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ABSTRACT

This paper is mainly concerned with Nonlinear instability of dispersive waves.
It deals with some advanced studies of instabilities of linear and nonlinear disper-
sive waves in water of finite and infinite depths. The paper has been organized
in the following manner: Section 1 contains the preliminary introduction of the
hydrodynamic instability. These preliminaries of hydrody ic stability are dis-
cussed in detail in section 2. The ad di bility studies are 1 in
the following four sections which are related to linear and nonlinear ocean waves.
Section 3 contains the nonlinear instability of water waves due to Benjamm and
Feir [1]. The Rayleigh-Taylor linear instability of dispersive waves is
in section 4, whereas their nonlinear instabilit; discussed in section 5. This
article concludes with the brief study of Kelvin-Helmholtz linear i bility with
two inviscid streams which is presented in section 6.

RESUMEN
Este paper tiene que ver principalmente con Inestabilidad nolineal de ondas
dispersivas. Considera algunos estudios avanzados de inestabilidades de ondas
dispersas lineales y no lineales en aguas de profundidades finitas e infinitas. Este
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paper ha sido organizado de la siguiente manera: Seccién 1 contiene la intro-

duccién i de bilidad hidrodi i Estos prelimi de esta-
bilidad hidrodindmica son discutidos en detalle en seccién 2. Los estudios de in-
estabilidad da son dos en las sigui cuatro secciones las cuales

estdn relacionadas ondas de océanos lineal y no lineal. La seccién 3 contiene la
inestabilidad no lineal de ondas de agua debidas a Benjamin y Feir[l]. La in-
estabilidad lineal de Rayleigh-Taylor de ondas dispersivas es ilustrada en seccién
4, mientras su inestabilidad no lineal es discutida en seccién 5. Este articulo
concluye con el estudio breve de inestabilidad lineal de Kelvin-Helmholtz con dos

inviscid streams el cual es presentado en seccién 6.
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1 Introduction

We observe in the large bodies of water such as oceans that the flow around submerged
or floating bodies does not normally develop in a smooth, orderly fashion to a perfectly
steady state as might be expected but that more or less violent, irregular fluctuations
appear specially in the wake. These behaviors of the flow patterns are usually ascribed
to “instability” of the flow, that is the tendency for small disturbances which might
be caused by winds, noise, mechanical vibrations, surface ronghness, non-uniformity
of oncoming stream, etc. to be amplified into substantial fluctuations. As a result,the
final, “turbulent” motion is at most “statistically steady”, in the sense that the fluid
velocity at each point varies about a constant mean value.

The instability defined above can be viewed as an instability of the vortex distri-
bution, as this fixes the flow field. Thus it would be supposed, therefore, that a very
slight displacement of some vorticity, may induce slight changes in the velocities of
convection of existing vortex lines, such that resulting changes in the vorticity pattern
a short time later induce alterations in the velocities of convection of that vorticity
pattern, such that the whole altered process of convection, production and diffusion of
the vorticity tending more and more to depart from what it would have been without
the original disturbance. In fact, although turbulence is observed most frequently in
wakes, it was found soon after the discovery of the boundary layer (Prandtl 1914)
that parts of it are turbulent in a wide range of flows.

Since diffusion by itself is a stable process, the vorticity distribution is necessarily
stable when it dominates sufficiently over convection. By comparing a diffusion rate
of order *§2, where v is the kinematic viscosity, w is a typical vorticity and d is the
thickness of a layer across which w varies from 0 to wp, with a convection rate of order

T\




ouso Nonlinear Instability of Dispersive Waves 141

vwy (both per unit area), we see that stability may be expected if

el (1)
v
is small enough. This is one of the reasons why the wake is often observed to be
unstable when the boundary layer is not.

The stability theory is a mathematical construction of great complexity and beauty.
Tollmien [26], [27] was the first to recognize the complete pictures of instability of flows
and after him many researchers contribute to this field. To understand the instabil-
ity of flows in a layman’s term, we may consider small sine-wave disturbances and
investigate their distribution across the layer, their phase velocity ¢,, and their rate
of amplification (positive, negative or zero) with time. It is worth noting here that
according to wave theory, even a localized disturbance can be considered as a com-
bination of such sine waves, although the part of the disturbance with wavelength
around the value A will travel along, not at the speed ¢, of its individual crests, but
at its “group velocity” ¢, = ¢, — )\%“-4 The most important results are as follows:

If, as the first approximation, diffusion and production of new vorticity are
neglected (as in the inviscid flow theory), then the waves can have positive rate
of amplification only if the undisturbed vorticity distribution has a maximum
in the midst of the layer (see Tollmien [27] and Gértler [5)).

=

. This simplified theory stated in (I) is not accurate enough; in particular, for
the boundary layers in accelerating flow, the actual predicted wave system with
zero amplification rate, has some seriously unrealistic features, due to the total
neglect of the production and diffusion of vorticity.

At lower values of Rs, the main effect of diffusion is stabilizing or smoothing as
expected. However, a stronger diffusive effect is necessary to remove the insta-
bility of layers with vorticity maxima, which is longer and almost independent
of Rs than to remove the weaker instability of layers with monotonic vorticity.

IIL.

IV. Although the above theory is for two-dimensional vortex layers, it can be applied
to three-dimensional boundary if we consider separately the stability of “cross-
stream” and “streamwise” vorticity distributions. Now, since the total stream
wise vorticity (integrated across the layer) is zero, it must have a maximum
somewhere. It may happen, therefore, if the external flow is accelerating that
Ry has a value for which the cross stream vorticity is stable but the streamwise
vorticity unstable, leading to concentration of the latter vorticity in “streaks”
which may be visible on oil flow photographs (see Gregory, Stuart and Walker

8)-

2 Hydrodynamic stability

The Navier-Stoke's equations play a very important part in the field of hydrodynam-
ics to study the flow stability. In real situation, a turbulent form of motion is often
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more likely to occur than the appropriate laminar form, the question of relative sta-
bility of two types of flow naturally arises. It has been observed experimentally that
laminar flow occurs at low Reynolds numbers and in this range viscosity damped out
any deviation from laminar flow. Clearly, at such Reynolds numbers, this type of flow
is more stable than the turbulent form. On the other hand, at high Reynolds num-
bers, turbulent motion occurs. In this situation, laminar flow can be realized only
by excluding all possible disturbances, however small. At such Reynolds numbers,
therefore, turbulent flow appears to be the more stable form.

Because of the mathematical simplifications associated with linearization and be-
cause linearized theory is able to give the critical conditions for the occurrence of
instability for infinitesimal disturbances, the stability theory has been largely de-
voted with this restriction. However, the role of non-linearity in flow instability has
received considerable attention among scientists and engineers. We shall review these
notions one after another.

The mathematical problem of hydrodynamics stability can be formulated by tak-
ing the given steady-state solution of motion and superimposing a disturbance of a
suitable kind. This results in a set of nonlinear disturbance equations, which govern
the behavior of the disturbance. If the disturbance ultimately decays to zero, the flow
is said to be stable, but if a disturbance results which is permanently different from
said to be unstable. It does not follow that the instability leads to

zero, the flow

turbulent motion.
When the “disturbance differential equations” are linearized for small disturbances

they become homogenous and it is possible to consider disturbances which contain
an exponential time factor e”!, ¢ being the time and o the frequency. The bound-
ary conditions on the disturbance require the ishing at the boundaries
of quantities like the disturbance velocity components. Consequently the boundary
conditions are also homogenous, and we have an eigenvalue problem for the determi-
nation of the quantity . If it is possible for o to have a positive real part, the flow
said to be unstable according to the linearized theory; otherwise the flow is stable.
The possible eigenvalues of o depend, of course, on quantities such as flow speed,
kinematic viscosity, thermal diffusivity, and disturbance wavelength. There are two

main types of instability. They are

I. The instability of curved flows due to centrifugal forces, as for example, the flow
between two concentric rotating cylinders.

II. The instability of two dimensional parallel flows, as illustrated by Poiseuille flow
between parallel planes, in which viscosity may play itself a destabilizing role.

In each of these case, instability occurs when a certain parameters, representing the
ratio of destabilizing to stabilizing forces, reaches a critical value. As for example,
in case (II), the parameter is the Reynolds number. In discussing the mechanics of
instability, the concept of the Reynolds stress is almost indispensable. To know about
this concept the reader is referred to the book by Lin [13], and in particular, to papers
by Lees and Lin [10], Gazley [4], and Dunn and Lin [3].
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3 Instability of water waves

The study of nonlinear instability phenomena goes back to the days of Landau [9]
when he first described these phenomena of certain class of flow by nonlinear ordi-
nary differential equation for the amplitude of a wave mode. The theory of Landau
[9] has been found later to have suffered serious weaknesses, but his work has served
a fund al basis for all sut devel in the modern theories of non-
linear instabilities of fluid motions. In 1847, Stokes [23] first proposed that the free
surface elevation of the plane wave train in deep water can be expected in power of
wave amplitude. The convergence of the Stokes expansion was proved by Levi-Civita
in 1925 considering the wave amplitude was very small compared to the wavelength.
The study of stability remained unattended until the 1960’s expect for an isolated
investigation by Korteweg and de Vries in 1895 on long surface waves of finite depth.
One of the most striking discoveries made in the 1960’s is that the periodic Stokes
waves in sufficiently deep water appears to be unstable. This result has been ver-
ified by many pioneering researchers including Lighthill [11, 12], Whitham [28, 29,
Benjamin and Feir [1] and Zakharov [30].

In the following we shall describe in some detail the instability of water waves
as outlined by Benjamin and Feir [1]. The velocity potential, ¢(x,t), and vertical
displacement of water surface above mean water level, 5(x,t), of the second-order
wave may written as Rahman [16, 17)

_Agcoshk(z +h) i

5 o coshkh sl
34%0 cosh 2k(z + h)
= S R R kz —
3 AET cos2(kz — at) (2)
2
n=m = Asin(kr—ot)- ey c'oshakh (2 + cosh 2kh) cos 2(kz — ot)
4 sinh® kh
A’k
2sinh 2kh @

where A is the first order wave amplitude, h is the water depth, k is the wave number
35", o angular frequency and z is positive upward and is measured from the mean
water level. The celerity of the wave up to the third-order can be determined as (see
Stoker [22])

(4)

o 29
x o %mhkh[l s (kA),{5+2cosh2Mn+2cosh Zkh}]

8sinh® kh

This approximation is valid provided kA << 1 or alternatively kA << (kh)® for small
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kh. For deep water waves, these results reduce to the following:
@l =0 = —%e“ cos(kz — ot)
. A%k
= mo = Asin(kz — ot) — S cos 2(kz — ot) (5)
and €? = %(1 + A%K?)
or o = gk(l+ A%k?). (6)

These describe the steady wave motion in deep water when kA << 1.
To investigate the stability of the steady wave motion described by (2) and (3),

we write

b= do+¢'
n=mo+1 ()

where ¢' and 7' are the perturbed solutions from their steady motions. For conve-
nience we rewrite the governing equation with the boundary conditions

G2z + @22 =0 ~h<2zL0 — <z <00 (8)

=0 on z=-Hh (9)

M+ Naps —¢z = 0
gn+¢t+%[¢z+¢§] = 0 o s=gfE) (10)

The solution (7) must satisfy these equations and we have already seen the solu-
tions for ¢y and 7o given by (3). The solutions ¢/ and 7' must satisfy the following

equations:

-h<0 -~ <1< 0 (11)
¢ =0 on 2=0 (12)

1+ Moo bl +1'dos — 4L = 0
Iy + By + [poudl + do=4l] = 0 on z=0 (13)

The solutions ¢', ' are assumed to consist of sideband modes, together with the
products of their interaction with the basic wave train, whose fundamental simple
harmonic component has amplitude A and phase § = kz — ot. Since the system
is nonlinear, harmonics with phases 26, 36 --. are travelling with the same phase
velocity C' = ¢ as the fundz 1, and their amplitudes are 1 to decrease in
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relative order of magnitude like successive integral powers of Ak << 1. A disturbance
is introduced consisting of a pair of progressive wave modes with sideband frequencies
and wave numbers close to o and k so that their phases are expressed in the form

0, = (k+Ak)z—(0+ Aot —(t) (14)

0 = (k- Ak)z— (0 — Ad)t —a(t) (15)

where (14) is the upper sideband and (15) is the lower sideband, and Ak and Ao
are small increments, the respective amplitudes are 6;(¢) and d5(t) which are much
smaller than A. Two particular products arise from the nonlinear interaction between
the disturbances and the basic wave train as evidenced from (12), and these are the
differences components produced between the sidebands and the second harmonic.
This is clear by adding (14) and (15) as follows:

0y + 0 = 2(kz — ot) — (M +72) =20 — (11 +72) (16)
Thus the components generated have phases

20-6; = O+ (m+12)
and 20-6; = 6+ (m+m) (17)

and amplitudes 0; (t) A%k and 05(t) A%k?, respectively. Therefore, if it happens that
7(t) = 1 + 72 = constant (18)

as the nonlinear process develops in time, each mode will produce effects that be-
come resonant with the other. Subsequently, if 4 # 0 or 7, each mode will suffer a
synchronous forcing effect proportional to the amplitude of the other so that the two
amplitudes can grow exponentially. Thus, the basic wave train becomes unstable to
this form of disturbance.

Bejamin and Feir [1], has obtained expressions for 7y, 75 and ¢}, ¢, and hence
7' =1, + 1, and ¢' = ¢} + ¢. Substituting these results into (12) leads to four
equations with known parameters for the functions &y (), 62 and 7 (t), y2(t). These
functions satisfy the following simultaneous ordinary differential equations.

% = {%a(,xk)? F(kh) s‘m‘y}67
% = {%a(Ak)’ F(kh)sin 7}61 (19)
and % = o (Ak)? f(kh){l + "ig‘s’? cos'y} - (%) g(kh) (20)
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where v = 7, + 72 and
— 10 tanh® kh + 9 tanh kh

ER) =
il 8tanh’ kh
4 + 2sech®kh + 3(kh) coth khsech'kh i
1 — 2kh tanh khsech?kh cosh 2kh + (kh)2sech®kh (eib)
2 4(kh)(1 — kh tanh kh)cosech2kh
(AN = 1+ 2(kh)cosechakh (22)

The solutions of the pair of equations (18) are

a(t) = 0)cosh{% Ak)zf/olsin'ydt}
) emh{%mky f / lsin'ydt}
5(t) = cosh{ Z(Ak)2f / sin m}
* 62(0)sinh{§(Ak)2f /0 simdz} (23)

it can be easily seen from (23) that even though ~ is yet unknown function of time,
the amplitudes of the sideband modes undergo unbounded amplification if 7 tend to
constants other than 0 and . It has found by Benjamin and Feir [1] that the solutions

8y (t), 02(t) are periodic and finitely bounded if
2(AR)2f(kh) < (A”) (kh) (24)

which is the required condition of stability of the basic wave trains.
On the other hand, if

242 1) > (52) s (@)

then the basic wave trains are unstable. It can be easily verified that g(kh) — 0 as
kh — 0, and g(kh) — 1 when (kh) — co. So the values of g(kh) are always positive.
Thus the basic wave train will be stable or unstable entirely depends upon the sign
of f(kh). If f(kh) > 0, there exists a range of values of (%) so that the condition
of instability (25) is satisfied. However. if f(kh) < 0, the stability condition (24)
remains valid for all values of other parameters. Direct evaluation of f(kh) from (21)
shows that f(kh) is positive or negative according to whether kh > 1.363 or < 1.363.
Thus in the case of infinitely deep water, the condition of instability becomes

VEAR) > (%) >0 (26)
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The Stokes wave tmms in infinitely deep water stable or unstable according to the
wavelength L > (l T L N ““" . It is important to note that if kh < 1.363,
o

there is a critical value ( (5%) which is given by

)2y

in which there is no unbounded growth of the sideband amplitudes.

4 The Rayleigh-Taylor instability of dispersive waves

This section is concern with the classical linear instability problem of two semi-infinite
homogenous inviscid fluids of densities, p; in the region 2 < 0 and p; in the region
2> 0 (py > pa) and these two fluids are separated by a horizontal interface boundary
z=0.

This problem was first considered by Lord Rayleigh and G. I. Taylor in 1917 to
investigate the stability of flow. The density of the lower fluid is p; and that of the
upper fluid is p, when p; > p, with an interfacial surface tension T' at the interface
z = 0. The flow is considered to be irrotational which implies that the scalar velocity
potentials exist such that the velocity potential of the lower fluid is ¢; and that of
the upper fluid is ¢, and they satisfy the Laplace’s equations

V3p =0 in —00<z<0
V24, =0 in 0<z2<© (28)
let us consider that the interfacial surface elevation is n = 5(z,y,t). The boundary

conditions satisfied by the quantities ¢;, ¢, and 5 are the following:
The boundary conditions at z = 00 are

Ay i
T 0 at z=-—o0
6«52 =0 at z=o0 (29)

The kinematic boundary conditions are:

¢y _ On -

T on z=0

Oy _On i X

M on z=0 (30)

The dynamic boundary conditions are

¢y
m(; +gn) = pa (8(‘;‘ +gn)+TV?) on z2=0 (31)
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The solution of this moving boundary problem can be obtained by considering a
typical Forrier component of interfacial elevation 5 which has the form

=n(z,y,t) = Aexp {i(k e x — ot)} (32)
where A is an arbitrary constant, x = (z,y), k = (ki,k2) is the horizontal wave

number vector, ki and k, are real, and o (ki k2) is a possible complex frequency. The
associated velocity potentials satisfying the boundary conditions (29) are

¢y = A exp {i(k e x — at) + kz} (33)

¢ = Ay exp {i(k e x — at) + kz} (34)

where k = |k| = /k? + k7 and constant A, 4, and A can readily be determined.
The kinematic conditions (30) yield

kAy = —kA; = —icA (35)
The dynamic boundary conditions (31) gives the linearized eigenvalue for o as

PL—p2 e ]
L e 36
prtp2 glpr+p2) (@)

This quadratic equation for ¢ has either real roots or complex roots. For real roots,
there are two wave models that propagate with constant amplitude. For complex
conjugate roots, ¢ = o, * io; and in this situation if o; > 0, the wave model with
the positive imaginary part decays exponentially with time ¢, while with the negative
imaginary part grows exponentially. If there exists such an exponentially growing
model for some wave numbers (ki, k), the primary flow is unstable. On the other
hand, if there is no such a model for any (ki,k2) the flow is regarded as stable to
linearized disturbances.

Let us define the horizontal coordinates z = ( J(kex)= "7‘—2"11 in the direction
of the wave number vector k (that is normal to the wave crests). Clearly, waves
propagate in the direction of increasing = with phase velocity . Also the value of
(%) depends on k; and ks, and hence the waves are dispersive.

Result (36) is called the complex dispersive relation for interfacial waves and gives

L ]”2
= /g P 37
= [Pl -+ pa g(m +p2) an

o = gk

These roots are real provided g(p1 — p2) + Tk? is positive. Clearly, when p; > pa,
the associated models describes interfacial capillary-gravity waves. When the heavier
fluid py(< p2) is on the top of the lighter fluid, the system is unstable for all wave
number with k* < (£)(p2 — p1), that is sufficiently long waves are unstable in the

range 0 < k < k., when

1/2
Fai= [% (o2 - p.)] (38)

T



L%H Nonlinear Instability of Dispersive Waves 149

However, in the letter case, the system is stable for all disturbances with k > k..
Thus the effect of surface tension is to stabilize a potentially unstable system for all
sufficiently large wave numbers (or small wave lengths). where the system remains un-
stable for all sufficiently small wave numbers (or long wavelengths). This is universally
known as the Rayleigh-Taylor instability.

Special cases:
I. In the absence of the surface tension (7' = 0), the eigenvalue equation (36) becomes

a2=gk("“”’) (39)

If py < pa. the value of o is purely imaginary which implies that the system is unstable.
This is a very obvious instability, when the heavier fluid is on the top of the lighter

fluid.
On the other hand, when p; > p,, o is real, and hence gravity waves occur at the
air-water interface. The phase velocity and group velocities of the waves are given by

alEERE () (R=R)

Gy = Vo (40)

IL. In the absence of the upper fluid (p; = 0), there exists stable gravity waves
on deep water. The waves are characterized by the famous dispersion relation o? =
gk = y\/kf + k%. 1t is observed from (39) that o depend critically on the density
variation. For large py/p2, 0® = gk, which is independent of density, and hence it
describe the classical water waves.

I, If the two fluid are confined between two rigid horizontal planes at z = —h, and
z = h, separated by a well-defined interface at z = 0, we assume the solutions for ¢;
and ¢, instead of (33) and (34) in the following forms

¢1 = Ay coshk(z + hy) exp{i(kz — ot)} (41)

¢y = Ay cosh k(z + ha) exp{i(kz — ot)} (42)

50 that the conditions at the lower and upper boundaries are satisfied. We assume
that the interfacial wave equation function is

2 =1(z,t) = Aexp{i(kz — ot)} (43)
The kinematic boundary conditions (30) require that

Ajksinhkhy = —Asksinh khy = —icA (44)
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Then the dynamic boundary condition (31) yield the eigenvalue

2_ _ gk(ps = p2) +TK (45)

Tt p1 coth khy + pa coth khy
It can be easily noticed that in the limit as khy — oo and khy — 00, this result
reduced to the form (36) with k = (k,0). This is the case for the deep water ocean.
On the other hand, for shallow water, when kh; — 0 and khy; — 0 (long wave
limit), (45) becomes
o2 = hlr—p)+ Tk
s+ Ty
gk*[(p1 = p2) + Tk?]huha (46)
prha + p2hy

Similarly, if khy is very small and khy is very large, then the eigenvalue equation is
S0 23 Tk2J

g’ =k*|(1—=)+—|gh a7

[( ﬂZ) 9m i )

In the preceding analysis we has illustrated most of the fundamental ideas relied to
free interfacial waves in inviscid fluids.

5 The Rayleigh-Taylor non-linear instability of dis-
persive waves

The Rayleigh-Taylor linear instability of dispersive waves problem has been discussed
by Lamb (8] in which the problem was described in two inviscid fluids separated by a
well-defined horizontal interface at z = 0. He predicted the unstable behavior of the
interface of this fluid model in a gravitational field directed from the heavier to the
lighter fluid. In fluid flow problem, viscosity and surface tension play a very important
role in stabilizing the flow field. Lamb has proved that surface tension stabilizes or
destabilizes the flow according to k > \/(9/T)(p1 — p2) or k < V(9/T)(p1 = p2)
where k is the wave number, g is the gravitational acceleration, 7' is the surface
tension and p; and p, are the densities of the fluids. Here k. = /(9/T)(p1 — p2) is
called the Rayleigh-Taylor critical value for the instability.

Following Nayfeh [15], Debnath [2] has given a lucid description of the nonlinear
instability of the interface of a semi-infinite air and inviscid liquid of finite depth h.

The nonlinear moving boundary conditions are used and solutions are obtained using
hni The di ional forms of the b lary value

a Fourier perturbation tecl
problem are given by:

® Laplace’s equation:

Gzz + P2z =0 —o<r<0, ~h<z<y, t>0 (48)
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« Bottom boundary condition:
=1 Rt == (49)
o Kinematic boundary condition at free surface
M =Nee +1: =0 on z=1 (50)
o Dynamic boundary condition at the free surface

(480~ 57O + K149 =0 on z=n  (5)

L]
where k' = ,(L, ko = 3,‘( is the linearized cut off wave number and represents the
ratio of the generalized force to the surface tension force. The initial conditions are
n(x,t0) = ecosz
@)= 0 at t=0 (52)

where ¢ = ak is the wave steepness parameter.
In order to obtain the appropriate solutions for small €, we use the Fourier per-
turbation analysis and write the solutions in consistent with 49), (50) in the forms

¢(z,2,t) = e[p1(t)e’® + c.c]cosh(z + h)

+  €[¢1(t)e*® + c.c.]cosh2(z + h)
+ ik E@ga(t) e (53)
n(z,t) = e[m (t)e™ + c.c] + €[1(t)e* + c.c] + e (t) + - (54)

In this section we avoided the lengthy calculations to get the solutions for the potential
¢ and wave elevation 7).

Note:

There are several important feature of the nonlinear instability of Rayleigh-Taylor
problem. In this analysis, it has been found that the cut off wave number given by

k= ke[l + §(akc)2 + 5—2(ak5)"]5 +0(c%) (55)
8 512
Depend on the wave amplitude.

Both travelling and standing wave solutions with wave number greater than the
cut off value oscillate with time-independent amplitudes and therefore are stable.
However, the phase velocity of the travelling waves and the frequency of the standing
waves depend on the amplitude. Below this cutoff value the disturbances grow in
amplitude. The cutoff wave number is independent of the depth h of the lower liquid.
However, the grown rate of unstable disturbances decrease as h decrease, leading to
stability.
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6 The Kelvin-Helmholtz linear instability with two
inviscid streams

In this section we discuss the classical Kelvin-Helmholtz linear instability problem
of two semi-infinite homogenous inviscid fluids of densities py and pa where p; > p,
such that the p; fluid below and py fluid above the interfacial boundary z = 0. We
assume that the lower and upper fluids have velocities u; and uy respectively in the

z-direction.
The Forrier component of fluid elevation of the disturbance interface is described
by

z=n(x,y,t) = Aexp [i(k e x — at)] (56)
where A is an arbitrary constant. The perturbations of the flows below and above the
interface are assumed to be irrotational so that the velocity potentials of the lower
and upper fluids are ¢y and ¢, vespectively, which can be written as

d1(z,y,2,t) = wz+¢; in -—-oco<z<y
do(z,y,2,t) = wsw+¢y in 7p<z<oo (57)
where all the ¢'s satisfy the Laplace’s equation, and products of ¢}, ¢ and 7 are

neglected.
Including the effect of surface tension T' and invoking the linearization, the per-

turbed quantities satisfy the following equations, boundary and interfacial conditions:

o Laplace’s equations

w0

v
IR0 (58)

Vi =

° o

» Bottom boundary conditions

V¢l = 0 as z— —oo

|Vgh| = 0 as z—roo (59)
¢ Kinematic boundary conditions
9 _ on on -
T e E+u‘6_z - =11
) ] 9n
gt e e AL z=0 (60)
0z ot B w
o Dynamic boundary condition
a6, oo asy , 0% i i
pilmm+ ot gn) = palie gt + +gn) +TV*n (61)

1’/_-—“\
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A set of suitable solutions, namely the plane-wave solution of the perturbed quantities
can be written as

¢y = Ajexpli(kex —ot) + k2] (62)
¢y = Agexpli(k ex —ot) + k2] (63)
n = Aexpli(kex—ot)] (64)

where the wave numbers ky and k; are real and k = [k| = /A7 + k2. The kinematic
conditions (60) require that

Ak = Ai(=0 +u ky)
Aok = Ai(~0 +urky) (65)

climinating of Ay, A; and A from (60) and (61) gives the eigenvalue equation for ¢
as

prlwrky = 0)* + pa(uzky = 0)* = gk(py — pa2) + TK® (66)
The solution of the quadratic equation gives two roots for o as
o = k(ayu; + agus)  |gk(ey — aa) + oy — ayazki (uy — ua)? . (67)
. Pt h
where

1 P2
) = ay = ——— 68
htm D T ntm (58)

The first term on the right-hand side of (67) is always real and represents convec-
tion of any wave at velocity (ayu; + @2ug) in the z-direction. Thus the flow is stable
or unstable according to whether

(69)

ayaok?(uy = up)? < or > gk(ay — ag) +
100k (uy = ug)* < gk(ay — az) R
The equality corresponds to marginal stability. For any unstable wave with given ki,
its growth rate Re(io) > 0 is maximum when k; = 0 (or k = k;) and the wave is in
the direction parallel to the basic flow. Then the condition for instability becomes

. Tk
ot = w)*> (R =) (§+ ) (10)

Tllc right-hand side attains its maximum fork? = (g/T")(p1 — p2), and the correspond-
ing condition for instability of the basic flow is

(= )? > 222y, — ot (1)

This result was first derived by Kelvin.



3

154 M. Rahman and S. H. Mousavizadegan 2.9 (3008

In the absence of surface tension (T' = 0), the condition for instability (69) reduce
to
aras(uy - uz)*k > gk(ay - aa) (72)
This means that, for a given velocity difference u; — u, and for a given direction of
the wave number vector k, instability occurs for all wave numbers
) — a
9(en 1;) - 3)
aja(uy — ug)? cos?
where @ is the angle between k and u. For a given u; — ug, result (75) shows that
instabilty occurs for the small wave number, kmin, when k is the direction of u, where
is given by
@) — @y
g(an ) (74)

Kmin =
T g (uy — us)?

Thus the flow is always unstable when & > Kpin. The most remarkable feature of
result (73) and (74) is that flow becomes unstable no matter how small the difference
(uy —u2) may be. This instability is known as the Kelvin-Helmholtz instability. This
instability occurs when stratified layers of fluid are in relative motion.

Special cases
I. When p; = p; and uy # uy, (67) becomes for T = 0
k k
o= E(ul +up) £ z—é-[ul — ug| (75)
for all non-zero values of k, with exponential growth rate %|(u; — uz)k|. This is the
well-known Helmholtz instability for a vortex sheet. Likewise many result can be
derived from (67) using many assumptions.

II. When the basic flow is at rate (u; = uz = 0), result (67) with 7' = 0 yields

9(p1 — /»z)kJé (76)

o=s
1t p2

In this case, instability occurs if and if py < py, that is, heavier fluid is above the
lighter fluid. The phase velocity of the stable waves is given by

_o_ _[oler=p2)1} =
i *[k(m +mJ )

ey
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II1. Another special case (pa = 0 and uy = up = 0) corresponding to the surface
waves on deep water. Result (66) gives the famous dispersion relation

Tk
% =gk + v (78)

This describe the capillary gravity waves on deep water.
IV. When wy = uy = 0, result (66) yields

ey Ll g b

79
prtpr glpy+p2) e

which corresponds to Rayleigh-Taylor instability as discussed in section 7.7.
The Kelvin-Helmholtz nonlinear instability will not be discussed here but the
interested reader is referred (o the book by Debnath [2].

Received: (October 2004, Revised: January 2005.
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