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ABSTRACT

Symmetry properties of tensors play an important role in physics. They cor-
respond to the irreducible representations of the symmetric group, which can
be described by Young tableaux T'. The global T-symmetrical tensor differen-
tial forms on the projective manifold ¥ define a birational invariant of Y. In
the case of prime characteristic char(K) = p > 0 the pullback of the Frobe-
nius provides an opportunity to define further discrete birational invariants of
algebraic manifolds using the p°-th powers (df)‘"’ instead of the differentials df.

Using Sernesis result on infinitesimal deformations an explicit formula for the
moduli space di ion of i i

is given. As an application
among others a conjecture of Libgober and Woo(l will be confirmed concerning
the exis e of diff phic three-di i lete intersections which lie
in different dimensional components of the moduli space. Finally for arbitrary
locally free sheaves F on Y the Chern classes of the T-power 7 are calculated
as polynomials in Chern classes of F.

RESUMEN
Las propiedades simétricas de los tensores juegan un rol importante en fisica.
Ellos cor den a la repr i6n irreducible del grupo simétrico, la cual
puede ser descrita por las " Young tableaux” 7. Las formas diferenciables del
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tensor global T-simétrico en las variedad proyectiva Y define un invariante bir-
racional de Y. En el caso de caracteristica prime char(K) = p > 0 el pulback
de el Frobenius provee una oportunidad para definir otras invariantes discre-
tas biracionales de variedades algebraicas usando la p* -ésima potencia (df)?"
en vez de la diferenciable df . Utilizando el resultado de Sernesis en deforma-
ciones infinitesimal se da una férmula explicita para la dimensién del espacio de
moduli de intersecciones completas. Como una aplicacién en medio de otras, una
conJetura de Libgober y Word seré confirmada con respecto a la existencia de tri-

ional intersecci iff¢ ficas )t las cuales estdn en diferentes
componentes dimensionales del espacio de moduli. Finalmente, para localmente
arbitrarias libre sheaves F en Y las clases de Chern de la T-potencia F” son cal-
culadas como polinomios en las clases de Chern F.

Math. Subj. Class.: 14F10, 1{M10

1 Introduction

Let K be an algebraically closed field (e.g. K = C), and let X and Y be projective
varieties defined over K with fields K (X) and K (Y') of rational functions on X resp.
Y. We consider the following equivalence relations: X and Y are isomorphic if and
only if there exist regular morphisms ¢ : X = ¥ and ¢ : ¥ = X with ¢ = ¢!
Secondly, X and Y are birational isomorphic if and only if there exist such rational
maps, i.e., if and only if the function fields K(X) and K(Y") are K-isomorphic [23].
Using the sheaf theory one can construct a lot of invariants. Let Q" be the sheaf
of germs of alternating algebraic differential forms of degree 7 on X. Then all
cohomology groups H?(X,Q7) are invariants with respect to isomorphisms. Since
these groups are finite dimensional vector spaces over K we have numerical invariants
dimg H9(X, Q). In particular, if X is smooth then the vector space H°(X, Q") of
global differential forms is even a birational invariant of X [40].

But there is no reason to confine oneself to alternating differential forms. This paper
deals with general tensor differential forms ”which hopefully will lead to a new bira-
tional geometry of algebraic varieties” [36].

Let Q! be the cotangential bundle on a smooth n-dimensional irreducible projective

&

manifold X and let Q"= AQ!, S'Q! and (ﬂ‘)@' be its 7-th alternating, symmet-

ric and tensor power respectively. Then Q' , Q" | STQ! and (Q‘)®r are locally free

sheaves on X, rank of which is equal to n, (7) , (**77") and n” respectively.

In physics symmetry properties of tensors play an important role. Actually the sheaf

(Q1)®" decomposes to the direct sum (Ql)er = @O where T runs through the
i

50 called standard Young tableaux and where Q7 denotes the sheaf of germs of
T-symmetric tensor differential forms [20], [21], [43]. Above all, each of the vector
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spaces HO(X,Q") is a birational invariant of X. Examples of complete intersections
show that these very fine birational invariants H°(X,Q7) are independent of each
other. For instance, the plurigenus Py of X is equal to dimgx H°(X, Q%) where T
denotes a rectangle with n = dim X rows and f columns.

This paper is written in the language of coherent algebraic sheaves [38]. From a
short exact sequence of coherent algebraic sheaves the corresponding long exact co-
homology sequence ensues. In particular we will use the twist operation F - F(t) =
F®Ox(t) (t € Z) on coherent algebraic sheaves F over a projective variety X C PV.
This functor is exact and the sheaves F and F(t) are locally isomorphic. One
has HY(X,F(t)) = 0 for ¢ > 0 and sufficiently big t € Z. If X is smooth then
HY(X,F(t)) =0 for 0 < ¢ < dim X and sufficiently small ¢ € Z.

2 Young diagrams and Young tableaux

Remember some well known facts on representations of the symmetric group S,. The
equivalence classes of irreducible representations of S, correspond to the conjugacy
classes of S, i.e., to the partitions (!) : r = Iy + lp + -+~ + lg with |; € Z and
W2k >. 214> 0.

The partition (1) can be described by a Young diagram with r boxes and with the
row lengths Iy, la, ..., la. The lengths of its columns are d; = #{i € Z:l; > j} with
=l g LS e OBieh = R =T

Set =1y, li=0ifi>dandd; =0if j > . The box inside the i-th row and the
J-th column of the Young diagram has its own "hook length” hi; = li—j+d;j —i+1
and the degree of the corresponding irreducible representation of S is equal to

Yo = iy = i "I;I] (_)‘x.#.‘i..u H (17—." +1) = r! - det((rrizrgy)ii=1.2.d
1],

A Young tableau T to a given Young diagram with 7 boxes is a numbering of these
boxes by the integers 1,2,.
Assume char(K) =0 or (hal(K) p > r. Then for a given Young tableau 7" an
idempotent e in the group algebra K'S, is introduced:

V|
“(”(Z sgn(a)-a)- (> ») (1)
9€QT PEPT
with the subgroups Py = {p € S, : p preserves each row of 7' } and
Qr ={g €S, : q preserves each column of T }.
A Young tableau 7' is called a standard tableau if the sequence of box numbers
inside any row or inside any column of T is monotonically increasing. The number
of standard tableaux to a given Young diagram is equal to the degree 1) of the
corresponding irreducible representation of S.. We denote the set of all standard
tableaux with r boxes by D(r).
Now let K be an algebraically closed field and let ¥ be a n-dimensional algebraic
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variety defined over K. The symmetric group S, and therefore the group algebra
KS, act on the sheaf (Q1) 25 by permutations of the spots inside the tensor product

plar ®a ® - ®ar) =ap-1(1) @ ap-1(2) ® - ®ap-1(r) VPE S, (2)
and the sheaf (ﬂ‘)®r decomposes to the direct sum
@)% = @@ 97 with 07 =er(@)%) (I'-powerof@). (3

TeD(r)

If the Young tableaux T' and T correspond to the same Young diagram ( i.e. to the
same partition (I) ) then Q7 and Q7 are isomorphic as Oy-moduls. If Y is a smooth
n-dimensional variety then Q7 is locally free. In case n < d = depth T one has
QT =0, otherwise rank (07) = [] (4% +1) (=0ifi>d) [2].

1<i<j<n
In the same way one constructs the T-power F7 of any locally free sheaf F instead
of Q1.
Finally let Y C PV be a smooth n-dimensional projective variety whose canonical
line bundle wy is isomorphic to Oy (ny) with ny € Z. Then:

0T = 0T @ wy = 0T (ny) if d= depthT =dimY , [ = length T >1 (4)
where the Young tableau T" arises from T by erasing the first column of T [5] ,
[21).
Assume the Young tableau 7" has the lengths of columns dy,d>, ...,d; (> 0) with
dy = d = depth T' < n. Let T* denote a Young tableau with the following lengths of

columns: df =n —di1-; Vje€{L,2,...,1}.
Then (T ) =T if and only if depth T < n. By Serre duality [21] , [39] we have

Hom(Q7(t),0y) = QT (=t -1 -ny) (5)
dimg H1(Y,Q7(t)) = dimg H* (Y, QT (=t + (1 — ny)). (6)

3 The complex projective space PY

Now set K = C and let T be a Young tableau with r boxes, the row lengths I; and
the column lengths d;. Additionally we set t; =7+ —i (; = 0if i > depthT) and
A(ay,az,...,am) = (a; — a;) (Vandermonde).

1<i<js<m
We calculate the dimensions of following cohomology groups of the N-dimensional
complex projective space using the Bott theorem on homogeneous vector bundles:
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Theorem 3.1 Assumed = depth T < N. Then the Hilbert polynomial x (PN, Q7 (t))
has the in pairs different zeros ty,ta,. .. tx. The fibration QT (t) is acyclic if and only
if t is one of the zeros t;. For fived N,T,t at most one of the cohomology groups
HYPN,QT(2)) (g=0,1,:) may be nontnuml (cf. (4], [27)). F‘urthermarc

A
X(BY, Q7 (1) = A((f\}tz‘\}h' 2~ <H“ II @- H(‘*") ™
’ 3 1<i<i<N i=1

HYPY,QT(t) =0 Vt€Z iff g#0,N,dy,ds,...,d; (I= lengthT) 8)
HO(BN, Q7 (t)) = 0 if and only if t<t; 9
dim HO(PN, Q7 () = x(PN, Q7 (t)) tft> t ®
HN (BN, Q7 (t) = 0 if and only if t >ty

dim HN (BN, Q7 (8)) = (=1)N - x (BN, QT (t)) if ¢ < t (10

Poreach1€{12 1} with 0 < d; < N one has tg,41 < tg, — 2
and H* (PN, QT(Q)) =0 if and only if t < tg.41 ort > tq, (11)
dim HE (BN, Q7 (t)) = (~1)% - x(BN, QT (t)) if tgr <t < ta,

Remarks:

In the specml casedy =17 <N, 0=dy =dz =... one gets

7 = = AQL, (PN, 07(1) = (b (ol ') and (12)
dim HY(PN, Q7 (¢ )) Oqr+ 010 for 0 < q¢ < N with the Kronecker-o.

In the case ly =7, 0=y —lg =... we have QT = STQL.

Therefore x(PV, (S"Q')(t)) = % - (" & N e The N ) E-2r+1) (13)

and HI(PN, S" Q‘(t)) =0 Vt Vq unth 1 <g< 1\ (E/ (8)).

The statements of the theorem remain true even in the case QF = Opn, i.c.,
;=0 Vi. Of course, that means x(P™,Opn(t)) = (* ;,A) and (14)
HYBN,0(t)) =0 VYt Yqwith 0< q< N.

By Serre duality (5), (6) we get Hom(QT (t), Opn) = QT (=t +1 - (N + 1)),

dimg HI(PN, QT(t) = dim HV=9(PV, Q7" (—t 4 (I — 1) - (N + 1))) and g
X(BN, QT (1)) = (=1)N - x(PN,QT (=t + (I = 1) - (N +1))), where T* denotes ()
a Young tableau with the column lengths dj = N — di+a—;  Vj € {1,2,...,1}.

1t should be practicable to handle the Grassmannians instead of the

T, ey (16)
projective space in similar way.

We will see that the Hilbert polynomial x(PN, Q7 (t)) is independent of

the ground field K. Since the calculation of di i of those coh log
groups essentially is a linear algebra problem it is natural to ask: 17)

Are these formulas true for the projective space defined over a field K
with char(K) =p > r?.
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4 The T-power of an algebraic complex

Let 7 be a positive integer and let R be a commutative ring which contains the ground

field K and assume char(K) =0 or char(K)=p > r. Let

K : Ko e g =y s (dod =0) be an algebraic complex of

R-modules. Then the r-th tensor power P = K®" of the complex K is defined as

follows: P =K®": P, iy P 2idhy P i

with Py = D Ki®K;,,® - ®K,;, andwith (a1 ®a:®: ®a,) =
Sitersn=s

S (1)t g ©ay ® - ®aimy ®de; ® s @ ®ay if aj € Ky, V).

=1
it is easy to show that dod = 0.
The symmetric group S, and therefore the group algebra K'S, act on the tensor power
by permutation of the spots. Now another action on P = K®T is needed with the
additional property pod =dop Vp€ S,. This action can be defined as follows:
P ©a2 @+ @ay) = (1P s 1) Dy @ @ Bpae)
: 4 . 18
with a; € Ky; Vj € {1,2,...,r} and o(p ;81,82,...,9r) i= X  8i"8j. (s)
PSS90
Thenone has P, = @ KT, k® = @ KT, H*(K®) =
TeD(r) TED(r)

KT =ep(P) and KT =ep(K®): KT — /CT——)ICT
The complcx KT is called the T-power of the complex K. If the Young tableaux 7'
and T correspond to the same Young diagram then we have K7 = KT
Of course, the T-power of a complex K: :-- oy K 2 K1 L Ko can be defined
in similar way.
In this paper these constructions are used only under the additional assumption
Ky = K3 = -+ = 0. That means if the product a1 ® a; ® - ® a,. € Py is
different from zero then a; € Ko or a; € K1 Vi. Moreover, there are exactly s spots
11,42, ,9s (1 i1 <dp < v < 14y < 71) With'as, Gy, -~ -y Gy € K1
Finally in this case o is equal to the number of inversions inside the sequence

(p(1), p(32), - - -, Pis))-

@ H*(KT) with
TeD(r)

5 A free resolution of the sheaf QT on PV

Let T be a Young tableau with 7 boxes and let K be the ground field with char(K) = 0
or char(X) = p > r. The Hilbert polynomial x(PY, QT (¢)) will be computed using
the above techniques in this general case.

Theorem 5.1 Assumed = depthT < N and set t; =r+li—i ¥i (l; =01ifi>d).

Then the following sequence is ezact:

01— 0T — O(=p) 2t O (e 7) L N (o) S R (10)

Yammwss 0
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N
with the integers bp = ([ i")~' - A(t1,t2,. .., tn,tn21) and for 0<s<d :
=1
v e §
by = (TL )~ - >, Aty ity = Lyt = 100, tN,tN+1)-
i=1 1<i1<...<i, <d

Corollary 1 For ground fields K with char(K) =0 or char(K)>r we have

X®¥,07@) = (ML) 1 (-t - t0). (20)
1=V <N =)

1<i<g<

Proof. From the Euler sequence one has the short exact sequence

0— A — O(-1)°" — 0 =l
The r-th tensor power of the complex K : Ko — Ky — 0 with Ko =

0("1)91\“‘ K1 =0,Ky = Ky = -+ =0 gives the exact sequence

IE=n0Sn ) B (ER)E S P, | M E)eE A 9 g
with as = (:) (N 4 1)"=%. The T-power of the complex K is the exact sequence

=N —n) SR o) SN TS S (=) Bt oSt hg
with suitable numbers by and with O(s — r)m' =er(O(s — 1)®*).
Because of e € K S, the coefficients of e are constant. Therefore, it is possible to
compute the ranks by simply as dimensions of suitable /-vector spaces [10].
The exact sequence (19) and x(PV,0(t)) = (l *“\,'V) are independent of K, i.e., the
corollary ensues from the special case K = C (cf. (7)). |

To consider cohomology groups we formulate the following technical

Lemma 5.2 Let 0 — Fy L Fi B L Fnc Fm — 0 be an ewact sequence of
coherent sheaves on the qlgcbmic variety Y. Then one has for each integer i > 0:

a) H(Y,Fo) =0 if H'_""”(Y,f]-) =0 VYje{1,2,...,mnf{i+1,m}}

b T (3 )i Ol TSI SR (Y B s ;) =00 V5 € (L2, by ).

Proof. The lemma immediately ensues from the short exact sequences
0 — imyhj_y — F; — imeh; — 0 (5 € {1,2,...,m —1})

and the corresponding long exact cohomology sequences [34], [38]. [ |
Lemma 5.3 Let T' be a Young tableau with r bozes and with d = depth T' < N.
If depth T <q< N then HI(PN,QT(t) =0 Vte€Z. (21)
If 0<g<N and t<r—gq then HYPN, 07 (t)) = 0. (22)
HO(BN, QT (t)) = 0 if and only if t < r+ length T'. (23)

Proof. Let ly > I, > ... be the row lengths of 7. Because of H(IPN,O(t)) = 0

forall t<0 and HY(PY 0O(t) =0 Vg€ {1,2,...,N —1} Vt€Z the statements
(21) and (22) ensue via lemma 1 from the free resolution (19) of the sheaf Q7.
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(23) wili be proven by induction on N:

In the case of N = 1 we obtain depth T'=1, r = length T,

O = 57Q! = S7(0O(~2)) = O(~2r) and therefore, H°(PY,Q7(t)) =0 if and only if

t < 2r =7+ length T

Now assume N >2 and depth 7' < N. In this case one can show:

HO(PY, 07 (t)) = 0 if and only if HO(PY=1,QZ,_,)(t)) = 0. In fact, if w # 0 is

a global section of Q7 (¢) on PV then a hyperplane £ = PN~ exists such that the

restriction of w onto E is different from zero as well [5].

Conversely, let E = PN~! be an arbitrary hyperplane, let P € PV \ E be any point,

let 4 : PN\ P — E be the projection from P and let @ # 0 be a global section of

QF(t) . Then ¢*(@) # 0 is regular on PV'\ P with N > 2 , hence regular on the whole

space PV, Actually, if 1*(@) were not regular then a pole divisor of %* (@) through

the point P would exist. Therefore by induction condition: HO(PY,QT(t)) = 0 if

and only if t < r+ length 7'

Now assume N > 2 and depth ' = N and I > ly. Then the Young tableau 7'

consists of a rectangle with N rows and Iy columns and a Young tableau T" with

r' =1 — NIy boxes, with depth T' < N and length 7" = length T — Iy = Iy — Iy.

Then one has Q7 = (ZT'( (N +1)-ly) (cf. (4)) and therefore HO(BN, Q7 (t)) =0

if and only if ¢t — (N + 1) Iy < 7'+ length T", in other words: H°(PN,Q7(t)) =0

if and only if ¢ < 7+ length T'.

Finally we assume that N > 2 and depth ' = N and I = ly. Then the Young

tableau 7' is a rectangle with N rows and {; columns, i.e., Q7 = O(=(N +1)-4) and
= N -1;. Therefore, H°(PN,Q7(¢#)) =0 if and only if ¢ < r+ length 7.

6 Lefschetz type theorem

Theorem 6.1 Let X and Y be smooth irreducible projective manifolds such that Y
is an ideal theoretically complete intersection of X by algebraic hypersurfaces of mul-
tidegree  (my,ms,...,m.) (n=dimY , N=dimX , c= N —n = codimy Y).
Let T be a Young tableau with r bowes and with the column lengths dy > dy >
(dj =0 if j >length T) and let p := ch-:l dj denote the number of bozes inside the
c front columns of T'. Assume < dimY andlet to € Z be a fized integer.
If m:=min{my,my,... ,mc} is large enough then the restriction map

ot HY(X, 0% () — H'(Y,0L(2)

e is a monomorphism for all t,i € Z witht <ty , 0<i <dimY —pu ,
e is an isomorphism for all ,i € Z witht <t , 0 <i < dimY — p.

Proof. These results are obtained from an exact sequence of sheaves which can
be described as follows: Let | = length T' be the number of columns of T and let
dy,dy,...,d; (>0) be the column lengths. Assume M (T) to be the set of all integer
matrices A = ((d; ;)) with ¢+ 1 rows, [ =length T' columns and with the properties:

o d;=d; Vji€{1,2...,1}

Y N
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o diy >dip1y 20 Vie{l,2,...,c},
o dij >diy1j 2dijr1 Vi€{l,2,...,c} Vi€ ({l,2,....1-1}.

The i-th row sum of such a matrix A will be denoted by p;(4) := EidieIn
particular, we set 9(A) := gc41(A). Then r —p < o(A4) < r for all i{ € M(T).
Let T'(A) denote the Young tableau with g(A) boxes and with the column lengths
des1y 5 des12 yoooy deg1y , i€, T'(A) depends only on the last row of A. We
set M;(T) := {A € M(T) : p(A) =r —j} for each j € {0,1,...,u} and

E (ov+1(4) = 0u(4)) - m

Then the exact sequence is the following (cf. [10] , [11]):

DSl =iEl = Bl T 0F 8 a7 90! (24)
with Bf = ,.@ 0% 04) , 0%\ = 0y @ %™ if o(4) > 0 and
Q:QI(?:U = Oy in the case g(4) = 0.

This exact sequence will be constructed as the T-power (cf. ch. 4 ) of the short
exact sequence 0 — , @ Oy(-m;) -5 Q% iy — O — 0 (Qy = Oy ®9%),
strictly speaking using the 7-power of the complex 0 — K; — Ko with
K= & Oy (=my) | Ko =Dy

Furthermore, an exact sequence can be derived from the Koszul complex:
0 0% (~my — ... —me) — , & 0% (~m — ...~y — ... —m) —
(25)
o, & 0% (-my) 5 0F — 0, —o.
We consider corresponding exact cohomology sequences
HY(X, (ima)(t)) = H(X,Q%(t) L, g 430 QXIY t)) = H(X, (ima)(t)),
HI(Y, (imy)(8) = H(Y, Q% () =5 Hi(Y, Q8 (1)) - HH(Y, (im7)(8))-
It is a purely technical practice to prove via lemma 1 that under the given as-
sumptions the groups H'(X, (ima)(t)) , H™(X, (ima)(t)) , H'(Y, (imy)(t)) and
H'™(Y, (imy)(t)) are trivial, i.e. ¢* = §o J is an isomorphism. |

Corollary 2 If m = min{my,ma,...,m.} is large enough then the restriction map
ot HO(X, Q%) — HO(Y, QL) of the global sections is a monomorphism in the case
p=dimY and is an isomorphism in the case p < dimY’.

Corollary 3 Let X and T be as above and assume dim X > depth T + 1. Then
there exists a smooth complete intersection Y C X with dimY = depth T+ 1 and
H(X,0%) = HO(Y, QF).
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Proof. Because of the Bertini theorem there are projective hypersurfaces Hy, ..., H,
with ¢ = dim X— depth 7' — 1 such that for each j € {1,...,c} the intersection
Y; =XNH NH;N...N H; becomes a smooth irreducible complete intersection in
X of dimension dim X — j. One has to consider ¥j4+; as hypersurface of ¥;. Then

[ |

one gets Corr. 3 step by step via theorem 3.

7 The sheaf QT on smooth complete intersections

Theorem 7.1 Let Y C PN be a smooth irreducible projective ideal theoretically com-
plete intersection by algebraic hypersurfaces of multidegree (my,my,...,m.) (¢ =
codimY’). Assume 2 <mi <my <...<mc. Let T be a Young tableau with r boxes

and with the column lengths dy,do,... (0<r>dy >dy>...).
Let p =Y 5_, d; be the number of bozes inside the c front columns of T (u < 7).

Assume again char(K) =0 or char(K) =p>r.
If depth T < g<dimY —p then HY(Y,QT(t)) =0 VteZ. (26)
7)

If q<dimY —p and t<r—q then HI(Y,QT(t)) =0.
If p<dimY and t <7+ min{ length T,m; —2} then H(Y,Q%(t)) =0. (28)

o

Corollary 4 If pu < dimY then HO(Y,QT) = 0, i.e., the smooth irreducible
complete intersection Y has no global T-symmetric tensor differential forms different
from zero if the Young tableau T' has less than dimY bozes inside its codimY front

columns.

Corollary 5 If codimY < dimY then H°(Y,S7Q!) =0.
Corollary 6 If r <dimY then H°(Y,A\" Q') =0.
Corollary 7 If r <dimY then H°(Y, (Ql)®' =0.

Corollary 8 Let Z C PN be a smooth irreducible algebraic hypersurface.

If depth T # dim Z then H°(Z,QT) = 0.

If degZ < dimZ+2 and chax(K) =0 then H(Z,(21)®") =0 VYr>0 and
H°(Z,QT) =0 for each Young tableau T.

If degZ = dimZ +2 and char(K) =0 then H(Z,QF) = K in the case
that the Young tableau T is a rectangle with ezactly dim Z rows and H°(Z,Q7) =0
otherwise. That means Py =1 Vf.

Proof. The arguments are almost the same as in the proof of theorem 3 with PN
instead of X | but in this case we need in addition the fact that for each matrix
A € M(T) the Young tableau T'(A) can be embedded into the top-left of 7. This
ensues from de.y; < d; Vj € {1,2,...,1}. Therefore, the number pu(7'(A)) of boxes
inside the ¢ front columns of T"(A) is lower than or equal to g = p(T). In particular,

e\
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we use depth 7"(A) =dey1y < dy = depth T.
Corr.4 ensues from (28). One obtains Corr.5 and Corr.6 from Corr.4 because of
87! = QT with depth T =1 and A"Q' = Q" = QT with length 7' = 1.
Corr.7 ensues from Corr.4 since p<r and (21)* = @ 0T

TeD(r)
Finally Corr.8 ensues from (28) with u = depth 7. That means H°(Z,Q7) =0 if
depth T' < dim Z. In the case of depth 7' = dim Z one has Q7 = QT ® w; =
ar (nz) with nz = degZ — dim Z — 2 where the Young tableau 7" arises from T'
by erasing the first column of T' (cf. (4)) |

Let T' be a Young tableau with r boxes. We make use of (19), (20) , (24) and (25)
to calculate the Euler-Poincare-characteristic x(Y, Q¥ (t)) for compl(’le intersections
Y. For that purpose to the Young tableau T' a symmetric polynomial will be assigned
which is a generalization of the familiar Schur polynomial [16], [17]:

Let {¥o,¥1,--,UN; 20,21, .., 2} be a set of two kinds of variables which we consider
as ordered in this way. Inscribing the elements of this set into the boxes of 7" such that
the elements inside each row and each column of T' are monotonously increasing and
that the y;'s in each column as well as the z;’s in each row are strictly increasing one
gets a so called standard scheme B. Let Mp the monomial which is the product of
all elements in the boxes and let Q(,n,c) = 3" Mg the sum of these monomials over

B

all standard schemes. Then the polynomial Q(7,n,c)(¥0,¥1,- -+, YN 20,21, .., 2) iS

symmetric in the y;’s as well as in the z;'s.

Finally we need the formal power series P(z) = 3 (Y4*) -2* = ¥ x(PY, 0(s)) -@*
€z s€z

s
An elementary calculation proves the following

Theorem 7.2 Let Y C PN be a n-di ional smooth irreducibl, plete intersec-
tion of multidegree my,ma,...,m, (c=codimY =N —-n).

Then for each t € Z the Euler-Poincare-characteristic x(Y,Q,T,(t)) is equal to the
coefficient of z* in the formal power series

¢

(TS T) S (@) @ rie) (Tye)s o= ly=—gm L, —gma sl S med)
=m=..=yv=z;20==1, 21==3™ , ==2™, ..., 2= —2™)
Remark: It is possible to caleul letely the coh gy groups HI(Y, Q07 (t))

of n-dimensional smooth irreducible pra]ectlve complete intersections Y with coeffi-
cients in the twisted sheaf Q"(t) of alternating differential forms even for arbitrary

char(K) (cf. [6), [13)).

Moreover K-bases and explicit formulas for the K-di i of these coh logy
groups are known. It is shown that dimg H9(Y,Q"(¢)) depends only on ¢,r,t and
on the di ion n, the codi ion ¢ and the multidegree my,ma,...,m, of Y’

and finally on char(X’) . If not one integer m; is divisible by char(K) or if ¢ is
not divisible by char(K) then dimgx H?(Y,Q7(t)) is given by the same formulas
like in the complex case. In the general case the formula depends only on the fact,
which of the integers my,ma,...,mc are divisible by char(K) . A very simple
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example is a 3-dimensional quadric ¥ C P* for which one has HO(Y,Q*(2)) = 0
in case char(K) # 2 and HO(Y, 92(2)) = K in case char(K) = 2 It is
shown that the Hilbert-polynomials x(Y, Q7 (¢)), the dimensions h?(Y, Q") (without
twist), h2(Y, O(t)), ha(Y,Q(t)), ho(Y,Q (t)) and h"(Y,Q""'(t)) are independent
of char(K). The same is true for all dimensions h?(Y,Q7(t)) if ¥ is a curve or
surface. Note that for instance the birational invariants dimg H°(Y,Q" Ruwy) =
dimg H°(Y,Q7(s - ny)) in general depend on char(k). For the vanishing of the
higher cohomology groups HY(Y,Q"(t)) with 0 < ¢ <n and ¢+ r #n we received
a purely arithmetical necessary and sufficient condition.

Of course it was interesting to calculate all cohomology groups H9(Y,Q7(t)) of
complete intersections ¥ with coefficients in the twisted sheaf Q% (t) of T-symmetric
tensor differential forms.

8 The moduli space of a complex projective com-
plete intersection

Assume K = C . The vector spaces HO(Y,QT) of global tensor differential forms
are important since they are birational invariants of ¥ . Now we give a nice applica-
tion of a higher cohomology group. For compact complex analytic manifolds V' with
ample canonical bundle wy Kobayashi proved the finiteness of the group Aut(V) of
analytic automorphisms (26] . Narasimhan and Simha [32] showed that the isomor-
phism classes of complex analytic structures on ¥ form a Hausdorff space given in
a neighbourhood of a particular structure V; by the Kuranishi space of V; modulo
Aut(V;). Finally by Sernesis result on infinitesimal deformations follows that in the
case of complete intersections the dimension m(V;) of this local moduli space is equal
to dim H'(V;, Ty, ) [41], [42).

Now let ¥ C PV be a smooth complex n-dimensional projective complete intersection
of the multidegree d = (dy,dy, ..., d.) with n>2andd; 22 Vi (¢c=N —n). The

1sny—2d — N -1 and one has wy = Oy (ny).

multiplicity of the canonical cl

As usual let o; denote the i-th elementary symmemcal polynomial of the integers
dy,ds,...,d. and let s; = EJ__ d;* be the sum of the i-th powers of these integers.
For [hPSe o; and s; the Newton relations are known.
Because of Serre duality one has m(V) = dim HY(V,Ty) = dim H"~}(V,Q},(ny)).
Libgober and Wood [29] gave the following formula for dimension of the moduli space
component: If V is not a K3-surface or a quadratic hypersurface, then
m(V) = dim H'(V, T‘ ) = dim H" l(V W (ny)) =
~ N-td; Ndi—du, ~dig = ~dij

g Z gl E Z( o l<k;<k12<:..,<k,55( n. )

where we set (\] =0 if k<N Ic €Z).

.

Theorem 8.1 For each integer r > 1 there exist v h phic smooth 1
intersection surfaces in the projective space P"=2 belonging in the moduli space to
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components with in pairs different dimensions.

Proof. Taking e.g. the multidegrees e = (26,21, 16,12) and f = (24,24, 14,13) one
has the same elementary symmetrical polynomials oy = 75,02 = 2054 of these inte-
gers and the same total degree o4 = 2732 -7-13. Let s > 0 be a fixed integer and

consider the composed multidegrees di; = (e,e,...,e, f, f,....f) (k+1=s). Then
SUSR L b il
k times I times
obviously the multidegrees do,y,dy 5-1,-..,ds0 have the same property.

Actually, for these multidegrees one has oy =755, 02 = ;} - (75% - s — 1517) and
the same total degree o4, = 27% 3% . 7% .13,

Let Vigy) € [P5+2 be a smooth complete intersection surface of the multidegree dj .
The existence of this nonsingular surface follows from the Bertini theorem. Then
for each fixed s > 0 the surfaces V(o s), Vi1,s-1) - - - V{s,0) have the same total degree
degV = a4, , the same multiplicity of the canonical class ny = 71 s — 3, the same
self-intersection number of the canonical class ¢}(V) = n3. -deg V', the same topolog-
ical Buler characteristic ( cf. [1, V.2])

e(V) = [(*4?) = (45 +3)a1 +0? — 2] *deg V' = § (50415 + 10875 +6) -deg V' and
the same geometric genus p,(V) = 1-17 ( (V) +e(V) ) — 1. The intersection form
qv : Ha(V,Z)® H,(V, Z) — Z of such a surface V' is an unimodular integral quadratic
form. The signatur 7(V) of gy is equal to 1 (c}(V) —2e(V)) . gy is even if and
only if ny is even , i.e. if and only if s is odd [31]. The rank of any maximal subspace
of Hy(V,Z) on which gy is positiv definit is equal to 2p,;(V) + 1. It follows that
the intersection forms of the surfaces Vio,s), Vi1,s-1),- - -, V(s,0) have the same rank ,
the same signatur and the same parity , i.e. the intersection forms are isomorphic.
Finally complete intersections are simply connected and by Freedman’s result (19] we
have that the surfaces V(o s), Vi1,s-1) -+ V(s,0) are homeomorphic ( cf. [18]).

On the other hand the dimensions of their moduli space components form a strictly
monotonously increasing sequence. This easily can be proved using the formula given
above because only a few binomial coefficients (N*d‘_d"‘_l\‘,i”ﬁ' '_'l“l) are different
from zero.  Setting » = s 4+ 1 one has r complete intersection surfaces
Vio,s)s V1,5-1) 1+ +» V{s,0) in the projective space P4**+% = PA*=2 with the desired prop-
erties. |

In the same way, the following theorem about in pairs diffecomorphic three-dimen-
sional manifolds can be proved.

Theorem 8.2 For each integer v > 1 there exist r diffeomorphic three-dimensional
complete intersections in the projective space P°"=2 belonging in the moduli space to
components with in pairs different dimensions.

Proof. In order to construct complete intersections Vi) C Bo**+5143 it is possible

to use the multidegrees e = (45,35, 34,21,18) and f = (42,42,27,25,17) having the
same elementary symmetrical polynomials o1,02,03,05.
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This time the multidegrees dy,s,d1,s—1,...,ds,0 have in pairs equal elementary sym-
metrical polynomials 0,032,053 and the same total degree 22 . 355 . 52¢ . 725 . 175,
Therefore the complete intersections V(o,s), V{1,s-1), - - - V{s,0) are in pairs diffeomor-
phic [28] . Again the calculation of the integers m(V{x ) shows the monotonicity of
the corresponding sequences. Setting 7 = s+ 1 one has r three-dimensional complete
intersections Vio,s), V(1,s-1)» - -1 V(s,0) in the projective space P?*+3 = P°r=2 with the
desired properties. n

Fuquan and Klaus proved, that two 4-dimensional complete intersections are home-
omorphic, if and only if they have the same total degree, Pontrjagin numbers and

Euler number [22].

Theorem 8.3 For erwh integer r > 1 there ezist r homeomorphic complez Sfour-
di ional i lete inter ions in the projective space E’C =2 isomor-

phism class of which lie in dzﬂ‘crent dimensional components of the moduli space.

Proof. Now we consider for instance the multidegrees e = (91,80, 70,44, 43, 32) and
f = (88,86,64,52,35,35). It is easy to check that the total degree (= 2'2 . 5°

7% .11 13- 43), the corresponding elementary symmetrical polynomials oy, 02,03, 04
and therefore the power sums sy, 8s, 83, 84 agree. The same is true for the composed
multidegrees dos,d1,s-1,...,ds0. Let Vi) € PO+ be a complex 4-dimensional
smooth complete intersection of the multidegree di;. The existence of this non-
singular complete intersection follows from the Bertini theorem. Then for each
fixed s > 0 the complete intersections V{o,s), {1,s-1); - - - V(s,0) have the same to-
tal degree degV = 21%¢. 5% . 725 .119.13%.43% | thc same Pontrjagin numbers
P2 = ((5) —r'sh + 2(s4% + 84)) - degV and p? = (' — 3’2)2 -degV and the same
Euler number e =( (C") - ('3) 15 )(31 +85) — 7 (34> + 35 8} -+ 25) + 2%(3’14 +
65175} + 8} + 33’22 + 6s}y) ) +degV with ' = 63 +5, si = s-si. Therefore
these complete intersections are homeomorphic. Note that they are diffeomorphic up
to connected sum with a homotopy 8-sphere [22]. On the other hand the dimensions
m(Vix,y) of their moduli space components again form a strictly monotonously in-
creasing sequence. Setting 7 = s+1 one has r four-dimensional complete intersections

Vio,s): Vits=1): - - -» Vis,0) in the projective space P®+4 = [PS7=2 with the desired prop-
[}

erties.

Remark: Note that in each of the three cases and for each fized s > 0 the sequence
of the birational invariants  ( dim HO(Viys-— k),QV(“ o Vo) ) is
strictly monotonously increasing too. On the other hand these complete mtﬁsechane

have the same plurigenera Py Vf [10] .
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9 Frobenius pullback of locally free sheaves.

In the case of prime characteristic p > 0 there exists another operation to construct
further birational invariants. Let s > 0 denote a fixed integer and set ¢ := p*. For
any locally free algebraic sheaf F of rank m on manifold X the operation can be
described as follows: We don't glue the free restrictions Fy, using the transition
matrices Ay g = ((f;:f)) € GL,(K(X)) given by F , but we glue them using the
transition matrices Af,'.i, =1 (f;f)' )) taking the g-th power of each element of
Aap. From the compatibility conditions Aq 5 - Ag, = A, , we get via Frobenius
automorphism the equations AE:,) <A§;‘L = AL}, Thus we have a locally free sheaf of
Oy-modules with the same rank m which we denote by F) or F' = F() (Frobe-
nius pullback of F ), F" = F® and so forth. F) is always a subsheaf of S7F.
For line bundles 7 = £ (i.e. m = 1) one has £ = SI€ = £7, It is easy to
r r
see (FOGW = FO gl  (FRGW = FO gl | (AF)® = AF® |
(SrF)@ = 5rF® | (FN® = (FOT | FO = 5 (FO)P = F6+ for locally
free sheaves F and G on X.
In the case p < r the sheaves F(*) naturally appear in the treatment of the symmetric
power S”F: If for instance m = rank(F) =2 and p = 2 then S*F = F®@F' and
there exist short exact sequences 0 — F' — S?°F — det F — 0,
0—G— S'F— (det F)®F —0 , 0— F" — G — (det F)2 — 0
with a subsheaf G of S'Z. If m = 2 and p = 3 then one has exact sequences
0= F — S3F — (det F)®F 50, 03 FRF' — S'F — (det F)? = 0.
The general situation seems to be unknown.

e
If F is a sheaf of germs of differential forms (e.g. F = Q" = AQ", wy , STQ |
(ﬂ')m , QT ) then HO(Y,F®) is a birational invariant of Y for each s > 0. Cal-
culating those differential forms we have to work with the g-th powers (df)? of the
differentials instead of df and with the rules (d(fif2))* = fi(df2)" + fi(df2)" and
(1dfy + gadfa)? = gi (df1)" + g4 (df2)".

For the sheaf (Q"‘)(')(L) on projective space or on smooth complete intersections
one can prove some theorems and statements similar to the theorems 2-5 , similar to
the corollaries 1-8 and similar to lemma 2 [14]. Instead of corollary 4 one has for
instance the following generalization:

If p<dimy then HO(Y,(Q7)")=0 vs>o0.

‘The reason is that there exist exact sequences of sheaves like for instance on the pro-
jective space (cf. (18))

0 (N — O(-rg)®h — O((1-1)g)®" — ... — O((d—-1)q)® =0
or for complete intersections the exact sequence (24) with another twist

() =0 5 (@) = eu()) -

More comprehensively we consider the sheaf (ﬂ')(’)(t) on smooth algebraic hyper-
surfaces ¥ € PN [11]. The dimensions of the K-vector spaces H'(Y, (Q;,)(’)(t))

o —— N
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and H(BY, (Q{,N)“)(t)) are calculated. Some examples of algebraic hypersurfaces
are given to show that the birational invariants H°(Y, F(*)) are independent of the
familiar invariants [11].

The ground field K is assumed to be algebraically closed with char(X) =p >0 and
p > number of boxes of each Young tableau T' appearing in this chapter. Remember
=p* (p,s fixed).

We start with the projective space and set () =0 if a<b or b<0 (a,b€ Z).

Theorem 9.1 Let S be the polynomial ring K|xo,@1,...,on] and let I, be the
PGLy (K)-invariant and irrelevant ideal (z§,2,...,2%) with ¢ =p*. Then for each
7 with 0 < r < N the graduated S-modules &, H" (PN, (Q')(' (t ) and S /I are iso-

morphic. The cohomology classes of the cocycles o(®) with gjn" W= ol RS

N
(@io 1) A@iyja) A+ A W)y )" and 0< @5 <q V5, anj =t , wik=fd
=

form a K-basis of H' (PN, (7)) (t)). We get

H(PY, @) (®) =0 f 0<i<N,0<r<N, i#n (29)
dim HOY, (@) () = '35 (=1 (M) () for 0<r <N, (30)
j=r+1
y N+1 X
dim H™(BN, (7)) (¢)) = dim [S/L), = 3 (=1)7 - (VF1) - (F7gtN) =, (31)
J=0

= IJV);J:( DN (M) (=1 RO i< i< IV, (82)

dim HY (BN, (sm“’()):i( Urf () G for, DISim< Vi (8]

: (s) N1 : N

x(®N, @) () = 57 ZH[(—l)J""l (M) T =G-q+k) for 0<r, (34)
J=r: k=1

XEY, @)0) = g (=17 (3. ] (t=j-q+K)] for 0<r<N. (35)

0 k=1

J

Proof. The theorem ensues from the Serre duality [39]

dim H(EN, (") (#)) = dim HN={(PN, (@V=7)) (=t + (g - 1) - (V + 1))

and from the following essentially self-dual short exact sequence of sheaves on PV :

0= () ) S5 gy M (e ) e R I T []
1)

Corollary 9 For 0 <r < N we get
HOBN, () (1) £0 if and only if > (r+1)-q ,

e 4 AN



%Il ‘Tensor Differential Forms and ... 133

H'(PN,(Q’)(')(t)) #0 ifandonlyif 0< t <(N+1)-(¢g—1) ,
HN@N, () () #0 if and only if t<r.g— N —1.

Remarks:
o For 0 <r < N the dimension dim H" (PN, (ﬂ')(’)(t)) is independent of r.

o The Hilbert function of the graduated S-module [S/1,) is equal to
Z dim [S/L,], - 2t = (2 “')N+ . Therefore

dim B (BN (1)) () EdunH‘ @®N-1 @)t —j) if N>2.

o In the special case s = 0 (and also for char(K) = 0) we obtain the well known
Bott formulas
dim HO(BN, Q" (1)) = ( Disl(enif 0<rew,
dim H' (BN, Q" (t)) = di,r o,o 20 SYSIN S SN
dim HN (PN, Q7(t)) ( ) (M=) if 0Sr<N

Now set X = PN | N > 2 and let ¥ C X be a smooth algebraic hypersurface defined
by the equation F =0 (Id(Y)=(F), n=dimY =N -1, m=degY =degF ,
wy =0y(m—-N-1)).

Theorem 9.2 For any smooth hypersurface Y C PN one has:
If(r<i,i+r<n)or(r>i,i+r>n) then H'(Y,(2}) () =0.

If0 < 2r < n then the graduated S-module ,QIH'[)',(QZ.)(')(t)) 1s isomorphic to
the graduated S-module [S/((F) + L,)] , that means,

dim H™(Y, (ﬂ’y)(')(t)) =dim [S/((F)+ I,)), for 0<2r<n.

Ifn < 2r < 2n then @ H"(Y, 9§,)(')(t)) is isomorphic to the twisted graduated
S-module [(I, : (F))/Is)(mq — m) CH

dim H(Y, (25)9 (1)) = dim [y : (F))/Lalpsmqom for n<2r <2n.

Proof. By Serre duality we get

dim H (Y, (25) () = dim B (Y, (3") (=t = (m = N = 1)(g = 1)) .

The theorem w1ll be proved using the short exact sequences

0— (@) (=m) — @) — @) —0 .

0— () (=mg) — @5) — @) —o0

with wf = (05)® = (@Y,)?(mg) = Oy((m = N ~1)g) and (@) =0y. B
To calculate the dimensions dim H'(Y, (ﬂ;,)(')(t)) completely we have to consider
two cases, namely that p = char(K) divides or does not divide m = degY. Let [§]

denotes the highest integer < § for each a € Z.
In this paper we select some of the results [11]:
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Theorem 9.3 Assume 0 <r < n =dimY and let p = char(K) divide m = degY.
Then dim H'(Y, (25)(t)) = dim [S/((F) + L)li(z5ijmg f (O <i<r, i+
r<n,i+reen) or r<i<n,i+r>n,i+r odd). That means,
under this condition the graduated S-module 2, , H(Y, () }(’)( t)) is isomorphic to
the twisted graduated S-module [S/((F) + Is) } [%54]mq). dim H'(Y, (ﬂ'y)(‘)(t)) =
dim [(Z, : (F))/L),- (2= fmgmm if (0 <1 < r W< U nodd) or
(r<i<n,i+r>n,i+reven), ie, ,?,H'(Y,(Q{;)(')(t)) is isomorphic to
(s : (0))/L)(=[=5 Img — m).

Theorem 9.4 Let 0 < r < n and let p = char(K) does not divide m = degY.

Then dim H¥(Y, (25)(8)) = dim [(Z, : (F=1)/((F) + L)y—jz5ijmg # 0 <i <
i+71 even ) or (r<z<n,1+r>n,l+radd) That means

oA g < Nk,
the graduated S-module ®, H'(Y, (2% )(’)(t)) is 1somorphic to the twisted graduated

S-module [(I, : (F71))/((F) + I,))(=[*Imq). dim H(Y, (5, YO @) = dim [
(F)/((Fo! +I )ITEE R f(0<z<r, i+r<n,i+rodd) or(r<i<
n,itr>n, itreven) ie, SH(Y(@)C0®) = [ : (F)/(FY)+
I))(=[=57 Img — m).

Example: If p = char(K) # 3,5 then the following surfaces Y;,Y5,¥5 C P* are
smooth: ¥i:zd+af+af+af=0, Ya:a o1 +a0-2f +25+23=0,

Vs :ah a1 +xo-at +ad wy+ap @ = 0.  Since these hypersurfaces have the
same degree one cannot distinguish the one from the other using only conventional
birational invariants. For instance dim H’(Y,,Q%_(t)) is independent of j (cf. [6] ,
(13)) .

The multiplicity of the canonical class of ¥; is 1, i.e., for instance the dimension
h)(t) = dim H°(Y;, () ) (t) = dim HO(Y; ,(9F,) )@ @uwy, ) is a birational invariant
of Y; for each integer ¢ > 0. Forp="7,8= l 7 =1 one has'the values:

t : - 0N R S R AT & R 5 S 7 R
BHE ... 0 0 0 1 16 60 1361 235 340.48014s.
R ... 0 0 1 5 24 68 140 236 350 480 ...
I ... 0 1 4 10 32 76 145 239 351 480 ...

Our explicit formulas and the exact sequences give the opportunity to calculate global
sections and elements of higher cohomology groups. For instance the differential form
(23 — 23) - (dZ)7 +2f(2) — o) - (w2(d22)" — 23(d22)") is a nonzero global section
of (@)1 = (a))" ewil.
In the cases p = 11, 13 17 . we have similar situations. It would be reasonable to
inspect complete intm-sect,mns of hypersurfaces in the same way (cf. [6] , [13]).
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10 Chern classes of the T-power of a locally free
sheaf

Let X be a n-dimensional projective manifold and let T be a Young tableau with r
boxes and with the row lengths ly,l5,... . Then for every locally free sheaf F (vector
bundle) of rank m > depthT its T-power F7 is a locally free sheaf rank of which is
given by the formula tk(FT) =[] (—1- +1).

1<i<j<m
Let ¢;(F) be the i-th Chern class and let ¢;(F) = Y./, ¢:(F) - t* denotes the Chern
polynomial of 7. One sets c;(F) = n] 1 (14a;-t) with virtual variables a1, as, . .., am,
that means ¢;(F) is equal to the i-th elementary symmetrical polynomial of these
variables ay,as,...,a;, [23].
The Young tableau 7' defines a numbering of its boxes by the integers 1,2,...,7. Now
one gets a so called Young scheme by inscription of the index numbers
1,2,...,m (m =rk(F)) into the boxes of T. This Young scheme is called a standard
scheme if the entries inside any row of T give a monotonously increasing sequence
and the entries inside any column of T are strictly monotonously increasing. It is well
known that the number of standard schemes is equal to k(. fT ) [21]. Let My be
the set of all these standard schemes St.
We set ag, = Z:zl aj, with the virtual variables a;,ay,...,a,, where j, denotes
the entry in the v-th box of the Young standard scheme Sz (j, € {1,2,...,m} Vv).
The following equation for the Chern polynomial of 7 can be proven making use of
the so called splitting principle [15) , [23]:

Theorem 10.1 ¢(F7)= T[] (1 +as;  t)
SrEM:

SrEMp
The coefficient of 7 at the right side is a homog trical polj ial of
the virtual variables a; , i.c., the Chern class c,(}'T) of ' is a quasihomogenous
polynomial of the Chern classes ci(F) of F.

This way we are able to calculate for instance the Euler-Poincare-characteristic
X(X,FT) = deg ( ch(FT) - td(T) )n (Riemann-Roch-Hirzebruch, [25])

with the exponential Chern character ch(F7) and with the Todd class td(7) of
the tangent bundle 7 on X.

Primarily we are interested in the case of the cotangential bundle F = Q! since for
cach Young tableau 7' the dimension dim H°(X,Q7) is a birational invariant of the
manifold X. For projective complete intersections X of algebraic hypersurfaces the
Chern classes of the tangent bundle 7 and with it of the cotangential bundle Q' on
X are defined by Hirzebruch [24].

Received: June 2003. Revised: September 2003.
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