow. For
dimension three, in [ Shi] the result was proved even for nonnegative Ricci curvature
case. However, it relies on the previous deep results of Hamilton and Schoen- Yau.

The following result in [ N2] is the first example of such.

Corollary 8 Forn > 4, there are complete Ri i ifolds on which the Ricci
Jlow does not preserve the nonnegativity of the sectional curvature.

The result suggests that the Ricci flow in high dimension may not be as tractable
as in dimension three, when one can have nice pinching estimates([ H3]), which holds
one of the keys to the study of the singularity, as illustrated in [ H3, P2].

Received: October 2003. Revised: March 2004.
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