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ABSTRACT 
This papcr is mainly coiu.:crncd with Nonfinear in.dab1l1ty o/ dispcrsive waves. 

lt dcals with some advauced studies of instabilitics of linear and noulinear disper­
S! \ 'e wavcs in water of fini to ali(! infinite depths. T he paper has been organizcd 
in tbe followiug manuer: Section 1 contains the preliminary int.roduct.ion of t he 
hydrodynamic instabilit.y. Thcse preliminaries of hydrodynamic stability are dis­
cusscd in detail in section 2. T he advanced instability studies ;ne prr.scntcd in 
tbc followiug four scctions which are rclated to linear and nonlinear ocean waves. 
Section 3 contains thc nouliucar instability of water waves duc to Bcujami11 and 
r eir {l) Thc llayleigh-Taylor linear instability or rlispcrsive Wll\'CS is illustrated 
111 section 4, whereas thcir no11lincar instability is discusscd in scction 5. T his 
article concludcs with t.hc bricf study of Kelvin-Helmholtz linear instability with 
two inviscid strcnms which is prcscntcd in section 6. 

RESU MEN 
Este papcr tieuc que ver principalmente con Inestabilidad nolincal de ondas 

d1spcniua.s. Considera algunos estudios avanzados de inestabilidades de oudas 
dispersas lineales y no lineales en aguas de profundidades finitas e infinitas. Este 

1The •uth<HS art very grntcful to Natural Scienccs and Engineering R.escarch Council of Cana.da 
(NSERC) for 1Ui financial llUllPOrt lea.diug to lhis nrtlcle. 
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paper ha sido organizado de !a siguiente manera: Sección J cont iene Ja iutro­
ducción preliminar de inestabilidad hidrodinámica. Estos preliminares de esta­
bilidad hidrodinámica son disw t idos en detalle en sección 2. Los estudios de in­
est abilidad avanzada son presentados en las siguientes cuatro secciones las cuales 
están relacionadas ondas de océanos lineal y no lineal. La sección 3 contiene la 
inesta.bilJdad no lineal de ondas de agua debidas a Benjamiu y Feir[l]. La in­
estabilidad lineal de rtayleigh-Thylor de ondas dispersiva.s es ilustrada en sección 
4, mientras su inestabilidad no lineal es discutida en sección 5. Este artículo 
concluye cou el estudio breve de inestabilidad lineal de J(elvin-Hclmholtz con dos 
iuviscid streams el cual es presentado en sección 6. 

Kcy words and p hrases: llyllrodyrrnmic Stabifiey, Nonlinenr Theory, Dispersive 
Waves, Vi.scoJity, foviscid Flows, Rayleigh-1'aylor 
lnstability, Keluin-Helmholt: Jnstability, S takes Waves 
a11d Benjamin-Fcir Jnstabi/ity. 

Mat h. Subj. C lass.: 76E99, 768J!í 

1 Int rod uction 

\Ve observe in thc large bodies of water such as oceans that. the ffow around submergcd 
or floating bodics <loes no!. normally develop in a smooth, order!y fashion to a perfectly 
steady stat.e as might. be expected but that more or less violent, irregular fluctuations 
appear specially in the wakc. Thcse behaviors of the flow patterns are usual!y ascribed 
to "instability" of Lhe ftow, that is the tendency for smaJI disturbances which might 
be caused by winds1 noise, mechanical vibrations, surface roughness, non-uniformity 
of oncoming stream, cte. to be amplified into substantial ftuctuat ions. As a result,the 
final, ·'turbulent" motion is at most ustatistically steady", in the sense that the Huid 
vclocity at each point variel:i about a constant mean value. 

The instability defined above can be viewed as an instability of thc vortcx distri­
bmion1 as this fixes the ftow field. Thus it would be supposed, therefore1 that a very 
slight displacement of sorne vorticity, may induce slight changes in the velocities of 
convection of e:\isting vortex lines, such that resulting changes in thc vort icity pa ttern 
a short time !afer induce alterations in the velocities of convection of that vorticity 
puttern1 such that the who!c altered process of convection, product ion and diffusion of 
the voriicity tending more and more to depart from what it would have been without 
the original disturbance. In fact 1 although turbulcnce is observed most frequent.Jy in 
wakes, it was found soon after thc discovery of the boundary !ayer (Prandtl J914) 
that parts of it are turbulent in a wide range of flows. 

Sincc diffüsion by itself is a stable process, t ite vorticity dist ribut ion is necessarily 
stable when i1. dominates sufficient ly over convection. By comparing a diffusion rate 
of arder T, whcre 11 is the kinematic viscosity, w0 is a typical ,·orticity and 6 is the 
t.hickness of a !ayer across which w varies from O to wo, with a convection rate of a rder 
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11w0 (both per unit arca), we see that stability may be expectcd if 

H6==~ 
V 

(1) 

is small cnough. This is one of the reasons why the wake is often obscrved to be 
unstable when the boundary layer is not. 

Thc stability t heory is a mathemat.ical construction of great complexity and bcauty. 
l'ollmien [26J, 127] was t.he first to recognize the complete picturcs of instability of flows 
and after him mony rcsearchcrs cont ribute to this field. To understand the instabil· 
ity of flows in a layman's tcrm, wc may consider small sine-wavc disturbances and 
invcstigate their distribntion across t he layer, their phase velocity cr, and thcir rate 
of amplification (posit ive, Hegative or zero) with time. IL is worth noting herc t hat 
according to wave t heory, even a localized disturbance can be considered as a com­
bination of such sine wavcs, a lthough t he part of the disturbance with wavelengt.h 
nround lhe value ,\ will travc! a long, not a t the speed e,. of its individual crests, but 
a1. its "group velocity'' c9 = Cr - A~. The most impor1.ant. results are as follows: 

lf, a!> thc first approximation, d iffusion and production of new vorticiLy are 
ncglectcd (<tS iu t.he inviscid flow theory), then the waves can have posit ivc raLe 
of amplification only if the undisturbcd vor1.ici1.y distribut ion has a ma.ximum 
in the midsL of the !ayer (sec Tollmien f27J and GOrtler [5]). 

ll. This simplified theory stntcd in (1) is not accurate enough ; in particular, for 
the boundary layers in accclerating ftow, the actual predicted wave system with 
zero amplification rate, has some seriously unrcaJistic features, duc to t hc total 
ncglect of t he production and diffusion of vorticity. 

111. At lowcr \•alues of RJ, t hc main effect of diffusion is stabilizing or smoot hing as 
ex¡>ccted. However, a s!.ronger diffusive effect is necessary t.o removc the insta,. 
bility of layers with vortidty rnaxima, which is longer and almost independent 
of ~ than to rcmove t lic weaker instability of layers with mo11o tonic vorticity. 

IV. Although t.hc abovc theor·y is for two-dimcnsional vortex layen;, it can be applied 
to three-dimensional boundary if we consider scparately the stability of 11cross­
strcam " a nd "streamwise" vorticity distributions. '.'low, sincc the total st ream 
wise \'Orlicif,y (int egrated across t he !ayer) is zero, it must have a maximum 
somcwherc. lt may happen , therefore, if the C."l(ternal ftow is accelerating t hat 
R., has a value for whid 1 the cross stream vortici1.y is stable but the streamwise 
vonici1.y unstablc, lcading to concent ration of the latter vorticity in "streaks" 
which may be visible on oil flow photographs (see Gregory, Stuart a11d Walker 
(6). 

2 Hydrodynamic stability 

Thc. avier- toke's equat io11s play a very important part in t he field of hydrodynam­
ics to study tbe flow stabili t.y. In real situation, a turbulent form of motion is oftcn 
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more likely to occur t.han the appropriate laminar form, thc question of relativc sta­
bility of two typcs of ílow naturally arises. It has been observed expcrimcnlally that 
laminar flow occurs a t low Reynolds numbers and in this range \'iscosity damped out 
any deviation from laminar flow. Clearly, at such Reynolds numbers, this Lypc of flow 
is more stable ihan thc turbulent forrn. On the othcr hand, at high R.eynolds num­
bcrs, turbuJem motion occurs. In this situation, laminar flow can be realizcd only 
by excludü1g ali possible disturbances, however small. At such Reynolds numbers, 
therefore, turbulent fiow appears to be thc more stable form. 

Bccause of the mat.hematical simplifications associatcd with linearization aud be­
cause linearized theory is able to give the critica! conditions for the occurrcnce of 
insrnbility for infinitesimal disturbances, the stability theory has bcen largcly dc­
voted with this restricLioJL. However , the role of non-linearity in flow instability has 
recch1ed considerable attention amoug scientists and engineers. We shall review these 
notions one afler anothcr. 

The mathematical prohlem of hydrodynamics stability can be formulated by tak­
ing thc given steady-state solution of motion and superimposing a disturbance of a 
suitable kind. This results in a set of nonlinear disturbance equat ions, which govcrn 
the bchavior of t.hc disturbance. If t he disturbance ultimately decays to zero, the flow 
is said to be stable, but if a disturba ncc results which is pcrmaneutly different from 
zero, the flow is said to be unstable. It does not follow that t he instability leads to 
turbulcnt motion. 

\Vhen the "disturbancc differeutial cquations" are linearized for small disturbanccs 
they become homogenous and it is possible to consider disturbances which contain 
an cxponential time factor eºt, t being Lhe time and CT the frequency. T he bound­
ary conditions on t ite disturbancc equations require the vanishing a t the boundaries 
of quamitics like t he disturbance velocity components. Consequentlr thc boundary 
conditions are also homoge11ous, and we have an eigenvalue problem for the determi­
nation of the quantil.y rJ. lf it is possible for u to ha ve a positive real part, the flow 
said to be unstable according to the linearized theory; otberwise t he flow is stablc. 
The possible eigenvalues of u depencl , of course, on quantit ies such as flow speed, 
kincmatic viscosity, t hennal di!Tusivity, and disturbance wavelength. Therc are two 
main types of instability. They are 

J. The instabiliLy of curved flows due to ceutrifugal forces1 as for examplc, thc flow 
bet.ween two concentric rota ting cylinders. 

H. The instability of two dimensional parallel flows, as illustrated by Poisenille flow 
between parallel planes, in which viscosity may play itself a destabilizing role. 

In each of these case, instabitit.y occurs whcn a certain parameters, represcnt ing the 
ratio of destabilizing to stabilir. ing forces, reaches a critica! va.lue. As for cxmnple, 
in case (JI), the parametcr is the Reynolds numl>er. In discussing the mechanics of 
instability1 rhc concept of the Reynolds s tress is a lmost indispensable. To know about 
this concept the readcr is rcferred to the book by Lin fl3L and in particular, to papers 
by Lees aud Lin fIOJ, Gazley f4], a11d Dunn and Lin f3J. 
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3 Instability of water waves 

Thc studr of nonlinem· instability phenomena goes back to the days of Landau !9] 
when he first dcscribcd thesc phcnomena of certain class of flow by nonlincar orcli· 
nary differential equat ion for the amplit ude of a wa,·e mode. The thcory of Landau 
[9J has bcen found latcr to havc suffercd serious ·weaknesses1 but his work has scrvcd 
a fundamental basis far ali subscquent developments in t he modern t hcories of 110 11· 

linear iustabilitics of fluid motions. In 1847, Stokes !23) first proposed that thc free 
surface clcva1ion of t hc plane wave train in deep water can be cxpectcd in power of 
wavc amplitudc. The convergcncc of t.he Stokes expansion was provcd by Lcvi·Civita 
in 1925 considcring t.he wavc amplitude wa.s very small compared to the wavclength . 
T hc study of stability rcnrnincd unattcnded until the I960's expect far an isolate<l 
iuvestigation by Kort.cwcg aud de Vries in 1895 on long surface waves of finitc dept.h. 
One oí t hc most. striking discoveries maclc in the 1960's is t hat t he pcrio<lic St.okes 
waves iu sufficicnt.ly dccp water appcars to be unstable. This resu\t, has bcen ver· 
ificd by many pioncering rcsearchcrs including Lighthill [11 , 12] 1 Whitham j28, 29J, 
Bcnjamin and Fe ir !JJ aud Zakharov [30]. 

Ju the following we slrnll describe in sorne det.ail the inst ability oí water waves 
ns outlincd by 13cnjnmin and Feir [l ). The velocity potential, </J(x , t), and vertical 
d isplacement of water surface above mean water lcvel, 11(x , t)i of t.hc second·order 
wavc may written as Rahman [16, 17] 

Ag cosh k(z + h) (k ) 
ti> = <Po - a cosh kh cos x - u f 

_ 3.42a cosh 2k(z + h) cos 2(kx _ at) 
8 sinh4 kh 

(2) 

A2k cosh k/i 
'1 = '1o A siu(kx - at) - T sinh3 kh (2 + cosh 2kh) cos 2(kx - al) 

.42k 
- 2 sinh 2kh 

(3) 

where A is the first. ordcr wave amplit.ude, h is the water depth , k is thc wave numbcr 
'lf,-, u angular frequency aud z is positive upward and is measurcd from the mean 
water le,•el. The celerity of t he wave up to the third--0rder can be determ ined as (sec 

loker l22J) 

C1 = ~ tanhkh[l +(kA )2 { 5+2cosh2~h~ 2 cosh2 2kh }] (4) 
k 8s1nl1 kh 

This approximation is valid provided kA << 1 or a lternatively kA << (kh) 3 for small 
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kh. For deep water waves , these results reduce to the following: 

aud 

ry = 

C' 

<Po= -~é.: cos(kx - O"t) 
u 

A2 k 
1/o = Asin (kx - at) - T cos2(kx - at} 

t(l+A2k2 ) 

gk( l + A2k'). 

These describe the stead:y wave im~tion in deep water when kA << l. 

(5) 

(6) 

To investiga.te the stabili ty 0f the steady wave motion described by (2) and (3), 
we write 

</>= </>o + ef/ 
1J=TJo+ 11' (7) 

where q,1 and 17' are the perturbed solutions from their steady motions. For convc­
nience we rcwrite t.he governing equation with the bounda.ry condibions 

q,,,+q,,, =© -h$z::;O - oo<x<oo (8) 

q,, = 8 on z = - h (9) 

1Jt +r¡rr. </l., -<P: 

gry + q,, -1- ~¡q,; + q,;¡ on z = ry(x,t) (10) 

The solut ion (7) must satisfy these equations and we ha.ve already seen the solu~ 
Lions far r/Jo and T1o given by (3). The solutions r/l and rl must satisfy the following 
equations: 

q,;,H~, =O -h$0 -oo<:z:<oo (11) 

1>0 Oll z=O (12) 

1¡; + 11orr. </J~ + r¡' <Po:z - <P~ = o 
gry; + q,; + [</>o. <1>; + <f>o,q,;¡ = o z=O (13) 

The so!utions r//, TJ1 are assumed to consist of sideband modes, together with t;he 
products of their interact:ion wi·lih the basic wave train, whose fundamenta! simple 
harmonic component has amplitude A and phase 8 = kx - at. Since the system 
is nonlinear, han nonics with phases 28, 38 · are travelling witb the same phase 
velocity C = f as the fundamental, aud their amplitudes are assumed Lo decrense in 
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rclativc ordcr of rnagnitude like successive integral powers of Ak << l . A dist11rbance 
is introduced consisting of a pair of progressive wave modes witl1 sideband frequencies 
and wavc numbers close to a and k so that their phascs are expresscd in the form 

(k + t.k)x - (u + l'>u)I - -y1 (t) (14) 

o, = (k - t.k)x - (u - ó u)I - ')'2(t) (15) 

whcrc (14) is the uppcr sidcbancl and ( 15) is thc lowcr sideband , and 6.k <md 6.a 
are small incrcmcnts, t iLP respective amplit udes are 61 (t) and (h(t) whid1 are mud1 
smallPr than .4. Two particular prod ucts arisc from the nonlinear interaction bctwccn 
the disturbanccs ancl thc b«sic wavc train as evidenced from (12), a nd these are the 
cliffcrcuccs component s produced between thc sidebands and t he sccond harmonic. 
This is clcar by adding ( 14) anrl (15) as follows: 

(lG) 

Thus the componcuts gcncrated have phases 

20 - 01 = o, + ('Y1 + 1·2) 

aud 28 - 02 = 01 + ('Y1 +-y,) (17) 

and amplitudes c51(t)A2 k2 and c52 (t)A2 k2 , rcspectively. Therefore, if it happcus t hat 

¡(t) ;:;: 1 1 + 12 ;:;: constant (18) 

ns the nonlinear process clevclops in time, each mode will produce effects t.hat be­
comc rcsonant with the ot,hcr. S11l>sequently, if ¡ #= O or ", each mode will suffer a 
synchronous forcing effect proportional to the amplitude of the other so that thc two 
amplil.udes can grow cxpom:utially. Thus, thc basic wave t ra in bccomcs unstable to 
this form of dist.urbance. 

Bejamin and Feir [ 1]1 hus obtained cxpressions for 11; , '1Í and <f;~ , <P~ and hcnce 
,,, ;:;: ,,: + r¡; and <f;' :::::; <f;11 + <f;~. Substituting these results into (12) leads lo fou r 
cquations with known pararnetcrs for thc functions th (t), c52 and 11 (t), 12(t). These 
functions satisfy the following simu!taneous ordinary different.ia! equations . 

d~ {1 ' } dt = ;¡u(Ak) f (kh) sin 'Y ó, 

dó, { 1 . } dt = ;¡u(Ak)2 f (kh) sm 'Y Ó1 (19) 

and ~ = u(Ak)2 f (k/1) { l + •;575~¡ cos1 } - u (~u) y(kh) (20) 
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where -y = fl + 1'2 and 

J (kh) 
9 - 10 tanb2 kit+ 9 tanh'1 kh 

8 tanh4 kh 
+ 4 + 2sech2 kh + 3(kh) coth khsech4 kh 

1 - 2kh tanh khsech2kh cosh 2kh + (kh)2secJr1kh 

, (kh) = 1 _ 4(kh)(l - khtanh kh)cosech2kh 
9 1 + 2(kh )cosech2kh 

Thc solutions of thc pair of equations (18) are 

ó1 (t) ó1 (O) cosh { ~(Ak)' f J.' sirqdt} 

+ ó2 (0) sinh { ~(Ak)' f J.' sin-ydt} 

ó2 (t) ó2 (0) cosh { ~(Ak)' f J.' sin ~dt} 

+ ó2 (0) sinh { ~(.4k)2 f J.' sin~dt} 

(21 ) 

(22) 

(23) 

it can be easily sccn from (23) t hat even though -y is yet unknown function of time, 
the amplitudes of the sideband modes undergo unbounded amplification if -y tcnd to 
consLants other than O and 1r. It has found by Benjamin and Feir IJ] that t he solutions 
ó1(t ), 62 (t) are periodic and finitcly bounded if 

2(Ak)2 / (kh) < ( ~")g(kh) (24) 

which is t he required candil.ion of stability of the basic wave trains. 
On thc other hand, if 

2(11k)2/(kh) 2'. ( ~ª)g(kh) (25) 

t hen tbc basic "'ª''e trains are unstable. It can be easily verified that g(kh) --t O as 
kh --t O, and g(kh) --t 1 when (kh) --t oo. So the values of g(kh) are always positive. 
Thus thc basic wave train wil! be s table or unstable entirely depends upan Lhe sign 
of J (kh ). lf f (kh ) >O, there exists a range of values of (~)so that thc condition 
of instability (25) is satisfice! . However. if f(kh) < O, the stabilit,y condition (24) 
remains "alid far ali values ofother parameters. Direct evaJuation of J(kh) frorn (2 1) 
shows that f(kh) is positive or negative according to whether kh > 1.363 or < 1.363. 

Thus in thc case of infinitely deep water, the condit ion of instability becomes 

(26) 
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T he tokes wave trnins in infinitely deep water stable or unstable act:ord in¡; to the 
wavclcngth f., >(¡~;::!' or L < ( 1~Í:3 ). It is irnportam. to note t hat if kh < 1.363, 
thcrc is a critica! wilue (~)e, of ( -f) which is given by 

(27) 

in which thcrc is no unboundcd growth of the sideband amplitudes. 

4 T he Rayle igh-Taylor instability of d ispersive waves 

Thi.s section is conccrn with t.ho classical linear instabilit.y problem of two semi-infinite 
hornogcnous iuviscid fluids of dcnsities, p1 in t he region z < O and p2 in the region 
t >O (p1 > frl) nnd t hesc t.wo íluids are separated by a horizontal interface boundary 
= ; Q. 

This problem was first considercd by Lord Rayleigh and G. 1. Taylor in 1917 to 
in\'estigate the stabilil y oí flow. T he density of the lower fluid is p1 ancl t hat of thc 
upper fluid is p2 whcn fh > p2 wit.h an interfacial surfacc iension T a.t t.he interface 
z = O. Thc flow is considcrccl to be irrotational which implies that the scalar velocity 
potentials exist such that t.hc vclocity potential of t be lower fluid is </>1 and that of 
thc uppcr fluid is 4'2, and they satisfy t he Laplace's equations 

\12tjJ1 = O in -oo < ;: < O 

\12q,2 = O in O < z < oo (28) 

Jet us considcr t hut t he interfocial surface elevat.ion is '1 = q(x, y, t ). The boundary 
comlilions satislicd by thc quaut ities t/J1, 4>2 and '1 are the following: 

'fhe boundflry conditio11s at z = ±oo are 

at z = - oo 

at z = 00 (29) 

The kincmatic boundary condit ions are: 

º" z =o 

on z= O (30) 

The dynamic boundary conditions are 

(31) 
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The solution of this moving boundary problem can be obtained by considering a 
typical Forricr component of interfacial elevation r¡ which has t.he form 

z = 17(x ,y, t) = A.exp {i(k • x - at)} (32) 

where A is an arbit.rary constant, x = (x, y), k = (k 1 , k2 ) is the horizontal wavc 
number vector, k1 and k2 are real, and a(k1 , k2) is a possible complex frequency. Thc 
associated velocity potcntials satisfy ing the boundary conditio11s (29} are 

~ ' =A,exp{i(k•x- o-t)+kz) (33) 

~2 = A2 exp{i(k •x - ut) + kz ) (34) 

where k = jk j = Jkf + ki and constant A, A1 and A2 can readily be determined. 
The kincmatic conditions (30) yield 

kA1 = -kA2 = -iaA (35) 

T he dynamic boundary conditions (31) gives t.he linearized eigenvalue far a as 

' k [P• - Pz Tk' l 
a = g P1 + Pz + g(p1 + P2) (36) 

This quadratic cquation for a has either real roots or complex roots. Far real root.s, 
thcre are two wave models t hat propagate with constant amplitude. Far complex 
conjugate roots, a = Ur ± ia1 and in this situation if a; > O, the wave model with 
the positive imaginary part dccays exponentiaJly with t ime t, whi!e wit h t hc negativc 
imaginary part grows exponential!y. If therc exists such an exponentially growing 
model far somc wave numbers (k1, k2L t he primary flow is unstable. On the other 
hand, if there is no such a model for any (k1, k2) t he ftow is regarded as stable to 
linearized d isturbances. 

Let us define t.he horizontal coordinates X = a ){k. x) = ~ in the direction 

of t he wave number vector k (that is normal to the wave crests) . Clearly1 waves 
propaga te in t.he direction of increasing x wit h phase velocity T. Also the value of 
(f) depends on k1 and kz, and hence the waves are dispersive. 

Result (36) is called t he complex dispersive relation for interfacial waves a ncl gives 

=rP1 -P2 Tk2 ] 'i' 
a = ± yyt1LPI + p2 + g(p¡ +pz) (37) 

These roots are real provided ,r¡(pi - P2) + Tk2 is positive. Clearly, when p1 > p2, 
thc assod ated models describes interfacial capillary-gravit.y waves. When the heavier 
fiuid p1 ( < p2 ) is on t.he top of the lighter fluid , the system is unstable for a ll wavc 
number with k2 < (f)(p2 - pi), that is sufficiently long wa,·es are unstable in t he 
range O< k < kc, when 

(38) 
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llowcver, in the lettcr case, t.hc system is stablc for ali disturbances with k > ke­
Thus thc effect oí surfacc tcnsion is to stabilizc a potent.ially unst.able system for ali 
sufficirntly la rge wavc mnnbers (or small wavc lengths)1 wherc t.he systcm rema ins un­
stnblc for ali suflicient ly small wave numbers (or long wa\"elengths). This is univcrsally 
known as thc Rayleigh-Taylor instability. 

Special cases: 

l . In thc abscncc of the surfacc tcnsion (T = O), t he cigenvalue equat ion (36) bccomcs 

' (P• -p,,) u = gk --
PI +1>2 

(39) 

lf p 1 < /)2, the value of a is purcly imaginary which implies t.hat t he system is unst.a ble. 
This is a \1cry obvious instability, when the heavier fluid is on the top of the lighter 
fluid. 

On thc oth r hand , whcn p1 > P2t a is real, and hence gravity waves occur at the 
11ir-watcr interface. Thc phnsc velocity and group velocities of the waves are givcn by 

"• ¡ :± (t) (;:~~) 
c9 V , u (40) 

11. In thc absencc of t.hc upper flu id (p2 = O), there exists stable gravity waves 
on decp water. The \W.1vcs are characterized by the famous dispersion relation a 2 = 
gk = gJk~ + k1. lt is observed from (39) that a 2 depcnd critica lly on thc density 
varialion. For large p1/ p2 , a 2 = gk, which is independcnt of dcnsity, and hcncc it 
drscribe thc classicaJ water wo.ves. 

111. lf tbe two fluid are confined between two rigid horizontal planes at z = - h, and 
z = h,, scparated hy a wcll-defi ued interface at z = O, we assume the solutions for 4>1 

nnd (>-i instcad of (33) and {34) in the following forms 

~1 : A, cosh k(z + hi) exp{i(kx- ut)) (41) 

~2 : A2 cosh k(z + h,) exp{i(kx - ut)) (42) 

60 ha he conditions at the lowcr and upper boundaries are satisfied. We assume 
thnt thc interfocial wavc equat ion function is 

z: 'l(x, t) : A exp{i(kx - ut)) (•13) 

The kinematic boundary condit ions (30) rcquire that 

(44) 
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Then thc dynamic bouurlary condit ion (31} yield the eigcnvalur 

, gk(p1 - µ,) + Tk3 
o = 

pi coth kh1 + P'Z coth kh2 
(45) 

It can be casily not iced that in the limitas kh.1 --too and kh2 --too, this result 
reduccd to the form (36} with k = (k, O). This is the case for the dccp water ocean. 

On the other hand, for shallow water, when kh1 --t O and kh2 --t O (long wave 
limit}, {'15) Uecomes 

o' gk (p1 - P2) + Tk3 

ft+&; 
gk2[(P1 - P2 ) + Tk2Jh1 h2 

P1h2 +P2h1 
(46) 

Similarly, if kh 1 is very small and kh2 is very large, t hen the eigenvalue equation is 

2 '[ p¡ Tk'] o = k (! - - ) + - gh¡ 
P2 9P1 

(·17) 

ln thc preceding aualysis wc has itlustrated most of the fundamental ideas relied to 
free interfacial wa,,es in invisdd fl uicls. 

5 T he Rayleigh-Taylor non-linear instability of dis­
persive waves 

The Raylcigh-Taylor linear instability of dispcrsivc wavcs problem has been discussed 
by Lamb ! J in which t.he µrob!cm was dcscribed in two inviscid fluids sepnrnted by a 
well-defrned horizont.a l interface at z ;::. O. He predicted the unstable behavior of t he 
interface of this fluid modcl in a gravita tional field directed from t he heavicr to the 
lighter fluid. ln fluid flow problem, viscosity and surface tension play a vcry important 
role in stabilizing thc flow ficld. Lamb has proved that surface tension stabilizes or 
clcstabilizes the fiow accordiug to k > J(g/T)(p1 - p,) or k < J(g/ T)(p1 - r>,) 
\\·herc k is the wave nurnber, g is the gravitational acceleration , T is t hc suríacc 
tension and p 1 and p2 are thc densit,ics of thc fluids. Here kc :::: J(g/T)(p1 - p2 ) is 
called thc Rayleigh-Taylor critica! va lue for t he instability. 

Fbllowing ;\iayfeh [15]. Debnath [2J has givcn a lucid description of t he nonlincar 
instability of thc interface of a semi-infinito air and inviscid liquid of finite clcpth h. 
The nonlinear moving boundary conditions are used and solutions a r<' obt.ained using 
a Fourier perturbation techniquc. Thc non-dimensionaJ forms o( the boundary value 
problcm are gi \'en by: 

• Laplacc's equatiou: 

- 00 < l: < ' - h 5 : ~ ,,, t > o 



• Bottom boundar y conclition: 

<P: =O a t z = -h 

• Kinematic boundary condition at free surface 

111 - lh:<P:r. + JJ~ = O on z = '1 (50) 

• Oynrunic boundary condition at t he free surface 

whcrt! k' = f;, kc: = ( P,f- ) ~ is thc lincarized cut off wave number and represcnts the 

ratio of t hc gcneralizcd force t.o t he surface tension force. The initial conclitions a re 

1¡(a:, /,Q) = lCOSX 

·11t(x, t) = O at t =O (52) 

whcre ( = ok is t he WRVC stcepness paramet.er. 
In order to obtnin t he appropriate solutions for small t: , we use t he Fourier per· 

turbnLion analysis and writc t.he solutions in consisten!. with 49), (50) in the forms 

~(x, z , t) <l~1(t)e;• +e.e.) cosh (z + h) 

+ <2 1~• (t)eu, +e.e.) eosh 2(z + h) 
+ ··+<'<;i,(t) + · (53) 

~(x, t) = ,¡,,1 (t)e1' +e.e.)+ •'I~• (t)e2;' +e.e.)+ ,',¡,(t) + · (54) 

!u this scction we avoided thc lcngthy calculations to get the solutions for t hc potential 

4' and "'ª'-e elcvation 17. 
ote: 

Th re are severa! import.ant fca.ture of the nonlinea.r instability of Rayleigh~Taylor 
p1 oblcm. In this analysis, it has bccn found that the cut off wave number given by 

(55) 

Dcpcnd on the wave amplitude. 
Both wwclling and standing wave solutions with wave number greater t han t.he 

cut off \'alue oscillate with time-imlependent amplitudes a nd t.herefore are stable. 
flowc\-er the phase vclocity of the t ravelling waves and the frequcncy of t he standing 
Wi\\'t'S depend on t he amplit ude. Below this cutoff value t he disturbances grow in 
amphtude. The cut0ff wavc number is independcnt of t.he dcpth h of the Jower liquid. 
llowtm;r, the grown rate of unstable disturbances decrease as h decrease, lcading to 

.!ltabiht)· 
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6 The Kelvin-Helmholtz linear instability with two 
inviscid st.reams 

In this section we discuss t he c!assical Kelvin-Helmholtz linear instability problem 
of two semi-infinit.e hor-nogenous inviscid fluids of densit ies p1 and p2 where p 1 > p2 

such that Lhe p1 fluid below a.nd P'.! fluid above t.he interfaciat boundary z = O. We 
assume that. the lower anrl upper f!uids have velociLies 1i 1 and u2 respectively in the 
x-direction. 

The F'orrier component of fluid elevat iou of the disLurbance interface is described 
by 

z = 1¡(", y, t) =A exp [i(k • x - ut)) (56) 

where A is an arbit.rary c0nsúan!:. The perturbations oí t:he flows below and above the 
interface are assumed to be i'l'rolia:ti0nal so llhat the velocity potentiials of the lower 
ancl upper flu ids are <P1 and ¡/J2 , respectively, which can be written as 

4'1(x,y,z, t) = uix+q,; in -oo<z<r¡ 

<P2(x,y , z, t) = u'.!x+<P; in r¡ <z<oo (57) 

wherc ali the <P's satisfy the Laplace's equat.ion, and products of iP\, í/J~ a.nd 11 are 
neglected. 

lncluding the effect of s1:1rface tension T and invoking t he linearization, t he per­
Lurbed ql1antitics satisfy the foll0wing equations, boundary and interfacial conditions: 

• Laplaceis equations 

'V'~; in z <o 
\/2 ef¡~ in z> O (58) 

• Bottom boundary condi~ions 

f'V~;¡ _, as z--¡. -oo 

f'V~; ¡ _, as z _, 00 (59) 

• Kincmatic boundary condit:i011s 

on z=O 

on z=O (GO) 

• Dynamic boundary conditi011 

(Gl) 
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¡\ sel oí suitab](' solutions, namcly thc plane-wavc solution of t he perturbed quant ities 
can be writtcn as 

A1 exp[i(k • x - ut) + kz] 
A, exp [i(k • x - ut) + kz) 
A exp [i(k • x - ut)] 

(62) 

(63) 
(64) 

whcrc the wavc numbcrs k1 and k2 are real and k = lk l = Jkf + kj. The kinematic 
rondition~ (60) rcquire Llmt 

Aik = Ai(-a + tt1k1) 

A2k = Ai(- u + u1k¡) (65) 

f'liminating of A11 .42 une! A frorn (60) and (61) gives t he eigenva\ue equat ion for a 
llS 

Thc solution of thc quadratic cquation gives two roots íor u as 

wherc 

p¡ 
ty¡ :;::-­

(J¡ +P2 
a2 = __!!!__ 

p¡ +P?. 

(66) 

(67) 

(68) 

The fir t tcrm on thc righ1.-liand sidc of (67) is always real and rcprescnts convcc­
tion of any wa,•c aL vclocity (a1 u 1 + 0 2112) in t he x-direction. T hus t he flow is sLable 
or unstable according to whothcr 

(69) 

Thc equality corresponds t.o marginal stability. For any unstablc wavc wit h givcn k11 

ils gro9•lh ra l<' Re(ia) > O is maximum when k2 =O (or k = k1 ) a11d t he wavc is in 
thc directio:1 parallcl to t.hc basic ílow. T hen the condition for instability becomes 

2 , , (g Tk ) P1P2(u.1 - u2) > (P1 - P2) -k + - ­
P1 - P2 

(70) 

'Thc right-hand sidc ntul.ini; its maximum fork2 = (g/T )(p1 - p2 ), and t he con cspond­
ing condition for instability of thc basic ílow is 

(u1 - 112)' > 2(p¡ +p,) (Tg(p1 -p,)j! 
p¡p, 

'Tlu.:; r<"Sult was first derived by Kelvin. 

(71) 
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t 1 (l!!90.) 

ln the absencc of surfoce tcnsion (T :: O), the condition for instability (69) reduce 

'º 
(72) 

This mcans that, for ;i givcn velocity diffcrcnce 11 1 - u.2 , and for a given direction of 
the wm·e numbcr vector k , iustability occurs for a li wave numbers 

k > g(a1 -o,) 
0"1a2(u1 - u 2)2 cos2 6 

(73) 

where Bis the angle betwccn k and u . For a given 1i 1 - 112, result (75) shows tha! 
instabilty occurs for thc small wave number, km;n , when k is the direction of u, whern 
is given by 

k . _ g(a, - 0 2) 

mm - Ct1a2(u ¡ - u2)2 (74) 

T hus thc ftow is always uustable when k > krnin · The most rcmarkablc feature of 
result (73) and (74) is that flow becomes unstable no matter how small the d iffercncc 
(u 1 - u2) may be. This instability is known as the Kelvin-Helmholtz insta bility. This 
instability occurs when stratified layers of fluid are in relat ivc motion. 

Special cases 

I. Vlhen p1 = p2 and u1 f:. u2 , (67) becomes for T :; O 

(75) 

for ali non-zero values of k, witJ1 cxponential growth ratc ~l(u1 - u2 )kl. This is the 
well-known Helmholt z instability for a vortex sheet. Likewise many resulL can be 
derived from (67) using many assumpt ions. 

11. When thc basic Aow is at rate (u 1 = fJ.2 =O). result (67) with T = O yields 

u=± ¡g(p, - p,)kl ¡ 
(J¡ +1>2 

(76) 

In this case, instabili1,y occurs if ancl if p1 < f>l, t hat is, heavier Huid is above the 
lightcr fluid. The pha.sc veloci1 y of the stablc waves is gfren by 

(77) 
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111. Another spcciat case (P2 =O and u.1 = u2 =O) corresponding to t he surface 
wnves on deep w;11.cr. R.esul t (66) gives the famous dispersion relati0n 

·Tk3 

ª2 =gk+---pz 

This describe the capillau:y grnvity waves on deep water. 

IV. When u 1 = u.2 =O, result (GG) yields 

ª2 = qk[p¡ - p2 + ~1 
. p, + p, 9(p, + p,) 

which corresponds to Rayleigh-Ta.ylor instability as discussed in secti0n 7.7. 

(78) 

(79) 

The I{elvin-lfolmholtz 11011[.inear instability will not be discussed here but the 
interestcd rna<ler is referred ~0 tihe b0ok by Debnath 12]. 

Received: October 2004. Revised: January 2005. 
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